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Bayesian Modelling of Inseparable Space�Time

Variation in Disease Risk

Leonhard Knorr�Held

Institute of Statistics� Ludwig�Maximilians�University Munich�

Ludwigstr� ��� ����	 Munich� Germany�

SUMMARY

This paper proposes a uni
ed framework for a Bayesian analysis of incidence or mortality

data in space and time� We introduce four di�erent types of prior distributions for space �
time interaction in extension of a model with only main e�ects� Each type implies a certain

degree of prior dependence for the interaction parameters� and corresponds to the product

of one of the two spatial with one of the two temporal main e�ects� The methodology is

illustrated by an analysis of Ohio lung cancer data �	
���� via Markov chain Monte Carlo

simulation� We compare the 
t and the complexity of several models with di�erent types

of interaction by means of quantities related to the posterior deviance� Our results con
rm

an epidemiological hypothesis about the temporal development of the association between

urbanization and risk factors for cancer�

�� Introduction

There has been much recent interest in the analysis of disease rates over space and time�

The problem with such data is that the number of cases and the corresponding population

at risk in any single unit of space � time are too small to produce a reliable estimate of the

underlying disease risk without �borrowing strength� from neighbouring cells� The goal here

could be described as one of smoothing� in which both spatial and non�spatial considerations

may arise� and spatio�temporal interactions may become an important feature�



Most of the Bayesian methods
��� �� ��

propose extensions of the purely spatial models

by Clayton and Kaldor
���

and Besag et al�
���

to space � time data� Bernardinelli et al�
���

suggest a model in which both area�speci
c intercept and temporal trend are modelled

as random e�ects� representing area�speci
c deviations from an overall risk pro
le� This

formulation already allows for spatio�temporal interactions where temporal trends in disease

risk may be di�erent for di�erent spatial locations and may even have spatial structure

in itself� However� all temporal trends are assumed to be linear� which is a restrictive

assumption�

Waller et al�
���

use a nested model� where the hierarchical speci
cation by Besag et al� is

applied to each time point separately� The model does not have spatial main e�ects and

therefore allows that the spatial patterns at each time point are completely di�erent� There

is less emphasis on modelling the temporal development in disease risk� as time is treated as

essentially exchangeable�

The paper by Knorr�Held and Besag
���

proposes a model that combines the spatial model

by Besag et al� with dynamic models�
�	� 
�

Such dynamic models allow for a nonparametric

estimation of temporal trends in disease risk including time�changing e�ects of covariates�

In particular� they do not assume linearity nor stationarity and can be seen as the temporal

analogue of the spatially structured component
���

in the Besag et al� model� Hence� both

the temporal and the spatial risk pro
le are estimated nonparametrically� However� the

model combines temporal and spatial main e�ects additively and does not allow for space �
time interactions�

The present paper tries to 
ll this gap focusing on the case where the disease variation

cannot be separated into temporal and spatial �main� e�ects and spatio�temporal interac�

tions become an important feature� For simplicity we assume that the data consists of single

observations on the number of persons under risk and the number of cases or deaths for each

�



pixel in space � time� We start with the �slightly modi
ed� Knorr�Held and Besag model�

separable in time and space� from which four interaction types arise naturally as the product

of one of the two spatial with one of the two temporal main e�ects� based on a suggestion by

Clayton�
���

These four types of space � time interaction imply di�erent prior assumptions

about the interrelationship between interaction parameters� ranging from complete indepen�

dence to complete dependence� Two of the corresponding models �combining additively each

type of interaction with the main e�ects� can be seen as the nonparametric analogue of the

Bernardinelli et al� formulation�

The proposed modelling framework is outlined in Section �� We also include some details

on the implementation by Markov chain Monte Carlo �MCMC� and outline several mod�

i
cations and extensions� Section � describes an analysis of a dataset on mortality from

lung cancer among white males between �� and 
� years� for �� successive years in the ��

counties of Ohio� This is a subset of a dataset analysed previously in the literature�
��� ��

We

have implemented all four models corresponding to the four types of interactions as well as a

model with only main e�ects� We use the posterior deviance
��
�

for comparing the 
t and the

complexity of the di�erent models� Deviance residuals are used for model diagnostics� The

results con
rm an epidemiological hypothesis
����

that the correlation between urbanization

and risk factors for cancer decreases in time� Section � gives a short general discussion and

outlines possible extensions of the model to data� which are further strati
ed by age�

�� Bayesian Models for Space�Time Variation

��� The Main E�ect Model

Let nit denote the number of persons at risk in county i �i � �� � � � � n� and year t

�t � �� � � � � T �� We assume that the number of cases or deaths yit� during year t� has a

binomial distribution with parameters nit and �it� and that the likelihood for the entire data

�



is the corresponding product of binomial terms� In some contexts� a Poisson approximation to

the binomial might be appropriate� in particular when the data are given as age�standardized

rates� We follow a standard path in modelling �it with a logit link to the binomial and start

with a model where the linear predictor �it decomposes additively into time� and space�

dependent e�ects�
���

More speci
cally� we assume that the log�odds

�it � lnf�it���� �it�g

has the decomposition

�it � � � �t � 	t � 
i � �i� ���

where � is an overall risk level and �t and 	t are temporal e�ects� representing unspeci
ed

features of year t that respectively do or do not display temporal structure a priori� Similarly�


i and �i represent unspeci
ed features of county i that respectively do or do not display

spatial structure�

The formulation ��� is completed by assigning prior distributions to the four blocks

� � ���� � � � � �T ��� 	 � �	�� � � � � 	T ��� 
 � �
�� � � � � 
n�� and � � ���� � � � � �n�� of �it� Each

prior is assumed to be multivariate Gaussian with mean zero and precision matrix �K�

where � is an unknown scalar and K is a known structure matrix�
���

The structure matrix

K will be di�erent for each block in order to describe di�erent assumptions about the prior

interrelationship between parameters within each block�

For �� we adopt a prior in which e�ects for neighbouring time points tend to be alike� The

simplest of such dynamic models is the random walk with independent Gaussian increments

p��j��� � exp

�
���

�

TX
t��

��t � �t���
�

�

�



which has structure matrix

K� �

�
BBBBBBBBBBBBBBBBBBBBBB�

� ��

�� � ��

�� � ��

���
���

���

�� � ��

�� � ��

�� �

�
CCCCCCCCCCCCCCCCCCCCCCA

�

see� for example� Clayton�
���

This reference also describes a possible alternative� the random

walk of second order� which should be preferred� if one is interested in predicting future

disease rates� For 	� we assume exchangeability of the components by taking K� � I� the

identity matrix�

For the spatially structured block 
� we choose a simple Gaussian intrinsic autoregression�

see� for example� Besag et al�
���

Thus� the structure matrix K� has non�diagonal elements

kij � �� for geographically contiguous counties i � j and diagonal entries kii equal to

the number of counties� say mi� that are geographically contiguous to county i� All other

elements in K� are zero� The prior for 
 can be written as

p�
j��� � exp

�
����

�

X
i�j

�
i � 
j�
�

�
A �

This Markov random 
eld prior is the spatial analogue of the random walk and similarly is

just non�stationary� It can be extended by introducing weights in the prior formulation�
���

Finally� unstructured spatial heterogeneity is accounted for by taking K� � I� A symbolic

representation of the main e�ects model is given in Figure ��

��� Prior Speci�cation for Interaction

�



The above formulation� separable in time and space� requires appropriate expansion in

the presence of time � space interactions� Formally we add interaction parameters 
it�

i � �� � � � � n� t � �� � � � � T � to ����

�it � �t � 	t � 
i � �i � 
it� ���

The parameter vector 
 � �
��� � � � � 
nT �� is assumed to be Gaussian with precision matrix

��K�� As for the main e�ects� �� is an unknown scalar and K� is a prespeci
ed structure

matrix� Note that model ��� reduces to ��� if all 
it � �� hence 
 captures only the variation�

that cannot be explained by the main e�ects�

Clayton
���

suggests to specify K� as the Kronecker product of the structure matrices of

those main e�ects� which are assumed to interact� This rationale can be seen as the Bayesian

analogue of modelling interactions by tensor products in a spline regression framework�
����

In

our formulation� � �� � � combinations are possible depending on which of the two temporal

e�ects is assumed to interact with which of the two spatial e�ects� These four types of

interactions imply di�erent prior interrelationships between the 
it� as illustrated in Figure

�� We discuss now each type separately� ordered by the degree of prior dependence�

Type I Interaction� If the two unstructured main e�ects 	 and � are expected to interact�

Clayton�s rule gives K� � K� �K� � I � I � I� so all interaction parameters 
it are a priori

independent�

p�
j��� � exp

�
���

�

IX
i��

TX
t��

�
it�
�

�
�

They can be thought of as unobserved covariates for each pixel �i� t�� that do not have any

structure in time � space�

Type II Interaction� If we combine the random walk main e�ect � with the unstructured

block � by Clayton�s rule� then each 
i � �
i�� � � � � 
iT ��� i � � � � � � n� follows a random walk�

independently of all other counties� The structure matrix K� has rank n � �T � �� and the






prior for 
 can be written as

p�
j��� � exp

�
���

�

IX
i��

TX
t��

�
it � 
i�t���
�

�
�

Model ��� with 
 of Type II will be suitable� if temporal trends are di�erent from county to

county� but do not have any structure in space�

Type III Interaction� If we assume� that the main e�ects 	 and 
 interact� then each


t � �
�t� � � � � 
nt�
�� t � �� � � � � T � follows an �independent� intrinsic autoregression� The rank

of K� is now �n� �� � T and the prior on 
 can be written as

p�
j��� � exp

�
����

�

TX
t��

X
i�j

�
it � 
jt�
�

�
A �

Such a speci
cation will be reasonable� if spatial trends are di�erent from time point to time

point� without any temporal structure�

Type IV Interaction� From a theoretical point of view� the most interesting form of

interaction arises as the product of the two dependent main e�ects� the random walk � and

the intrinsic autoregression 
� Now 
 is completely dependent over time and space and can

no longer be factorized into independent blocks�

It can be shown that the prior for 
 can be written as

p�
j��� � exp

�
����

�

TX
t��

X
i�j

�
it � 
jt � 
i�t�� � 
j�t���
�

�
A �

with independent contrasts 
it � 
jt � 
i�t�� � 
j�t��� This distribution is invariant to level

transformations of the type

�
it � 
it � ci� t � �� � � � � T�

�
it � 
it � ct� i � �� � � � � n�

for any constants c�� � � � � cn� c�� � � � � cT and is therefore highly rank�de
cient �K� has rank

�n� �� � �T � ����

�



The conditional distribution of a pixel 
it� given all the others� which can be derived
����

from K� � K� �K� has mean

�it �

����������
��������	


i�t�� � �

mi

P
j�i


jt � �

mi

P
j�i


j�t�� t � �


i�t�� � �

mi

P
j�i


jt � �

mi

P
j�i


j�t�� t � T

�

�
�
i�t�� � 
i�t��� � �

mi

P
j�i


jt � �

�mi

P
j�i

�
j�t�� � 
j�t��� t � �� � � � � T � �

and precision

�it �

����
��	

mi�� t � � or t � T

�mi�� t � �� � � � � T � �
�

Hence� the Type IV interaction prior is a Markov random 
eld� where not only �
rst order�

temporal �
i�t�� and�or 
i�t��� and spatial �
jt� j � i� neighbours enter in the full conditional

for 
it� but also second order neighbours �
j�t�� and�or 
j�t��� j � i�� i�e� spatial neighbours

of temporal neighbours or� equivalently� temporal neighbours of spatial neighbours� This

prior �borrows strength� from spatial neighbours as it assumes that the temporal trend in

county i �in terms of 
rst di�erences� is similar to the average trend in neighbouring coun�

ties� Equivalently� one could also emphasize spatial trends here� as such a model �borrows

strength� from neighbouring time points �t� � and�or t � ��� assuming the spatial pattern

in year t to be similar� This can be best seen from the conditional mean �it� which satis
es

both

�it � �
i� � �
�t � �
�� and �it � �
�t � �
i� � �
���

Here �
i� is the mean of the neighbours in time� �
�t is the mean of the neighbours in space�

and �
�� is the mean of the second order neighbours�

Such a prior model will be suitable� if temporal trends are di�erent from county to county�

but are more likely to be similar for adjacent counties� For example� it may be considered

for non�infectious diseases where unobserved risk factors do have spatio�temporal structure�

�



such as factors which can be attributed to air pollution from a speci
c source� Furthermore�

such a prior might also be useful for diseases with an infectious aetiology�

��� Hyperpriors

Already in model ���� hyperparameters ��� �� � �� and ��� which determine the variation

of each block� have to be estimated from the data� In addition� �� has to be estimated

in model ���� We assign to all such parameters proper gamma priors� say � � G�a� b�� to

avoid problems with improper hyperpriors� Gamma priors are computationally convenient

as the full conditional of � will again be gamma� for example �� has full conditional �� �
G�a� �

�
rg�K��� b� �

�
��K���� where rg�K�� denotes the rank of K�� In our application� highly

dispersed Gamma hyperpriors are chosen for all blocks with values a � � and b � ����� In

a second run� we studied sensitivity and changed the values to a � b � ����� However� the


t of all the models got slightly worse �maintaining the order in median posterior deviance�

and autocorrelations of the parameter samples increased considerably�

��� Computational Issues

We used Markov chain Monte Carlo to sample from the posterior distribution implied by

the above formulation� applying univariate Metropolis steps
����

for each parameter whereas

hyperparameters were updated with samples from their full conditionals� The number of

parameters in interaction models is extremely high� so tuning of the Metropolis steps was

done in an automatic fashion� Speci
cally� the spread of each Metropolis proposal was


xed so that the corresponding acceptance rate of each parameter was around ���� An

alternative to univariate Metropolis updating is block sampling based on conditional prior

proposals� suggested in Knorr�Held�
����

This approach is especially useful if parameters are

highly correlated in the posterior and has been successfully applied in related models�
���� � 

However� univariate Metropolis sampling is easier to implement and was su!cient in terms

	



of convergence and mixing properties of the algorithm in the application reported here� In

fact� the ����� samples� we have stored� have been virtually independent� as we have chosen

extremely long run lengths ���������� iterations plus burn�in� for each analysis�

Already the main e�ects model imposes an identi
ability problem� because the overall

level can be absorbed by both � and 
� A simple remedy is to omit � and recentre either

the �t or the 
i after each iteration cycle to mean zero� so that the overall risk level � will

be absorbed by the other block� We have centred 
 both in model ��� and ���� For Type II�

III and IV interactions� additional identi
ability constraints have to be imposed with the 
it

recentred either column�wise� row�wise or both� the latter in an iterative loop�

��	 Modi�cations and Extensions

Several modi
cations and extensions of the speci
cation ��� are possible� For example�

the modi
ed linear predictor

�it � �t � 
i � �i � 
it ���

might be useful if 
 is of Type II or IV� Such a model will often be reasonable in practice

as temporal trends are typically strong for most diseases� so that the unstructured temporal

block 	 can be neglected� In general� however� we recommend to omit only those main e�ects�

that are not assumed to interact� For illustration� consider model ��� with 
 of Type II� This

model implies that� for each region� both the level and the temporal trend in disease risk is

estimated by globally borrowing strength from the other regions� This structure would be

distroyed� if one of the main e�ects� � or �� is omitted� For example� without �� temporal

trends would be estimated completely separately and the 
 parameters can no longer be

interpreted as interaction parameters�

An extension of our formulation ��� is to include more than one type of interaction but

the model will become rather crude� Waller et al�
���

include both Type I and Type III

interaction in a di�erent formulation without main e�ects� They report� however� that this

��



model turned out to be inferior to simpler speci
cations in an analysis of the Ohio lung

cancer dataset�

�� Application to Ohio lung cancer data

For illustration� we have analysed a dataset on mortality from lung cancer among white

males between �� and 
� years� �	
���	��� in the �� counties of Ohio� Five di�erent model

speci
cation have been implemented� model ��� without any form of space � time interaction

and model ��� with one of the four interaction priors�

In Figure � and Table �� we report the posterior distribution of the deviance for comparing

the 
t and the complexity of each model� More speci
cally� we have calculated the saturated

deviance
��	� �
�

D � �
nX
i��

TX
t��

�
yit log



yit

nit�it

�
� �nit � yit� log

�
nit � yit

nit��� �it�

��

as a functional of unknown parameters� Based on ���� samples� the left panel in Figure �

gives the empirical distribution of D for each model� Smaller values of D indicate a better


tting model� Furthermore� we propose to roughly assess the complexity of the model by

the variation of the posterior deviance� Table � gives the corresponding deviance summaries

�median� mean� interquartile range and standard deviation��

In terms of median �or mean� posterior deviance� the Type II interaction model gives

the best model 
t� followed by Type I� Type III is the worst 
tting interaction model�

not much better than the model without any interaction parameters� Concerning model

complexity� not surprisingly� the main e�ects model has the smallest deviance variation� For

the interaction models� the deviance variation seems to be inversely related to the degree

of prior dependence for interaction parameters� Indeed� the Type I model has the highest

deviance variation� followed by Type II� III and IV�

��



For a diagnostic analysis� we have also calculated the posterior distribution of the deviance

residual
��	�

dit �
p

�

�
yit log



yit

nit�it

�
� �nit � yit� log

�
nit � yit

nit��� �it�

�� �

�

� sign �yit � nit�it�

for each observation �i� t�� The right panel of Figure � gives the residual versus predicted

diagnostics plots� where the posterior median "dit of the deviance residual is plotted against

the posterior median "�it of the linear predictor� The plots for Type I and III are nearly

identical to the main e�ects model� The Type IV and especially the Type II model show

more variation of the predicted values and less strong outliers in terms of deviance residuals�

In particular� in the Type II model� the deviance residual of the most extreme outlier is

reduced from ���
 in the main e�ects model to ��	� with the corresponding predicted value

increased from ���	� �"� � ����
� to ���
� �"� � �������

We now provide a more detailed look at the results of the Type II model� Distinct decreas


ing temporal trends of interaction parameters were found for some highly urbanized counties

such as Hamilton and Cuyahoga� In fact� for both counties� the interaction parameters were

signi
cantly di�erent from zero for all time points t � �� � � � � ��� based on ��� simultaneous

credible regions� calculated with the method described in Besag et al�
��
�

In contrast� pro�

nounced increasing trends were found only for rural counties such as Clermont and Marion

�simultaneously signi
cant based on ��� and ��� credible regions� respectively�� Figure �

displays for the years �	
�� �	��� �	�� and �	�� the spatial distribution of the estimated

relative risk

ARRit � exp�ui � vi � 
it�� ���

adjusted for the overall temporal trend �t� Generally� the spatial pattern does not change

much over the years but the heterogeneity of the estimates seems to increase� Note that some

regions have interesting time trends� for example the two adjacent counties in the south�west

��



corner �Hamilton and Clermont� where opposite trends in disease risk can be detected�

As a further illustration� Figure � gives estimated linear predictors "�it �posterior medians�

for Hamilton and Clermont county� Each of the four interaction speci
cations is contrasted

with estimates from the main e�ects model� The logit transformed rates logit�yit�nit� are

indicated by dots� It can be seen that the Type III model gives estimates� hardly distin�

guishable from the main e�ects model� Similar holds for Type I� especially for less populated

Clermont county� Type II model estimates are di�erent displaying the above mentioned

trends of interaction parameters� Note that Type II and Type IV estimates are very similar

for Hamilton county� whereas for Clermont the estimated trend is less di�erent from the

main e�ects model for Type IV interactions� This can be explained by the fact that� in Type

IV models� temporal trends of interaction parameters borrow strength from neighbouring

counties� Hence� the decreasing trend in Hamilton county causes the estimated increase in

Clermont county to be less pronounced�

Urbanization� as a surrogate for cigarette consumption and other risk factors associated

with urban areas� is known to explain part of the spatial variation of lung cancer rates�
����

However� the temporal trends of urbanized and rural areas indicate a changing relationship

between urbanization and lung cancer mortality� For each year t� we have therefore calcu�

lated the correlation of the adjusted log relative risk �the logarithm of ���� form the Type II

model with a simple measure of urbanization� de
ned as the logarithm of the population size

of the largest city in each county in �	���
���� ��

The correlation is constantly decreasing from

���� ��	
�� to essentially zero ��	�
 and later�� see Figure 
� Our 
ndings therefore con
rm

a hypothesis by Greenberg�
����

that the correlation between urbanization and risk factors

for cancer decreases in time� However� note that the heterogeneity in relative risk among

counties is increasing over the years� We therefore conclude that new latent risk factors� not

associated with urbanization� become more and more important�

��



�� Discussion

We have proposed several formulations for the analysis of spatio�temporal disease data

in the presence of interactions and have illustrated how the posterior deviance and deviance

residuals can be used for model comparison� Our framework is built in the spirit of classical

interaction models� where main e�ects are combined with interaction parameters� One ad�

vantage of such an approach is that we are able to simplify the model if interaction turns out

to be negligible� Furthermore� simultaneous credible regions for interaction parameters are

useful in identifying regions� which do not follow the overall time trend� In our application�

we have found an interesting association between temporal trends of interaction parameters

and urbanization� which might deserve further epidemiological research�

We have concentrated on the situation� where there is only one observation for each pixel

in time � space� Suppose now� the data are further strati
ed by age� which is rather common

in descriptive epidemiology� A combination of Bayesian age�period�cohort models
���� �
�

with Bayesian spatial models
���

might be useful and Clayton�s rule is a guideline for the

speci
cation of interaction priors� The author currently investigates models where cohort or

period e�ects are allowed to interact with space �Type II and Type IV�� However� there are

lots of other possible formulations� Model selection criteria and model diagnostics� such as

those we have used in our application� will be necessary in selecting an appropriate model

from the many possible formulations�
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main e�ects only ���� ���� ���� ���	

Type I interaction ���� ���� ���
 ���	

Type II interaction ���� ���� �
�
 ����

Type III interaction ���� ���� ���� ����

Type IV interaction ���
 ���
 ���� ����

Table �� Deviance summaries for Ohio lung cancer data�
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Figure �� Symbolic representation of the main e�ect model� Circles represent prior independence�
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Figure �� The posterior distribution of the deviance �left panel� and deviance residual versus

predicted diagnostics plots �right panel� for the �ve di�erent models�
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Figure �� The temporal development of ��it for Hamilton and Clermont county� The estimates of

each interaction type model �solid lines� are contrasted with estimates from the main e�ects model
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