Summary

A mathematical model for the relationship between the output voltage and incident radiation of the infrared semiconductor mercury-cadmium-telluride (MCT) detector is presented. The model, basically a sine-series function, can easily yield closed-form expressions for the harmonic and intermodulation performance of the MCT detector with large-amplitude multisinusoidal incident radiation. The special case of two-tone equal-amplitude incident radiation is considered in detail. The results show that the second-order harmonic and intermodulation products are always higher than the third-order components. Moreover, the results show that the second-order intermodulation is always dominant.

References:

1. ABUELMAATTI MT, 1993, INT J MATH ED SCI TE, V24, P107
2. ABUELMAATTI MT, 1994, IEE P-SCI MEAS TECH, V141, P177
3. ALAM MS, 2003, OPT ENG, V42, P3491, DOI 10.1117/1.1621875
4. KNOWLES P, 1997, IEE P-OPTOELECTRON, V144, P327
5. LEIJTENS J, P 2004 INT C MEMS NA, P402
6. RAHMELOW K, 1997, APPL OPTICS, V36, P2123
7. ROGALSKI A, 2003, PROG QUANT ELECTRON, V27, P59
8. WEHNER JGA, 2004, J ELECTRON MATER, V33, P604

For pre-prints please write to: mtaher@kfupm.edu.sa