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1 Introduction
We consider the following random coefficient autoregressive model.
Un = (M) Y1+ +g(n)Yp—q+ &, neN, (1.1)

with random variables «;(n) = a; + 0;1;(n), where a; € Rand 0; > 0fori=1,...,q. Set

a(n) = (a1(n),...,aq(n))", n(n) = (m(n),...,ng(n))",

where ' denotes the transposition operation. We suppose that the sequences of coefficient
vectors (1(n))xen and noise variables (&,)nen are both iid with EE, = En;(n) = 0 and
E¢2 =En’(n)=1fori=1,...,q.

Questions of interest concern the existence of a stationary version of the process

(Yn)nen, represented by a random variable y,,, whose tail behaviour
P(yo >t) as t— o0 (1.2)

is of prime interest. This is in particular the first step for an investigation of the extremal
behaviour of the corresponding stationary process, which will be done in a forthcoming
paper. Stationarity of (1.1) is guaranteed by condition Dg below; see e.g. Nicholls and
Quinns [18]. We pursue in this paper the tail behaviour of the limit variable given in (1.2).
To this end we embed (y,),en into a multivariate set-up.

Setting Y, = (Yn, - - ., Yn—g+1), the multivariate process (Y,,)nen can be considered in

the much wider context of random recurrence equations of the type
Y, =AY, .1+, neN, (1.3)

where ((A,,(,)) is an iid sequence, the A, are iid random (¢ X ¢)-matrices and the (,
are iid ¢g-dimensional vectors. Moreover, for every n, the vector Y,,_; is independent of
(An, Gn)-

Such equations play an important role in many applications as e.g. in queueing; see
Brandt, Franken and Lisek [2] and in financial time series; see Engle [8]. See also Diaconis
and Freedman [4] for an interesting review article with a wealth of examples.

In the one-dimensional case (¢ = 1) Goldie [10] has solved the problem in a very
elegant way and found the tail behaviour (1.2). For the multivariate model (¢ > 1) one
can show (see, for example, Kesten [13] and Le Page [19]) that for the stationary random
variable Y, the function P(2'Y > t) is asymptotically equivalent to a renewal function,
that is

P(z'Y > 1)~ G(z,t) =By Y _g(wn,t—v,), t— 00, (1.4)



where ~ means that the quotient of both sides tends to 1. Note that, if we set 2/ =
(1,0,...,0), then we obtain again (1.2). Here g(-, -) is some continuous function satisfying
condition (4.1) below.

In model (1.1), we have ¢, = (£,,0,...,0)" and

_ [ aa(n) e y(n)
A, = ( I 0 ) , neN. (1.5)

Here I,_; is the identity matrix of order ¢ — 1.
Standard conditions for the existence of a stationary solution to (1.3) are given in
Kesten [14] (see also Goldie and Maller [11]) and require that

Elogt |[4] < oo and Elogh|¢] < o0 (1.6)
and that the top Lyapunov exponent
5 =inf{n'Elog|A4,---A,|:n €N} <0. (1.7)

In our case, conditions (1.6) are satisfied. Moreover, we can replace (1.7) by the simpler

condition

Do) The eigenvalues of the matrix
EA, ® A4 (1.8)

have moduli less than one, where ® denotes the Kronecker product of matrices.

In the context of model (1.1) the processes (z,)n>0 and (v,)n>o are defined as

. Anajnfl . A,,-LAI.I‘
|An$nfl| |An s A1$| ,

ro=x€S5, w, neN, (1.9)

and

vo=0, wv,= Zuz =log|A, - Ajz|, withu, =log|A,x,_1], neN. (1.10)
i=1

Here | - | is any norm in R? and |A[ = supy,_, |Az]| is the corresponding operator norm.
Since GARCH models are commonly used as volatility models, modelling the (positive)
standard deviation of a financial time series, Kesten’s work could be applied to such
models; see e.g. Diebolt and Guegan [5]. Kesten [13, 14] proved and applied a Key Renewal
Theorem for function (1.4) under certain conditions on the function ¢, the Markov chain
(2y)n>0 and the stochastic process (v,)n>0; a special case being the random recurrence
model (1.3) with P(A4, > 0) = 1 and condition (4.1) below. By completely different,
namely point process methods, Davis, Mikosch and Basrak [3] show that models (1.5)
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— again with positive matrices A, — have regularly varying tails. Some special examples
have been worked out as ARCH(1) and GARCH(1,1); see Goldie [10], de Haan et al. [12]
and Mikosch and Starica [17]. The random coefficient model (1.1), however, does not
necessarily satisfy the positivity condition on the matrices A,,; see Section 2 for examples.

Consequently, we derived a new Key Renewal Theorem in the spirit of Kesten’s re-
sults, but tailor-made for Markov chains with compact state space, general matrices A,
and functions ¢ satisfying condition (4.1); see Kliippelberg and Pergamenchtchikov [15],
Theorem 2.1. We apply this theorem to the random coefficient model (1.1).

The paper is organised as follows. Our main results are stated in Section 2. We give
weak conditions implying a power-law tail for the stationary distribution of the random
coefficient model (1.1). For the Gaussian model (all random coefficients and noise variables
are Gaussian) we show that model (1.1) is in distribution equivalent to an autoregressive
model with ARCH errors of the same order as the random coefficient model. Since the
limit variable of the random recurrence model (1.3) is obtained by iteration, products of
random matrices have to be investigated. This is done in Section 3. In Section 4 we check
the sufficient coefficients and apply the Key Renewal Theorem from [15] to model (1.1).

Some auxiliary results are summarized in the Appendix.

2 Main results

Our first result concerns stationarity of the multivariate process (Y;,)nen given by (1.3).

Theorem 2.1. Under the condition Dy, if the iid random variables &, have a positive
density on R, the process Y, = (Yn, - -, Yn—qt1)" is geometric ergodic. In particular, this
process has a unique stationary distribution and satisfies the strong mixing condition with

geometric rate of convergence. The stationary distribution is defined by the following vector
Y =G+ Y A Al (2.1)
k=2

where the A,, are given by (1.5) and the q-dimensional vector ¢, = (&,,0,...,0)".

Proof. We invoke Theorem 3 of Feigin and Tweedie [9]. The process (1.1) is an AR(q) -
process with random coefficients. Furthermore, the vector process Y, satisfies assumptions
1-3 of [9], and hence it is geometric ergodic. More precisely, Y,, converges to the vector Y

in (2.1) exponentially fast. O

Remark 2.2. (a) From equation (2.1) we obtain Y £ AY) + ¢, where
Vi=G+ Y Ay Ap1G 2Y,
k=3
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which implies
YLAY+G. (2.2)

(b) Using (3.3) of Feigin and Tweedie [9] together with basic identities of the Kronecker
product, condition Dgy guarantees that

E|A, - - Al]* < ¢p"

for some positive constants ¢ > 0 and 0 < p < 1. From this it follows that the series in

(2.1) converges a.s. and the second moment of Y is finite; see Theorem 4 of [9]. O

We require the following additional conditions for the distributions of the coefficient

vectors (1(n))nen and the noise variables (&,)nen in model (1.1).

D) Define
o? 0
D = diag(o},...,00)=| 0 ... 0
0 ... o2

All random wvariables n;(n) are symmetric, all moments are finite and, for every x € R
satisfying ' Dz > 0, the random variable x'a(n) has a bounded positive density ¢(z,x),
which is continuous in (z,x) € R x RY.

D2) E(ai(n) — a1)*™ € (1,00) for some m € N.
D;) E|&|™ < oo for all m € N.

Dy) For every real sequence (cg)ren with 0 <Y 72 | |cx| < oo, the random variable

—+00

=) s

k=1

has a symmetric density, which is non-increasing on R, .

Condition Dy looks rather awkward and complicated to verify. Therefore, we give a

simple sufficient condition, which is satisfied by many distributions. The proof is given in
Appendix Al.

Proposition 2.3. If the random variable &, has bounded, symmetric density f, continu-
ously differentiable on (0, 00) with bounded derivative f' < 0, then condition Dy holds.
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The following is our main result.

Theorem 2.4. Assume that conditions Do — Dy are satisfied for the model (1.1) with
a; +0; > 0. Then for all z € S ={z € R? : |z| =1} the distribution of the vector (2.1)
satisfies

1tlim PP(2'Y > t) = h(z).

—00

The function h(-) is strictly positive and continuous on S and the parameter X is given as

the unique positive solution of
k(A =1, (2.3)

where
1/n

k(A) = lim (E[A, - 4|Y)
n— 00
and the solution of (2.3) satisfies A > 2.

The following model describes an important special case.

Definition 2.5. If in equation (1.1) all coefficients and the noise are Gaussian random
variables; i.e n;(n) ~ N(0,1) and &, ~ N (0,1), we call the model (1.1) a Gaussian linear

random coefficient model.
The proof of the following result is given in Appendix A2.

Proposition 2.6. The Gaussian model (1.1) satisfies conditions Dy — D4 with o1 > 0.

Under the condition Dg the conditional correlation matriz for Y s given by

R=E(YY'|4;, i>1) =B+ A Ay (BA, -~ A, (2.4)
k=2
where
10 0
00 - 0
B= : (2.5)
00 - 0

Moreoever, R 1is positive definite a.s., i.e. the vector Y is conditionally non-degenerate

Gaussian with finite second moment.

We show that the Gaussian model is in distribution equivalent to an autoregressive
model with uncorrelated Gaussian errors, which we specify as autoregressive process with

ARCH errors, an often used class of models for financial time series.



Lemma 2.7. Define for the same q € N, a; € R, 0; > 0 as in model (1.1),

Tp = 01 Tp_1+ -+ QqTp_g + \/1 +otxp  +---+ 02, e, nEN, (2.6)
with the same initial values (To, ..., T_g+1) = (Yo, - - -, Y—q+1) as for the process (1.1). Fur-
thermore, let (€n)nen be iid N(0,1) random variables with initial values (xq, ..., T_g11)

independent of the sequence (€,)nen. Then the stochastic processes (xy)n>o and the Gaus-

sian linear random coefficient model (1.1) have the same distribution.

Proof. We can rewrite model (1.1) in the form

Yn = Q1Yn—1 + .« + QqlYn_q + \/1 +otyr ... +0%y En, mEN, (2.7)

where
s &n + O1Yn—1T (”) +..+ qunfqnq(n)

n
\/1 +otyn 1+ ey,

, néeN,

are iid AV (0, 1). This can be seen by calculating characteristic functions. [J

Example 2.8. (a) Consider the autoregressive process (2.7) of order 2 with oy = 0; i.e.

Ty = W Tp_1 + QoTp_s + /1 +0i22 1&,, neN. (2.8)

In this case the corresponding random matrices (2.2) have the following form

[ ai(n) ay
An_<1 0), neN, (2.9)

where a4 (n) = a; + o171 (n) and

a%—l—a% ai1as  a109 a%

0 0

EAl ® Al - “ @2
aq Q9 0 0
1 0 0 0

The stationary distribution for the process (2.8) is given by the two-dimensional random
vector (2.1) with matrices (2.9) and with vector ¢, = (&,,0)". Theorem 2.4 applies if
o? > 0 and ay # 0.

Notice that for 0y = 0 Theorem 2.4 cannot be applied. In this case the vector Y is

Gaussian.

(b) The model in (a) for a; = 0 was investigated in Borkovec and Kliippelberg [1] by



different methods. Stationarity of the model was shown for af + 0? < 1. Under quite

general conditions on the noise variables,
li(/\) = E|CL1 + O'15|/\,

the equation x(-) = 1 has a unique positive solution A and the tail of the stationary

random variable ., satisfies
lim t*P(z > 1) =

t—00

Moreover, this also covers infinite variance cases, i.e. A can be any positive value. [

3 Products of random matrices
Lemma 3.1. Under the conditions of Theorem 2.4, for every A > 0, there exists the limit

k(\) = lim (E|A,, - A, M)Y/" (3.1)

n—o0

Proof. Let again S denote the sphere in R? and denote by C(S) the set of continuous
functions on S. Define for A > 0,

Qx = C(S) = C(S) by @i(f)(x) = E|Aw| f(Az) (3-2)

for x € S and f € C(S5), where T = v/|v| for v # 0.

Denote by P(S) the set of probability measures on S and define for every probability

| T, : P(S)— P(S)
by
() @)o(de)
L= e @otdn)” (33)

where e(z) =1, f € C(9).

This function is continuous and by the Shauder-Tykhonov theorem (see Dunford and
Schwartz [6]) there exists a fixpoint v € P(S) such that

for all measurable bounded functions f on S, that is

/QA v(dz) = k(A /f



where

\) = / Qr(€)(@)w(da
/Q)\ v(dz) = k" /f (3.4)

for all n € N. Here Q™ is the nth power of the operator Q. From (3.2) it follows that

Notice that

QV(f) (@) =E|A, - A f(A, - Ap). (3.5)

Therefore, by (3.4) we have
- [ QO = [Bla,avia).
) S

K'(\) < E|A, - A

This implies that

On the other hand we have
K"(\) = E| A, - - -A1|A/ BuaPr(dz), (3.6)
S
where B,, = A, --- A1/|A, - - - A1|. We show that

¢, = inf /|B:1:|’\ (dz) > 0. (3.7)

|B|=1

Indeed, if ¢, = 0 there exists B with |B| = 1 such that
/ |Bz|*v(dz) =0,
s

v{reS: Br#0}=0.

which means that

Set
N={zxeS: Br=0} and g(z)=xy,

where N = S\ A and for any set A, x4 denotes the indicator function of A. Notice that

there exists a vector b # 0 such that
Nc{zeR! : Bt=0}={zeR? : bz =0}.
Further, by (3.4) we obtain that
[ @@ @) =) [ gtepptan =0,

9



that is for all n € N,
/ E|A,---Az|'g(A, - Ax)r(ds) =0.
s

This means that A4, --- Az € N for some z € N implies that

VA, Az =0.
But for var(a;(n)) = o > 0 and by condition Dy and takingonto account the special
form of the matrix A, (1.5) this is only possibly for b = 0. But this contradicts |B| = 1.
Thus we obtained (3.7).

Therefore we have that
E|A, A > k"(\) = BJA, - -A1|A/ B u(de) > e BlA, - A,
S

and from this inequality Lemma 3.1 follows. [

Lemma 3.2. Assume that conditions Do — Do are satisfied. Then equation (2.3) has a

unique positive solution.

Proof. Denote

i,9=1,...,q °
Then
HH(TL) = ozl(n)Hu(n — ].) 4+ ...+ aq(n)qu(n — ].)
= (ou(n) —a)j(n —1) + py,
where

pn = a1lli (n — 1) + as(n)Ilo (n — 1) + ... 4+ () (n — 1),

independent of 7;(n). By the binomial formula and condition Dy (which implies that all

odd moments of 7 are equal to zero) we have for arbitray m € N with CJ = (2;”),

E(IL;; (n)*" = chm n)|E[(I (n — 1)) ™)

= 202] — a1)Y]E[(I (n — 1)) 45 ]
> ( JE(ILi(n — 1))*"

where by D,



for some m > 1. Thus E(Il;;(n))*™ > s(m)", i.e.
E|II(n)["" > E(ILi1(n))*" > s(m)"

which implies that x(2m) > 1 for some m sufficiently large.

From the definition we know that x(0) = 1. Further, log x(A) is convex for all A > 0 and

hence continuous. To see the convexity, set
1
pa(A) = ~logE[I(n)[*, A >0,
n

and recall that log £(A\) = lim,, 0 pp(A). Then for o € (0,1) and 5 =1 — « we obtain for
p=a ' ¢g= B! by Holder’s inequality,

pu(aX+Bp) < apa(N) + Bpa(p) .
These properties are sufficient to guarantee a unique positive root of equation (2.3). O
Remark 3.3. By Remark 2.2(b) condition Dy ensures that x(u) <1 forall p <2. O

We shall obtain the tail behaviour of model (1.1) by applying a renewal theorem to
the renewal function based on the Markov process (x,)n>0 as defined in (1.9), where the
matrices (A, )nen are given by (1.5). Then (z,),>0 is a homogeneous Markov chain with

compact state space S and transition probabilities
p(z,T) =Py(x €T),
for any measurable set I' on S.

Lemma 3.4. Under the conditions of Theorem 2.4 the process (xp)n>0 with values in S

is geometric ergodic with invariant measure () which is equivalent to Lebesque measure

on S.

Proof. First notice that by Lemma A.7 there exists some p, > 0 such that

inf P,(z5, € B) > p,A(B), (3.8)

z€eS

where A denotes Lebesgue measure on S. This implies in particular that every measurable

set in S is small.

For y € RY? let < y >; denote its ith coordinate. Define v : R? — [1,00) by
v(y) =1+ <y >|.

Then
E,v(z1) = 1+ E¥([¢]),

11



where £ = 2'a(1), a(1l) = (au(1),...,q4(1)), z = (< & >1,...,<x >,) and
0

\/92+<:c>§+---+<x>g_1

Notice that d¥(0)/df > 0 and d*¥(6)/dh* < 0 for § > 0 and E|¢| < E|a(1)| =: p. By

Jensen’s inequality we have that
E,v(ry) <1+ W(E[]) <14 ¥ (u) = L(z)v(z),

where

1
(1) = ———— |1+ a
+l<a>| \/u2+<x>§+...+<x>2

q—1

lim  L(z) = - (14— <1
1m ) = — _— .

|<@>1]-1 2 V2 +1

Thus, for a some € > 0 there exists 0 < r < 1 such that

and

sup L(z) <1l—¢,
|<z>1|>r

and we have (A.2) for the set
F={zes : |<xz>|<rhL

By Lemma A.6 the process (z,),>0 is geometric ergodic with stationary distribution 7(-)
on S, ie. forallz e S

[P () = 7()] < ep” (3.9)

for some ¢ > 0,0 < p < 1 and || - || denotes total variation of measures on S.

We show now that 7 is equivalent to Lebesgue measure.

If A(B) =0 then 7(B) = lim,,_,o P, (2, € B) = 0.

If 7(B) = lim, 0o Py(z, € B) = 0 and if A(B) > 0, then taking inequality (3.8) into
account, we obtain the contradiction

7(B) = lim P,(2p.9, € B) = lim [ P,(xq, € B)P™(z,dy) > p.A(B) > 0.

n—oQ n—oo S

Hence 7(-) and A(-) are equivalent on S. [0

The proof of the following Lemma is a simplification of Step 2 of Theorem 3 of
Kesten [14] adapted to model (1.1); see also Le Page [19], Step 2 of Proposition 1.2.
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Lemma 3.5. Under the conditions of Theorem 2.4, for every A > 0, there exists a con-
tinuous function h(-) > 0 such that for Qy as defined in (3.2),

Qx(h)(z) = k(A)h(x), =z €S. (3.10)
If another function g satisfies this equation, then g(-) = ph(-) for some constant p > 0.

Proof. Recall the notation of the proof of Lemma 3.1, in particular (3.5) and (3.6). Set
for A >0

QA (e)(x) _ BlA, -+ A

() )0 TET

sn(z) =

Using (3.7) we have

sup s, () < 1/c.
TES

and for all z,y € S,
|50(2) = sa(y)] < Llz —y|*, 0 =min(\, 1),

where L is some positive constant.
By the principle of Arzéla-Ascoli there exists a sequence (ny)gen With ny — oo as k — oo
such that

1 &
() = 13 o) = o)
uniformly on S and
Q@) = Jm Q) = Jim Y Qi)

= JLTO%ZSJ-+1($) = k(A)h(x).

j=1
Further, if h(z) = 0 for some z € S then Q" (h)(z) = 0 for all n € N, i.e.

E|A, - Ajz[*h(z,) =0,
where x, = A, -+ Ajx, which means that h(z,) = 0 a.s. From Lemma 3.4 we conclude

E.h(z,) =0 = /h(z)w(dz) =0 = lim [ hg(2)r(dz) =0.

k—o00 S

13



But on the other hand

/S he(2)m(dz) = nikz / 5;(2)m(dz

= Lo @ @)

I & 1 |Aj - Az A
= E: ElA. .- AN | 2222 1(dz
o A )
E|A]
> -
= ClnkE
> 01/6*,

where

c1 = inf /|Bz|’\ (dz).

[B|=1
We show that ¢; > 0. Assume that ¢; = 0. Then there exists a matrix B with |B| = 1 such
that (NN S) =0 for N ={z €R? : Bx =0}. But this is impossible, because A is a
subspace of R? and 7 is equivalent to Lebesgue measure on S. Hence h(z) > 0 forallz € S.

Now assume that there exists some function g # h satisfying equation (3.10). By Lemma A.7

every function, satisfying equation (3.10) is continuous, since for all n € N

g(@) = £"(N) Q5 (9) (@) = K" (N By g (), €S,
where v, =log|A, --- Ayz| and z, = A, - - - Ajx. Set

g() _ g(o)
P e i)

and [(x) = ph(z) — g(x).

Notice that I(z) > 0 and [(xy) = 0. Set

L= 1B _ @06 _eP0E) _ @(kL)E)
h(z)  k(Nh(z) T Nz s (Ah(z)
We write .
— _ x (L) (yo)
iléIS)L(x) = L(yo) = T (Nh(yo)
equivalently,
E|An o 'Alyo|/\h(513n)L(.Tn) = L(yo)h(yo),‘{/n()\)

E| A, - Aol (@) (L(yo) — L(za)) = 0.

14



Thus L(x,) = L(yo) for all n € N, where x,, = A, --- Ajyo. By Lemma 3.4 we get

/5 L(z)m(d2) = L(yo) .

Therefore for all z € S

Thus I(z) =0 forall z € S. O

4 Renewal theorem for the associated Markov chain

The next result is based on the renewal theorem in Kliippelberg and Pergamenchtchikov [15]
for the stationary Markov chain (z,),>0 and the process (v,),>o as defined in (1.9) and
(1.10), respectively. Denote by u,, = log|A,z,_1|, n € N, the increments of (vy,)n>0.

The renewal theorem in [15] gives the asymptotic behaviour of the renewal function
o
G(z,t) = E, Zg(mk,t — )
k=0
under the following conditions:
Co) The function g : S x R — R is continuous and bounded and satisfies

Z sup sup |g(z,t)| < co. (4.1)

a:ES l<t<l+1

C1) For the processes (x,)n>0 and (uy)n>1 define the o-algebras
Fo=ocf{zo}, Fn=o0{xo,x1,U1,...,Zp,un}, neEN,

where some initial value xq is independent of (Ap)nen-
For every bounded measurable function f : R x II2,(S x R) — R and for every F,-

measurable random variable n

E(f(777 xn+1; un+1, LRI ;mn+l, un+l, .. )|fn)
— Eg;nf(na Tn41y Unals s Tpily Untgy - - ) (42)

- (I)(xnan) )

i.e. ®(z,a) = Eyf(a,z1,uy,...,2,u,...) for allz € S and a € R. We assume further
that

supE,|u| < oo (4.3)
z€S

15



Cz) There exists a probability measure w(-) on S, which is equivalent to Lebesgue

measure such that

IPEC) =7 =0, n— oo, (4.4)
for all x € S, where || - || denotes total variation of measures on S.

Moreover, there exists a constant 3 > 0 such that
lim — = P,— a.s.
forallz € S.
Cs) There exists a number m € N such that for all v € R and for all § > 0 there exist
Yvs €S and g9 = go(v,0) > 0 such that V 0 < e < &g

inf P,(|zm —vus| <&, |vm—v|<d)=p>0, (4.5)

QZEBE!(S,,,
where B. 5, ={r €S : |v -y, <0}
Cy) Let @ : S xR xR — R be a bounded measurable function. Then there exists
some l € N such that the function ®1(x,t) = E,®(x;, v, t) satisfies the following property:
sup sup |Pq(z,t) — P1(y,t)| =0, €—0.

lz—y|<e teR

Theorem 4.1. (Kliippelberg and Pergamenchtchikov [15])
Assume that conditions Co — Cy are satisfied. Then

. . > 1 >
lim G(s.) — lim E, ;g(ack,t ) = B/Sﬂ(dx) /_Oog(x,t)dt. (4.6)

O

We apply this renewal theorem to

t

1 e
G(x,t) = 5/0 wWP(2'Y >wu)du, z¢€S,teR, (4.7)

where the vector YV is given by (2.1) with matrix (1.5) and A is the positive solution of
equation (2.3).

16



Define
G(z,1)

h(z)
where h(-) > 0 satisifies equation (3.10) with positive solution A for which x(\) = 1.
Further, notice that by Remark 2.2

G(z,t) =

VLAY 4G,

where Y] = (, + 220:3 Ag o Ap_ 1k Ly independent of A; and (;. Therefore,

t

G(x,t) = h(;)et /0 wP(2'ALY] 4 2'¢ > u)du
= ¢(z,t) +¥(x, 1), (4.8)
where
p(x,t) = - (;)et /0 ) P (2'A)Y) > u)du, (4.9)
Yt) = - (;)et /0 " e w)du (4.10)
Yo(z,u) = P@'AY]+2'¢C > u) — P@'AY, > u). (4.11)

Denote by E, the expectation with respect to the probability measure f’w, which is
defined by

~ 1
E, F(x1,up, ..., Tn,Uuy) = mEMn o Ay P () F (@, w2, ), (4.12)

for each measurable function F'.

Proposition 4.2. Under the conditions of Theorem 2.4, for every x € S,
G(z,t) = Z E (2,1 — vy) . (4.13)

Proof. Consider first ¢(z,t) as defined in (4.9). Mapping v — u/|A;z| and using 2] =
x'A1/|Ajz|, we obtain

| Ayt

¢(z,t) = EW

et/| A x| .
/ wWP(2)Y > u)du = E,G (21,1 — In|Az]).
0
Define the linear operator © on the continuous functions C(S) by
O(f)(w,t) = Eof (w1, —v1), (4.14)

17



where we have used that v; = u; = In|A;z|. Notice that the nth power of this operator
is given by

O (f)(x,t) = Epf (T, t — ). (4.15)

Identity (4.8) translates into

G(x,t) = O(G)(x, 1) + (1),
and we obtain for all n € N from (4.14) iteratively,
G(a,t) = O(G) (1) +¥(x,1) + O(W)(w, 1) + ...+ O™ V(1) (x,1).

Furthermore

9(")(6)(x,t) = Exé(xn,t—vn)
1

Et
= W/o wWP((A, -~ A12)'Y >u)du — 0, n— oo,

because by condition Dy,

limE[A,--- A =0.

n—0
This implies (4.13). O

Next we check conditions C; — Cy.

Proposition 4.3. Let (2,)n>0, (Vn)n>0 and (uy)nen be defined as in (1.9) and (1.10),

respectively, where (Ap)nen is defined in (1.5). Then conditions C1 — Cy hold with respect
to the measure P, generated by the finite dimensional distributions (4.12).

Proof. First notice that by Lemma A.8 Lemma 3.4 holds with respect to the distribution
(4.12). Lemma A.8 ensures immediately condition Cy.
Next we check C;. For n,l € N we have

- _ An—H e An—}—lxn
n+l —
|An+l e An+11‘n|

- hl(l‘n, An+l, e ,An+1)

and

An+lfl Tt An+1xn

Up4i = IOE’; |An+lxn+l—1| - log |An+l | - gl(xn; An—HJ sy An—i—l)

|An+171 e An+1xn|

and for any function f : R x II2?(S x R) — R we can calculate

F (s Tty g1y oevy Tty Uty ---)
= [, li(@n, Aps1), 91(Tn, Ansr), - - -
hi(%, Angty -y Ans1), 01(Tn, Angts - o5 Ang), - - )
= [y oy Angrs s Angry o)

18



Therefore,

E(f(nn’ Tp41s Up41y - o5 Tl Un4is - - )|fn)
= E(fl(n’n;xn,An+1,---,An+l,---)|fn)
= (I)(nnaxn);

where (notice that (7, x,) are independent of (A, 41, ..., Apis,--.))

@(a,l‘) — Efl(a,m,An+1,...,An+l,...)
= Efl(a,x,Al,...,Al,...)
= Ef(aa hl(xaAl)agl(xaAl)a LRI hl(l‘;Ala e '7A1)7gl($aAla e 'aAl)a H )

= Ezf(a, L1y, Upy ey Ty, Uy, ) .

From this and (4.12) we get for every m € N and every bounded function f,, : R X
1 (S xR) — R

E:c(fm(nn; Tn4+1y Un+1y - - -y Tntm, un+m)|fn) - (I)m(nna wn) s

where ®,,(a,x) = Ez(fm(a, L1y ULy ey Ty Uy

For every bounded function f : Rx I, (S xR) — R we can write f = lim,,_,o, fi, and,
letting m tend to oo in the preceding equality, we obtain (4.2) for the measure (4.12).
Further, the function E, log|A;z| is continuous on S and therefore bounded. From this
(4.3) follows. Hence condition Cq holds.

Next we check condition Ca. Notice first that (by the same method as for the proof
of Lemma 3.4) the process (z,)n,>1 is geometric ergodic with respect to the family of
distributions P, as defined in (4.12). Its stationary distribution is by Lemma 3.4 equivalent
to Lebesgue measure on S. Further we have

Unp

1 < 1 &

where

f(z) = @Emlwmg | Ayl h(Ayz),

and

my, = log |Agrg_1| — By (log [Agzy || Fr-1) = log [Agz—1]| — f(k-1).

The last term in (4.16) converges to zero by the martingale convergence theorem.
The first term of the right-hand side of (4.16) converges to the expectation of f with

respect to the invariant measure by the ergodic theorem for (z,)nen (see e.g. Theorem
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17.0.1, p. 411 in Meyn and Tweedie [16], because this process is a positive Harris chain).

Consequently,

n . 1 —— -
lim % = 3 :/ﬂ(dz)%EMle‘log|A1z|h(A1z), T — a.s. (4.17)
S

n—oo 1N

where 7 is the stationary distribution of (z,,)nen With respect to P,. This implies

n—oo 1,

/sf)””( lim U = B)7(dz) = 1.

Since the measure 7 is equvalent to Lebesgue measure we have that

P,(lim = =8)=1 (4.18)

n—oo 1M

for almost all x € S. By condition C; we conclude

where

n—oo n

Un

By condition C4 we obtain that the function f’w(limnﬁoo b= ) is continuous on S and
therefore we obtain (4.18) for all z € S.
It remains to show that the constant § in (4.17) is positive. For n € N define

[I(n) =A,---A;.
By condition Dg there exist § > 0, v > 0 and K > 0 such that
E|II(n)]° < Ke™ ™.
Let v; > 0 be such that d = v — d7; > 0. Then by Markov’s inequality,
P(|I(n)z| > e ™) < P(|TI(n)]|° > e "1") < Ke .

Further, we have for every 0 < p < d/\ and z, = [I(n)z/|II(n)z|,

N . 1
P,([II(n)z| <e™) < mEM(”)fE|Ah($n)X{IH(n)wl<ef’"}
h(z)

c (e + VP (|(n)z] > e "))

cle M 4 Ke’(d’)"’)”).

IN

(€77 + EI(n)2[ X (e-nn < u(m)a|<ern) )

INIA
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By the Lemma of Borel-Cantelli we conclude that for all z € S

limv—">p>0 P, — as.

n—oo 1

This verifies condition Cs,.

Finally, we check condition Cs. We shall show that for m = 2¢ Vv € R, V6 > 0Vy € S
and Ve > 0

p= 12£1~D$(|$m_y| <e, |vm—v|<d)>0. (4.19)
Indeed,
Po(ltm —yl <e, Jom—v[<0)=
P (|(m)z/|W(m)a| —y| < e, [log|II(m)z] - v| < §) = P,(Il(m)z € I'.p),

where
F.s={2€R : |2/|z] —y| <e, |log|z| —v| <)}

Notice that, for any y € S, this set is a non-empty open set in S, because the vector
z=eyecl.s Vv eR V>0, Vy €S and Ve > 0. This implies that the Lebesgue

measure of I'; 5 is positive. We conclude that
Po(|zm —y| <e, |tm—v|<68) >0 (4.20)

for any € S. Moreover, by Lemma A.8 the vector II(m)z (for m = 2q) has positive
density in R?. By condition C4 the function (4.20) is continuous on S and we obtain the
property (4.19). This implies C3. O

Lemma 4.4. Under the conditions of Theorem 2.4, for every x € S, there exists

1 1 oo
lim G(z,t) = h(z)= | 7(d2) At du = h(z)y* >0 4.21
Jim Gla.t) = ho)5 [ #e)ges [ G di= @)y >0, a2
where h(-) > 0 satisfies equation (3.10) with positive solution A for which k(\) = 1.

Proof. By Proposition 4.2 it suffices to find the limit for the sum in (4.13). We apply
Theorem 4.1 to this function. Conditions C; — C4 hold by Proposition 4.3.

It remains to show that the function ¢ given by (4.10) satisfies condition Cq. By Lemma A.9
(see Appendix A4) it follows that ¢ (z,¢) > 0 and therefore

(,t) < ha (97 (2, 1) + 5 (2, 1)), (4.22)

where h, = 1/ mingeg h(x) and

t t

1 [ 1 [

i(z,t) = ) uP(1y > u — n(t))du — ). wP(my > u)du,
e+
Py(x,t) = WP(TZ > n(t)),
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n(t) = e for some pu > 0. We show that the functions ¢} (z, t) satisfy for sufficiently large
t > 0 the inequality

Vi (z,t) < ce™ (4.23)
for positive constants ¢ > 0 and v > 0.
First notice that immediately from the Lemma 3.2 and Remark 3.3 it follows that

k(0) < 1 for every 1 < 6 < \; hence by the defintion of x(f) in (3.1) for any v, € (k(0),1)
there exists some C' > 0 such that

E|A,--- A" <Cy,)", VYn>1.

From this inequality, Remark 2.2(a) and Holder’s inequality (with p = # and ¢ = 6/(60—1))

we obtain that

Eln|" < E[A[EW)

00 0
< 2"7'EJA E|€1|0+E<Z|A2"'Ak—1||§k|)
k=3

00 00 0—1
< 27'E|A)| | EG) +EIG)TY D pEPE| A, Ay |f (Z p“’“—?)/“—”)
k=3

k=3

0o 0o 0—1
< 2B | BlGl + CElGI S p 0t (1)t (Zp"“f—”/w—”)
k=3 k=3

By choosing in the last inequality p = (Vg)ﬁ we obtain that for every 1 < 6 < \ there

exists some m(#) > 0 such that

supE|r |’ = supE|2’A, V1|’ < m(h) < co. (4.24)
€S €S

This means that we can find # < X for which the inequality (4.24) is true and such that

0 = A — 0 can be chosen very small.
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Further we have for sufficiently large ¢ > 0

et—n(t)
i (z,t) < L (n(t) +u)*P(r, > u)du

et Jo
1 e (n(t)))\+1
ol

—— u/\P(ﬁ > u)du +

t

VAN
m{‘b
>4
t
|
\m
\
:
/\
A
_|_
3
s |
N—
>
|
[a—Y
~__—
]
)
V
&
o
e

A+l ef—n(t)
o O () / oy,
et et n(t)
)M N+ et—n(t)
< CMHWM/ W
6 [ n(t)
n t)€5t (n(t)))\+l
< oMo, 0

b

where M* = supy_,,((1+2)* — 1)/z and ¢ > 0 is some constant.

To obtain (4.23) for the function ¢{(x,t) choose the parameters § and p such that d+p < 1
and 0 < p< (1+ )71

The function v5(x,t) satisfies inequality (4.23), because by the condition Dg for every

m > 0,

supE|r|™ =supE| <z >; ™ < E|§]" < 0.
TEeS T€eS

On the other hand, if ¢ = —oo, we have immediately from definition (4.9),

et

U(z,t) < hy— [ w'du < he

et 0
and hence condition Cg holds.

By Theorem 4.1 and Lemma A.9 (see Appendix A4) we conclude

) —lfrzﬂo z,8)ds
lim = lim G(z,t) = 5/5 (dz) P(z,s)d

t—oo  h(x) t—00
= %/ﬁ(dz /+OO ! / o (2, u)duds

= 3 / dz / u o (2, u)du

= 7 >0,

where > 0 is defined by (4.17) and 7(-) is the stationary measure of the Markov process
(2 )n>0 under the distribution P as defined in (4.12). O
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Lemma 4.5. Under the conditions of Theorem 2.4, for every x € S, there exists

lim *P(z'Y > t) = l(z) = v* h(z) > 0. (4.25)

t—00

Proof. We give here the proof as in Le Page [19], adapted to our situation. Set
¢
F(z,t) = / wP(2'Y > u)du.
0

By Lemma 4.4 we have
. F(z,1)
lim ——=
t—o00 t

Define for z € S and ¢ € R the measure (1 < a < b < 00)

F(z,tb) — F(x,ta)
F(z,1)

=I(x) > 0.

e zla, b] = — b—a, t— 0.

This measure has representation

b
,ut,a:[afa b] - / U)\gt,a:(v)dva

where
AP ('Y > to)

PAP(2'Y > u)du
0

9tz (U) —

For any v > 1

t
1
/ wWP(2'Y > u)du > —— P Y > tv),
; A1

and hence

Furthermore, the function g;, is decreasing, thus for any sequence (¢,)nen tending to
infinity there exists a subsequence (t,, )xen and some function g,(-), such that ¢, — oo
as k — oo and

lim g, .(v) =g.(v), a<wv<0b,

k—o00

for any point of continuity v of g,(-). From this we conclude for any 1 < a < b < oo

b b b
b—a = lim [ v'g.(v)dv = lim [ g, .(v)dv = / v g (v)dv .
t—oo [, ’ k—oo J, k> .

It follows that g,(v) = 1/v*. From this we obtain

tlirn P(2'Y > t) = (z) = v*h(x) > 0.
—00

This concludes the proof of Theorem 2.4.
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Appendix

A1) A simple sufficient condition for D,

Proof of Proposition 2.3. Let | = inf{k > 1 : |¢x] > 0,}. For n > [ set 7,, =
> oy ke I |ex] > 0, then ¢, has a symmetric density py(-), continuously differentiable
with derivative pj(-) < 0 on (0,00). Therefore 7; has a symmetric density, which is non-
increasing on (0, 00). We proceed by induction. Suppose that 7,,_; has a symmetric density,
non-increasing on (0, 00). We show that 7,, has a density with these properties. Indeed,
if ¢,, = 0 then 7,, = 7,,_; and we have the same distribution for 7,,. Let us consider now
the case ¢, > 0. Taking into account the properties of p,(-) and of the density ¢ (-) of

Ta—1 We can write the density ¢_ (-) of 7, in the following form

o (2) = / gz —w)e, (u)du

o0

= [ e, @i [ g,

+/ pu(u—2)p, (u)du, 2z2>0.

Therefore the derivative of this function equals

o (5) = / TP+ u)pn, (u)du+ / Pz — u)pr, (u)du — / = 2, (uw)du
= [ (=) () du

[ ) (o -0 = (e a)dugo, 20,
0

since p,(-) < 0and ¢_  (-) is non-increasing on (0, cc). Therefore we obtained that for all
n > [ the random variable 7,, has a symmetric continuously differentiable density, which
is non-increasing on (0, co). Further, since 7,, — 7 a.s. as n — oo and the random variable
7 has a continuous density ¢_, we have
+00 +o0
i [ ge)en (e = [ g2z

n—o0
— 00 — 00

for every bounded measurable function g. Therefore, for 0 < a < b we have for all
0<d<(b+a)/2,

b+6 a+0 b+0 a+0
/ v, (2)dz —/ ¢, (2)dz = lim </ ¢, (2)dz —/ can(z)dz> <0.
b—o a—6 00 \Jb—6 a—4

Since the density ¢_(-) is continuous we conclude

o0 = e =t ([ o= [o ) <o =

0—0 25 -5 -5
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A2) Gaussian linear random coefficient models

Proof of Proposition 2.6.

It is evident that conditions D{—Dy4 hold for the Gaussian model.

To show that the conditional correlation matrix (2.4) is positive definite a.s. take some
x € R? such that 2’ Rx = 0. Then

¥'Br+Y 0,B6, =0,
k=1
where B is defined in (2.5), 6y = x and 6, = A}, --- Az, k € N. If we denote < = >; the ith
coordinate of z € RY, the equality above means that < 6, >;= 0 for all £ > 0. Taking this
into account and by the definition of the vector 6, we obtain that < 0, > =<z >,,1=0
for all 0 < k < ¢ — 1. From this we conclude that z'’Rx = 0 implies x = 0, which means
that R is positive definite a.s. [

A3) Criteria for geometric ergodicity.

Lemma A.6. (Meyn and Tweedie [16], p. 355)

Suppose that T is a small set and that the measurable function v: S — [1,00) satisfies

sup/ v(y)p(z, dy) < oo (A.1)
zel’ J S
and, for some e > 0,
/v(y)p(w, dy) < (1 —e)v(z), forall xeT" (A.2)
S

Then the process (Ty)nen 18 geometric ergodic.
Recall the definition of the (A, )nen in (1.5) and set II(n) = A, --- A;, n € N.

Lemma A.7. Under the conditions of Theorem 2.4, for x € S, the distribution of I1(2q)x
has a positive density with respect to Lebesque measure on RY, which is continuous on S.

This means that the function
@1(1‘,t) :Exfb(xgq,wq,t), .'L'GS,tZO,

is uniformly (with respect to t) continuous on S for every measurable bounded function
® : SxR xR — R Furthermore, the distribution of the vector xoy has a positive

continuous density with respect to Lebesque measure on S.
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Proof. Let x = (z1,...,z,) € S and define 1, = n;(z) = a(i)'II(: — 1)z with vector
a(i) = (a1(i),...,a4(7))". Notice that for 1 <i < g,

)z = (i, -y, 21, - - - ,xq_i)',
and for 7 > ¢

H(Z)l‘ = (7’]2, ceey ’I]Z'_q_H)I . (A?))

q

For ¢ > ¢ this implies n; = > 7, a;(i)n;—;. Therefore by Dy if

q
di = di(ni—l; cee 7771'—(1) = JJIH(Z — ].)IDH(Z — ].)1' = ZO’?T]Z'_]' > 0,

i=1

then 1, = «a(i)'Il(i — 1)z has a conditional density (under the condition II(i — 1)z =
(Miz1, .-, Mimg)’) for i > ¢

(Pi('|77i717 T ;77i7q) = ¢(, H(i - 1)1‘)

By D2 we have o7 > 0. Hence, if n, = 0 with positive probability, then, taking condition

D; into account,
q q
dy = Za;- <I(qg—1)x >§: Za?nq,j =0,

which implies
Ng—1 =< [I(g — 1)z >,= 0 (because 0% > 0) = ... = m=0,

i.e. II(¢)x = 0 by (A.3). But this is impossible because det II(¢) # 0 a.s. and = € S, which
means that 7, # 0. Hence d,41 > 0 a.s.

= 77q+17é0 = dq+2>0 = e

ie. d; >0 a.s. forall 2 > q.
This implies that the vector II(2¢)x = (924, - - -, 7y+1)" has a density in RY:

2q
p(z1,...,2p2) =E H 0i(ZicqlZicqaty - - 21, Mg (), .o Mig()) - (A.4)
1=q+1
From this and D; follows that the function p(z1, .. ., z4, z) is a continuous positive function

of (z1,...,2,) € R?” and x € S. Since vy, = log |I[(2¢)x| and x5, = II(2¢q)z/|I1(2¢)x|, we
obtain the second part of the lemma.
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Further, for any bounded measurable function f on S we have

Z Z
E,f(zy,) = /f<ﬁ,...,ﬁ)p(zl,...,zq,x)dzl...dzq
R4
- /f(yla"'ayq)ps(yla"'7yqax)A(dy1"-dyq)7
S

where A(-) is Lebesgue measure on .S and

pS(yla"'ayqaw) - / rqflp(rylr_‘,ryq,z)dr,
0

where the function p(yi, ..., ¥y, ¢) is defined in (A.4). We show now that the density
Ps(Y1, ..., yg @) is continuous for all y = (yi,...,y,) € S and x € S. To this end, let
¥’ =(y),...,97)" € S and 2° € S. We need to show that

lim pS(yla-"ayQJx):pS(y(l]a"'aygaxo)'

y—y0 ,z—a0

For this it suffices to show that for some 0 < § < 1

o
]\;im sup / " p(ry, ..y, x)dr =0, (A.5)
T y—y0l<o meS IN
because fON rip(ry, ..., rYq, x)dr is a continuous function for every positive V.

Indeed, set | = inf{j > 1 : |y9| > 0}, i.e. |y)| > 0 and y; = 0 for all j < . We choose
0 < d < |yP]/2. Then by (A.4) we have for some constant C' > 0

/ rq’lp(ryl, Ty x)dr < CE/ rq’1¢q+l(ryl|0, oo 0mg(x), - m())dr

N N

1 o
< C E a? ' p(a, p(x))da
< /| bla. pl)

|yl|q y|N
= > B[,
= O [(%+zﬂ) Xl p(e)>luN} | -
where p(z) = (0,...,0,m,(z),...,m(z))". By condition D; we have for every m € N,

sugE [l p(@)|™] < oo
TE

From this we obtain (A.5) and the last part of this lemma. O

Lemma A.8. The assertions of Lemma A.7 remain true with respect to the measure P,

as defined in (4.12).
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Proof. Indeed, from Lemma A.7 and (4.12) follows that for every bounded measurable

function f we have for z € S

B, f (I1(2q)z) = ﬁmmzq)x|Ah<H<2‘q>w>f<H<2q>x> - / )iz a)d,

with

1
p(z, 1) = o) 12 (@) p(z, ),
where p(z, z) is defined by (A.4) for z € R? and = € S. Therefore the vector II(2¢)z has a

continuous positive density p(z, x) with respect to the measure P,. By the same method
as in Lemma A.7 we get that the vector x5, has a positive continuous density pq(z,x) on
S with respect to the measure P, given by

potvn) = [ o ity = 5 [T e

From Lemma A.7 we obtain that this function is continuous in y € R? and z € S. [

A4) A property of 1.

Lemma A.9. Condition Dy) implies that the function y(x,u), which is defined in (4.11),
is non-negative and, for allx = (< x >1,...,<x >,) € S with <z >1# 0

A({u >0 : ¢o(z,u) > 0}) >0, (A.6)
where A(-) denotes Lebegques measure on R, .
Proof. Indeed, by definition we have
Po(x,u) =P(r + 19 > u) — P(ry > u)

with 7 = 2’AY; and 7o = 2'(; =< o > &. If < x >= 0, then 5 = 0, and therefore
to(z,u) = 0. We show that ¢y(x,u) > 0 if <z >1# 0. By conditioning on 7, we get

oz, u) = /000 Plu—t<n <u)-Plu<n <u+t))p,(t)dt, (A.7)

where p_ (-) is the density of 7, which is by D4) symmetric and non-increasing on (0, co.
Further, again by Dy4 the conditional density p_ (-|A) of 71, where A = o{4;,i > 1} is

symmetric and non-increasing on R, . Hence for 0 < ¢ < u we have
Plu—t<mn <u)—-Plu<n <u+t)
= EPu—-t<mn <uld)—Plu<mn <u+tlA))

+t
= E/ P, (a|A) da—/ P, (a|A)da)

= B[ (p,(0l4) = p, 0+ tl4)da > 0.

29



On the other hand, for t > u we get

Plu—t<m <u)—Plu<n <u+t)
u+t
- s(/ zmMAM—/ pald)da)
u'u, u-+t
_ ( P (alA)da +/ p, (alA)da — / pTl(a|A)da>
0 U
U 2u u+t
_ ( p. (alA)da +/ p, (alA)da - / p. (| A)da - / pTl(a|A)da>
0 U 2u
= < (p., (alA) — p,, (a+2u|A))da +/ (p,, (alA) —p, (a+ u|A))da> >0,
since p_ (-|A) is non-increasing on R, . This proves the first part of this lemma.

We show now the inequality (A.6). Let x € S with < 2 >;# 0. By condition Dy the
function p_ (-) is non-increasing on R, . Therefore there exists ¢, > 0 such that [0,%,] C
{u>0:p_(u) >0} If for thisz € S

A({u >0 : tho(xz,u) >0}) =0,

then ¢g(z,u) = 0 for all uw > 0, because by (A.7) the function ¢g(x,u) is continuous on
u > 0. This implies that for some ¢ € (0, %) and for all u > ¢

u +oo
B[ (@) =p (ot A)da=0 = B[ (64~ p, 0+ 4)da =0
u—t 0
and by the monotonicity of the function p_ (-[.A) we get
p;, (a|A) = p, (a +t|A) for almost all a > 0.

Further we set o* = max{a > 0 : p_(a|A) = p, (0]A)} and for a € (a* —J,a*) with
d = min(a*/2,t/2) we obtain

P, (alA) = p, (0lA) = p,, (a +t|A),

but this contradicts the definition of a*, because a+t > «*. From this we obtain (A.7). O
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