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délivrée par l’Université Toulouse III - Paul Sabatier.

Présentée et soutenue publiquement par

Paul Rochet
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Gérard Biau
Eric Gautier

Directeurs: Jean-Michel Loubes
Jean-Pierre Florens

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en ligne de l'Université Toulouse III - Paul Sabatier

https://core.ac.uk/display/12095438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2
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d’accepter d’évaluer ce travail.
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Résumé

Dans cette thèse, nous étudions des méthodes de résolution pour différents types de problèmes
inverses linéaires. L’objectif est d’estimer un paramètre de dimension infinie (typiquement une
fonction ou une mesure) à partir de l’observation bruitée de son image par un opérateur linéaire.
Nous nous intéressons plus précisément à des problèmes inverses dits discrets, pour lesquels
l’opérateur est à valeurs dans un espace de dimension finie. Pour ce genre de problème, la non-
injectivité de l’opérateur rend impossible l’identification du paramètre à partir de l’observation.
Un aspect de la régularisation consiste alors à déterminer un critère de sélection d’une solu-
tion parmi un ensemble de valeurs possibles. Nous étudions en particulier des applications
de la méthode du maximum d’entropie sur la moyenne, qui est une méthode Bayésienne de
régularisation permettant de définir un critère de sélection à partir d’information a priori. Nous
traitons également des questions de stabilité en problèmes inverses sous des hypothèses de com-
pacité de l’opérateur, dans un problème de régression non-paramétrique avec observations indi-
rectes.

Mots-clefs

Problèmes inverses, régularisation, entropie

Regularization methods for linear inverse problems

We study regularization methods for different kinds of linear inverse problems. The objective
is to estimate an infinite dimensional parameter (typically a function or a measure) from the
noisy observation of its image through a linear operator. We are interested more specifically to
discret inverse problems, for which the operator takes values in a finite dimensional space. For
this kind of problems, the non-injectivity of the operator makes impossible the identification
of the parameter from the observation. An aspect of the regularization is then to determine
a criterion to select a solution among a set of possible values. We study in particular some
applications of the maximum entropy on the mean method, which is a Bayesian regularization
method that allows to choose a solution from prior informations. We also treat stability issues
in inverse problems under compacity assumptions on the operator, in a general nonparametric
regression framework with indirect observations.

Keywords

Inverse problems, regularization, entropy
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Introduction générale

L’omniprésence des problèmes inverses dans les disciplines scientifiques en fait l’un des do-
maines les plus importants des statistiques. Les problèmes inverses linéaires jouent notamment
un rôle fondamental de par leurs domaines d’application mais également car ils constituent
le point de départ pour l’étude de problèmes inverses plus généraux. Dans cette thèse, nous
étudions des méthodes de résolution pour différents types de problèmes inverses linéaires. Nous
nous intéressons à l’estimation d’un paramètre de dimension infinie f (typiquement f est une
fonction ou une mesure) à partir de l’observation bruitée g de son image par un opérateur linéaire
A. Le modèle est le suivant,

g = Af + ε,

où ε est une variable aléatoire qui représente le bruit. Ce problème est étudié dans la littérature
théorique [Cav08], [CGPT00], [EHN96], [GG97] mais également dans de nombreux domaines ap-
pliqués comme l’imagerie médicale [Gzy02], la restoration d’image [HN00], les sondages [Thé99]
ou encore l’économétrie [CFR06], [Kit06]. La résolution d’un problème inverse ne pose généralement
de difficultés que dans des cas où l’opérateur est peu ”régulier”. D’un point de vue général, un
problème inverse sera dit mal posé si A n’est pas bijectif ou si son inverse, quand il existe, n’est
pas continu. Dans ce cas, l’estimation de f nécessite que le problème soit régularisé.

Dans cette thèse, nous nous intéressons plus précisément à des problèmes inverses dits dis-
crets, pour lesquels l’opérateur A est à valeurs dans un espace de dimension finie. Pour ce genre
de problème, la non-injectivité de l’opérateur rend impossible l’identification du paramètre f à
partir de l’observation g. Un aspect de la régularisation consiste alors à déterminer un critère
de sélection d’une solution parmi un ensemble de valeurs possibles. Il existe pour cela des
méthodes Bayésiennes de régularisation qui permettent de définir un critère de sélection à par-
tir d’information a priori. Nous nous intéresserons en particulier à la méthode du maximum
d’entropie sur la moyenne [GG97], qui s’applique à l’estimation d’une mesure sous des condi-
tions de moments.

Dans les problèmes inverses pour lesquels l’opérateur A n’est pas injectif, la composante de
f appartenant au noyau K = ker(A) est indépendante de l’observation g. Ainsi, lorsqu’aucune
information a priori sur f n’est disponible, il est alors nécessaire de restreindre le problème à
l’estimation de la projection orthogonale de f sur l’orthogonal du noyau (sous réserve que f
soit définie sur un espace de Hilbert). Cette projection, que l’on note f †, est appelée meilleure
solution approchée (voir [EHN96]). L’espace des solutions est ainsi restreint à l’orthogonal de
K, ce qui permet de résoudre le problème de non-injectivité de A.

9



10 CONTENTS

Un estimateur sans biais de la meilleure solution approchée, est donnée par l’image de g par
le pseudo-inverse de A. Cependant, dans les cas où le signal perceptible est fortement atténué
par l’opérateur, une faible perturbation sur l’observation peut engendrer un fort changement
sur l’estimation, ce qui la rend instable. Pour ce genre de problèmes inverses, les méthodes
classiques de régularisation consistent alors à utiliser une version ”lissée” du pseudo-inverse, de
manière à contrôler la variance de l’estimateur, quitte à augmenter le biais.

Dans ce mémoire, nous traitons dans un premier temps de la question d’identifiabilité d’une
solution dans un problème inverse particulier qui fait intervenir des conditions de moments.
Différents cadres et applications de problèmes de conditions de moment sont étudiés dans les
chapitres 2,3 et 4 de cette thèse, ainsi que des extensions à des situations où l’opérateur est
inconnu. Dans un second temps, nous nous intéressons à la question de la stabilité de la solution
dans un problème de régression non-paramétrique avec observations indirectes, où l’instabilité
est due à des hypothèses de compacité sur l’opérateur.

Le premier chapitre présente quelques outils statistiques utiles à l’étude des problèmes in-
verses. Dans le chapitre 2, nous introduisons une généralisation de la méthode du maximum
d’entropie sur la moyenne (MEM) à des situations où l’opérateur est inconnu, mais est es-
timé indépendamment. Dans le chapitre 3, nous nous intéressons à un modèle paramétrique
de conditions de moments, étudié notamment en économétrie. Nous donnons une justification
Bayésienne des méthodes classiques d’estimation par le biais du maximum d’entropie sur la
moyenne. Le chapitre 4 est consacrée à une application de la méthode MEM dans le cadre de
l’estimation d’un paramètre linéaire en sondages. Enfin, nous étudions dans le chapitre 5, des
modèles de régression non-paramétrique dans le cadre des problèmes inverses.

Chapitre 2

Nous cherchons à estimer une mesure finie µ0, définie sur un ouvert non-vide X ⊂ Rd, à
partir de l’observation bruitée y de moments généralisés de µ0

g =

∫
X

Φ(x)dµ0(x) + ε,

où Φ est une fonction continue à valeurs dans Rk. Ce problème rentre dans le cadre des problèmes
inverses linéaires discrets. L’opérateur correspondant est l’application linéaire qui à une mesure
µ sur X associe le vecteur de ses moments généralisés

∫
Φdµ ∈ Rk. Cet opérateur est clairement

non-injectif, ce qui rend le problème mal posé.

Soit X1, ..., Xn une discrétisation de l’espace X dont la mesure empirique associée Pn :=
1
n

∑n
i=1 δXi converge étroitement vers une mesure PX . L’estimateur du maximum de d’entropie

sur la moyenne, introduit par Gamboa et Gassiat [GG97], est construit comme une version
pondérée Pn(w) := 1

n

∑n
i=1wiδXi de la mesure empirique, où w = (w1, ..., wn)t ∈ Rn est

un vecteur de poids. Après avoir fixé un a priori ν0 sur le vecteur de poids w, l’estimateur
MEM est obtenu comme l’espérance d’une mesure discrète à poids aléatoires Pn(W ), qui min-
imise une fonctionnelle sous des contraintes convexes. La fonctionnelle est déterminée à l’aide
d’information a priori intégrée au problème par le choix de la distribution ν0.



CONTENTS 11

Lorsque la fonction de contrainte Φ est connue, Gamboa et Gassiat ont montré un résultat
de convergence de l’estimateur MEM. Ici, la fonction de contrainte Φ est supposée inconnue
mais une suite d’approximations {Φm}m∈N est observée indépendamment. Ainsi, le critère de
régularisation est construit à partir de l’approximation Φm, ce qui cause une erreur supplémen-
taire dans l’estimation. La méthode du maximum d’entropie sur la moyenne sous contraintes
approchées (AMEM) a été introduite par Loubes et Pelletier [LP08], sous des hypothèses de
convergence uniforme de la suite {Φm}. Ici, nous montrons que le résultat obtenu par Loubes
et Pelletier reste vrai sous l’hypothèse plus faible de convergence quadratique de la fonction
de contrainte. Sous certaines conditions de régularité, nous obtenons une borne uniforme sur
l’erreur causée par l’approximation Φm.

Théorème 2.2.1 (Convergence de l’estimateur AMEM) Pour toute suite {ϕm}m∈N telle
que ϕm‖Φm(X) − Φ(X)‖2L2(PX) = O(1) et pour toute fonction g continue bornée, l’estimateur
AMEM µ̂m,n vérifie ∣∣∣∣∫

X
g(x)dµ̂m,n(x)−

∫
X
g(x)dµ∗(x)

∣∣∣∣ = O(ϕ−1
m ) + κm,n,

avec supm∈N κm,n = OP (n−1/2).

Le cadre des modèles de conditions de moments avec contrainte approchée permet de for-
maliser des problèmes pour lesquels la connaissance exacte de Φ n’est pas une hypothèse réaliste.
On rencontre ce genre de situations par exemple lorsque la fonction de contrainte Φ n’a pas de
forme analytique simple et nécessite d’être évaluée numériquement ou d’être estimée. Il est connu
que des méthodes d’estimation non-paramétrique telles que les méthodes à noyaux permettent
de construire un estimateur de Φ qui converge en norme quadratique. Ainsi, nous montrons
qu’il est possible d’utiliser une contrainte de moments obtenue à partir d’une estimation à noy-
aux afin d’estimer µ0 par la méthode AMEM. Nous traitons en particulier un problème lié à
l’utilisation de variables instrumentales qui peut être interprété commes un modèle de conditions
de moments avec contrainte approchée.

Chapitre 3

Nous nous intéressons à un modèle similaire pour lequel la fonction de contrainte Φ dépend
d’un paramètre θ0 ∈ Θ inconnu. Soit X = (X1, ..., Xn) un échantillon i.i.d. dont la loi µ0 vérifie
la condition de moments suivante ∫

X
Φ(θ0, x)dµ0(x) = 0.

Ce modèle très étudié en économétrie se rencontre notamment dans le cadre de l’utilisation
de variables instrumentales (voir par exemple [Cha87], [Han82] et [QL94]). Pour estimer le
paramètre θ0, une des principales méthodes développées dans la littérature est la vraisemblance
empirique généralisée [QL94]. Le paramètre θ0 est estimé par le biais d’une mesure discrète
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µ̂ qui minimise un critère empirique appelé f -divergence, sous des contraintes de moments.
Précisemment, le critère s’exprime sous la forme

µ 7→ Df (µ,Pn) =

∫
f

(
dµ

dPn

)
dPn,

où f est une fonction convexe qui atteint son minimum en 1. Ainsi, µ̂ est obtenue comme la
mesure la plus proche de Pn (au sens de la f -divergence) qui vérifie la condition de moment∫

Φ(θ̂, .)dµ̂ = 0 pour un θ̂ ∈ Θ. Cette valeur θ̂ est utilisée pour estimer le paramètre θ0. Initiale-
ment, l’estimateur du maximum de vraisemblance de Owen [Owe91] est construit à partir de la
divergence de Kullback, remarquant que minimiser cette divergence est équivalent à maximiser
la vraisemblance parmi les lois multinomiales. La méthode a été généralisée en remplaçant la
divergence de Kullback par d’autres types de f -divergences, donnant naissance à des estimateurs
comme le continuous updating de Hansen, Yeaton et Yaron [HHY96] où l’exponential tilting de
Kitamura et Stutzer [KS97].

Dans ce chapitre, nous étudions une approche Bayésienne basée sur la méthode du maximum
d’entropie sur la moyenne, et qui s’avère être étroitement liée à la méthode de vraisemblance
empirique généralisée. L’estimation du paramètre se fait à partir de mesures discrètes de la
forme Pn(w) = 1

n

∑n
i=1wiδXi . Un a priori ν0 est fixé sur le vecteur de poids, ce qui permet de

considérer chaque mesure discrète Pn(w) comme la réalisation d’une mesure à poids aléatoires
Pn(W ) où W est un vecteur aléatoire de loi ν0. On définit ensuite la distribution a posteriori
ν∗ comme la projection entropique de ν0 sur l’ensemble des mesures ν sur Rn pour lesquelles
Pn(W ) vérifie en moyenne sous ν la condition de moment Eν [

∫
Φ(θ, .)dPn(W )] = 0, pour un

θ ∈ Θ. La valeur θ̂ pour laquelle la contrainte de moment est vérifiée est l’estimateur MEM de
θ0. Nous montrons qu’il peut s’exprimer de la façon suivante.

Théorème 3.2.2 (Caractérisation de l’estimateur MEM) L’estimateur MEM de θ est
donné par

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Λν0(γ1 + λtΦ(θ,X))

}
,

où 1 = (1, ..., 1)t ∈ Rn et Λν(s) = log
∫

exp〈s, t〉 dν(t).

Pour certains choix d’a priori ν0, il s’avère que l’estimateur MEM correspond à l’estimateur
de vraisemblance empirique généralisée, où la f -divergence est entièrement déterminée par le
choix de l’a priori. Ainsi, la méthode MEM offre une justification Bayésienne aux f -divergences
utilisées pour la méthode de vraisemblance empirique généralisée.

La principale alternative à la vraisemblance empirique est la méthode des moments généra-
lisée, introduite dans ce contexte par Hansen [Han82]. L’estimateur de θ0 est construit en
minimisant le critère empirique

θ 7→
∥∥∫ Φ(θ, .)dPn

∥∥2

M
=
[∫

Φ(θ, .)dPn
]t
M
[∫

Φ(θ, .)dPn
]

où M est une matrice symétrique définie positive, choisie par le statisticien. Hansen [Han82] et
Chamberlain [Cha87] ont montré qu’un choix optimal pour M est la matrice associée au produit
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scalaire sur RM qui rend les composantes de Φ(θ0, .) orthonormées dans L2(µ0). Nous donnons
une nouvelle preuve de ce résultat, qui s’inspire de travaux faits notamment dans [AC03], [AC09]
et [CHT08] sur le calcul de bornes d’efficacité dans des modèles de conditions de moments.

Chapitre 4

Nous nous intéressons à un problème de calage (calibration en anglais) dans le cadre des
sondages. Nous voulons estimer le total ty d’une variable y dans une population U , donné par
ty =

∑
i∈U yi. Les valeurs de y sont observées dans un sous-échantillon s ⊂ U , tiré aléatoirement

selon une loi d’échantillonnage p(.). Pour estimer le total ty, l’estimateur d’Horvitz-Thompson
est défini comme le total de y sur l’échantillon s, renormalisé par les inverses des probabilités
d’inclusion di = 1/p(i ∈ s),

t̂HTy =
∑
i∈s

diyi,

ce qui en fait un estimateur sans biais sous la loi p(.). Le calage a pour objectif d’améliorer
l’estimateur d’Horvitz-Thompson en se servant de variables dites auxiliaires xi, i ∈ U , observées
sur toute la population. On construit un estimateur sous la forme t̂y =

∑
i∈swiyi où les poids

wi sont choisis proches des poids d’Horvitz-Thompson, tout en étant calibrés sur la variable
auxiliaire x en imposant la condition ∑

i∈s
wixi =

∑
i∈U

xi.

Ici, la variable x étant observée sur l’ensemble de la population, la quantité tx =
∑

i∈U xi est
connue par le statisticien. Ainsi, l’estimateur par calage est défini à partir de poids ŵi minimisant
un certain critère arbitraire avec les poids d’Horvitz-Thompson, sous la contrainte de calage.
Ce problème peut être interprété comme un problème inverse pour lequel on cherche à retrouver
une mesure discrète sur s, identifiée au vecteur des poids {wi}i∈s, satisfaisant une contrainte
linéaire. Il est alors possible d’appliquer la méthode du maximum d’entropie sur la moyenne.

Nous montrons que les méthodes usuelles de calage conduisent à des estimateurs obtenus par
maximum d’entropie sur la moyenne, pour des choix particuliers d’a priori. Ainsi, cette approche
permet d’apporter une justification Bayésienne à la plupart des critères arbitrairement définis
en calage. En étudiant le comportement asymptotique de ces estimateurs, nous établissons des
conditions d’efficacité en fonction de l’a priori choisi. Nous nous intéressons également à la
question de la variable auxiliaire optimale, où l’on s’autorise à modifier la variable auxiliaire
afin qu’elle explique au mieux la variable d’intérêt. Cette approche, connue sous le nom de
model calibration [WS01], consiste à estimer dans un cadre paramétrique ou non-paramétrique,
la variable auxiliaire optimale en parallèle du procédé de calage. Nous montrons que ce modèle
est lié à des problèmes inverses avec opérateur approché, qui peuvent justifier l’utilisation d’un
point de vue Bayésien.
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Chapitre 5

Nous nous intéressons à un problème de régression non-paramétrique avec données indirectes.
Nous cherchons à estimer une fonction x0 appartenant à un espace de Hilbert X à partir de
l’observation bruitée

y = Anx0 + ε,

où An : X → Rn est un opérateur linéaire discret. De nombreuses méthodes de régularisation
font intervenir la décomposition en valeurs singulières de l’opérateur An, où l’estimation de
la fonction d’intérêt se fait à partir des coefficients de x0 dans la base de vecteurs propres
de l’opérateur auto-adjoint A∗nAn. De cette façon, le modèle peut s’écrire comme un modèle
de régression hétéroscédastique où chaque coefficient xi peut être estimé indépendamment des
autres,

yi = xi + ηi, i = 1, ..., n,

où les ηi sont des bruits centrés, orthogonaux deux à deux et de variances respectives σ2
i ∼ 1/nb2i ,

inversement proportionnelles aux valeurs propres b2i de A∗nAn. Ainsi, le signal étant très affecté
par le bruit dans les directions correspondantes à des petites valeurs propres, estimer xi par yi
s’avère inefficace. La plupart des méthodes de régularisation consistent alors à considérer des
estimateurs de la forme x̂i = λiyi où λi ∈ [0; 1] est un coefficient appelé filtre. C’est le cas par
exemple de la méthode de Tikhonov [TA77] associée aux filtres dits de Wiener λi = (1 + θσ2

i )
−1

ou du spectral cut-off [Han87] correspondant à des filtres de la forme λi = 1{σ2
i ≤ θ} où θ est

un paramètre d’ajustement. Par ailleurs, le choix du paramètre d’ajustement peut se faire par
des méthodes permettant de manipuler des classes générales de filtres, telles que l’enveloppe du
risque ou l’estimation sans biais du risque étudiées dans [Cav08], [CG06] et [CGPT00].

Dans ce chapitre, nous nous intéressons à des estimateurs dits de projection liés à des
méthodes de seuillage, obtenus avec des filtres de la forme λi = 1{i ∈ m}, pour un certain
modèle m ⊂ {1, ..., n}. Ainsi, la méthode revient à sélectionner les variables pertinentes yi. Pour
un modèle m donné, notons x̂m l’estimateur associé. Nous montrons facilement que le modèle
m∗ qui minimise le risque quadratique m 7→ E‖x0 − x̂m‖2 est donné par m∗ = {i : x2

i ≥ σ2
i }.

Cependant, l’oracle m∗ étant inconnu, il s’agit d’une certaine façon de l’estimer. Pour cela,
nous considérons un modèle de la forme m̂ = {i : y2

i ≥ ci} où ci est un seuil à déterminer.
Alors que des seuils proportionnels à la variance σ2

i ont été étudiés dans la littérature (voir
[AS98], [CGPT00] ou [Lou08]), nous montrons qu’un terme logarithmique de la variance permet
de contrôler le risque de l’estimateur dans les cas de faible régularité.

Théorème 5.3.1 (Inégalité oracle) Supposons qu’il existe des constantes positives K,β telles
que E[exp(η2

i /βσ
2
i )] ≤ K. Soit θ > 0, et ci = 4σ2

i β log(e+ θσ2
i ). L’estimateur x̂m̂ vérifie

E‖x̂m̂ − x0‖2 ≤ E‖x̂m∗ − x0‖2 +
(
6β log(e+ θ‖x0‖2) + 2

)∑
i∈m∗

σ2
i +

2Kβn

θ
.

De la même manière que dans [CH05], nous étudions également l’application de cette méthode
dans une situation où nous observons une version bruitée b̂i = bi + ξi de chaque valeur propre.
En s’inspirant des résultats de Cavalier et Hengartner [CH05], nous proposons un estimateur de
projection construit à partir d’un seuillage simultané sur les coefficients yi et les valeurs propres



CONTENTS 15

b̂i. Nous obtenons une majoration du risque de l’estimateur conditionnellement aux observations
b̂i et une vitesse de convergence proche de celle de l’oracle.

Conclusion

Deux types de problèmes inverses sont étudiés dans cette thèse. Dans un premier temps, nous
nous intéressons dans les chapitres 2, 3 et 4, à des problèmes liés aux modèles de condition de
moments. Les contributions faites dans ces chapitres sont de deux ordres. Premièrement, nous
fournissons une justification Bayésienne aux méthodes naturelles utilisées pour la résolution
des problèmes inverses de conditions de moment, par le biais du maximum d’entropie sur la
moyenne. Deuxièmement, nous tentons de généraliser ces modèles à des situations où l’opérateur
n’est pas entièrement connue. Nous traitons notamment le cadre des conditions de moments
paramétriques rencontré en économétrie, faisant le lien entre les méthodes de vraisemblance
empirique et le maximum d’entropie. Nous étudions également des problèmes d’estimation de
paramètres linéaires (e.g. une moyenne ou un total sur une population) en sondages, pour
lesquels les méthodes usuelles de calages s’interprètent également comme des méthodes de max-
imum d’entropie.

Le chapitre 5 de cette thèse traite d’un problème inverse plus général qui peut se rencontrer
notamment en régression non-paramétrique avec observations indirectes. Nous proposons un
estimateur adaptatif basé sur une méthode de seuillage. Alors que la plupart des méthodes
de seuillages étudiées dans la littérature utilisent un seuil proportionnel à la variance, nous
proposons un seuil différent qui fait faisant intervenir un terme logarithmique de la variance.
Nous montrons notamment que ce seuillage permet de s’adapter à tous les degrés de régularité
en problèmes inverses, ainsi qu’à des situations où l’opérateur est inconnu.
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Chapter 1

Preliminary results

1.1 Generalities on inverse problems

For the statistician, an inverse problem deals with the estimation of a parameter f from a
noisy observation of the image of f through an operator A:

g = Af + ε. (1.1)

To estimate efficiently f from g relies on the regularity of the operator, as well as on the
distribution of the noise. In the case where A is a linear operator, an inverse problem is defined
in [EHN96] as well-posed if it satisfies the three Hadamard’s conditions,

H1. For all observation g, a solution h such that g = Ah exists.

H2. For all observation g, the solution is unique.

H3. The solution depends continuously of the observations.

These conditions can be expressed in term of assumptions on the operator A. Let F denote the
space of solutions, G the space of the observations g and A : F → G. The conditions of existence
and uniqueness of a solution for a given observation g correspond respectively to assumptions of
surjectivity and injectivity of A. In the same way, the third Hadamard condition is equivalent
to the continuity of A−1, provided that the inverse exists. Thus, it appears that the problem
(1.1) is well-posed if the operator A is sufficiently regular. Of course, the notion of regularity
depends on the spaces F and G on which the operator A is defined, as well as the topologies
on these spaces, that define the continuity. When one or several Hadamard’s conditions are not
met, the inverse problem is said to be ill-posed. In this case, estimating f requires the problem
to be regularized, i.e., to be modified in order to satisfy all three Hadamard’s conditions.

In this thesis, we are interested in the regularization of discrete inverse problems, for which
the space G has finite dimension. In such problems, Hadamard’s first condition of well-posedness
is generally verified or can be regularized without difficulty. Indeed, if the condition is not
met, one may simply reduce the dimension of the observation g in order to make the operator
surjective. The second condition of regularity causes more problems. In particular, if f belongs

17
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to an infinite dimensional space, a discrete inverse problem is always ill-posed, due to the non-
injectivity of the operator A. An observation g may correspond to an infinite number of solutions
which are impossible to distinguish without further information on the true value f . In such
cases, the regularization of Hadamard’s condition of injectivity generally reduces to finding a
criterion to select, more or less arbitrarily, of a solution in a set of possible candidates. The
choice can be made for computational reasons (e.g. the solution with minimal norm) or based
on prior information using Bayesian methods.

1.2 Moment condition models

A particular example of discrete inverse problems is given by moment condition models,
which are discussed in the chapters 2, 3 and 4 of this thesis. In the literature, moment condition
models are studied in [GG91], [GG97] and in many applied fields such that image denoising
[HN00], spectroscopy [Ski88], crystallography [DHLN92], tomography [FLLn06], survey sam-
pling [DS92] and Econometry [Cha87], [Han82], [Owe91].

Let X be an open subset of Rp endowed with its Borel field B(X ) and let P(X ) (resp. F(X ))
denote the set of all probability measures (resp. finite measures) on X . We are interested in
recovering a finite measure µ0 on X from generalized moments of µ0,

y =

∫
X

Φ(x)dµ0(x),

where y ∈ Rk and Φ : X → Rk is a known continuous vector valued map. In most cases, the
measure µ0 to recover is a probability measure although, for sake of generality, we shall only
assume here that µ0 is a finite measure. Remark that imposing to µ0 to be a probability measure
can be easily integrated as a moment condition. This framework can be viewed as an inverse
problem with parameter of interest the finite measure µ0 and with linear operator µ 7→

∫
Φdµ.

The existence of several finite measures µ such that
∫

Φdµ = y makes the problem ill-posed.
On the other hand, the surjectivity condition is fulfilled as soon as the components of Φ are
linearly independent, which we assume here. Hence, in this framework where the injectivity
of the operator is the only unverified Hadamard condition, to regularize the ill-posed inverse
problem means to associate to one (possibly noisy) observation y, a unique solution µ̂. To this
purpose, many regularization techniques have been suggested in the literature, where a solution
is obtained as the minimizer µ of a convex functional subject to the linear constraint

∫
Φdµ = y

when y is observed, or more generally, subject to a convex constraint of the form
∫

Φdµ ∈ KY

if we observe a noisy version of y, for some convex set KY reflecting the uncertainty due to the
noise. Here and in the sequel, we study regularization methods that rely on a discretization of
the space X . More precisely, assume we observe n points X1, ..., Xn in X and denote by Pn the
empirical distribution

Pn =
1

n

n∑
i=1

δXi ,

where δ stands for the Dirac mass. We assume that the discrete measure Pn converges weakly
toward a possibly unknown measure PX , having full support on X . The discrete measure Pn
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is used as a reference measure to estimate µ0. In this framework, there are basically two types
of situations. The Xi’s may be i.i.d. realizations of a random variable X with distribution
PX , or a deterministic design, in which case PX is generally known by the statistician. In the
case of a random design, the limit distribution is implicitly assumed to be ”close” to the true
measure µ0, to justify the use of Pn as a reference (a common situation is the convenient case
PX = µ0). If on the contrary, no random design is suggested by the problem, one can use a
uniform discretization of the space X or a design that reflects some prior knowledge on µ0.

A particular example of moment condition model involving a discrete space is encountered
in linear parameter estimation problems in survey sampling. Consider a large population U =
{1, ..., N} and an unknown variable y = (y1, ..., yN ) ∈ RN . The objective is to estimate its total
ty :=

∑
i∈U yi when only a random subsample s ⊂ U of size n is available. An unbiased estimate

of ty is given by the Horvitz-Thompson estimator, which can be expressed as the renormalized
sum t̂HTy = N

n

∑
i∈s yi if the sample s is drawn uniformly over U , or more generally by

t̂HTy =
∑
i∈s

diyi,

where di = 1/P(i ∈ s) is the inverse of the inclusion probability (the Horvitz-Thompson weight).
Suppose that it exists an auxiliary vector variable x = (x1, ...,xN ) observed over the entire
population and set tx =

∑
i∈U xi ∈ Rk. If the sample is not representative, it is likely that

the Horvitz-Thompson estimator of tx will be far from its true value. Thus, to deal with
possible bad sample effects, a natural idea is to modify the Horvitz-Thompson weights in order
that the weighted total of x over s is equal to the total over the whole population U . This
is the underlying idea of the calibration method developped in [DS92]. An estimator of ty is
constructed as a weighted total

∑
i∈swiyi over the sample s, with the weights {wi}i∈s satisfying

the condition ∑
i∈s

wixi = tx.

Viewing the collection {wi}i∈s as a discrete measure on the sample s, the previous equality can
be interpreted as a moment condition.

1.2.1 Entropic projection

In this section, we discuss entropic projections as solutions to the moment condition problem.
Let us first introduce some definitions and notations. We endow the set of finite measures F(X )
with the total variation topology, induced by the following distance

d(µ, ν) = ‖µ− ν‖TV = sup
A∈B(X )

|µ(A)− ν(A)|, µ, ν ∈ F(X ).

Definition Let ν and µ denote two finite measures on X , the relative entropy, or Kullback
divergence, of ν with respect to µ is defined as

K(ν|µ) =

∫
X

log

(
dν

dµ

)
dν + µ(X )− ν(X ) if ν � µ, K(ν|µ) = +∞ otherwise.
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Although the relative entropy is not a metric in the mathematical sense (in particular it is not
symmetric), it somehow measures the ”closeness” between two finite measures. The functional
ν 7→ K(ν|µ) is non-negative, strictly convex on the set {ν ∈ F(X ) : ν � µ} and is null only
for ν = µ (see [Csi75]). Csiszár generalizes the relative entropy by introducing the notion of
f -divergences.

Definition Let ν and µ denote two finite measures on X . Let f : R→ R+ be a strictly convex
function, twice differentiable on its domain, such that f(1) = f ′(1) = 0, the f -divergence of ν
with respect to µ is defined as

Df (ν|µ) =

∫
X
f

(
dν

dµ

)
dµ if ν � µ, Df (ν|µ) = +∞ otherwise.

In particular, the relative entropy K(ν|µ) is the f -divergence associated to the function f(x) =
x log x − x + 1 if x > 0 and f(x) = +∞ if x ≤ 0, while the relative entropy with reversed
arguments K(µ|ν) is the f -divergence corresponding to f(x) = − log x + x − 1 if x > 0 and
f(x) = +∞ if x ≤ 0. In both cases, the function satisfies f(1) = f ′(1) = 0. The conditions
made on f warrant to general f -divergences the same properties as relative entropy, namely
ν 7→ Df (ν|µ) is non-negative, strictly convex on the set {ν ∈ F(X ) : ν � µ} and null only for
ν = µ. For all subset C of F(X ), we shall note

Df (C|µ) = inf
ν∈C
Df (ν|µ).

Definition Let µ be a probability measure on X and C a subset of P(X ) such that Df (C|µ)
is finite. We call entropic projection of µ onto C relative to Df , any measure ν in the closure of
C for the total variation topology, such that Df (ν|µ) = Df (C|µ).

If C is convex, the entropic projection is unique as a consequence of Csiszár’s Theorem 2.1 in
[Csi75]. The entropic projection relative to the Kullback divergence is called I-projection.

In moment conditions models, f -divergences appear as natural tools for regularization meth-
ods. We recall that our problem is to recover a probability measure µ0 satisfying a moment
condition

∫
Φdµ = y to which we observe a noisy version yobs = y + ε. Under a certain control

over the noise, we may consider a moment condition of the form
∫

Φdµ ∈ KY for some arbitrary
set KY containing yobs. If KY is appropriately chosen, the true measure µ0 satisfies the moment
condition with high probability, or with probability one if ε is bounded almost surely. Thus, the
solution to the inverse problem is sought in the set

M = {µ ∈ F(X ) :
∫

Φdµ ∈ KY },

which represents in some way the set of possibles values for µ0. The regularization now consists
in choosing a unique solution in the set M of candidates. Based on the idea that µ0 must be
close to the empirical distribution Pn, a natural solution to the inverse problem can be obtained
as an entropic projection of Pn onto M. By construction an entropic projection is absolutely
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continuous with respect to the reference measure. Therefore, an entropic projection of Pn, if
one exists, is expressed as a weighted version Pn(w) of Pn, where

Pn(w) =
1

n

n∑
i=1

wiδXi ,

for w = (w1, ..., wn)t ∈ Rn a collection of weights with wi ≥ 0 for all i = 1, ..., n. In some cases,
relaxing the positivity condition on the weights might ease the computation of the solution, at
the cost of allowing it to be a signed measure.

Definition The problem is said to be feasible relative to Df if there exists a vector δ =
(δ1, ..., δn)t ∈ Rn such that f(δi) is finite for all i = 1, ..., n and Pn(δ) ∈ KY .

The feasibility condition warrants the existence of an entropic projection of Pn onto M. It is
more likely to be fulfilled if the domain of f , dom(f) = {x ∈ R : f(x) <∞} is widespread. On
the other hand, the uniqueness of the solution relies on the convexity of the set KY , as we see
in the following lemma.

Lemma 1.2.1 Assume that the problem is feasible relative to Df . If KY is a closed convex
subset of Rk, then the solution µ̂ = arg minµ∈M Df (µ|Pn) exists and is unique.

Proof. Consider the set Mn of discrete probability measures satisfying the moment condition
Mn = {Pn(w) : 1

n

∑n
i=1wiΦ(Xi) ∈ KY }. The solution µ̂ is the entropic projection of Pn onto

Mn. Using Csiszár’s Theorem 2.1 in [Csi75], it suffices to show that Mn is convex, closed for
the total variation topology and satisfies Df (Mn|Pn) <∞. For this, first remark that the total
variation distance defines a norm on the finite dimensional the linear space {Pn(w) : w ∈ Rn}.
So, we deduce that Mn is closed and convex, as the inverse image of KY through the linear
operator Pn(w) 7→ 1

n

∑n
i=1wiΦ(Xi). Moreover, the feasibility conditions yields

Df (Mn|Pn) ≤ Df (Pn(δ)|Pn) =
1

n

n∑
i=1

f(δi) <∞,

which ends the proof.

One important aspect of the regularization by entropic projection is the choice of the f -
divergence. The relative entropy plays an important role among f -divergences as it can be
given a particular interpretation via empirical likelihood. If we assume that the discretization
X1, ..., Xn is an i.i.d. sample drawn from µ0, the probability of observing the sample X1, ..., Xn

is
∏n
i=1 µ0(Xi). Thus, to estimate µ0, one may reasonably be concerned with finding the mea-

sure maximizing this probability, or equivalently, maximizing the nonparametric log-likelihood
function defined on P(X ) by

µ 7→ `(µ,X1, ..., Xn) =
n∑
i=1

logµ(Xi) = −n (K(Pn|µ) + log n) .

This equality points out that maximizing the empirical likelihood reduces to minimizing the
relative entropy µ 7→ K(Pn|µ). When no restriction are made on µ, the maximum empirical
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likelihood in the nonparametric model P(X ) is achieved for the empirical distribution Pn. When
applied to our model, this equality tells us that the regularization solution obtained with the
Kullback divergence is actually the probability measure maximizing the empirical likelihood in
the set M of possible values of µ0.

For f : Rq → R+ a convex function, we denote by f∗ its convex conjugate (or Fenchel-Legendre
transform) given by

f∗(u) = sup
v∈Rq
{utv − f(v)},

where ut denotes the transpose of u and utv is the usual inner product on Rq.

Theorem 1.2.2 (Characterization of the entropic projection) Suppose that the problem
is feasible relative to Df and let KY be a closed convex subset of Rk. Let µ̂ = Pn(ŵ) be the
entropic projection of Pn onto M relative to Df . If the solution lies in the interior of the
domain of f , then we have

dµ̂(x) = f∗′(λ̂tΦ(x)) dPn(x),

where λ̂ is the maximizer over Rk of

λ 7→ 1

n

n∑
i=1

f∗(λtΦ(Xi))− inf
z∈KY

λtz.

Proof. This is a classical convex optimization problem. The proof relies on some properties
of the convex conjugate f∗ which are given in [Roc97]. For a fixed z ∈ KY , note ŵ(z) the
solution of the minimization problem subject to the constraint 1

n

∑n
i=1wiΦ(Xi) = z. To avoid

considering trivial cases, we take z ∈ KY such that ŵ(z) exists and has all its components ŵi(z)
in the interior of the domain of f . The Lagrangian is given by

Lz(λ,w) =

n∑
i=1

f(wi)− λt
(

n∑
i=1

wiΦ(Xi)− nz

)
,

where λ is the Lagrange multiplier. The first order conditions are f ′(wi) = λtΦ(Xi). The
function f ′ is increasing by assumptions, yielding ŵi(z) = f ′−1(λtzΦ(Xi)) = f∗′(λtzΦ(Xi)) where
λz satisfies

∑n
i=1[f∗′(λtzΦ(Xi))Φ(Xi) − z] = 0. By convexity of f∗, λz is the unique minimizer

over Rk of

λ 7→
n∑
i=1

f∗(λtΦ(Xi))− nλtz.

Using that f(f∗′(x)) = xf∗′(x)− f∗(x), we find

Df (Pn(ŵ(z))|Pn) = λtz

n∑
i=1

f∗′(λtzΦ(Xi))Φ(Xi)−
n∑
i=1

f∗(λtzΦ(Xi))

= sup
λ∈Rk

nλtz −
n∑
i=1

f∗(λtΦ(Xi)).



1.2. MOMENT CONDITION MODELS 23

Writing Df (M|Pn) = infz∈KY Df (Pn(ŵ(z))|Pn), we conclude using Sion’s minimax theorem.

Entropic projections are natural regularization solutions to moment condition problems.
However, while the use of the Kullback entropy can be justified by a maximum likelihood
argument, other f -divergences usually lack a probabilistic justification. In the next section, we
see that f -divergences may be given an interpretation in a Bayesian setting.

1.2.2 Maximum entropy on the mean

Maximum entropy on the mean (MEM) is a Bayesian approach to inverse problems. As
previously, a solution is sought as a weighted version Pn(w) of the empirical measure. The
problem is treated as a parametric estimation problem where the parameter of interest is the
vector of weights w. The procedure is the following. Fix a prior distribution ν0 on w, viewing
each discrete measure Pn(w) as a realization of the random measure Pn(W ), where W is drawn
from ν0 (see [Goz05]). The distribution ν0 must be chosen to reflect some prior knowledge
on the shape or support of µ0 (see for instance the discussion in [GG97]). Here, the support
{X1, ..., Xn} of the random measure Pn(W ) is considered fixed, only the variable W is random.
The next step of the MEM procedure is to build a posterior distribution ν∗. The idea is to
slightly modify the prior ν0 so that the expectation of Pn(W ) satisfies the moment condition
in mean. In this way, the posterior distribution ν∗ remains close to the prior while providing a
suitable solution to the inverse problem. Denote by P(Rn) the set of probability measures on
Rn and let

Π(M) = {ν ∈ P(Rn) : Eν [Pn(W )] ∈M} ,

where Eν [Pn(W )] is the expectation of Pn(W ) when W is drawn from ν. We define the posterior
distribution ν∗ as the I -projection of ν0 onto Π(M), that is, ν∗ is the minimizer of the Kullback
entropy K(.|ν0) subject to ν∗ ∈ Π(M). The MEM estimator µ̂ is then obtained as

µ̂ = Eν∗ [Pn(W )] .

The choice of the Kullback divergence to construct the posterior distribution is motivated by
large deviation principles, stating that under regularity conditions, the MEM estimator converges
weakly toward the same limit as the somehow more classical Bayesian construction

µ̂bay = Eν0 [Pn(W )|Pn(W ) ∈M] ,

whenever it is well defined, where for an event A, E [X|A] denotes the expectation of X condi-
tionally to A. The proof of this result is given in Theorem 2.3 in [GG97].

Maximum entropy on the mean provides a natural and easy way of incorporating some prior
information to the problem. The next theorem, due to Gamboa and Gassiat [GG91], shows that
specific choices of prior in the MEM methodology lead to entropic projection solutions. For
some probability measure ν on Rq, q ≥ 1, we shall note Λν : Rq → R the log-Laplace transform
of ν:

Λν(s) = log

∫
Rq

exp(stx) dν(x), s ∈ Rq.

The convex conjugate of Λν , noted Λ∗ν , is called the Cramer transform of ν.
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Theorem 1.2.3 (Expression of the MEM estimate) Take ν0 with orthogonal marginals,
i.e. ν0 = ν⊗n for ν a probability measure on R with mean 1. Assume there exists δ =
(δ1, ..., δn)t ∈ Rn with the δi’s in the interior of the convex hull of the support of ν, such that
Pn(δ) ∈ KY . Then, the MEM estimator µ̂ is given by

µ̂ = arg min
µ∈M

∫
X

Λ∗ν

(
dµ

dPn

)
dPn.

As pointed out in this theorem, the MEM solution for a prior of the form ν0 = ν⊗n is an
entropic projection, with f -divergence associated to the Cramer transform of ν. Remark that
the assumptions made on ν correspond to the required regularity conditions for Λ∗ν to define
a f -divergence. For instance, assuming that ν is a probability measure with mean 1 warrants
that Λ∗ν(1) = Λ∗ν

′(1) = 0 and therefore Λ∗ν ≥ 0 by convexity. Moreover, the existence of δ ∈ Rn
satisfying the assumption of the theorem is equivalent to the feasibility condition, as the interior
of the convex hull of the support of ν is actually the interior of the domain of Λ∗ν .

Proof. Write µ̂ = Pn(ŵ), we shall prove the equivalent statement

ŵ = arg min
w∈S

n∑
i=1

Λ∗ν(wi),

where S = {w ∈ Rn : 1
n

∑n
i=1wiΦ(Xi) ∈ KY }. For w ∈ Rn, let νw be the I -projection of ν0

onto the convex set Fw = {µ ∈ P(Rn) : Eµ(W ) = w}. First, we want to prove the preliminary
result

K(νw|ν0) = inf
µ∈Fw

K(µ|ν0) = Λ∗ν0(w).

Note ρw = dνw/dν0, we write the Lagrangian

L(λ, γ, ρ) =

∫
X
ρ(log ρ− 1)dν0 − λ

[∫
X
ρ dν0 − 1

]
− γt

[∫
X
τρ(τ)dν0(τ)− w

]
,

where (γ, λ) ∈ R × Rn is the Lagrange multiplier. The first order condition gives log ρ(τ) =
γ + λtτ . We deduce ρw(τ) = exp(γw + λtwτ) where γw = −Λν0(λw) is the normalizing constant
and λw is such that

∫
τ exp(−Λν0(λw) + λtwτ)dν0(τ) = Λ′ν0(λw) = w. We get after integrating

with respect to λw,

λw = arg max
λ∈Rn

λtw − Λν0(λ).

Writing K(νw|ν0) =
∫
ρw(log ρw − 1)dν0 + 1, we find

K(νw|ν0) =

∫
X

(γw + λtwτ − 1) exp(γw + λtwτ)dτ + 1 = −Λν0(λw) + λtww = Λ∗ν0(w).

The prior being of the form ν0 = ν⊗n, we have that Λ∗ν0(w) =
∑n

i=1 Λ∗ν(wi). We conclude
noticing that ŵ = Eν∗(W ) = arg minw∈S K(νw|ν0).
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1.3 Nonparametric indirect regression

In this section, we are interested in nonparametric regression in inverse problems. Precisely,
assume we want to estimate a function x0 in a Hilbert space X , in the following model

y(t) = (Ax0)(t) + ε(t),

where the observation y(.) belongs to a functional space Y, ε(.) is the noise and A : X → Y is
a known linear operator. This model has been extensively studied in the literature in inverse
problem, see for instance [BHMR07], [CGPT00], [FLn08], [HO93], [Lou08], [TA77] and [Tsy03].

Here, we focus on the regularization of Hadamard’s third condition, i.e., we consider sit-
uations where the ill-posedness is due to the instability of the solution. Assume that Y is a
locally convex topological vector space and A is an injective compact operator, with discontin-
uous pseudo inverse A† = (A∗A)−1A∗, A∗ standing for the adjoint of A. The direct use of the
pseudo inverse leads to a solution x̂ = A†y = x0 +A†ε having a potentially infinite variance. To
overcome this issue, regularization methods aim to replace the discontinuous pseudo inverse A†

by a continuous version. The definitions and results presented in this section can be found in
more details in [EHN96].

1.3.1 The discrete case

We are interested in a discretized version of the problem, where we observe only the eval-
uation of y(.) at a finite number of points t1, ..., tn. This problem is studied in the chapter
5 of this thesis. It can be formalized as a discrete inverse problem, involving the operator
An : x 7→ (Ax(t1), ..., Ax(tn))t. So, note y = (y(t1), ..., y(tn))t and ε = (ε(t1), ..., ε(tn))t, we want
to recover the function x0 from the observation

y = Anx0 + ε.

We assume that the noise ε is centered with known variance σ2I where I denotes the identity
matrix in Rn. Moreover, we assume for simplicity that the design (t1, ..., tn) is such that An is
surjective (if not, one may simply remove some observations to make it surjective). So, let Kn

denote the kernel of An, its orthogonal K⊥n is of dimension n. Clearly, the discretized problem no
longer satisfies the injectivity condition. However, this issue is quite easily solved by restricting
the set of solutions to K⊥n , making the operator one-to-one. Actually, if An is a sufficiently
close approximation of A, the main issues for estimating x0 are caused by the compacity of the
operator A.

In the sequel, the norm and inner product on X are noted ‖.‖ and 〈., .〉 and we endow Rn
with the inner product 〈u, v〉n = n−1utv and the associated norm ‖.‖n. We shall now give some
useful definitions.

Definition The generalized Moore-Penrose inverse of An, noted A†n, is defined by

A†nz = arg min
x∈X

‖x‖ subject to Anx = z, z ∈ Rn.
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The generalized Moore-Penrose inverse A†n can be defined more intuitively as the inverse of the
restriction of An to K⊥n . It satisfies

A†nAn = I and AnA
†
n = ΠK⊥n

,

where ΠK⊥n
denotes the orthogonal projector onto K⊥n in X . This definition extends the notion

of inverse to non-invertible operators. We refer to [EHN96] for more details.

Definition We call best approximate solution, the orthogonal projection x† of x0 onto K⊥n . It
is the image of Anx0 through the Moore-Penrose inverse A†n.

The best approximate solution is generally unknown to the statistician, due to the presence of
noise ε in the observation. In a certain way, it is the best approximation of x0 one can get in
this model, as no information on the components of x0 in the kernel of An can be deduced from
the observation. Thus, when no external information on x0 is available, the implicit objective in
such problems is to estimate the best approximate solution x†. In this purpose, a natural idea
is to apply the generalized inverse A†n to the observation y. In this way, we obtain an estimator
of x† by

y† = A†ny = x† + η,

where we set η = A†nε ∈ K⊥n . Although unbiased, this estimator is generally inefficient, especially
if An highly attenuates the signal x0, which results in the generalized inverse A†n emphasizing the
effect of the noise. To deal with this issue, regularization methods aim to replace the generalized
inverse A†n by a smoothed version, thus reducing the variance at the cost of adding a bias to the
estimator.

Let (E , 〈., .〉) be an Hilbert space and M : E → E a diagonalizable linear map with spectral
decomposition {ρi, vi}i, i.e. M(x) =

∑
i ρi 〈x, vi〉 vi, x ∈ E . For f a function defined on the

spectrum of M , we note f(M) the operator with spectral decomposition {f(ρi), vi}i. Define the

function Φ : R+ → R+ by Φ(x) = 1/x if x > 0 and Φ(0) = 0, the operator A†n can be expressed
as

A†n = Φ(A∗nAn)A∗n,

where A∗n denotes the adjoint of An. Because the compacity of A may result in a high valued
spectrum of the pseudo inverse Φ(A∗nAn), the signal x0 can be heavily affected with noise in the
directions corresponding to large eigenvalues. A solution is to replace Φ(A∗nAn) by a smoothed
version whose spectral radius does not exceed a certain limit α. Hence, consider a bounded
function Φα approximating the inverse function and define

x̂α = Φα(A∗nAn)A∗ny.

We assume that the smoothing function Φα satisfies the following conditions

sup
t≥0
|tΦα(t)| ≤ 1 and sup

α>0
sup
t≥0
|αΦα(t)| ≤ 1. (1.2)

In a more general setting, the constant 1 in the two conditions can be replaced by arbitrary
positive constants C1, C2 (see for instance [BHMR07]) although most usual smoothing functions
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Φα satisfy the condition for C1 = C2 = 1. The distance of the estimator to the best approximate
solution can be decomposed into a bias term and a variance term

‖x† − x̂α‖ ≤ ‖x† − Φα(A∗nAn)A∗nAnx
†‖+ ‖Φα(A∗nAn)A∗nε‖.

The variance term can be controlled in function of the parameter α writing

E‖Φα(A∗nAn)A∗nε‖2 = E 〈Φα(A∗nAn)A∗nAnΦα(A∗nAn)ε, ε〉n ≤
σ2

nα
,

where the inequality holds as a consequence of (1.2). On the other hand, the bias term can be
controlled by source conditions, relating the regularity of the input function x† to the behavior
of the operator An. Precisely, assume there exists a continuous, strictly increasing function
Λ : R+ → R+ with Λ(0) = 0 and a source wn ∈ X with bounded norm ‖wn‖ ≤ w for some
w > 0, such that x† = Λ(A∗nAn)wn. Moreover, assume there exists a constant C > 0 such that
the function Λ satisfies for all t in the spectrum of A∗nAn,

∀α ≥ 0, |Λ(t)(1− tΦα(t))| ≤ CΛ(α). (1.3)

The function Λ characterizes the regularity of x† with respect to the smoothing properties of An
(see [EHN96]). The faster the function Λ goes to zero as t→ 0, the more regular is the problem.
Usual situations treated in the literature consider polynomial source conditions for Λ : t 7→ tν

or exponential source conditions for Λ : t 7→ (− log t)−ν for some ν > 0. Remark however that
there is no reason to assume that the function Λ is known since it relies on the regularity of x†.
Nevertheless, source conditions enable to obtain a bound on the bias term by writing

‖x† − Φα(A∗nAn)A∗nAnx
†‖ = ‖(I − Φα(A∗nAn)A∗nAn)Λ(A∗nAn)wn‖ ≤ C w Λ(α).

We obtain the following bound for the risk

E‖x0 − x̂α‖2 ≤ ‖x0 − x†‖2 + 2

(
C2 w 2Λ(α)2 +

σ2

α

)
An optimal value of α must be chosen in order to find a good balance between the bias and
variance in this expression. Of course, the optimal value of α is unknown since it depends on
the regularity function Λ.

1.3.2 Spectral value decomposition

For the regularization of this kind of inverse problems, a convenient tool is to use the singular
value decomposition of the operator An. Let b21 ≥ ... ≥ b2n > 0 be the ordered eigenvalues of
the self-adjoint operator AnA

∗
n. For all i = 1, ..., n, let φi (resp. ψi) denote the eigenvector

of A∗nAn (resp. AnA
∗
n) associated to b2i . The collections {φi}i=1,...,n and {ψi}i=1,...,n form an

orthogonal system of K⊥n and Rn respectively and we have Anφi = biψi and A∗nψi = biφi, for all
i = 1, ..., n. Using the singular value decomposition of An enables to rewrite the problem in a
more convenient way. Let yi = 〈y, ψi〉n, xi = 〈x0, φi〉 and εi = 〈ε, ψi〉n for i = 1, ..., n, we have
the following relation

yi = bixi + εi, i = 1, ..., n. (1.4)
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In this setting, it now suffices to divide each term yi by the known singular value bi to observe
the coefficient xi, up to a noise term ηi := b−1

i εi which is equivalent to look at the decomposition

of y† = A†ny ∈ K⊥n in the singular system {φi}i=1,...,n, yielding

y†i = xi + ηi, i = 1, ..., n,

where y†i = 〈y†, φi〉 = b−1
i yi. The problem is then turned into an heteroscedastic model where the

variance of ηi is inversely proportional to b2i , as we have E(η2
i ) = n−1b−2

i σ2. This representation
points out the effect of the decay of the singular values bi on the noise level. The estimation of
x0 is inefficient in the directions corresponding to small eigenvalues bi, i.e. when the variance
of ηi is large. To control the high frequency noises, a solution is to consider weighted versions
of y†. So, for some collection of weights λ = (λ1, ..., λn)t ∈ Rn called filter, we define the

estimator x̂(λ) as the function in K⊥n such that 〈x̂(λ), φi〉 = λiy
†
i for all i = 1, ..., n. The

purpose of filter estimators is to cancel-out the high frequency noises by allocating low weights
to the components y†i corresponding to small singular values. This approach is actually more
general than the approach discussed in the previous section, as we can show that the estimator
x̂α = Φα(A∗nAn)A∗ny is the estimator associated to the filters λi = Φα(b2i )b

2
i .

Examples of filter methods

1. Spectral cut-off. An estimator of x0 is obtained as a truncated version of y†, where
we change to zero all coefficients y†i corresponding to arbitrarily small singular values.
This approach can be viewed as a principal component analysis, where only the highly
explanatory directions are selected. The spectral cut-off estimator is associated to the
filters λi = 1{b2i ≤ α−1}, where 1{.} denotes the indicator function, which corresponds to
the smoothing function Φα : t 7→ t−11{t ≤ α−1}. We refer to [BHMR07], [EHN96] and
[Han87].

2. Projection filters. While the spectral cut-off only deals with monotonic sequences of filters,
a natural generalization is to consider unrestricted binary filters λi = 1{i ∈ m}, for
m ⊆ {1, ..., n}. For instance, hard-thresholding procedures are related to projection filters,
choosing a subset m of the form m = {i : y2

i ≥ ci} for some collection of thresholds
{ci}i=1,...,n. Such estimators are studied in [CGPT00], [LL08] and [LL10].

3. Tikhonov. The Tikhonov regularization [TA77] is associated to the so-called Wiener filters
λi = b2i (α

−1 +b2i )
−1 and smoothing function Φα : t 7→ (t+α−1)−1. The solution is obtained

as the minimizer of the functional

x 7→ ‖y −Anx‖2 + α−1‖x‖2, x ∈ X ,

which makes the method particularly convenient in cases where the SVD of A∗nAn or the
coefficients y†i are not easily computable. This approach is the analog of ridge regression
for the inverse problem framework.

4. Iterative Landweber. Like the Tikhonov regularization, the iterative Landweber method
does not require the calculation of the SVD of the operator An, which makes it generally
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easily feasible computationally. Define the sequence {xn}n≥1 recursively by xk+1 = xk −
τA∗n(Anxk − y) where τ > 0 is a scaling parameter such that supi=1,...,n τb

2
i < 1 and the

initial value x1 is an arbitrary guess on the true function. Without prior knowledge, the
Landweber method with initial choice x1 = 0 leads, after k iterations, to the estimator
associated to the filters λi = 1− (1− τb2i )k. The stopping time k plays the role of a tuning
parameter to be chosen by the practitioner, keeping in mind that the solution tends to the
fixed point y† as k →∞.

In each one of the regularization methods, the choice of the tuning parameters plays a
crucial role. In the literature, different parameter selection techniques have been implemented,
relying for instance on cross-validation [DRM96], the discrepancy principle [EHN96] or the L-
curve [HO93]. There exist also penalized procedures for selecting an appropriate choice of the
parameters such as Stein’s unbiased risk estimation [Ste81] or the risk hull method studied in
[CGPT00].



30 CHAPTER 1. PRELIMINARY RESULTS



Chapter 2

Quadratic approximate maximum
entropy on the mean

We are interested in recovering an unknown finite measure µ0 from a noisy observation of
generalized moments of µ0, defined as the integral of a continuous function Φ with respect to
µ0. When only a quadratic approximation Φm of the operator is known, we introduce the
L2 approximate maximum entropy solution as a minimizer of a convex functional subject to a
sequence of convex constraints. Under several regularity conditions, we establish the convergence
of the approximate solution and provide its rate of convergence.

2.1 Introduction

We tackle the inverse problems of reconstructing an unknown finite measure µ0 on a set
X ⊂ Rd, from observations of generalized moments of µ0,

y =

∫
X

Φ(x)dµ0(x),

where Φ : X → Rk is a given map. Such problems are encountered in various fields of sciences,
like medical imaging, time-series analysis, speech processing, image denoising, spectroscopy,
geophysical sciences, crystallography, and tomography, see for example [DHLN92], [HN00] and
[Ski88]. This problem has also been extensively studied in the literature in Econometry, some of
the main references are [Cha87], [Han82] and [Owe91]. The problem of recovering the unknown
measure µ0 is ill-posed, in particular because a solution to the equation y =

∫
Φ dµ0 is not unique.

For inverse problems with known operator Φ, regularization techniques have been implemented in
order to turn the problem into a convex optimization program for which a solution is uniquely
defined. Precisely, a solution is obtained as the minimizer of a convex functional µ 7→ J(µ)
subject to the linear constraint

∫
Φdµ = y when y is observed, or more generally, subject to a

convex constraint of the form
∫

Φdµ ∈ KY in presence of noise, for some convex set KY . Several
types of regularizing functionals have been introduced in the literature. In this general setting,
the inversion procedure is deterministic, i.e. the noise distribution is not used in the definition of
the regularized solution. Bayesian approaches to inverse problems allow one to handle the noise

31
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distribution, provided it is known, yet in general, a distribution like the normal distribution is
postulated (see [ES02] for a survey). However in many real-world inverse problems, the noise
distribution is unknown, and only the output y is easily observable, contrary to the input to
the operator. Consequently very few paired data are available to reliably estimate the noise
distribution, thereby causing robustness deficiencies on the retrieved parameters. Nonetheless,
even if the noise distribution is unavailable to the practitioner, she often knows the noise level,
i.e., the maximal magnitude of the disturbance term, say η > 0, and this information may be
reflected by taking a constraint set KY of diameter 2η.

As an alternative to standard regularization methods such as Tikhonov and Galerkin (see
for instance [EHN96]), we focus on a regularization functional with grounding in information
theory, leading to maximum entropy solutions to the inverse problem. The method, known as
maximum entropy on the mean (MEM), provides a very simple and natural manner to incor-
porate constraints on the support and the range of the solution, as discussed in [GG97]. In
a deterministic framework, maximum entropy solutions have been studied in [BLN96], [BL91],
while some others study exist in a Bayesian setting [Gam99], [GG97], in seismic tomography
[FLLn06], in image analysis [GZ02] and in survey sampling [GLR11].

While the literature in this domain has focused on inverse problems with complete knowledge
of the operator, it appears that many actual situations do not allow the operator to be exactly
known by the statistician, whether because of noise in the observations or for computational
feasibility reasons. Thus, in many actual situations, the map Φ is unknown and only an approx-
imation Φm is available. In this paper, we introduce an approximate maximum entropy on the
mean (AMEM) estimate µ̂m,n of the measure µ0 to be reconstructed. This estimate is expressed
in the form of a discrete measure concentrated on n points of X . In our main result, we prove
that the convergence in L2-norm of the sequence {Φm}m∈N toward Φ is sufficient to ensure the
weak convergence of the estimator µ̂m,n to the solution of the initial inverse problem as m→∞
and n→∞. Moreover, we provide a rate of convergence for this estimator.

A natural field of applications arises from the use of instrumental variables in Econometry
(see for instance [Flo03]). We will provide a new estimation procedure in this setting.

The chapter is organized as follows. Section 2 introduces some notations and the definition
of the AMEM estimate. We state our main result (Theorem 2.2.1) in Section 3. Applications
to remote sensing and instrumental variable estimation are studied in Section 4, while Section
5 is devoted to the proofs of our results.

2.2 The AMEM estimate

2.2.1 Problem setting

Let Φ be a continuous map defined on a subset X of Rd with values in Rk. We note B(X )
the Borel σ-field of X and F(X ) the set of finite measures on X . Let µ0 ∈ F(X ) be an unknown
measure satisfying the constraint y =

∫
Φdµ0. Assume we observe a perturbed version yobs of y:

yobs =

∫
X

Φ(x)dµ0(x) + ε, (2.1)
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where ε is an error term supposed bounded in norm from above by some positive constant η,
representing the maximal noise level. Based on the data yobs, we aim at reconstructing the
measure µ0 with a maximum entropy procedure. In image analysis this measure may be viewed
as the intensity at each pixel of the image, blurred by an unknown filter. Other applications in
seismic tomography can be found in [FLLn06], while we discuss an application to Econometry
in Section 2.3.2.

For two probability measures ν, µ, we recall that the relative entropy of ν with respect to µ is
given by

K(ν|µ) =

∫
X

log

(
dν

dµ

)
dν + µ(X )− ν(X ) if ν � µ, K(ν|µ) = +∞ otherwise.

We denote by KY the closed ball of Rk centered at the observation yobs and of radius η. The
true measure µ0 is known to satisfy the moment condition

∫
Φdµ0 ∈ KY , however, the map Φ

being unknown, we consider the approximate moment condition∫
X

Φm(x)dµ0(x) ∈ KY . (2.2)

Moreover, we note Mm = {µ ∈ F(X ) :
∫

Φmdµ} the set of finite measures satisfying the
approximate moment condition. Let us now explain the construction of the AMEM estimator.
Let X1, . . . , Xn be a discretization of the space X , for which the associated empirical measure
Pn = 1

n

∑n
i=1 δXi is assumed to converge weakly to some distribution PX having full support

on X . The Xi’s may be i.i.d. realizations of a random variable X with distribution PX , or a
deterministic design, in which case PX is known by the statistician. We search for an estimator
of µ0 that can be written as a weighted version of the empirical measure Pn

Pn(w) :=
1

n

n∑
i=1

wiδXi ,

for some vector w = (w1, ..., wn)t ∈ Rn. Moreover, we want the estimator to satisfy to approxi-
mate moment condition. Let W = (W1, ...,Wn)t be a vector of n i.i.d. realizations drawn from
a measure ν and consider the random measure Pn(W ). Seeing each weighted measure Pn(w)
as a realization of Pn(W ), the measure ν⊗n can be interpreted as a prior distribution on the
parameter w. The posterior distribution ν∗ is defined as the probability measure minimizing
the relative entropy K(.|ν⊗n) under the constraint that the approximate moment condition (2.2)
holds in mean,

Eν∗ [Pn(W )] ∈Mm.

The estimator µ̂m,n is obtained as the expectation of Pn(W ) under ν∗,

µ̂m,n = Eν∗ [Pn(W )] =
1

n

n∑
i=1

Eν∗(Wi)δXi .

The existence of ν∗ requires the feasibility of the problem, i.e. the existence of a vector δ in
the convex hull of the support of ν⊗n such that

∫
ΦmdPn(δ) ∈ KY . It is shown in [LP08] that
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under the Assumptions of Theorem 2.2.1, this condition tends to be verified with probability 1
as m → ∞ and n → ∞. Hence for m and n large enough, the AMEM estimate µ̂m,n is well
defined with high probability, and asymptotically with probability 1.

2.2.2 Convergence of the AMEM estimate

We recall that for ν a probability measure on R, Λν and Λ∗ν denote respectively the log-
Laplace and Cramer transforms of ν, given by

Λν(s) = log

∫
R
esxdν(x) and Λ∗ν(s) = sup

u∈R
{su− Λν(u)}, s ∈ R.

We define the functional

µ 7→ Iν(µ|PX) =

∫
X

Λ∗ν

(
dµ

dPX

)
dPX if µ� PX , Iν(µ|PX) = +∞ otherwise,

which is the f-divergence of µ with respect to PX associated to the convex function Λ∗ν . We
note Cb the set of continuous bounded functions on X . For all g ∈ Cb, we denote by | . |g the

semi-norm defined for µ ∈ F(X ) by |µ|g =
∣∣∫ gdµ∣∣. We recall that the family of semi-norms

{| . |g , g ∈ Cb} defines the weak topology: a sequence {µn}n∈N converges weakly toward µ if,
and only if, limn→∞ |µn − µ|g = 0, for all g ∈ Cb.
We make the following assumptions.

A2.1. The minimization problem is feasible, i.e., there exists a continuous function g0 defined
on the convex hull of the support of ν such that

∫
Φg0 dPX ∈ KY .

A2.2. The function Λ′′ν is bounded by a constant K > 0.

A2.3. The approximating sequence Φm converges to Φ in L2(PX). Its rate of convergence is
given by

‖Φm − Φ‖L2 :=
√

E‖Φm(X)− Φ(X)‖2 = O(ϕ−1
m ),

for some growing sequence {ϕm}m∈N.

A2.4. The function G : x 7→ supm∈N ‖Φm(x)‖ is square integrable:
∫
G2dPX <∞.

A2.5. For all m ∈ N, the components of Φm are linearly independent.

We are now in a position to state our main result.

Theorem 2.2.1 (Convergence of the AMEM estimate) Suppose that A2.1 and A2.2 hold
and let µ∗ be the minimizer of the functional µ 7→ Iν(µ|PX) subject to the constraint

∫
Φdµ ∈ KY .

• The AMEM estimate µ̂m,n is given by

dµ̂m,n(x) = Λ′ν(v̂tm,nΦm(x))dPn(x),

where v̂m,n minimizes over Rk, Hm,n(v) = PnΛν(vtΦm)− infy∈KY v
ty.



2.3. APPLICATIONS 35

• If A2.3 to A2.5 also hold, µ̂m,n converges weakly in probability to µ∗ as m,n → ∞ and
its rate of convergence is expressed as follows,

∀g ∈ Cb, |µ̂m,n − µ∗|g = O(ϕ−1
m ) + κm,n,

with supm∈N κm,n = OP (n−1/2).

The condition A2.2 is a rather strong requirement on the choice of the prior ν. It is equivalent
to assuming that Λν is dominated on R by a quadratic function. This condition is satisfied for
instance for Gaussian priors or if ν has compact support. As a result, the function H : v 7→
PXΛν(vtΦ)−infy∈KY v

ty attains its minimum at a unique point v∗ belonging to the interior of its
domain R. If this assumption is not met, it is shown in [BL93] and [GG97] that the minimizers
of Iν(.|PX) over the set of finite measures satisfying the moment constraint may have a singular
part with respect to PX .

The construction of the AMEM estimate relies on a discretization of the space X according
to the probability PX . Therefore by varying the support of PX , the practitioner may easily
incorporate some a-priori knowledge concerning the support of the solution. Similarly, the
AMEM estimate also depends on the measure ν, which determines the domain of Λ∗ν , and so
the range of the solution.

2.2.3 Perspectives

The convergence of the estimator is obtained under some restrictions on the prior, which lead
to strong conditions on the regularization criterion. In particular, the proof of the result imposes
to choose a sub-Gaussian prior. Inspection of the proofs shows that relaxing this assumption
would require stronger assumptions on the convergence of {Φm}, such as the convergence in
Lp-norm, for some p > 2. To study the problem under this alternate assumption could allow to
extend the result to a wider choice of priors. It is also assumed that the sequence {Φm} is inde-
pendent from the model. In practice however, for instance in the application to survey sampling
treated in Chapter 4, the problem may lead to a situation for which the approximation Φm is
estimated from the observations. Maybe it is possible to generalize the result to a dependent
data framework, in order to obtain a larger field of applications.

2.3 Applications

2.3.1 Remote sensing

In remote sensing of aerosol vertical profiles, one wishes to recover the concentration of
aerosol particles from noisy observations of the radiance field (i.e., a radiometric quantity), in
several spectral bands (see e.g. [GKP99], [MRVP97]). More specifically, at a given level of
modeling, the noisy observation yobs may be expressed as

yobs =

∫
X

Φ(x; tobs)dµ0(x) + ε, (2.3)
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where Φ : X × T → Rk is a given operator, and where tobs is a vector of angular parameters
observed simultaneously with yobs. The aerosol vertical profile is a function of the altitude x
and is associated with the measure µ0 to be recovered, i.e., the aerosol vertical profile is the
Radon-Nykodim derivative of µ0 with respect to a given reference measure (e.g., the Lebesgue
measure on R). The analytical expression of Φ is fairly complex as it sums up several models
at the microphysical scale, so that basically Φ is available in the form of a computer code. So
this problem motivates the introduction of an efficient numerical procedure for recovering the
unknown µ0 from yobs and arbitrary tobs.

More generally, the remote sensing of the aerosol vertical profile is in the form of an inverse
problem where some of the inputs (namely tobs) are observed simultaneously with the noisy
output yobs. Suppose that random points X1, . . . , Xn of X have been generated. Then, applying
the maximum entropy approach would require the evaluations of Φ(Xi, t

obs) each time tobs is
observed. If one wishes to process a large number of observations, say (yobsi , tobsi ), for different
values tobsi , the computational cost may become prohibitive. So we propose to replace Φ by an
approximation Φm, the evaluation of which is faster in execution. To this aim, suppose first
that T is a subset of Rp. Let T1, ..., Tm be random points of T , independent of X1, . . . , Xn,
and drawn from some probability measure µT on T admitting a density fT with respect to the
Lebesgue measure on Rp such that fT (t) > 0 for all t ∈ T . Next, consider the operator

Φm(x, t) =
1

fT (t)

1

m

m∑
i=1

Khm(t− Ti)Φ(x, Ti),

where Khm(.) is a symmetric kernel on T of smoothing sequence hn. It is a classical result to
prove that Φm converges to Φ in quadratic norm provided hm tends to 0 at a suitable rate, which
ensures that A2.4 is satisfied for Theorem 2.2.1. Since the Ti’s are independent from the Xi, one
may see that Theorem 2.2.1 applies, and so the solution to the approximate inverse problem

yobs =

∫
X

Φm(x; tobs)dµ0(x) + ε,

will converge to the solution to the original inverse problem in (2.3). In terms of computa-
tional complexity, the advantage of this approach is that the construction of the AMEM esti-
mate requires, for each new observation (yobs, tobs), the evaluation of the m kernels at tobs, i.e.,
Khm(tobs − Ti), the m × n outputs Φ(Xi, Tj) for i = 1, . . . , n and j = 1, . . . ,m being evaluated
once and for all.

2.3.2 Instrumental variable estimation

A natural field of application is given by nonparametric regression models involving in-
strumental variables. This kind of problem has been extensively studied in the literature in
Econometry, we refer for instance to [Flo03], [HS82] and [New90] . In some cases, the in-
strumental variable estimation framework can be viewed as an inverse problem with unknown
operator that can be solved using the AMEM procedure.
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Let X1, ..., Xn be here a discretization of the space X such that the associated empirical
distribution Pn converges weakly toward a known distribution PX having full support on X . Let
g : X → R+ be an unknown function for which we observe a noisy evaluation at each point Xi,

Yi = g(Xi) + Ui, i = 1, ..., n,

where the Ui’s are centered real valued random variables. Contrary to the classical regression
framework, we suppose here that the noises Ui are correlated with the Xi’s (i.e. E(Ui|Xi) 6=
0), which causes identification issues. This kind of model is used for instance to deal with
simultaneous causality between supply and demand in economic markets. Assume we want to
make a nonparametric regression of the price Y of a good with respect to its production X, the
noise U in the corresponding model turns out to be correlated with X due to the mutual influence
between the price and the production. To overcome this difficulty, econometricians assume
there exist instrumental variables, that affect the price only through the produced quantity (for
example, the amount of rain in the case of an agricultural product). Hence, we assume we
observe simultaneously with (Xi, Yi), an additional variable Wi ∈ Rk such that E(Wi|Xi) 6= 0
and E(Ui|Wi) = 0. In particular, we have the relation

y := E(WY ) = E(Wg(X)). (2.4)

In most cases, using the instrumental variable W is not sufficient to solve the identification issue,
but it still provides some information that may be rendered in the form of linear constraints on
g. Indeed, setting Φ : x 7→ E(W |X = x) and dµ0(x) = gdPX(x), x ∈ X , the equation (2.4) can
be written as

y =

∫
Φ(x)dµ0(x).

Here, y is unknown but we observe a noisy version yobs = n−1
∑n

i=1WiXi that is close to y
with high probability and asymptotically with probability one. The conditional expectation Φ
is also unknown but can be estimated from the data by nonparametric procedures, yielding
a converging sequence {Φn}. As a result, estimating the measure µ0 can be made using the
AMEM procedure by considering an approximate moment condition of the form

∫
Φndµ ∈ KY .

We obtain a sequence of estimators µ̂n, which is shown in Theorem 2.2.1 to converge weakly
toward the minimizer µ∗ of the convex functional Iν(.|PX) subject to the moment constraint.
Equivalently, the method ensures the convergence in a weak sense of the density ĝ = dµ̂n/dPn of
the AMEM estimator toward the function g∗ := dµ∗/dPX . In particular, the identification issue
on g is solved by incorporating some prior knowledge on µ0 through the choice of the design
X1, ..., Xn and the limit distribution PX .
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2.4 Proofs

2.4.1 Technical Lemmas

For P a measure and g a function, we shall use the notation Pg =
∫
gdP . Moreover let

v∗m = arg min
v∈Rk

Hm(v) = arg min
v∈Rk

{
PXΛν(vtΦm)− infy∈KY v

ty
}
,

v̂m,n = arg min
v∈Rk

Hm,n(v) = arg min
v∈Rk

{
PnΛν(vtΦm)− infy∈KY v

ty
}
,

v∗ = arg min
v∈Rk

H(v) = arg min
v∈Rk

{
PXΛν(vtΦ)− infy∈KY v

ty
}
.

Lemma 2.4.1 If Assumptions 1 to 5 hold,

sup
m∈N
‖v̂m,n − v∗m‖ = OP

(
1√
n

)
.

Proof. For all x ∈ X , v ∈ Rk, set

hm(v, x) = Λν(vtΦm(x))− inf
y∈KY

vty.

The parameter v̂m,n is defined as the minimizer of the empirical contrast function v 7→ Hm,n(v) =
Pnhm(v, .). To prove the result, we need to show that hm(v, x) satisfies the conditions of Corol-
lary 5.53 in [vdV98]. First remark that Hm,n is convex, which ensures the convergence in
probability of its minimizer v̂m,n toward v∗m. Since KY is the ball centered in yobs and of radius
η, we may write

hm(v, x) = Λν(vtΦm(x))− vtyobs + η‖v‖.

By A2.2, we know that Λ′ν(s) ≤ Ks+ 1 for all s ∈ R. For all v1, v2 in a neighborhood N of v∗m,
we have by the triangular inequality and the mean value theorem

|hm(v1, .)− hm(v2, .)| ≤
∣∣Λν(vt1Φm)− Λν(vt2Φm)

∣∣+
∣∣∣〈v1 − v2, y

obs〉+ η |‖v1‖ − ‖v2‖|
∣∣∣

≤
[
K‖v2‖ ‖Φm‖+ 1 + ‖yobs‖+ η

]
‖v1 − v2‖

≤
[
Kδ G+ 1 + ‖yobs‖+ η

]
‖v1 − v2‖,

where G is the function defined in A2.4 and where we set δ = supv∈N ‖v‖. Since v∗m converges
toward v∗, we may assume without loss of generality that N and δ are fixed for m sufficiently
large. Hence the function hm satisfies the first condition of Corollary 5.53 in [vdV98],

|hm(v1, .)− hm(v2, .)| ≤ ḣ‖v1 − v2‖,

where ḣ : x 7→ Kδ G(x)+1+‖yobs‖+η does not depend and m and is such that PX ḣ
2 <∞. For

all v ∈ Rk, let Vm(v) be the Hessian matrix of Hm at point v, which is well defined for all v 6= 0.
Assume that v∗m 6= 0, we need to prove that Vm(v∗m) is non-negative definite. The case v∗m = 0
can be treated separately without difficulty using Theorem 5.52 in [vdV98], by considering the
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derivative at 0+ of the functions t 7→ Vm(tv), v ∈ Rk. Let ∂i denote the derivative with respect
to the i-th component. For v 6= 0, we have

[Vm(v)]ij = ∂i∂jHm(v) = PX [∂i∂jhm(v, .)]

= PX [Φi
mΦj

mΛ′′ν(vtΦm)] + η ∂i∂jN(v)

where we set N : v 7→ ‖v‖. Thus, Vm(v∗m) can be split into the sum Am + ηBm, with

(Am)ij = PX [Φi
mΦj

mΛ′′ν(v∗tmΦm)], (Bm)ij = ∂i∂jN(v∗m).

Am is a Gram matrix, therefore it is positive definite by A2.5. Moreover, since Am converge
toward the positive-definite matrix A = (PX [ΦiΦjΛ′′ν(v∗tΦ)])1≤i,j≤k, we conclude there exist an
integer M and a constant c > 0 such that, for all a ∈ Rk,

inf
m≥M

atAma ≥ c‖a‖2.

By convexity of the map N(.) on Rk, the matrix Bm is non-negative definite and so is Vm(v∗m) =
Am + ηBm. Hence, Hm undergoes the assumptions of Corollary 5.53 in [vdV98], uniformly for
m ∈ N, which proves the result.

Lemma 2.4.2 If Assumptions 1 to 5 hold,

‖v∗m − v∗‖ = O(ϕ−1
m ).

Proof. Using successively the mean value theorem and Cauchy-Schwarz’s inequality, we find

|Hm(v)−H(v)| = |PX [Λν(vtΦm)− Λν(vtΦ(x))]|
≤ (K‖v‖2 ‖G‖L2 + ‖v‖)‖Φm − Φ‖L2 .

We deduce that Hm converges uniformly on every compact set toward H as m → ∞. By
convexity of Hm, this warrants the convergence of v∗m toward v∗. Moreover,

∇Hm(v)−∇H(v) = PX
[
ΦmΛ′ν(vtΦm)−ΦΛ′ν(vtΦ)

]
= PX

[
(Φm − Φ)Λ′ν(vtΦm) + Φ[Λ′ν(vtΦm)− Λ′ν(vtΦ)]

]
.

In the same way as previously, we find

‖∇Hm(v)−∇H(v)‖ ≤ ‖Φm − Φ‖L2‖v‖ (K‖Φm‖L2 + 1 +K‖Φ‖L2) ,

which proves that ∇Hm converges toward ∇H, uniformly on every compact set. Noticing that
∇H(v∗m) = ∇H(v∗m)−∇Hm(v∗m), it follows that |∇H(v∗m)| = O(ϕ−1

m ). Note V (v∗) the Hessian
matrix of H at v∗. We know it is positive definite by a similar reasoning as in the proof of
Lemma 2.4.1. Writing the Taylor expansion

∇H(v∗m) = V (v∗)(v∗ − v∗m) + o(‖v∗ − v∗m‖),

we conclude ‖v∗ − v∗m‖ = O(ϕ−1
m ).
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2.4.2 Proof of Theorem 2.2.1

The first part of the theorem is proved in Theorem 3.1 in [LP08]. We here focus on the proof of
the second part. We use the following notations

µ̂m,n = Λ′ν(v̂tm,nΦm)Pn and µ∗m = Λ′ν(v∗tmΦm)PX .

For g ∈ Cb, write |µ̂m,n − µ∗|g ≤ |µ̂m,n − µ
∗
m|g+|µ

∗
m − µ∗|g. We shall bound each term separately.

We have

|µ̂m,n − µ∗m|g =
∣∣Λ′ν(v̂tm,nΦm)Pn − Λ′ν(v∗tmΦm)PX

∣∣
g

≤
∣∣Λ′ν(v̂tm,nΦm)Pn − Λ′ν(v∗tmΦm)Pn

∣∣
g

+
∣∣Λ′ν(v∗tmΦm)Pn − Λ′ν(v∗tmΦm)PX

∣∣
g
.

We obtain for all x ∈ X ,

|Λ′ν(v̂tm,nΦm(x))− Λ′ν(v∗tmΦm(x))| ≤ K‖Φm(x)‖ ‖v̂m,n − v∗m‖,

by Cauchy-Schwarz’s inequality. We get∣∣Λ′ν(v̂tm,nΦm)Pn − Λ′ν(v∗tmΦm)Pn
∣∣
g
≤ K‖g‖∞‖ ‖v̂m,n − v∗m‖ PnG.

Using Slutsky’s lemma and Lemma 2.4.1, we conclude

sup
m∈N

∣∣Λ′ν(v̂tm,nΦm)Pn − Λ′ν(v∗tmΦm)Pn
∣∣
g

= OP

(
1√
n

)
.

The rate of convergence of the term
∣∣Λ′ν(v∗tmΦm)Pn − Λ′ν(v∗tmΦm)PX

∣∣
g

follows directly from the
uniform law of large numbers. We obtain

sup
m∈N
|µ̂m,n − µ∗m|g = OP

(
1√
n

)
.

The second step is to bound the term |µ∗m − µ∗|g. We follow the same guidelines,

|µ∗m − µ∗|g =
∣∣Λ′ν(v∗tmΦm)PX − Λ′ν(v∗tΦ)PX

∣∣
g

≤
∣∣Λ′ν(v∗tmΦm)PX − Λ′ν(v∗tΦm)PX

∣∣
g

+
∣∣Λ′ν(v∗tΦm)PX − Λ′ν(v∗tΦ)PX

∣∣
g
.

In the same way as previously, the first term is bounded as follows∣∣Λ′ν(v∗tmΦm)PX − Λ′ν(v∗tΦm)PX
∣∣
g
≤ K‖g‖∞ E‖Φm(X)‖ ‖v∗m − v∗‖,

which is shown to be of order O(ϕ−1
m ) in Lemma 2.4.2. For the last term, we have in the same

way ∣∣Λ′ν(v∗tΦm)PX − Λ′ν(v∗tΦ)PX
∣∣
g
≤ K‖v∗‖ ‖g‖∞ E‖Φm(X)− Φ(X)‖.

Regrouping all the terms, we get

|µ̂m,n − µ∗|g = κm,n +O(ϕ−1
m ),

where κm,n ≤ |µ̂m,n − µ∗m|g satisfies supm∈N κm,n = OP

(
1√
n

)
.



Chapter 3

Bayesian interpretation of GEL by
maximum entropy

We study a parametric estimation problem related to moment condition models. As an
alternative to the generalized empirical likelihood (GEL) and the generalized method of moments
(GMM), a Bayesian approach to the problem can be adopted, extending the MEM procedure to
parametric moment conditions. We show in particular that a large number of GEL estimators
can be interpreted as a maximum entropy solution. Moreover, we provide a more general field
of applications by proving the method to be robust to approximate moment conditions.

3.1 Introduction

We consider a parametric estimation problem in a moment condition model. Assume we
observe an i.i.d. sample X1, ..., Xn drawn from an unknown probability measure µ0, we are
interested in recovering a parameter θ0 ∈ Θ ⊂ Rd, defined by a set of moment conditions∫

Φ(θ0, x)dµ0(x) = 0, (3.1)

where Φ : θ×X → Rk is a known map. This model is involved in many problems in Econometry,
notably when dealing with instrumental variables. We refer to [Cha87], [Han82], [QL94], [Owe91]
and [DIN09]. Two main approaches to the problem have been studied in the literature, namely
the generalized method of moments (GMM) and the generalized empirical likelihood (GEL).
While the main advantage of GMM relies in its computational feasibility, likelihood-related
methods have appeared to be the most efficient in term of small-sample properties. In its
original form, the empirical likelihood (EL) of Owen [Owe91] defines an estimator by a maximum
likelihood procedure on a discretized version of the model. As an alternative, GEL replaces the
Kullback criterion relative to EL by a f -divergence, thus providing a large choice of solutions. A
number of estimators corresponding to particular choices of f -divergences have emerged in the
literature over the last decades, such as the exponential tilting (ET) of Kitamura and Stutzer
[KS97] and the continuous updating estimator (CUE) of Hansen, Yeaton and Yaron [HHY96].

41
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While an attractive feature of GEL is its wide range of solutions, a number of f -divergence
used in the computation of the GEL estimators are mainly justified by empirical studies and lack
a probabilistic interpretation. This issue can be solved by incorporating some prior information
to the problem using a Bayesian point of view, as made in [PR94]. In this paper, we investigate
a different Bayesian approach to the inverse problem, known as maximum entropy on the mean
(MEM). Although the method was originally introduced in the frame of exact moment condition
models (as opposed here to parametric moment conditions), it appears to provide a natural
solution to the problem, expressed as the minimizer of a convex functional on a set of discrete
measures and subject to linear constraints. When applied in a particular setting, we show that
the MEM approach leads to a GEL solution for which the f -divergence is determined by the
choice of the prior. As a result, the method gives an alternate point of view on some widely
spread estimators such as EL, ET or CUE, as well as a general Bayesian background to GEL.

In many actual situations, the true moment condition is not exactly known to the statisti-
cian and only an approximation is available. It occurs for instance when Φ has a complicated
form that must be evaluated numerically. Simulation-based methods have been implemented
to deal with approximate constraints in [CF00] and [McF89], in the frame of the generalized
method of moments. To our knowledge, the efficiency of GEL in a similar situation has not
been studied. In [LP08], the MEM procedure is shown to be robust to approximate moment
conditions, introducing the approximate maximum entropy on the mean estimator. Seeing GEL
as a particular case of MEM, we extend the model in a situation where only an approximation
Φm of the true constraint function Φ is available. We provide sufficient conditions under which
the GEL method remains efficient asymptotically when replacing Φ by its approximation.

This chapter falls into the following parts. Section 3.2 is devoted to the position of the
problem. We introduce the maximum entropy method for parametric moment condition models
and discuss its close relationship with generalized empirical likelihood in Section 3.2.2. In Section
3.3, we discuss the asymptotic efficiency of the method when dealing with an approximate
constraint. Proofs are postponed to the Appendix.

3.2 Estimation of the parameter

Let X be an open subset of Rq, endowed with its Borel field B(X ). We observe an i.i.d.
sample X1, ..., Xn drawn from the unknown distribution µ0. We want to estimate the parameter
θ0 ∈ Θ ⊂ Rd defined by the moment condition∫

X
Φ(θ0, x)dµ0(x) = 0, (3.2)

where Φ : Θ×X → Rk (k ≥ d) is a known map. To avoid a problem of identifiability, we assume
that θ0 is the unique solution to (3.2). This problem has many applications in Econometry, see
for instance [Cha87], [Han82] and [QL94]. The information given by the moment condition (3.2)
can be interpreted to determine the setM of possible values for µ0 (the model). The true value
of the parameter being unknown, the distribution of the observations can be any probability
measure µ for which the map θ 7→ µ[Φ(θ, .)] is null for a unique θ = θ(µ) ∈ Θ. The model is
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therefore defined as

M =
{
µ ∈ P(X ) : ∃! θ = θ(µ) ∈ Θ,

∫
Φ(θ, .)dµ = 0

}
,

where the map µ 7→ θ(µ), defined on M, is the parameter of interest. Let us introduce some
notations and assumptions. For µ a measure and g a function, we shall note µ[g] =

∫
gdµ. Let

E be an Euclidean space and let ‖.‖ denote an Euclidean norm in E. For a function f : Θ→ E
and a set S ⊆ Θ, we note

‖f‖S = sup
θ∈S
‖f(θ)‖.

We assume that the following conditions are fulfilled.

A3.1. Θ is a compact subset of Rd.

A3.2. The true value θ0 of the parameter lies in the interior of Θ.

A3.3. For all x ∈ X , θ 7→ Φ(θ, x) is continuous on Θ and the map x 7→ ‖Φ(., x)‖Θ is dominated
by a µ0-integrable function.

A3.4. For all x ∈ X , θ 7→ Φ(θ, x) is twice continuously differentiable in a neighborhood N of
θ0 and we note ∇Φ(θ, x) = ∂Φ(θ, x)/∂θ ∈ Rd×k and Ψ(θ, x) = ∂2Φ(θ, x)/∂θ∂θt ∈ Rd×d×k.
Moreover, we assume that x 7→ ‖∇Φ(., x)‖N and x 7→ ‖Ψ(., x)‖N are dominated by a
µ0-integrable function.

A3.5. The matrices

D :=

∫
X
∇Φ(θ0, x)dµ0(x) ∈ Rd×k and V :=

∫
X

Φ(θ0, x)Φt(θ0, x)dµ0(x) ∈ Rk×k

are of full rank.

Some issues for estimating θ0 may be due to the indirect definition of the parameter and these
assumptions ensure that the map θ(.) is sufficiently smooth in a neighborhood of µ0 for the
total variation topology, which will make the asymptotic properties of the GEL estimator easily
tractable and allow the calculation of efficiency bounds. The next theorem, due to Qin and
Lawless [QL94], provides the efficiency bound for estimating θ in the model M.

Theorem 3.2.1 (Theorem 3, [QL94]) Suppose that Assumptions 1 to 5 hold. The efficiency
bound in this model for estimating θ0 is

B =
[
DV −1Dt

]−1
.

An efficiency bound is to be understood as a variance lower bound for asymptotically Gaussian
regular estimators of θ0. We refer to the Appendix for more details. This theorem tells us that
if θ̂ is a regular estimator of θ0, then

lim inf
n→∞

n var(θ̂) ≥ B.

Efficiency bounds have been derived in more general moment restriction frameworks, such as
conditional moment restriction in [Cha87], sequential conditional moment restriction models in
[Cha92b], as well as conditional moment conditions with unknown functions in [AC03], [Cha92a],
[CP08], [CHT08] and [AC09]. Once the efficiency bound is calculated, the objective is to build
an estimator for which the bound is achieved asymptotically.
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3.2.1 Generalized empirical likelihood

Generalized empirical likelihood (GEL) was first applied to this problem in [QL94], gener-
alizing an idea of [Owe91]. An estimate µ̂ of µ is obtained as an entropic projection of the
empirical measure Pn onto the modelM. Hence, the measure µ̂ is the element of the model that
minimizes a given f -divergence Df (.,Pn) with respect to the empirical distribution. We refer to
Section 1.2.1 for more precisions. Setting Mθ := {µ ∈ P(X ) : µ[Φ(θ, .)] = 0}, the model can be
written as M = ∪θ∈ΘMθ. Thus, the GEL estimator θ̂ = θ(µ̂) follows by

θ̂ = arg min
θ∈Θ

Df (Mθ,Pn).

Since the set of discrete measures in Mθ is closed and convex, the entropy Df (Mθ,Pn) is
reached for a unique measure µ̂(θ) inMθ, provided that Df (Mθ,Pn) is finite. Then, it appears
that computing the GEL estimator involves a two-step procedure. First, build for each θ ∈ Θ,
the entropic projection µ̂(θ) of Pn onto Mθ. Then, minimize Df (µ̂(θ),Pn) with respect to θ.
Since µ̂(θ) is absolutely continuous w.r.t. Pn by construction, minimizing Df (.,Pn) reduces to
finding the proper weights p1, ..., pn to allocate to the observations X1, ..., Xn. This turns into a
finite dimensional problem, which can be solved by classical convex optimization tools (see for
instance [Kit06]). In fact, the GEL estimator θ̂ can be expressed as the solution to the saddle
point problem

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

γ − Pn
[
f∗(γ + λtΦ(θ, .))

]
,

where f∗(x) = supy {xy − f(y)} denotes the convex conjugate of f .

Note that if the choice of the f -divergence plays a key role in the construction of the estimator,
it has no influence on its asymptotic efficiency. Indeed, it is shown in [QL94] that all GEL
estimators are asymptotically efficient, regardless of the f -divergence used for their computation.
Nevertheless, some situations justify the use of specific f -divergences. The empirical likelihood
estimator introduced by Owen in [Owe91] uses the Kullback entropy K(., .) as f -divergence,
pointing out that minimizing K(.,Pn) reduces to maximizing likelihood among multinomial
distributions. Newey and Smith [NS04] remark that a quadratic f -divergence leads to the CUE
estimator of Hansen Heaton and Yaron [HHY96]. In the next section, we discuss a general
interpretation of f -divergence in a Bayesian framework.

3.2.2 Maximum entropy on the mean

In this section, we study a Bayesian approach to the inverse problem, known as maximum
entropy on the mean (MEM) [GG97]. The method was developed to estimate a measure µ0

based the observation of some of its moments. In this framework, it turns out that the MEM
estimator of µ0 can be used to estimate efficiently the parameter θ0. We shall briefly recall the
MEM procedure. Consider an estimator of µ0 in the form of a weighted version of the empirical
measure Pn,

Pn(w) =
1

n

n∑
i=1

wi δXi ,
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for w = (w1, ..., wn)′ ∈ Rn a collection of weights. Then, fix a prior distribution ν0 on the vector
of weight w so that each solution Pn(w) can be viewed as a realization of the random measure
Pn(W ), where W is drawn from ν0. This setting enables to incorporate some prior knowledge on
the shape or support of µ0 through the choice of the prior ν0, as discussed in [GG97]. Here, the
observations X1, ..., Xn are considered fixed. Actually, it is the moment condition that is used to
built the estimator a posteriori. In this framework where the true value θ0 of the parameter is
unknown, the information provided by the moment condition reduces to the statement µ0 ∈M.
So, in order to take this information into consideration, the underlying idea of MEM is to build
the estimator µ̂ as the expectation of Pn(W ) conditionally to the event {Pn(W ) ∈M}. However,
we may encounter some difficulties if this conditional expectation is not properly defined. To deal
with this issue, the MEM method replaces the possibly ill-defined conditional expectation by a
well-defined estimator, whose construction is motivated by large deviation principles. Precisely,
construct the posterior distribution ν∗ as the entropic projection of ν0 onto the set

Π(M) = {µ ∈ P(Rn), Eµ [Pn(W )] ∈M} ,

where Eµ [Pn(W )] denotes the expectation of Pn(W ) when W has distribution µ. The MEM
solution to the inverse problem is defined as the expectation of Pn(W ) under the posterior
distribution ν∗,

µ̂ = Eν∗ [Pn(W )] = Pn(Eν∗(W )).

This construction is justified by Theorem 2.3 in [GG97], which establishes the asymptotic equiv-
alence between µ̂ and the conditional expectation Eν0(Pn(W )| Pn(W ) ∈M), whenever it is well
defined. The existence of the MEM estimator requires the problem to be feasible in the sense
that there exists at least one solution δ in the interior of the convex hull of the support of ν0,
such that Pn(δ) ∈M. This assumption warrants that the set Π(M) is non-empty and therefore
allows the construction of the posterior distribution ν∗.

The MEM estimator µ̂ lies in the model M by construction. As a result, there exists a
solution θ̂ to the moment condition µ̂[Φ(θ, .)] = 0. this solution is precisely the MEM estimator
of θ0. In Theorem 3.2.2 below, we give an explicit expression for the MEM estimator θ̂. We note
1 = (1, ..., 1)t ∈ Rn, Φ(θ,X) = (Φ(θ,X1), ...,Φ(θ,Xn))t ∈ Rn×k and as previously, Λν denotes
the log-Laplace transform of ν.

Theorem 3.2.2 If the problem is feasible, the MEM estimator θ̂ is given by

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{nγ − Λν0(γ1 + Φ(θ,X)λ)} .

In particular, if ν0 has orthogonal marginals, i.e. ν0 = ν⊗n for some probability measure ν on
R, then

θ̂ = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Pn

[
Λν(γ + λtΦ(θ, .))

]}
.

The MEM estimator θ̂ can be expressed as the solution to a saddle point problem, specific to
generalized empirical likelihood. Actually, this result points out that maximum entropy on the
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mean with a particular form of prior ν0 = ν⊗n leads to a GEL procedure, for which the criterion
is the log-Laplace transform of ν. This approach provides a general Bayesian interpretation of
GEL. Regularity conditions on the criterion Λν in the GEL framework are reflected through
conditions on the prior ν. Indeed, the usual normalization conditions Λ′ν(0) = Λ′′ν(0) = 1
corresponds to taking a prior ν with mean and variance equal to one, while the normalization
Λν(0) = 0 is imposed by the condition ν ∈ P(R).

An interesting value of the prior is the exponential distribution dν(x) = e−x1{x > 0}dx.
Observe that if theWi are i.i.d. with exponential distribution, the likelihood of Pn(W ) is constant
over the set of probability discrete measures {Pn(w) :

∑n
i=1wi = n}. Hence, an exponential

prior can be roughly interpreted as a non-informative prior in this framework. The discrepancy
associated to this prior is Λν(s) = − log(1 − s), s < 1, which corresponds to the empirical
likelihood estimator of Owen [Owe91].

The MEM approach also provides a new probabilistic interpretation of some commonly used
specific GEL estimators. The exponential tilting of Kitamura and Stutzer [KS97] is obtained
for a Poisson prior of parameter 1, for which we have Λν(s) = es − 1. Another example is the
Gaussian prior ν ∼ N (1, 1), leading to the continuous updating estimator of Hansen, Yeaton and
Yaron [HHY96], as we have in this case Λν(s) = 1

2(s−1)2. The Gaussian prior allows the discrete
measure Pn(W ) to have negative weights wi and must be handled with care. Remark however
that this is generally not an issue in practice since the solution µ̂ is implicitly chosen close to the
empirical distribution Pn and will have all its weights wi positive with high probability. More
examples of classical priors leading to usual discrepancies can be found in [GG97].

3.3 Dealing with an approximate operator

In many actual applications, only an approximation of the constraint function Φ is available
to the practitioner. This occurs for instance if the moment condition takes a complicated form
that can only be evaluated numerically. In [McF89], McFadden suggested a method dealing with
approximate constraint in a similar situation, introducing the method of simulated moments (see
also [CF00]). In [LP08] and [LR09b], the authors study a MEM procedure for linear inverse
problems with approximate constraints. Here, we propose to extend the results of [LP08] and
[LR09b] to the GEL framework, using the connections between GEL and MEM.

We assume that we observe a sequence {Φm}m∈N of approximate constraints, independent
with the original sample X1, ..., Xn and converging toward the true function Φ at a rate ϕm.
We are interested in exhibiting sufficient conditions on the sequence {Φm}m∈N under which
estimating θ0 by the GEL procedure remains efficient when the constraint is replaced by its
approximation. We discuss the asymptotic properties of the resulting estimates in a framework
where both indices n and m simultaneously grow to infinity.

The approximate estimator is obtained by the GEL methodology, replacing the constraint func-
tion Φ by its approximation Φm,

θ̂m = arg min
θ∈Θ

sup
(γ,λ)∈R×Rk

{
γ − Pn

[
Λ(γ + λtΦm(θ, .))

]}
, (3.3)
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where Λ : R→ R is a strictly convex, twice differentiable function such that Λ′(0) = Λ′′(0) = 1
and Λ(0) = 0. As previously, the existence of θ̂m requires the feasibility condition that the
supremum of γ − Pn

[
Λ(γ + λtΦm(θ, .))

]
is reached for a finite value of (γ, λ) ∈ R × Rk, for at

least one value of θ ∈ Θ. This condition relies essentially on the domain of Λ being sufficiently
widespread. We make the following additional assumptions.

A3.6. The functions x 7→ ‖Φ(., x)‖Θ, x 7→ ‖∇Φ(., x)‖N and x 7→ ‖Ψ(., x)‖N are dominated by
a function κ such that

∫
κ4(x)dµ0(x) <∞.

A3.7. For all x ∈ X and for sufficiently large m, the map θ 7→ Φm(θ, .) is twice continuously dif-
ferentiable in N and we note ∇Φm(θ, .) = ∂Φm(θ, .)/∂θ and Ψm(θ, .) = ∂2Φm(θ, .)/∂θ∂θt.

A3.8. The functions x 7→ ‖Φm(., x) − Φ(., x)‖Θ, x 7→ ‖∇Φm(., x) − ∇Φ(., x)‖N and x 7→
‖Ψm(., x)−Ψ(., x)‖N are dominated by a function κm such that

∫
κ4
m(x)dµ0(x) = O(ϕ−4

m ).

A3.9. The function Λ′′ is bounded by a constant K <∞.

Assumptions A3.6 to A3.8 are made to obtain a uniform control over ‖θ̂m − θ̂‖ for all n ∈ N.
The condition A3.9 implies that Λ is dominated by a quadratic function. In the MEM point of
view, this condition is fulfilled for the log-Laplace transform Λν of sub-Gaussian priors ν.

Theorem 3.3.1 (Robustness of GEL) If Assumptions 1 to 9 hold,

n‖θ̂m − θ̂‖2 = OP (nϕ−2
m ) + oP (1).

In particular, θ̂m is
√
n-consistent and asymptotically efficient if nϕ−2

m tends to zero.

By considering a situation with approximate operator, we extend the GEL model to a more
general framework that gives a more realistic formulation of actual problems. The previous
theorem gives an upper bound of the error caused by the use of the approximation Φm in place
of the true function Φ. By this result, we aim to provide an insight on convergence conditions
that are necessary for asymptotic efficiency when dealing with an approximate operator.

3.4 Proofs

3.4.1 Proof of Theorem 3.2.2

Let Sθ = {w ∈ Rn : Pn(w) ∈ Mθ} and Fw = {µ ∈ P(Rn) : Eµ(W ) = w}. We use that
infµ∈Fw K(µ, ν0) = Λ∗ν0(w), as shown in the proof of Theorem 1.2.3 in Section 1.2.2. Let
Π(Mθ) = {µ ∈ P(Rn), Eµ [Pn(W )] ∈Mθ}, we have the equality

θ̂ = arg min
θ∈Θ

inf
µ∈Π(Mθ)

K(µ, ν0) = arg min
θ∈Θ

inf
w∈Sθ

inf
µ∈Fw

K(µ, ν0),

which can be written

θ̂ = arg min
θ∈Θ

inf
w∈Sθ

Λ∗ν0(w) = arg min
θ∈Θ

inf
w∈Sθ

sup
τ∈Rn
{τ tw − Λν0(τ)}.
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The feasibility assumption warrants that the extrema are reached. Hence, using Sion’s minimax
Theorem, we find

θ̂ = arg min
θ∈Θ

sup
τ∈Rn

inf
w∈Sθ
{τ tw − Λν0(τ)},

We know that w = (w1, ..., wn)t ∈ Sθ if and only if
∑n

i=1wi = n and
∑n

i=1wiΦ(θ,Xi) = 0. Thus,
for a fixed value of τ , the map w 7→ τ tw−Λν0(τ) can be arbitrarily close to −∞ on Sθ whenever
τ is not orthogonal to 1 and Φ(θ,X). As a result, we may assume that τ = γ1 + Φ(θ,X)λ for
some (γ, λ) ∈ R × Rk without loss of generality. In this case, the map w 7→ τ tw − Λν0(τ) is
constant over Sθ, equal to nγ − Λν0(γ1 + Φ(θ,X)λ), which ends the proof. If ν0 = ν⊗n, then
Λν0(w) =

∑n
i=1 Λν(wi) and we conclude easily.

3.4.2 Proof of Theorem 3.3.1

The proof of the results relies mainly on the uniform law of large numbers, using that the
set {‖Φm(θ, .)‖, ‖∇Φm(θ, .)‖, ‖Ψm(θ, .)‖, θ ∈ Θ,m ∈ N} is a Glivenko-Cantelli class of functions,
consequently to A3.6 and A3.8. For all θ ∈ Θ, v ∈ Rk, x ∈ X , let

hn(θ, v) =

(
Pn
[
Φ(θ, .)Λ′(vtΦ(θ, .))

]
Pn
[
vt∇Φt(θ, .)Λ′(vtΦ(θ, .))

] )
hm,n(θ, v) =

(
Pn
[
Φm(θ, .)Λ′(vtΦm(θ, .))

]
Pn
[
vt∇Φt

m(θ, .)Λ′(vtΦm(θ, .))
] ) .

The pair (θ̂m, v̂m) (resp. (θ̂, v̂)) is defined as the unique zero over Θ × Rk of hm,n (resp. hn).
The condition A3.9 implies that there exists a constant K > 0 such that Λ′(s) ≤ Ks + 1 for
all s ∈ R. Hence, using successively the mean value theorem and Cauchy-Schwarz’s inequality,
we show that the contrast function hm,n converges uniformly on every compact set toward hn
as m → ∞, which warrants the convergence of (θ̂m, v̂m) toward (θ̂, v̂). For all v ∈ Rk, the
application θ 7→ ∇hm,n(θ, v) is continuous in a neighborhood on θ∗m for sufficiently large values
of m by the condition A3.7, as explicit calculation gives

∇hm,n(θ, v) =

(
Am,n(θ, v) Dm,n(θ, v)
Dt
m,n(θ, v) Vm,n(θ, v)

)
,

where

Am,n(θ, v) = Pn
[
Ψm(θ, .)vΛ′(vtΦm(θ, .)) +∇Φm(θ, .)v vt∇Φt

m(θ, .)Λ′′(vtΦm(θ, .))
]

Dm,n(θ, v) = Pn
[
∇Φm(θ, .)Λ′(vtΦm(θ, .)) +∇Φm(θ, .)vΦt

m(θ, .)Λ′′(vtΦm(θ, .))
]

Vm,n(θ, v) = Pn
[
Φm(θ, .)Φt

m(θ, .)Λ′′(vtΦm(θ, .))
]
.

We define in the same way An(θ, v), Dn(θ, v) and Vn(θ, v) by replacing Φm by Φ in the expressions
above. Using Cauchy-Schwarz’s inequality, A3.8 ensures the uniform convergence of ∇hm,n
toward ∇hn on every compact set at the rate ϕm. Note ρn the smallest eigenvalue of ∇hn(θ̂, v̂),
we know from Theorem 3.2 in [NS04] that P(ρn > η) = O(n−1) for sufficiently small η > 0,
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since A3.5 ensures that the limit of ∇hn(θ̂, v̂) as n → ∞ is positive definite. Thus, for c > 0
sufficiently small, consider the event Ω = {ρn > c}. Writing the Taylor expansion

hm,n(θ̂, v̂) = ∇hm,n(θ̂m, v̂m)

(
θ̂ − θ̂m
v̂ − v̂m

)
+ o(‖θ̂m − θ̂‖),

we deduce that on Ω,(
θ̂m − θ̂
v̂m − v̂

)
= −

[
∇hn(θ̂, v̂)

]−1
hm,n(θ̂, v̂) +OP (ϕ−1

m ).

The Schur complement formula gives in particular

θ̂m − θ̂ = −
[
D̂nV̂

−1
n D̂t

n

]−1
D̂nV̂

−1
n Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))] +OP (ϕ−1

m ) + oP (n−1),

where D̂n = Dn(θ̂, v̂) and V̂n = Vn(θ̂, v̂) and where we used that v̂ = OP (n−1) (see for instance
Theorem 3.2 in [NS04]). Thus, on the event Ω,

‖θ̂m − θ̂‖ ≤ c
∣∣∣∣∣∣Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))]

∣∣∣∣∣∣+OP (ϕ−1
m ) + oP (n−1).

By construction, Pn[Φ(θ̂, .)Λ′(v̂tΦ(θ̂, .))] = 0, which yields∣∣∣∣∣∣Pn[Φm(θ̂, .)Λ′(v̂tΦm(θ̂, .))]
∣∣∣∣∣∣

≤ Pn
[
‖(Φm(θ̂, .)− Φ(θ̂, .))Λ′(v̂tΦm(θ̂, .))‖+ ‖Φ(θ̂, .)[Λ′(v̂tΦm(θ̂, .)− Λ′(v̂tΦ(θ̂, .))]‖

]
≤ K‖v̂‖ Pn

[
‖Φm(θ̂, .)‖ ‖Φm(θ̂, .)− Φ(θ̂, .)‖

]
+ Pn‖Φm(θ̂, .)− Φ(θ̂, .)‖

+K‖v̂‖ Pn
[
‖Φ(θ̂, .)‖ ‖Φm(θ̂, .)− Φ(θ̂, .)‖

]
,

as a consequence of A3.9. We conclude that ‖θ̂m− θ̂‖21Ω = OP (ϕ−2
m )+oP (n−1) by the condition

A3.8. On the complement of Ω, ‖θ̂m − θ̂‖ can be bounded by the diameter δ of Θ, yielding
‖θ̂m − θ̂‖1Ωc = oP (n−1), which ends the proof.
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3.5 Efficiency of the generalized method of moments

The main alternative to GEL is the generalized method of moments (GMM). Although GEL
and GMM aim to solve the same estimation problem, the methods rely on different semipara-
metric models. By calculating efficiency bounds relative to the GMM model, we provide a new
proof Hansen’s result in [Han82] on optimal GMM.

3.5.1 Information theory in semiparametric models

This section is devoted to some results on Information theory and efficiency in semiparametric
models, for which a further study can be found in [vdV98] and [RB90]. This theory aims to
quantify the amount of information available in a given statistical problem. It applies mostly
to classical sampling models, in which the objective is to estimate a parameter ψ(µ0) from i.i.d.
observations X1, ..., Xn drawn from an unknown measure µ0.

Definition A model M is a set of probability measures, i.e. it is a subset of P(X ).

For a given problem, the model is the set of possible for the distribution µ0 of the observations.
We generally assume that the modelM is suitably defined in the sense that it contains the true
measure µ0. There exist in the literature three main kinds of models:

• Parametric models, M = {µθ, θ ∈ Θ ⊂ Rd}. The distribution of the observations is
assumed to belong to a parametric class of measure, which reflects a significant knowledge
on µ0. To restrict the set of possible values of µ0 to a parametric model is usually a strong
assumption, although it may be reasonable in many situations (Gaussian models, Poisson
models, etc...).

• Nonparametric model, M = P(X ). We have no available information on µ0, which forces
us to consider any possible probability measure as a possible solution.

• Semiparametric models, M is neither parametric, nor nonparametric. We have some
information on µ0 although the set of possible values of µ0 can not be identified with a
finite dimensional space (e.g. density measures, Cox model, centered measures, etc...).

The description of the model helps characterizing the available information on µ0, which is all
the more important that the model is restricted.

Definition A parameter with values in a space H is a map ψ :M→H.

A value of the parameter is defined for any element of the model. Classical examples of param-
eters are the mean, the median or the variance but we may also consider infinite dimensional
parameters such the density with respect to Lebesgue measure ψ : ν 7→ dν/dλ or any reference
measure in a suitable model. The measure itself can also be seen as a parameter, the map ψ
being the identity in this case.
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Definition A model {µt}t≥0 is differentiable in quadratic mean at µ0 if there exists g : X → R
such that

∫
X g

2 dµ0 <∞ and

lim
t→0

∫
X

[
1

t

(√
dµt
dτt
−
√
dµ0

dτt

)
− 1

2
g

]2

dτt = 0,

setting for all t ≥ 0, τt = µt + µ0.

The function g is called the score of {µt}t≥0 and it has zero mean under µ0. For any func-
tion Tn : X n → Θ of the observations and µ a measure, we denote by L(Tn| µ) the law of
Tn(X1, ..., Xn) when X1, ..., Xn are independent with distribution µ. Following the notations in
[RB90], we denote by Ṁ the tangent space of M at µ0, defined as the set of all score functions
of differentiable submodels in M.

Definition A parameter ψ :M→H ⊂ Rp defined on a modelM is said to be differentiable at
µ0 if there exists a function ψ̇ : X → Rp such that, for all differentiable submodels {µt}t ⊂M,

lim
t→0

ψ(µt)− ψ(µ0)

t
=

∫
X
ψ̇ g dµ0, (3.4)

where g is the score {µt}t.

A function ψ̇ satisfying (3.4) (called influence function) is not uniquely defined, as the differ-
entiability property only involves components of ψ that are orthogonal to the tangent space
Ṁ. However, there is only one influence function with minimal norm, called efficient influence
function and which we note ψ̃.

Definition An estimator ψ̂ = ψ̂(X1, ..., Xn) of a parameter ψ : M → H is locally Gaussian
regular at ψ(µ0) if for all differentiable submodel {µt}t≥0 ⊂ M and for all positive sequence

(tn)n∈N such that
√
ntn is bounded, L(

√
n(ψ̂−ψ(µtn))| µtn) converges weakly toward a Gaussian

distribution as n→∞.

The following theorem, which is a consequence of the convolution Theorem in [RB90], establishes
a lower bound on the variance of locally Gaussian regular estimators.

Theorem 3.5.1 Let Tn be a locally Gaussian regular estimator of ψ in M. Then

lim inf
n→∞

n var(Tn) ≥
∫
X
ψ̃ψ̃tdµ0.

The quantity
∫
ψ̃ψ̃tdµ0 ∈ Rp×p is called efficiency bound to estimate ψ in M.



52 CHAPTER 3. BAYESIAN INTERPRETATION OF GEL BY MAXIMUM ENTROPY

3.5.2 Semiparametric efficiency of GMM

As discussed in Chapter 3 in [BKRW93], there exist two natural, although seemingly different
approaches to estimate a parameter θ0 = θ(µ0) based on i.i.d. observations drawn from µ0 in a
statistical model M. Roughly speaking, the two approaches are based on the idea of building
a preliminary estimate µ̂ of µ0 in order to define the estimator θ̂ = θ(µ̂). In this process, we
can face two different situations. On one hand, if one uses a classical estimate µ̂ such as the
empirical distribution, the estimator θ̂ = θ(µ̂) is defined only if µ̂ ∈ M. Since this is not true
in most cases, the map θ(.) needs to be extended to a larger model that contains the estimator
µ̂. Precisely, one considers a model P ⊇M and an extension θ of θ on P in order to construct
the estimator θ̂ = θ(µ̂). The main advantage with this approach is that few conditions are
needed on the preliminary estimate µ̂. The efficiency of the method will essentially rely on the
construction of the map θ, which must be sufficiently smooth to avoid a loss of information. A
second idea is to impose that the preliminary estimate µ̂ lies in the model M so that θ0 can be
obtained directly as the image of µ̂ through θ(.). This approach is arguably the most natural
one, although it may involve constrained optimization problems, making the method generally
more expensive computationally.

In the parametric moment condition model, the two main methods that have been imple-
mented for this problem, namely the generalized empirical likelihood and the generalized method
of moments, provide a good illustration of each situation. The generalized empirical likelihood
is a good example of the second idea, where one considers a preliminary estimate µ̂ as a discrete
measure lying in the model M. Here, we discuss the generalized method of moments which
illustrates the first procedure of estimation. We shall see that the method is efficient as soon as
the extended map θ is sufficiently smooth on the initial model M.

The generalized method of moments consists in replacing in the moment constraint, the true
measure µ0 by its empirical approximation Pn. Then, find the value of θ for which the empirical
moment condition Pn[Φ(θ, .)] = 1

n

∑n
i=1 Φ(θ,Xi) is the closest to 0, according to a given norm of

Rk. Precisely, define for M a symmetric positive definite k×k matrix and a ∈ Rk, ‖a‖2M = atMa.

The GMM estimator θ̂ of θ0 associated to the norm ‖.‖M is given by

θ̂ = arg min
θ∈Θ

‖Pn[(Φ(θ, .)]‖M .

If the minimizer is not unique, one may select one arbitrarily among all minimizers. In practice,
the matrix M may have a dependency in n, in which case it is generally chosen to converge
toward a symmetric positive definite matrix. Nevertheless, replacing the matrix by its limit
leads to the same first order asymptotic properties of the estimate, under regularity conditions.
Here, we will assume for simplicity that M is fixed, this being sufficient for our purposes.

The generalized method of moments is a good illustration of the first procedure. Indeed, the
GMM estimator θ̂ can be seen as the image of the empirical distribution Pn by the function

θM (µ) = arg min
θ∈Θ

‖µ[Φ(θ, .)]‖M , µ ∈ P,
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where P is an extension of the original model M, containing Pn. For example, we may take P
as the set of all probability measures µ for which the map θ 7→ µ[Φ(θ, .)] can take finite values
on Θ.

3.5.3 A proof of optimal GMM

The generalized method of moments may seem inefficient since it involves a larger model,
thus decreasing the amount of available information. Actually, to be able to provide an efficient
estimator, the extension θM must be ”smooth” enough so that differentiable submodels in P
carry at least as much information as the original model. Basically, we want the efficiency bound
BM for estimating θM over P not to be higher than the original bound B. Since it obviously
can not be lower, the objective is to find an efficient extension, for which BM = B. In the next
theorem, we show that the smoothness of the extension θM can be measured in function of the
scaling matrix M , via the direct calculation of the efficiency bound BM .

Theorem 3.5.2 Suppose that Assumption 1 to 5 hold. The efficiency bound for estimating θM
in P is

BM =
[
DMDt

]−1 [
DMVMDt

] [
DMDt

]−1
.

Proof. Note T the set of bounded functions with zero mean under µ0. For any g ∈ T and t > 0,
the measure µt := (1 + tg)µ0 lies in P provided that t is small enough and the path {µt}t≥0 is
differentiable with score g. The uniform convergence of θ 7→ µt[Φ(θ, .)] toward θ 7→ µ0[Φ(θ, .)] as
t→ 0 (which follows from A1 and A2) ensures the existence of a minimizer θ(t) of θ 7→ µt[Φ(θ, .)]
continuously close to θ0 as t→ 0 and satisfying the first order condition γM (θ(t), µt) = 0 where

γM (θ, µ) =
[∫
∇Φ(θ, .)dµ

]
M
[∫

Φ(θ, .)dµ
]
, (θ, µ) ∈ Θ× P.

Under A2, A3 and A4, the implicit functions theorem applied to the map (θ, t) 7→ γM (θ, µt)
in a neighborhood of (θ0, 0) warrants the uniqueness of the minimum θ(t) = θM (µt). Note
˙̀ = ( ˙̀

1, ..., ˙̀
d)
t the efficient influence function of θM . By a Taylor expansion of Φ(θ, .) at θ0 and

using that γM (θM (µt), µt) = 0, we get[∫
∇Φ(θ0, .)dµt

]
M
[∫

Φ(θ0, .)(1 + tg)dµ0 +
[∫
∇Φt(θ0, .)dµt

]
(θM (µt)− θ0)

]
= o(t).

Since θM (µt)− θ0 = t
∫

˙̀gdµ0 + o(t) by definition of ˙̀, we obtain after dividing each term by t
and making t tend to zero

DM
[∫

Φ(θ0, .)g dµ0

]
= −DMDt

[∫
˙̀ g dµ0

]
.

Since this holds for all g ∈ T , we deduce using A5

˙̀(.) = −
[
DMDt

]−1
DMΦ(θ0, .),

checking beforehand that ˙̀ lies in the closure of T . The efficiency bound is the variance of ˙̀(X)
which proves the result.

The following lemma proves that, as expected, the efficiency bound BM in the extended model
P is larger than in the original model M. We note Im(Dt) = {Dtu, u ∈ Rd} ⊂ Rk.
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Lemma 3.5.3 For all symmetric positive semidefinite matrix M such that MDt is of full rank,

DMDt
[
DMVMDt

]−1
DMDt ≤ DV −1Dt,

with equality if and only if Im(Dt) is stable through VM , i.e. ∀v ∈ Im(Dt), V Mv ∈ Im(Dt).

Proof. Set A = V 1/2MDt, A[AtA]−1At is an orthogonal projection matrix with in particular
A[AtA]−1At ≤ I. Thus, we deduce

DV −1/2 A[AtA]−1At V −1/2Dt ≤ DV −1Dt,

proving the inequality. To have the equality, we need that V −1/2Dt = AX for some X ∈ Rd×d,
or equivalently Dt = VMDtX. Since D, V and MDt are assumed of full rank, it follows that X
is invertible. Finally, the condition MDt = V −1DtX−1 is sufficient to have the equality, proving
the lemma.

This result provides necessary and sufficient conditions for the optimality of GMM. The
asymptotic variance of the GMM estimator is precisely the lower boundBM , as shown in [Han82],
which proves the efficiency of the method. The theorem and lemma point out in particular that
the optimality of GMM is achieved for M = V −1, as we have in this case BM = B, recovering
the efficiency bound of Theorem 3.2.1. Note that the matrix V is generally unknown, since it
depends on the true measure µ0. However, it can be replaced by a consistent estimate, leading
to the same asymptotic properties of the GMM estimator under mild conditions. Here again,
several approaches are possible. In the two-step GMM procedure, the estimate Ṽ is built using
a preliminary estimator θ̃ of θ0 obtained by a GMM procedure with known scaling matrix (in
general, the identity matrix). As a result, θ̃ is not in general asymptotically efficient, however,
it is
√
n-consistent and enables to construct a consistent estimate of V . The resulting estimator

can be viewed as a two-step semiparametric estimator, for which the optimal scaling matrix V −1

is estimated in a first step and is used for the estimation of θ0 in a second step (see for instance
[ACH11]). Another solution is to minimize simultaneously over Θ

θ 7→ Pn[Φt(θ, .)] V̂ −1(θ) Pn[Φ(θ, .)], (3.5)

where V̂ −1(θ) denotes here an arbitrary consistent estimate of V −1(θ), for all θ ∈ Θ. In partic-
ular, taking V̂ −1(θ) as the inverse of the empirical variance of Φ(θ,X) recovers the continuous
updating estimator of [HHY96].

Remark that the choice M = V −1 is not the only one achieving optimality. For instance, the
efficiency bound can be shown to be minimal if d = k, for any full rank matrix M . Moreover,
the lemma does not rule out that M is positive semidefinite. Actually, if d < k, we can find
non-invertible symmetric positive semidefinite matrices M for which the efficiency bound θM
is minimal. Examples are M = V −1DtDV −1 or M = V −1ΠDV

−1 where ΠD denotes the
orthogonal projector onto Im(Dt), ΠD = Dt[DDt]−1D. These matrices have rank d and satisfy
all the required conditions of the lemma, as well as the equality BM = B. The use of a scaling
matrix M different from V −1 achieving the optimal efficiency bound might be interesting if M
is easier to estimate than V −1. Since the computation of the GMM estimator relies on the
preliminary estimation of M , this may improve the small sample properties of the estimator.
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3.6 Extension: An efficiency bound for non-smooth models

In this section, we introduce a variance lower bound for unbiased estimators in general
statistical models. The construction of the efficiency bound is based on the same idea as the
Cramer-Rao inequality, however it does not require differentiability conditions, which enables
the calculation of the efficiency bound in a larger class of models. Moreover, we show that
in many situations, this efficiency bound is actually larger than the Cramer-Rao bound, and
therefore provides a sharper result.

3.6.1 Preliminary results

Let (X ,B(X )) be an open subset of Rp endowed with its Borel field, we denote byM(X ) the
set of all probability measures on (X ,B(X )). Let {µθ}θ∈Θ be a family of probability measures
on (X ,B(X )) with µθ0 = µ0 and with θ ∈ Θ ⊂ Rd.

Definition We say that {µθ}θ∈Θ is differentiable in L2(µ0) at θ0, if there exists g : X → Rd
such that

∫
X g

tg dµ0 <∞ and such that for all a ∈ Rd,

lim
t→0

∫
X

[
1

t

(
dµθ0+ta

dµ0
(x)− 1

)
− atg(x)

]2

dµ0(x) = 0.

This notion of differentiability is actually less general than the differentiability in quadratic mean,
although in most situations, it leads to the same results in ”large” models (semiparametric or
nonparametric) but also in most exponential parametric models. We call g the score function of
the model {µθ}θ at θ = θ0. The variance of g(X) is the Fisher information matrix of the model.

Theorem 3.6.1 (Cramer-Rao inequality) Let M = {µθ}θ∈Θ be a differentiable model with
invertible Fisher information matrix. Let ψ : M → H ⊂ Rq be a map such that θ 7→ ψ(µθ) is
differentiable at θ0 with d × q derivative matrix ψ̇0. Then, if T = T (X1, ..., Xn) is an unbiased
estimator of ψ(µ0),

n var(T ) ≥ ψ̇t0
[∫
X gg

tdµ0

]−1
ψ̇0.

The Cramer-Rao bound in the model M for estimating ψ(µ0) will be noted Bψ(M) (the
dependency in M in the notation may be dropped if there is no possible confusion). This well-
known result that applies to parametric models can be extended to larger models. Assume that
M is a semiparametric model, for every smooth submodel {µθ}θ∈Θ ⊂ M such that µθ0 = µ0,
we can calculate the Fisher information for estimating ψ(µ0). Moreover, the information for
estimating ψ(µ0) over the whole model is certainly not bigger than the information of any
submodel. We shall simply define the information for the whole model as the infimum (if one
exists) of the informations over all smooth submodels. Equivalently, the lower bound for the
variance of an unbiased estimator of ψ(µ0) is defined as the supremum of Cramer-Rao bounds
over smooth submodels.

Remark The maximum is unique whenever the parameter to estimate ψ(µ0) is real. However,
the uniqueness may become an issue for a vectorial parameter. If ψ : M → Rd with d > 1, a
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variance lower bound for estimating ψ(µ0) would have to be a d× d matrix. Then, it may occur
that several maxima exist (a maximum is meant in the sense of the quadratic forms: we say that
two d× d matrices M and N are such that M ≥ N if M −N is nonnegative-definite). In such
situations, we consider a set Bψ of maxima where each element may need be studied separately.

In the sequel, a maximum will be meant as an element of the set Bψ. Let T be an open subset
of R containing 0, we denote by Mψ,T the set of all differentiable one-dimensional submodels
{µt}t∈T equal to µ0 at 0 and with score g 6= 0. Assume that the map ψ is differentiable at µ0,
that is, t 7→ ψ(µt) is differentiable at 0 for all {µt}t ∈Mψ,T . We define the efficiency bound as

Bψ(M) = sup
(µt)t∈Mψ,T

Bψ({µt}t).

By convention, we extend the definition of the Cramer-Rao bound to any model M by stating
that Bψ(M) = 0 as soon as Mψ,T = ∅. A CR bound can thus be defined for any statistical
model as a supremum over all CR bounds of one-dimensional smooth submodels. A submodel
for which the supremum is reached is called a least favorable path.

An interesting example to illustrate this definition is to consider a multi-dimensional para-
metric model. Let Θ be an open set of Rq and let {µθ}θ∈Θ be a parametric model with µθ0 = µ0

and score g : X → Rq. The parameter is defined by the map ψ : {µθ}θ∈Θ → R. One-dimensional
smooth submodels are of the form µat = µθ0+ta+o(t) for a ∈ Rq, with associated score function
atg. So, the generalized CR bound in the model is given by

Bψ(M) = sup
a∈Rq∗

atψ̇(θ0)ψ̇t(θ0)a

at
[∫
X gg

tdµ0

]
a

= ψ̇t0
[∫
X gg

tdµ0

]−1
ψ̇0.

We here recover the Cramer-Rao bound of Theorem 3.6.1.

3.6.2 Construction of the efficiency bound

Definition Let µ and ν be two probability measures on X . The quadratic divergence (or
Q-divergence) of ν with respect to µ is given by:

D(µ, ν) =

∫
X

(
1− dµ

dν

)2

dµ if ν � µ, D(µ, ν) = +∞ otherwise.

Moreover, for A a subset of M(X ), we define D(µ,A) = infν∈A D(µ, ν). A measure µ∗ ∈ A for
which the infimum is reached is call the Q-projection of µ on A.

In the next theorem we show that to each measure of a model but the true measure µ0, can be
associated a variance lower bound for an unbiased estimator of a parameter ψ(µ0) ∈ Rq. We
shall use the convention 1/∞ = 0.
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Theorem 3.6.2 Let X1, ..., Xn be an i.i.d sample with distribution µ0. Let T = T (X1, ..., Xn)
be an unbiased estimate of ψ(µ0) ∈ Rq in the model M. Then, ∀µ ∈M \ {µ0}:

var(T ) ≥ (ψ(µ0)− ψ(µ))(ψ(µ0)− ψ(µ))t

(D(µ0, µ) + 1)n − 1
.

Proof. First assume that ψ(µ0) ∈ R. If D(µ0, µ) = +∞, the inequality is trivially verified. If
not, write

ψ(µ0)− ψ(µ) = E
(

(T − ψ(µ0))

(
1− dµ⊗n

dµ⊗n0

))
where the expectation is meant under the distribution of the observations µ⊗n0 . Applying
Cauchy-Schwarz inequality, we get

ψ(µ0)− ψ(µ) ≤
√

var(T )
√
D(µ⊗n0 , dµ⊗n).

Moreover, we see after calculation that D(µ⊗n0 , µ⊗n) = (D(µ0, µ) + 1)n − 1. Hence,

∀µ ∈M∗, var(T ) ≥ (ψ(µ0)− ψ(µ))2

(D(µ0, µ) + 1)n − 1
.

If ψ(µ0) ∈ Rq with q > 1, we apply the previous result to the estimator αtT ∈ R for some
α ∈ Rq. We get for all µ 6= µ0:

var(αtT ) = αtvar(T )α ≥ (αtψ(µ0)− αtψ(µ))2

(D(µ0, µ) + 1)n − 1
= αt

(ψ(µ0)− ψ(µ))(ψ(µ0)− ψ(µ))t

(D(µ0, µ) + 1)n − 1
α.

The inequality is true for all α ∈ Rq, which proves the result.

To each element of the model M corresponds a variance lower bound. Given a map ψ :
M→ Rq, we shall denote by Hn

ψ(µ0, .) the entropy function defined on M∗ =M\ {µ0} as

Hn
ψ(µ0, µ) = n

(ψ(µ0)− ψ(µ))t(ψ(µ0)− ψ(µ))

(D(µ0, µ) + 1)n − 1
.

As the Cramer-Rao bound in the case of a parametric model, Hn
ψ(µ0, µ) provides a lower bound

for n times the variance of an unbiased estimate. Since Hn
ψ(µ0, µ) is zero for all measure µ such

that dµ/dµ0 /∈ F =
{
f ∈ L2(µ0) : fµ0 ∈M

}
(we admit for convenience that dµ/dµ0 = +∞ if

µ is not absolutely continuous w.r.t. µ0), we can settle for the set F of all densities w.r.t. µ0 to
determine the variance lower bound. The main advantage is that F being a subspace of L2(µ0),
it can be endowed with its natural Hilbert space topology.

In a statistical model M, we denote by Bn
ψ(M) the bound:

Bn
ψ(M) := sup

µ∈M∗
Hn
ψ(µ0, µ) = sup

f∈F\{1}
Hn
ψ(µ0, fµ0).
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As for the Cramer-Rao bound, a maximum is not necessarily unique if the parameter to estimate
is vectorial. For sake of simplicity, most of our results will be given assuming that the maximum
Bn
ψ is real, and therefore, properly defined. Cases with several maxima are harder to handle but

may be reduced to the unique maximum case by studying each maximum separately.

To fully understand the previous theorem, consider the binary modelM = {µ0, µ}. Assume
that we want to estimate the parameter ψ(µ0) based on an i.i.d sample X = (X1, ..., Xn) and
knowing that the true measure is either µ0 or µ. In that case, the variance of an estimator T =
T (X) of ψ(µ0) depends on two considerations. First, the information given by the observations:
if µ and µ0 are ”far” from each other in some sense, it is likely that the observations will easily
permit to decide which distribution they are drawn from. This is all the more true that the
number of observations is large. To illustrate this, take the extreme case where the support of
µ is not contained in the support of µ0. Then, we could immediately tell that the observations
are not drawn from µ as soon as some observation Xi does not lie in the support of µ. The
distribution µ0 of the observations and therefore the value of ψ(µ0), would then be known.
Second, if ψ(µ) is close to the true value ψ(µ0), the error made by choosing µ instead of µ0 will
not have so much influence on the estimation. A trivial example is to consider the case where
ψ(µ) = ψ(µ0). Here, the known value ψ(µ0) = ψ(µ) is actually an unbiased estimate of ψ(µ0)
with null variance.

Hence, Hn
ψ(µ0, µ) can be seen as a measure of entropy between µ0 and µ for estimating

ψ(µ0) and for a number n of observations. It takes account of the two aspects mentioned above,
namely the distance between ψ(µ0) and ψ(µ) through the term (ψ(µ0)−ψ(µ))2 and the entropy
of µ with respect to µ0 for a number n of observations, through the value (D(µ0, µ) + 1)n. The
more the entropy Hn

ψ(µ0, µ) is large, the less information is given by µ for estimating ψ(µ0). For
instance we naturally observe a null entropy when µ is not absolutely continuous w.r.t. µ0 or if
ψ(µ) = ψ(µ0). An element µ for which the supremum of Hn

ψ(µ0, .) is reached can be seen as the
least favorable measure, that is, the element of the model that has the worst influence on the
variance of the estimator T .

Proposition 3.6.3 Let {µt}t∈T be a differentiable path. Let ψ : {µt}t → R be a map such that
t 7→ ψ(µt) is differentiable at 0. Then, Bψ({µt}t) = limt→0H

n
ψ(µ0, µt) for all n ∈ N. It follows

that Bn
ψ({µt}t) ≥ Bψ({µt}t) for all n ∈ N.

Proof. First remark that if {µt}t∈T is differentiable in L2(µ0) at 0 with corresponding score
function g, the limit as t→ 0 ofD(µ0, µt)/t

2 exists and is equal to the Fisher information
∫
g2dµ0.

Furthermore, since limt→0D(µ0, µt) = 0, it follows that (D(µ0, µt) + 1)n−1 = nD(µ0, µt) + o(t).
Hence,

lim
t→0

Hn
ψ(µ0, µt) = lim

t→0

(ψ(µ0)− ψ(µt))
2

t2
t2

D(µ0, µt)
= Bψ({µt}t).

The proposition establishes that in a one-dimensional smooth parametric model {µt}t∈T , the
efficiency bound is larger than the Cramer-Rao bound. Indeed, it is defined as the supremum of
the entropy function over the whole model, while the CR bound is the limit as µt → µ0. Hence,
the entropy function can be extended by continuity at µ0 taking the value Hn

ψ(µ0, µ0) = Bψ. It
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is not rare that the two bounds are equal (i.e. the maximum of Hn
ψ(µ0, µ) is reached for µ = µ0).

It occurs for example as soon as the Cramer-Rao bound can be reached.

Example 1 (Gaussian model). Consider the model {µθ}θ∈R, where µθ ∼ N (θ, 1) and with
the map ψ : µθ 7→ eθ. The true measure is µ0 ∼ N (θ0, 1) , the Cramer-Rao bound Bψ({µθ}θ) =
e2θ0 . On the other hand, we have D(µ0, µθ) = exp(θ0 − θ)2 − 1 yielding Hn

ψ(µ0, µθ) = (eθ0 −
eθ)2/(exp[n(θ0− θ)2]− 1) for all θ ∈ (−1; +∞). The supremum is taken for θ = θ0 + 1/n, which
gives Bn

ψ = ne2θ0(exp(1/n)− 1). We then have a strict inequality Bn
ψ > Bψ for all n ∈ N.

Example 2 (Exponential model). We consider the model {µt}t∈(−1;+∞), where µt is an
exponential distribution with parameter t + 1, i.e. dµt(x) = (t + 1) exp[−(t + 1)x]1{x ≥ 0}dx.
We want to estimate the parameter defined by the map ψ : µt 7→ t, the true measure being
µ0. Calculating the Cramer-Rao bound in this model, we get Bψ = 1. On the other hand,
the Q-divergence of µt w.r.t. µ0 is D(µ0, µt) = (t + 1)2/(2t + 1) − 1 for all t > −1/2 and
D(µ0, µt) = +∞ otherwise. It follows that

Hn
ψ(µ0, µt) =

t2(2t+ 1)n

(t+ 1)2n − (2t+ 1)n
1{t > −1/2}.

A first (quite useless) remark is that we can not build an unbiased estimator of ψ(µ0) with
a finite variance, based on a single observation X1 with distribution µ0. Indeed, the entropy
Hn
ψ(µ0, .) is not bounded on the model if n = 1. We now see the plot of the entropy function for

n = 4 to 15.

Figure 3.1: Plot of t 7→ Hn
ψ(µ0, µt) for n = 4 to 15

The curves are decreasing as n grows (the curve on the top represents Hn
ψ for n = 4 while

the lowest curve is for n = 15). This property is always true as shown in Section 3.6.3. The
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functions are not defined at t = 0 but they can be extended by continuity taking the value
Hn
ψ(µ0, µ0) = Bψ = 1 for all n. This corresponds on the graph to the intersection point of all

the curves at t = 0. We observe that for all n, the supremum is larger than the Cramer-Rao
bound Bψ = 1.

In the two previous examples, we observe the strict inequality Bn
ψ > Bψ, proving that the

Cramer-Rao bound is not optimal in these parametric models. In larger models, the construction
of the efficiency bound relies on the behavior of one-dimensional smooth submodels. Therefore,
we easily generalize Proposition 3.6.3 to any model M.

Corollary 3.6.4 In a model M with ψ : M → H ⊂ R a map differentiable at µ0 in M,
Bn
ψ(M) ≥ Bψ(M) for all n ∈ N.

Proof. By Proposition 3.6.3, we know that Bn
ψ({µt}t) ≥ Bψ({µt}t) for all submodel {µt}t∈T ∈

Mψ,T . Furthermore,

Bn
ψ(M) ≥ sup

{µt}t∈Mψ,T

Bn
ψ({µt}t) ≥ sup

{µt}t∈Mψ,T

Bψ({µt}t) = Bψ(M).

Remark Proposition 3.6.3 and Corollary 3.6.4 are proved for a real parameter. In the vectorial
case, similar results are obtained for any element Bn

ψ of the set of suprema Bnψ following the same
pattern of proof. If Bnψ contains more than one element, we show that any maximum Bn

ψ ∈ Bnψ
is not smaller than Bψ in the sense that Bψ −Bn

ψ is positive semidefinite. Both statements are
obviously equivalent in the one-dimensional case.

In semiparametric and non-parametric models, Fisher information is calculated by studying
the behavior of least favorable paths. We recall that a least favorable path in a model M is
a differentiable submodel {µθ}θ∈Θ such that Bψ(M) = Bψ({µθ}θ). Such a submodel may not
exist, but we can always find a collection of submodels {µθ}θ,m,m ∈ N for which Bψ({µθ}θ,m)
can get as close as possible of Bψ(M) as m range over N. The entropy function Hn

ψ(µ0, .)
turns out to be an efficient tool to construct a least favorable path. To see it, consider the sets
Fη =

{
f ∈ L2(µ0) : ψ(fµ0) = η

}
, η ∈ H which we assume to be non-empty for simplicity, and

rewrite the expression of the efficiency bound as follows

Bn
ψ = sup

η 6=η0
sup
f∈Fη

Hn
ψ(µ0, fµ0) = sup

η 6=η0

n(η − η0)(η − η0)t

(D(µ0,Fη) + 1)n − 1
(3.6)

where η0 = ψ(µ0). In these settings, we see that calculating the efficiency bound reduces
to minimizing a function with respect to η. Our insight is that if we choose in each set Fη
the least favorable density, that is, the function f maximizing the entropy Hn

ψ(µ0, fµ0), the
resulting submodel would have to be a least favorable path (if a least favorable measure can not
be reached, we consider a proper collection of densities arbitrarily close to the least favorable
measure in each set Fη, leading to a collection of submodels). Since the term ψ(fµ0)−ψ(µ0) is
constant when f ranges over Fη, a density maximizing the entropy on Fη is in fact a minimizer
of f 7→ D(µ0, fµ0), which explains the term D(µ0,Fη) in (3.6).
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Definition We call quadratic projection path (or Q-projection path) a submodel (µη)η∈H such
that D(µ0, µη) = D(µ0,Fη) and ψ(µη) = η for all η ∈ H.

A Q-projection path does not necessarily exist, for instance if the infimum of D(µ0, .) on Fη
is not reached for some values of η. However, a Q-projection path does exist as soon as the map
f 7→ ψ(fµ0) is continuous on F . By making this assumption, we avoid considering trivial cases,
the efficiency bound being infinite if f 7→ ψ(fµ0) is not continuous as f tends to 1.

If the sets Fη are convex, {µη}η∈H is unique, µη being defined as the quadratic projection of
µ0 onMη = {µ ∈M : ψ(µ) = η}. This is illustrated in Examples 3 and 4. A Q-projection path
does not depend on the number of observations, although it contains a maximizer of Hn

ψ(µ0, .)
for all n ∈ N. In a certain way, it carries the whole information of the model, as we see in the
next proposition.

Proposition 3.6.5 Let η0 = ψ(µ0) ∈ H ⊂ Rq be the parameter to estimate. A Q-projection path
{µη}η∈H satisfies Bn

ψ(M) = Bn
ψ({µη}η) for all n ∈ N. Moreover, {µη}η∈H is a least favorable

path if and only if it is differentiable at η0.

Example 3 (Linear parameters). Consider the model M =
{
µ ∈M(X ) :

∫
X Φdµ = 0

}
for

Φ : X → Rk a known map. We aim to estimate η0 =
∫
X hdµ0 ∈ R for h ∈ L2(µ0) a given

function. For all η ∈ R, Fη is an affine subspace of L2(µ0) of finite dimension, it is therefore
closed and convex. Hence, there exists a unique path {µη}η∈R satisfying the conditions of
Proposition 3.6.5, we denote by fη its density w.r.t. µ0. Finally, we note h⊥ the part of h that
is orthogonal with Φ in L2(µ0): h⊥ = h− (

∫
X hΦdµ0)t[

∫
X ΦΦtdµ0]−1Φ. We have:

fη = arg min
f∈Fη

E(1− f(X))2 = 1− (η0 − η)V −1(h⊥ − η),

with V = var(h⊥(X)). Moreover, D(µ0, µη) = E(1− fη(X))2 = (η0 − η)2V −1, yielding

Bn
ψ = sup

η 6=η0

n(η0 − η)2

((η0 − η)2V −1 + 1)n − 1
= V.

Note that the model {µη}η∈R is smooth, with Cramer-Rao bound Bψ = Bn
ψ = V for all integer

n.

Example 4 (Moment condition model). Assume that the true measure µ0 satisfies the con-
straint

∫
X Φη0dµ0 = 0 for some known collection of maps {Φη : η ∈ H} and where η0 ∈ H is the

parameter we want to estimate. The sets Fη =
{
f ∈ L2(µ0) :

∫
Φηfdµ0 = 0

}
are closed and

convex for all η ∈ H. We note {µη}η the Q-projection path satisfying

dµη
dµ0

= arg minf∈Fη E (1− f(X))2 = 1−
(∫

Φηdµ0

)t
[var(Φη(X))]−1 (Φη −

∫
Φηdµ0

)
for all η ∈ H. If we assume that η 7→ Φη is differentiable in a neighborhood of η0, with
derivative ∇Φ(.), it follows that the path {µη}η is also differentiable. We calculate D(µ0, µη) =(∫

Φηdµ0

)t
[var(Φη(X))]−1 (∫ Φηdµ0

)
. We get

Bn
ψ = sup

η 6=η0

n(η0 − η)2

(αη + 1)n − 1

n→∞−→
[(∫
∇Φ(η0)dµ0

)t [∫
Φη0Φt

η0dµ0

]−1 (∫ ∇Φ(η0)dµ0

)]−1
.
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3.6.3 Asymptotic properties

We are now interested in the asymptotic behavior of the entropy function. Expanding the
term (D(µ0, µ) + 1)n = 1 + nD(µ0, µ) + n(n−1)

2 D(µ0, µ)2... in the denominator of Hn
ψ(µ0, µ), it

appears that the sequence {Hn
ψ(µ0, .)}n∈N is decreasing and converges pointwise toward 0 as

n → ∞. So, the sequence {Bn
ψ}n∈N is also decreasing and since it is positive for all n ∈ N, it

converges (or is equal to +∞). We now aim to determine its limit, noted B∞ψ . In this section, our
results are given assuming for writing convenience that ψ(µ0) is real. They can be generalized
to vectorial parameters by studying each maximum at a time if there are several.

Lemma 3.6.6 Assume that Bn0
ψ <∞ for some n0 ∈ N. Then, for all ε > 0, Hn

ψ(µ0, .) converges
uniformly toward 0 on the set {µ ∈M : D(µ0, µ) > ε} as n→∞.

Proof. For all µ 6= µ0, we know that Hn0
ψ (µ0, µ) ≤ Bn0

ψ . Since the bound is decreasing as n→∞,
we have

∀µ 6= µ0, ∀n > n0, H
n
ψ(µ0, µ) ≤

nBn0
ψ

n0

(D(µ0, µ) + 1)n0 − 1

(D(µ0, µ) + 1)n − 1
.

Since the function x 7→ ((x + 1)n0 − 1)/((x + 1)n − 1) is decreasing on the interval (ε; +∞) as
soon as n ≥ no(ε+ 1)n0/((ε+ 1)n0 − 1), we conclude that for large enough values of n

∀ε > 0, sup
D(µ0,µ)>ε

Hn
ψ(µ0, µ) ≤

nBn0
ψ

n0

(ε+ 1)n0 − 1

(ε+ 1)n − 1
.

The right-hand term tends to 0 as n→∞ for all ε > 0, which proves the lemma.

Remark The condition that Bn0
ψ is finite for some integer n0 is necessary to ensure the existence

of an unbiased estimator with finite variance, even asymptotically. It may occur that this
condition is not fulfilled while the Cramer-Rao bound exists and is finite.

An interpretation of Lemma 3.6.6 is the following. A measure µ ∈ M far from µ0 will no
longer have any influence on the variance of an estimator as soon as the number of observations
is large enough. A set of measures µ such that the entropy Hn

ψ(µ0, µ) is arbitrarily large will

be contained in a ball of radius εn ∈ R+ centered on µ0 with εn tending to zero as n tends to
infinity. Roughly speaking, for any element µ of the model with a non zero distance with µ0

(basically, any µ 6= µ0), it ends up as n → ∞ that the observations give too much information
so that its distribution can not be mistaken with µ. Thus, only the behavior of the measures of
the model in the neighborhood of µ0 matters asymptotically.

Theorem 3.6.7 Assume that Bn0
ψ (M) < ∞ for some n0 ∈ N. If there exists a Q-projection

path {µη}η∈H differentiable at µ0, then limn→∞B
n
ψ(M) = Bψ(M).

Proof. The theorem is true if B∞ψ = 0. Now, assume that B∞ψ > 0. By Proposition 3.6.5, we
know that Bn

ψ(M) = Bn
ψ({µη}η) for all n ∈ N. Let {µn}n∈N be a sequence of measures in {µη}η,

suitably chosen so that limn→∞H
n
ψ(µ0, µn) = B∞ψ . We want to prove that limn→∞D(µ0, µn) =
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0. By contradiction, if there exists ε > 0 and an increasing sequence of integers {nk}k∈N such
that ∀k ∈ N,D(µ0, µnk) > ε, then:

Hnk
ψ (µ0, µnk) ≤ sup

D(µ0,µ)>ε
Hnk
ψ (µ0, µ)

k→∞−→ 0

by Lemma 3.6.6. Since, limk→∞H
nk
ψ (µ0, µnk) = B∞ψ > 0 there is a contradiction. So, we

conclude that limn→∞D(µ0, µn) = 0. Since Hn
ψ(µ0, .) is decreasing as n → ∞, we get that for

all n ∈ N,
B∞ψ = lim

n→∞
Hn
ψ(µ0, µn) ≤ lim

η→η0
Hn
ψ(µ0, µη) = Bψ({µη}η).

By Proposition 3.6.5, {µη}η∈H is a least favorable path of the model and therefore satisfies
Bψ(M) = Bψ({µη}η). So, B∞ψ (M) ≤ Bψ(M). The inverse inequality being an obvious conse-
quence of Corollary 3.6.3, we conclude that B∞ψ (M) = Bψ(M).

This result is not surprising when we know that the efficiency bound only depends asymp-
totically on the behavior of the model in the neighborhood of µ0. See for instance Examples
1 and 2 where the convergence of the efficiency bound toward the CR bound is shown in the
first example and is observed graphically in the second. However, the theorem is not always
true if the model does not contain a differentiable Q-projection path. This is mainly due to
the strong assumptions needed to build the CR bound. Basically, in some parametric model
{µt}t, the efficiency bound has positive limit B∞ψ ({µt}t) in non-trivial cases as soon as the map

t 7→
√
D(µ0, µt) is differentiable at 0. This is true in particular if {µt}t is differentiable in

L2(µ0). The differentiability in L2(µ0) which is required to construct the CR bound is therefore
a stronger condition. So, if t 7→

√
D(µ0, µt) is differentiable at 0, but the model is not differen-

tiable in L2(µ0), B∞ψ ({µt}t) might be positive while the CR bound is zero. More generally in
larger models, B∞ψ may be larger than Bψ since B∞ψ is calculated from a larger set of submodels.
We here see one example of model where we observe the strict inequality B∞ψ > Bψ.

Example 5. Let µ0 be the uniform distribution on (0; 1). Define ft(.) = 1(0; t2/2)(.) −
1(1− t2/2; 1)(.) and µt = (1 + ft)µ0 for all t ∈ (−1; 1). Now assume that we want to estimate
the parameter defined by the map ψ : µt 7→ t in the model (µt)t∈(−1;1) with true measure for
t = 0. The model is clearly not differentiable in L2(µ0), we then have Bψ = 0. Furthermore,
for all t ∈ (−1; 1), D(µ0, µt) = t2, yielding Hn

ψ(µ0, µt) = nt2/[(t2 + 1)n − 1]. So, in particular,
Bn
ψ ≥ limt→0H

n
ψ(µ0, µt) = 1 for all n ∈ N, which implies that B∞ψ ≥ 1 (here, we actually have

Bn
ψ = B∞ψ = 1). Hence B∞ψ > Bψ.

Example 6. Consider the Gaussian model {µt}t∈R where µt ∼ N (t, 1). We aim to estimate
a differentiable function f : R→ R of the mean, ψ : µt 7→ f(t). The true value of the parameter
is ψ(µ0) = f(0). The Cramer-Rao bound is Bψ({µt}t) = f ′(0) which we assume finite. On
the other hand, the entropy function Hn

ψ(µ0, .) may take larger values for some elements in the
model. It may even occur that for all n ∈ N, the entropy Hn

ψ(µ0, .) is not bounded in the
model. If so, an unbiased estimator with finite variance of ψ(µ0) is impossible to compute, even
asymptotically. In our example, the entropy is given by

∀t ∈ R, Hn
ψ(µ0, µt) =

n [f(t)− f(0)]2

expnt2 − 1
.
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Unbiased estimators of ψ(µ0) with finite variance do not exist as soon as f(t) ≥ exp(α(t)t2) for
some function α unbounded on R, i.e. if t 7→ log f(t)/t2 is not bounded on R. In these cases,
we have B∞ψ =∞ while the Cramer-Rao bound is finite.

3.6.4 Efficiency bounds for centered moments of order q

In this section, we provide efficiency bounds for centered moments of order q > 1 of unbiased
estimators. Following the proof of Theorem 3.6.2 which gives a variance efficiency bound, we
can easily generalize this result to moments of order q 6= 2.

Definition The p-divergence between of ν with respect to µ is given by:

Dp(µ, ν) =

∫
X

(
1− dν

dµ

)p
dµ if ν � µ, Dp(µ, ν) = +∞ otherwise.

We define for a subset A of M(X ), Dp(µ,A) = infν∈A Dp(µ, ν).

Theorem 3.6.8 Let X1, ..., Xn be an i.i.d sample with distribution µ0. Let T be an unbiased
estimate of ψ(µ0) ∈ R in the model M. Then, ∀µ ∈M∗:

E(T − ψ(µ0))q ≥ (ψ(µ0)− ψ(µ))q

Dp(µ⊗n0 , µ⊗n)q−1
,

with p+ q = pq.

The proof of this theorem follows from Hölder’s inequality while Cauchy-Scharwz’s was used in
the proof of Theorem 3.6.2.

Remark One may reasonably think that a similar result could be extended to Bregman infor-
mations of an estimator T , defined for φ : R+ → R+ a convex function with φ(0) = φ′(0) = 0,
by

Iφ(T ) = E(φ(T − ψ(µ0))).

Indeed, for any p > 1 (note q = p/(p− 1)), Hölder’s inequality can be written for φ : x 7→ xp as∫
fg dµ ≤ φ−1

(∫
φ(f)dµ

)
φ∗−1

(∫
φ∗(g)dµ

)
, (3.7)

where φ∗ denotes the convex conjugate of φ. If such an inequality holds for a larger family
of convex functions, it would be possible to provide by this technique, efficiency bounds for a
larger class of Bregman Informations. Unfortunately, it can be proved that only power functions
satisfy Equation 3.7 for all functions f, g and all measure µ.



Chapter 4

Maximum entropy estimation for
survey sampling

Calibration methods have been widely studied in survey sampling over the last decades.
Viewing calibration as an inverse problem, we extend the calibration technique by using a
maximum entropy method. Finding the optimal weights is achieved by considering random
weights and looking for a discrete distribution which maximizes an entropy under the calibration
constraint. This method points a new frame for the computation of such estimates and the
investigation of its statistical properties.

4.1 Introduction

Calibration is a well spread method to improve estimation in survey sampling, using extra
information from auxiliary variables. This method provides approximately unbiased estimators
with variance smaller than that of the usual Horvitz-Thompson estimator. Calibration has
been introduced by Deville and Särndal in [DS92], extending an idea of [Dev88]. For general
references, we refer to [S0́7] and for an extension to variance estimation to [Sin01].
Finding the solution to a calibration equation involves minimizing a distance under some con-
straint. More precisely, let s be a random sample of size n drawn from a population U of size
N , y be the variable of interest and x be a given auxiliary vector variable, for which the total
tx over the population is known. Further, let d ∈ Rn be the standard sampling weights (that is
the Horvitz-Thompson ones). Calibration derives an estimator t̂y =

∑
i∈swiyi of the population

total ty of y. The weights wi are chosen to minimize a dissimilarity (or distance) D(., d) on Rn
with respect to the Horvitz-Thompson weights di and under the constraint∑

i∈s
wixi = tx. (4.1)

Following [Thé99], we will view here calibration as a linear inverse problem. In this paper, we
use Maximum Entropy Method on the Mean (MEM) to build the calibration weights. Indeed,
MEM is a strong machinery for solving linear inverse problems. It tackles a linear inverse
problem by finding a measure maximizing an entropy under some suitable constraint. It has

65
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been extensively studied and used in many applications, see for example [BLN96], [Gzy95],
[GG97], [KS02], [Gam99], [FLLn06] or [KT04].

Let us roughly explain how MEM works in our context. First we fix a prior probability
measure ν on Rn with mean value equal to d. Then, the idea is to modify the standard weights
d in order to get a representative sample for the auxiliary variable x, but still being as close
as possible to d, which have the desirable property of yielding an unbiased estimate for the
population total. So, we will look for a posterior probability measure minimizing the entropy (or
Kullback information) with respect to ν and satisfying a constraint related to (4.1). It appears
that the MEM estimator is in fact a specific calibration estimator for which the corresponding
dissimilarity D(., d) is determined by the choice of the prior distribution ν. Hence, the MEM
methodology provides a general Bayesian frame to fully understand calibration procedures in
survey sampling where the different choices of dissimilarities appear as different choices of prior
distributions.

An important problem when studying calibration methods is to understand the amount of
information contained in the auxiliary variable. Indeed, the relationships between the variable
to be estimated and the auxiliary variable are crucial to improve estimation (see for example
[MR05], [WS01] or [WZ06]). When complete auxiliary information is available, model calibration
introduced by Wu and Sitter [WS01] aims to increase the correlation between the variables by
replacing the auxiliary variable x by some function of it, say u(x). We consider efficiency issues
for a collection of calibration estimators, depending on both the choice of the auxiliary variable
and the dissimilarity. Finally, we provide an optimal way of building an efficient estimator using
the MEM methodology.

The chapter falls into the following parts. The first section recalls the calibration method in
survey sampling, while the second exposes the MEM methodology in a general framework, and
its application to calibration and instrument estimation. Section 4.4 is devoted to the choice
of a data driven calibration constraint in order to build an efficient calibration estimator. It is
shown to be optimal under strong asymptotic assumptions on the sampling design. Proofs are
postponed to Section 4.5.

4.2 Calibration Estimation of a linear parameter

Consider a large population U = {1, ..., N} and an unknown characteristic y = (y1, ..., yN ) ∈
RN . Our aim is to estimate its total ty :=

∑
i∈U yi when only a random subsample s of the

whole population is available. So the observed data are {yi}i∈s. Each sample s has a probability
p(s) of being observed. The distribution p(.) is called sampling design. We define the inclusion
probabilities πi := p (i ∈ s) =

∑
s, i∈s p(s) which we assume to be strictly positive for all i ∈ U

so that di = 1/πi is well defined. A standard estimator of ty is given by the Horvitz-Thompson
estimator:

t̂HTy =
∑
i∈s

yi
πi

=
∑
i∈s

diyi.

This estimator is unbiased and is widely used for practical cases, see for instance [GFC+04].
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Suppose that it exists an auxiliary vector variable x = (x1, ...,xN ) entirely observed and set
tx =

∑
i∈U xi ∈ Rk. If the Horvitz-Thompson estimator of tx, t̂HTx =

∑
i∈s dixi is far from the

true value tx, we may reasonably assume that the sample will not adequately reflect the behavior
of the variable of interest in the whole population. So, to prevent inefficient estimation due to
bad sample selection, inference on the sample can be achieved by considering a modification of
the weights of the individuals chosen in the sample.

One of the main methodology used to correct this effect is calibration (see [DS92]). The
possible bad sample effect is corrected by replacing the Horvitz-Thompson weights di by new
weights wi close to di. Let w 7→ D(w, d) be a dissimilarity between w and the Horvitz-Thompson
weights that is minimal for wi = di. The method consists in choosing weights ŵi minimizing
D(., d) under the constraint ∑

i∈s
ŵixi = tx.

Then, consider the new weighted estimators t̂y =
∑

i∈s ŵiyi.

A typical dissimilarity is the χ2 distance w 7→
∑

i∈s(πiwi−1)2/(qiπi) for {qi}i∈s some known
positive sequence. In most applications, the qi’s are taken equal to 1 which generally warrants
a consistent estimator. Nevertheless unequal weights can be used as treated in Example 1 in
[DS92], in order to lay more or less stress on the distance between some of the weights and the
original Horvitz-Thompson ones. The new estimator is defined as t̂y =

∑
i∈s ŵiyi, where the

weights ŵi minimizes D(w, d) =
∑

i∈s(πiwi−1)2/qiπi under the constraint
∑

i∈s ŵixi = tx. The
solution of this minimization problem is given by

t̂y = t̂HTy + (tx − t̂HTx )tB̂,

where B̂ = [
∑

i∈s qidixix
t
i]
−1
∑

i∈s qidiyixi. Note that this is a generalized regression estimator.
It is natural to consider alternative dissimilarities, see for instance [DS92]. We first point out
that the existence of a solution to the constrained minimization problem depends on the choice of
the dissimilarities. Then, different choices can lead to weights with different behaviors, different
ranges of values for the weights that may be found unacceptable by the users. We propose an
approach where dissimilarities are given a probabilistic interpretation.

4.3 Maximum Entropy for Survey Sampling

4.3.1 MEM methodology

Consider the problem of recovering an unknown measure µ on a measurable space X under
moment conditions. This issue belongs to the class of generalized moment problems with convex
constraints (we refer to [EHN96] for general references). This inverse problem has been widely
studied and in particular it can be solved using the maximum entropy on the mean (MEM).

Here, we aim at estimating µ from random observations T1, ..., Tn ∼ µ and knowing there
exists a given function x̃ : X → Rk and a known quantity tx ∈ Rk such that∫

X
x̃dµ = tx. (4.2)
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Solving this problem using the MEM framework amounts to approximate the inverse problem
(4.2) by a sequence of finite dimensional problems which are obtained by a discretization of the
space X using the random sample T1, . . . , Tn. For this, first consider the empirical distribution
µn = 1

n

∑n
i=1 δTi , δ standing for the Dirac mass. The general idea is to modify µn in order to

take into account the additional information on µ given by the moment equation (4.2). For this,
we associate to each observation Ti a random weight Pi and consider the corresponding random
weighted version of the empirical measure

µ̃n =
1

n

n∑
i=1

PiδTi .

Choosing properly the weights is the second step of the MEM procedure. The underlying
idea is to incorporate some prior information by choosing P = (P1, ..., Pn), drawn from a finite
measure ν∗ close to a prior ν, and looking at the weighted measures satisfying the constraint in
mean. This prior distribution conveys the information that µ̂n must be close, in a given sense,
to the empirical distribution µn. Given our prior ν, we now define ν∗ as the probability measure
minimizing the relative entropy K(.|ν) under the constraint that the linear constraint holds in
mean:

1

n

n∑
i=1

x̃iEν∗(Pi) = tx,

where we set x̃i = x̃(Ti). Note that, among the literature in optimization, the relative entropy is
often defined as the opposite of the entropy defined above, which explains the name of maximum
entropy method, while with our notations, we consider the minimum of the entropy. We then
build the MEM estimator as

µ̂n =
1

n

n∑
i=1

p̂iδTi =
1

n

n∑
i=1

Eν∗(Pi)δTi .

For a fixed n, µ̂n is the maximum entropy reconstruction of µ with reference ν∗. This method
provides an efficient way to estimate linear parameters of the form ty =

∫
X ỹdµ for ỹ : X → R a

given map. The empirical mean
∫
X ỹdµn is an unbiased and consistent estimator of ty but may

not have the smallest variance in this model. Integrating ỹ against µ̂n provides an asymptotically
unbiased estimate of ty with a lower variance than the empirical mean (see [GG97]).

In many actual situations, the function x̃ is unknown and only an approximation to it, say
x̃m, is available. Under regularity conditions, the efficiency properties of the MEM estimator
built with the approximate constraint have been studied in [LP08] and [LR09b], introducing
the approximate maximum entropy on the mean method (AMEM). More precisely, the AMEM
estimate of the weights is defined as the expectation of the variable P under the distribution ν∗m
minimizing K(.|ν) under the approximate constraint

1

n

n∑
i=1

x̃m(Ti)Eν∗(Pi) = tx. (4.3)
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It is shown that, under assumptions on x̃m, the AMEM estimator of ty obtained in this way is
consistent as n and m tend to infinity. This procedure enables to increase the efficiency of a
calibration estimator while remaining in a Bayesian framework, as shown in Section 4.4.2. This
situation occurs for instance, when dealing with inverse problem with unknown operators which
still can be approximated either using another sample or directly from the data. For instance,
in Econometry, when dealing with instrumental variables the operator which corresponds here
to the function x̃ is unknown but can be estimated, see [CFR06]. The practical case of aerosol
remote sensing is tackled in [LP08].

4.3.2 Maximum entropy method for calibration

Recall that our original problem is to estimate the population total ty =
∑

i∈U yi based
on the observations {yi, i∈s} and auxiliary information {xi, i∈U}. We introduce the following
notations:

ỹi = ndiyi, x̃i = ndixi, pi = πiwi.

The variables of interest are rescaled to match the MEM framework. The collection of weights
{pi}i∈s is now identified with a discrete measure on the sample s. The Horvitz-Thompson
estimator t̂HTy =

∑
i∈s diyi = 1

n

∑
i∈s ỹi is the preliminary estimator we aim at improving. The

calibration constraint 1
n

∑
i∈s pix̃i = tx stands for the linear condition satisfied by the discrete

measure {pi}i∈s. In these settings, it appears that the calibration problem follows the pattern
of maximum entropy on the mean. Let ν be a prior distribution on the vector of the weights
{pi}i∈s. The solution p̂ = {p̂i}i∈s is the expectation of the random vector P = {πiWi}i∈s drawn
from a posterior distribution ν∗, defined as the minimizer of the Kullback information K(., ν)
under the condition that the calibration constraint holds in mean

Eν∗
[

1

n

∑
i∈s

Pix̃i

]
= Eν∗

[∑
i∈s

Wixi

]
= tx. (4.4)

We take the solution p̂ = Eν∗(P ) and define the corresponding MEM estimator t̂y as

t̂y =
1

n

∑
i∈s

p̂iỹi =
∑
i∈s

ŵiyi,

where we set ŵi = dip̂i for all i∈s. Under the following assumptions, we will show in Theorem
4.3.1 that maximum entropy on the mean gives a Bayesian interpretation of calibration methods.

The random weights Pi, i ∈ s (and therefore the Wi’s) are taken independent. We denote
by νi the prior distribution of Pi. It follows that ν = ⊗i∈sνi. Moreover, all prior distributions
νi are probability measures with mean 1. This last assumption conveys the information that p̂i
must be close to 1, equivalently, ŵi = dip̂i must be close to di.

Denote by Sν the interior of the convex hull of the support of ν and let D(ν) denote the
domain of the log-Laplace transform Λν , D(ν) = {s ∈ R : Λν(s) <∞}. In the sequel, we assume
that Λνi is essentially smooth (see [Roc97]) for all i, strictly convex and that νi is not concentrated
on a single point. The last assumption means that if D(νi) = (−∞;αi), (αi ≤ +∞), then Λ′νi(s)
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goes to +∞ whenever αi < +∞ and s goes to αi. Under these assumptions, Λ′νi is an increasing

bijection between the interior of D(νi) and Sνi . So, denote by ψi = Λ′νi
−1 its inverse function,

the Cramer transform Λ∗νi of νi, which is defined as the convex conjugate of Λνi , satisfies

Λ∗νi(s) = sψi(s)− Λνi(ψi(s)).

Classical choices of priors νi lead to easily computable functions Λ∗νi in most cases. Some
examples are given at the end of the section.

Definition : We say that the optimization problem is feasible if there exists a vector δ =
{δi}i∈s ∈ ⊗i∈sSνi such that: ∑

i∈s
δixi = tx. (4.5)

Under the last assumptions, the following proposition claims that the solutions {ŵi}i∈s are easily
tractable.

Theorem 4.3.1 (survey sampling as a MEM procedure) Assume that the optimization
problem is feasible. The MEM estimator ŵ = {ŵi}i∈s minimizes over Rn

{wi}i∈s 7→
∑
i∈s

Λ∗νi(πiwi)

under the constraint
∑

i∈s ŵixi = tx.

Hence, we point out that maximum entropy on the mean method leads to calibration estimation,
where the dissimilarity is determined by the Cramer transforms Λ∗νi , i ∈ s of the prior distribu-
tions νi. Conditions we require on the priors in the MEM procedure correspond to regularity
conditions on the dissimilarity. Indeed, taking priors νi with mean 1 yields Λ∗νi(1) = Λ∗νi

′(1) = 0,
which is a classical condition in calibration, see for instance [DS92] or Theorem 2.7.1 in [Ful09].
To see it, apply Jensen inequality to Λν(t) = log

∫
etxdν(x) to show that Λν(t) ≥ t, which implies

Λ∗ν(1) = 0. Since Λ∗ν is smooth, non negative and strictly convex by construction, we also get
Λ∗ν
′(1) = 0.

Note that we require the feasibility condition (4.5) since we only consider here exact con-
straints in (4.4). An alternative would have been to consider a weakened constraint of the
form ∥∥Eν∗m [ 1

n

∑n
i=1 Pi x̃m(Ti)

]
− tx

∥∥ ≤ ε
for a well chosen ε.

Remark Taking the priors νi in a certain class of measures may lead to specific dissimilarities
known as Bregman divergences (see [KT04]). The definition of a Bregman divergence requires
a strictly convex function, which in our situation, is given by the Cramer transform Λ∗ν of some
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probability measure ν. Since we know that Λ∗ν(1) = Λ∗ν
′(1) = 0, taking equal priors νi = ν for

all i ∈ s leads to a dissimilarity that can be written

D(w, d) =
∑
i∈s

Λ∗ν(πiwi) =
∑
i∈s

[
Λ∗ν(πiwi)− Λ∗ν(1)− Λ∗ν

′(1)(πiwi − 1)
]
.

Here, we recognize the expression of the Bregman divergence between the weights πiwi, i ∈ s
and 1 associated to the convex function Λ∗ν . Another possibility is to take prior distributions νi
lying in some suitable exponential family. More precisely, define the prior distributions as

dνi(x) = exp(αix+ βi)dν(dix), i ∈ s,

where βi = −Λν(Λ∗ν
′(di)) and αi = diΛ

∗
ν
′(di) are taken so that νi is a probability measure with

mean 1. We recover after calculation the following dissimilarity

D(w, d) =
∑
i∈s

[
Λ∗ν(wi)− Λ∗ν(di)− Λ∗ν

′(di)(wi − di)
]
,

which is the Bregman divergence between w and d associated to Λ∗ν .

4.3.3 Bayesian interpretation of calibration using MEM

The two basic components of calibration are the set of constraint equations and the choice
of a dissimilarity. Here, the latter is justified by prior measures {νi}i∈s on the weights. We now
see the probabilistic interpretation of some commonly used distances.

Stochastic interpretation of some usual calibrated survey sampling estimators

1. Generalized Gaussian prior. For a given positive sequence {qi}i∈s, take νi ∼ N (1, πiqi).
We get

∀t ∈ R, Λνi(t) =
qiπit

2

2
+ t ; Λ∗νi(t) =

(t− 1)2

2πiqi

The calibrated weights in that cases minimize the criterion

D1(w, d) =
∑
i∈s

(πiwi − 1)2

qiπi
.

So, we recover the χ2 distance discussed in Section 4.2. This is one of the main distance
used in survey sampling. The qi’s can be seen as a smoothing sequence determined by
the variance of the Gaussian prior. The larger the variance, the less stress is laid on the
distance between the weights and the original Horvitz-Thompson weights.

2. Exponential prior. We take a unique prior ν with an exponential distribution with param-
eter 1. That is, ν = ν⊗n. We have in that case

∀t ∈ R∗+, Λ∗ν(t) = − log t+ t− 1.
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This corresponds to the following dissimilarity

D2(w, d) =
∑
i∈s
− log(πiwi) + πiwi.

We here recognize the Bregman divergence between {πiwi}i∈s and 1 associated to Λ∗ν , as
explained in the previous remark. A direct calculation shows that this is also the Bregman
divergence between w and d associated to Λ∗ν . The two distances are the same in that
case.

3. Poisson prior. If we choose for prior νi = ν, ∀i ∈ s, where ν is the Poisson distribution
with parameter 1, then we obtain

∀t ∈ R∗+, Λ∗ν(t) = t log t− t+ 1.

So, we have the following contrast

D3(w, d) =
∑
i∈s

πiwi log(πiwi)− πiwi.

We recover the Kullback information where {πiwi}i∈s is identified with a discrete measures
on s.

MEM leads to a classical calibration problem where the solution is defined as a minimizer of a
convex function subject to linear constraints. The following result gives another expression of
the solution for which the computation may be easier in practical cases.

Proposition 4.3.2 Assume that the optimization problem is feasible, the MEM estimator ŵ is
given by:

∀i ∈ s, ŵi = diΛ
′
νi(λ̂

tdixi)

where λ̂ minimizes over Rk λ 7→
∑

i∈s Λνi(λ
tdixi)− λttx.

We endow y with new weights obtaining the MEM estimator t̂y =
∑

i∈s ŵiyi. Note that the
function Λνi(di. ) corresponds to the function Fi in [DS92], while taking identical priors νi = ν
for all i ∈ s recovers the particular case Λν = F according to the notations used in [DS92].

Calibration using maximum entropy framework turns into a general convex optimization
program, which can be easily solved. Indeed, computing the new weights wi only involves a two
step procedure. First, we find the unique λ̂ ∈ Rk such that∑

i∈s
diΛ
′
νi(diλ̂

txi)xi − tx = 0. (4.6)

This is achieved by optimizing a convex function. Then, compute the new weights ŵi =
diΛ
′
νi(diλ̂

txi).
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4.3.4 Extension to generalized calibration and instrument estimation

Computing a calibration estimator requires that (4.6) has a unique solution. This condition
follows from the convexity of the functions Λνi , i ∈ s. Aiming to provide wider possibilities of
estimation, the method of generalized calibration (GC) considered in [Sau] consists in replacing
the functions λ 7→ Λ′νi(diλ

txi) by more general functions fi : Rk → R. Assume that the equation

F (λ) =
∑
i∈s

difi(λ)xi = tx (4.7)

has a unique solution λ̂. Assume also that the fi are continuously differentiable at 0, and are
such that fi(0) = 1 so that F (0) = t̂HTx . Then, take as the solution to the generalized calibration
procedure, the weights:

∀i ∈ s, ŵi = difi(λ̂).

Calibration is of course a particular example of generalized calibration where we set fi : λ 7→
Λ′νi(diλ

txi) to recover a calibration problem seen in Section 4.3. An interesting example of GC
is to take affine functions λ 7→ 1 + ztiλ, where {zi}i∈s is a sequence of vectors of Rk. The zi’s
are called instruments (see [Sau]). If the matrix Xn := 1

N

∑
i∈s dizix

t
i is invertible, the resulting

estimator t̂y, referred to as the instrument estimator obtained with the instruments zi, is given
by:

t̂y = t̂HTy + (tx − t̂HTx )tX−1
n

∑
i∈s

diziyi. (4.8)

Remark As pointed out in [Wu03] in the case zi = xi, the estimator of the population total is
identical to the one obtained with one-dimensional auxiliary variable B̂tx, where B̂ is estimated
by least squares. More generally, reducing the dimension of the auxiliary variable to one is
always possible when using instruments. The new auxiliary variable and instruments are linear
transformations B̂tx and B̂tz of the original variables x and z, where

B̂ =

[∑
i∈s

dizix
t
i

]−1∑
i∈s

diyizi.

This points out the relationship between calibration and linear regression discussed in [DS92].
The method implicitly aims at constructing a variable ỹ = y − B̂tx with a lower variance than
that of y (at least for sufficiently large samples), and for which the population total is known
up to ty. The calibrated estimator t̂y can be written

t̂y =
∑
i∈s

diỹi + B̂ttx,

that is, t̂y is the Horvitz-Thompson estimator (up to a known additive constant, here B̂ttx) of
the variable ỹ.

Instrument estimators play a crucial role when studying the asymptotic properties of gen-
eralized calibration estimation. A classical asymptotic framework in calibration is to consider
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that n and N simultaneously go to infinity while the Horvitz-Thompson estimators of the mean
converge at a rate of convergence of

√
n, as described in [DS92] and [Wu03] for instance. Hence,

we assume that

1

N
‖t̂HTx − tx‖ = O

(
1√
n

)
and

1

N
(t̂HTy − ty) = O

(
1√
n

)
,

further assumptions on our asymptotic framework are made in Section 4.4. Besides, we say that
two GC estimators t̂y and t̃y are asymptotically equivalent if

1

N
(t̂y − t̃y) = o

(
1√
n

)
.

Proposition 4.3.3 Let t̂y and t̃y be the GC estimators obtained respectively with the func-
tions fi, i ∈ s and gi, i ∈ s. If for all i ∈ s, ∇fi(0) = ∇gi(0) = zi, and if the matrix
Xn := 1

N

∑
i∈s dizix

t
i converges toward an invertible matrix X, then t̂y and t̃y are asymptot-

ically equivalent. In particular, two MEM estimators are asymptotically equivalent as soon as
their prior distributions have the same respective variances.

This proposition is a consequence of Result 3 in [DS92]. It states that first order asymptotic
behavior of GC estimators in only determined by the gradient vectors zi = ∇fi(0), i ∈ s, where
the fi’s are the functions used in (4.7). As a result, all GC estimator can be shown to have an
asymptotically equivalent instrument estimator.

The frame of calibration and MEM estimation corresponds to instruments of the form zi =
qixi. This particular case is discussed in [DS92] where the authors prove that a calibration
estimator can always be approximated by a regression estimator under regularity conditions. A
different proof of this result is also given in Theorem 2.7.1 in [Ful09]. Thus, a MEM estimator
t̂y obtained with prior distributions νi, i∈s with respective variances πiqi satisfies

t̂y = t̂HTy + (tx − t̂HTx )tB̂ + o

(
N√
n

)
where B̂ =

[∑
i∈s diqixix

t
i

]−1∑
i∈s diqixiyi. The negligible term is null for Gaussian priors,

leading to a χ2 dissimilarity in the frame of calibration (see Example 1 in Section 4.3.3) and to
the instrument estimator built with instruments zi = qixi. This choice of instruments, and in
particular the case qi = 1 for all i ∈ s, is often used in practice since it provides a consistent
estimate which can be easily computed.

4.4 Efficiency of calibration estimator with MEM method

The accuracy of the estimator heavily relies on the linear correlation between y and the
auxiliary variable x. If a relationship other than linear prevails, x may not be an efficient choice
of calibration variable. When complete information is available, model calibration proposed by
Wu and Sitter aims to generalize the calibration procedure by considering an auxiliary variable
of the form u(x) for u : Rk → Rd a given function. Their objective is to increase the linear
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correlation between the variables, leading to a better efficiency of the estimation. In [WS01], Wu
and Sitter assume that the optimal calibration function u belongs to a known parametric class
of functions for which the true value of the parameter is estimated from the data. Montanari
and Ranalli [MR05] discuss the estimation of the optimal choice for the function u in a non
parametric model.

With complete information, the choice of the calibration function u and the instruments are
the two main aspects of the estimation of ty. In this section, we first study the influence of
the instruments z when the calibration function u is fixed. Then, we discuss ways of improving
the estimation by allowing both the instruments and the calibration variable to vary with the
observations.

4.4.1 Asymptotic efficiency

We consider the usual asymptotic framework in survey sampling where there is a sequence
of sampling designs and finite populations, indexed by r. The population size and the sample
size, denoted respectively by Nr and nr, both grow to infinity as r → +∞. The asymptotic
framework is to be understood in the sense that r → +∞, but, in the following, the index r will be
suppressed to simplify notation. We consider the population measurements {(xi, yi), i = 1, ..., N}
as independent realizations of a random variable (X,Y ) from a superpopulation model ξ.
For u : Rk → Rd a given function, we note ui = u(xi) and

tu =
∑
i∈U

ui, t̂HTu =
∑
i∈s

diui.

In the sequel, we assume that E|Y |3 <∞ and E‖u(X)3‖ <∞, where E denotes the expectation
with respect to the distribution of (X,Y ). In a general setting where the auxiliary variable takes
the form u(x), instrument estimators have the following expression

t̂y = t̂y(u) = t̂HTy + (tu − t̂HTu )tB̂u,

where B̂u =
[∑

i∈s diziu
t
i

]−1∑
i∈s diyizi is assumed to be well defined. Furthermore, define the

joint inclusion probabilities πij =
∑

s: i,j∈s p(s) and set ∆ij := πijdidj − 1.

The nonlinearity of t̂y makes it difficult to evaluate its quadratic risk. Following [ES06],
easier is to consider its linear asymptotic expansion t̂y,lin(u) := t̂HTy + (tu − t̂HTu )Bu where Bu

is a vector, independent from the sample s, such that ‖B̂u − Bu‖ = o(1). The linear expansion
t̂y,lin(u) is design unbiased and is asymptotically equivalent to t̂y. As proved in [Mon87], the
variance of t̂y,lin(u), which is given by

varp(t̂y,lin(u)) =
∑
i,j∈U

∆ij (yi −Bt
uui)(yj −Bt

uuj),

depends on the instruments only through the value of Bu and is minimal for Bu = B∗u given by

B∗u =
[
varp(t̂

HT
u )

]−1
covp(t̂

HT
u , t̂HTy ) =

∑
i,j∈U

∆ij uiuj

−1 ∑
i,j∈U

∆ij ujyi,
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where varp and covp denote respectively the variance and covariance under the sampling design
p. We make the following assumptions

A4.1. The sampling design p(.) is weakly dependent of ξ in the sense that for any sequence
{a(xi, yi)}i∈U = {ai}i∈U such that 1

N

∑
i∈U |ai|3 = O(1),

E
∑
i,j∈U

∆ij aiaj =
∑
i,j∈U

∆ij E(aiaj) + o

(
N2

n

)
.

A4.2. There exists 0 ≤ π < 1, such that lim sup
r→∞

n

N
= π.

A4.3. lim
n

N2

∑
i∈U

∆ii = − lim
n

N2

∑
i∈U

∑
j 6=i

∆ij = 1− π.

The first assumption conveys the information that no design weight is disproportionately large
compared to the others. It holds for instance if p and ξ are independent and if

∑
i∈U ∆2

ii =
o(N4n−2) and

∑
i∈U

∑
j 6=i ∆2

ij = o(N3n−2). The condition A4.2 is not restrictive, it simply
states that the number of unobserved data never becomes negligible compared to the population
size. This is a classical assumption in survey sampling, see for instance [MR05]. The condition
A4.3 is essentially made to ensure the existence of efficient estimators as shown further. It is
fulfilled when the sampling design is uniform on the samples of size n, provided that the sample
size and the population size remain of the same order. In that case, the Horvitz-Thompson
weights are πi = n/N , πij = n(n − 1)/N(N − 1),∀i 6= j, yielding ∆ii = N/n − 1 and ∆ij =
−(N − n)/n(N − 1).

Lemma 4.4.1 Suppose that A4.1 and A4.2 hold. Then,

n

N2
E Ep(ty − t̂y(u))2 ≥ (1− π)var

(
Y −Bt

uu(X)
)

+ o(1),

with equality if, and only if, A4.3 also holds.

The proof is a direct consequence of Lemma 4.5.1. This result provides a natural criterion of
asymptotic efficiency. Indeed, finding instruments for which the right term of the inequality is
minimal appears as a natural objective, whether the sampling design satisfies A4.3 or not. So,
the variance lower bound is defined as the minimum V ∗(u) of (1 − π)var(Y − Btu(X)) as B
ranges over Rd. We say that an estimator t̂y(u) is asymptotically efficient if the expectation of
its design quadratic risk converges toward V ∗(u). This is an analog of optimal calibration in
[Mon87], where in our framework, optimality requires that

lim B̂u = [var(u(X))]−1 cov(Y, u(X)), (4.9)

assuming that var(u(X)) is invertible. In this case, we get

V ∗(u) = (1− π)var
(
Y − cov(Y, u(X))t [var(u(X))]−1 u(X)

)
. (4.10)
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Note that this lower bound can not be reached if A4.3 is not fulfilled.

Estevao and Särndal [ES06] propose the instruments z∗i =
∑

j∈U ∆ij uj as a natural choice
by identification, noticing that the optimal value B∗u for a fixed N verifies

B∗u =

∑
i,j∈U

∆ij uiuj

−1 ∑
i,j∈U

∆ij ujyi =

[∑
i∈U

uiz
∗
i

]−1∑
i∈U

yiz
∗
i .

In our framework, these instruments satisfy condition (4.9), as a consequence of Lemma 4.5.1.
However, a noticeable drawback is that the calculation of each instrument z∗i involves the whole
population {xi, i ∈ U}, yielding a computationally expensive estimate.

The simple choice zi = ui provides a good alternative. As shown in Proposition 4.3.3, the re-
sulting estimator is asymptotically equivalent to MEM estimators built using prior distributions
νi with variance πi. The consistency of the Horvitz-Thomspon estimates leads to

B̂u =

[∑
i∈s

diuiu
t
i

]−1∑
i∈s

diyiui −→
[
E(u(X)u(X)t)

]−1 E(Y u(X)).

Although condition (4.9) for optimality is not fulfilled for most functions u, the problem can be
easily solved by adding the constant variable 1 in the calibration constraint. We then consider
the MEM estimator t̂y(v) where v = (1, u)t : Rk → Rd+1, the calibrated weights now satisfy the
constraints ∑

i∈s
wiui = tu,

∑
i∈s

wi = N.

Here, the matrix var(v(X)) is not invertible although it is simple algebra to see that V ∗(v) =
V ∗(u). So, the auxiliary variable is modified but the asymptotic lower bound is unchanged. As a
result of the dimension reduction property of calibration, adding the constant in the calibration
constraint reduces to use the instruments zi = ui − t̂HTu up the a negligible term. A direct
calculation shows that these instruments now satisfy condition (4.9).

4.4.2 Approximate Maximum Entropy on the Mean

We now turn to the question of the optimal auxiliary variable. By minimizing the asymptotic
variance lower bound V ∗(u) with respect to u, the conditional expectation Φ(xi) = E(Y |X = xi)
appears as the optimal choice since Φ(.) is the unique (up to affine transformations) minimizer
of the functional u 7→ V ∗(u) in Equation (4.10) (u can be taken real-valued without loss of
generality). This confirms the result stated in Theorem 1 in [Wu03], where Wu proves the
variable Φ(xi), i ∈ U to be optimal. In that case, the asymptotic lower bound is given by:

V ∗ = (1− π)E(Y − E(Y |X))2.

Note that, since this optimal choice depends on the unknown distribution of (X,Y ), this result
does not provide a tractable estimator. A natural solution is to replace Φ by an estimate Φm, and
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then plug it into the calibration constraint. Under regularity conditions that will be made precise
later, we show that this approach enables to compute an asymptotically optimal estimator of
ty, in the sense that its asymptotic expected variance is equal to the lower bound V ∗ defined
above.

In this section, t̂y(u) will denote a MEM estimator of ty obtained with auxiliary variable
(u(x), 1)t and prior distributions νi with variance πi. We recall that for any measurable function
u, t̂y(u) is

√
n-consistent with asymptotic variance V ∗(u). Assume that we observe approxi-

mations {Φm}m∈N of Φ, we define the AMEM estimator as t̂y(Φm), i.e., the MEM estimator
calibrated with the variable (Φm(x), 1)t.

Theorem 4.4.2 Suppose that Assumptions A4.1 to A4.3 hold. Let {Φm}m∈N be a sequence of
functions satisfying

i)
n

N2
E Ep(t̂HTΦ−Φm− tΦ−Φm)2 −→ 0

ii) B̂Φm =

[∑
i∈s

diΦm(xi)
2

]−1∑
i∈s

diyiΦm(xi) −→ 1,

as (r,m) → ∞. Then, the AMEM estimator t̂y(Φm) is asymptotically optimal among all GC
estimators in the sense that n

N2E Ep(ty − t̂y(Φm))2 converges toward V ∗ as (r,m)→∞.

This theorem does not rule out that the functions Φm are estimated using the data. Hence,
it is possible to compute an asymptotically efficient estimator of ty with a single sample, since
a data driven estimator Φn provides an asymptotically efficient estimator of ty, as soon as the
two conditions of Theorem 4.4.2 are fulfilled.

Remark that although this natural way to extend calibration to non parametric procedures
can be claimed to be asymptotically optimal, the resulting estimator may still be highly unstable
for relatively small samples or under irregular sampling designs.

Many non parametric methods could be used in the frame of calibration, see for instance
[MR05]. Here, we study an approach where the conditional expectation Φ is estimated by
projection onto finite dimensional subspaces. Let φ = (1, φ1, φ2, ...) be a sequence of linearly
independent functions, total in the space of square integrable functions. This sequence is referred
to as a projection basis. Typically, it can be polynomials if X takes values in a compact subset
of Rk or wavelets but other forms may be chosen, depending on the situation.

Denote by φm = (1, φ1, ..., φm) the vector of the first m + 1 components of φ, we build a
projection estimator Φm of Φ by considering a suitable linear combination B̂t

mφ
m of the functions,

the vector B̂m being generally obtained by least squares on the variables y and φm(x). In the
context of calibration, it is natural to consider design based estimates Φm. As a result of a
reciprocal effect of the dimension reduction property, taking Φm = B̂t

mφ
m with

B̂m = B̂φm =

[∑
i∈s

diφ
m
i φ

m
i
t

]−1∑
i∈s

diyiφ
m
i ,
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leads to the estimator calibrated with the vector variable φm(x) up to a negligible term. Indeed,
the auxiliary variable Φm(x) = B̂t

mφ
m(x) is obtained as the one dimensional equivalent of φm(x)

discussed in Section 4.3. So, we point out that calibration is here extended to non parametric
procedures by simply increasing the number of auxiliary variables. The estimator calibrated
with a χ2 dissimilarity can be expressed as

t̂y(Φm) = t̂HTy + (tΦm − t̂HTΦm ) = t̂HTy + (tφm − t̂HTφm )tB̂φm ,

which illustrates the equivalence between auxiliary variables Φm(x) and φm(x). With the no-
tations of Theorem 4.4.2, the vector B̂Φm corresponding to Φm(x) is equal to 1 for all m and
therefore satisfies the condition ii) in the corollary. The condition i) can also be fulfilled with
this method, although, a proper number of constraints must be chosen. If m is fixed, we know
that t̂y(Φm) converges toward ty with an asymptotic variance V ∗(φm). The convergence of
V ∗(φm) toward V ∗ as m→∞ warrants the existence of a sequence of integers {m(n)}n∈N such
that Φm(n) undergoes the first condition of Theorem 4.4.2. Note however that finding such a
sequence is a difficult task and belongs to the class of model selection issues.

Asymptotic results of non parametric methods are to be taken with care since it may require
a large number of observations before the method becomes really effective. Here we assumed
strong regularity conditions on the sampling design, allowing good consistency of the non para-
metric estimation with relatively small samples. AMEM procedures in survey sampling have
the advantage to enable to implement non parametric procedures while remaining in a Bayesian
framework.

4.4.3 Simulations

We provide in this section some numerical applications. In particular, we want to study
the influence of the choice of the projection basis and the number of constraints, in an AMEM
procedure where the conditional expectation is estimated by projection. For this, we consider
two kinds of relationships between the variable of interest and the auxiliary variable, namely
Y = exp(X) + ε and Y = 4/X + ε where X is a uniform random variable on [2; 3] and ε is a
standard Gaussian noise.

A sample s of size n is drawn from a uniform sampling design in a population U = 2500.
Results are obtained for n = 100 and n = 500. We compute eights estimates ρ̂1 to ρ̂8 of the
population mean N−1ty, obtained by calibration with regular χ2 dissimilarity with different
auxiliary variables.

• ρ̂1 is the usual Horvitz-Thompson estimator.

• ρ̂2 is the regular calibration estimator calibrated with x.

• ρ̂3 is obtained with perfect calibration variable Φ(x) and plays the role of an oracle.

• ρ̂4 to ρ̂8 are obtained by increasing the set of calibration variables, adding for each step a
higher power of x.

Estimators ρ̂4 to ρ̂8 can be viewed as specific AMEM estimators, where Φ(x) is approximated by
a projection Φm(x) of y onto a polynomial subspace of dimensionm+1. So, the projection basis is
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(1,x,x2, ...,xm, ...) and we consider here the casesm = 1 tom = 5, with the respective estimators
ρ̂4 to ρ̂8. The construction of the estimators is detailed in the following table. Quadratic risks
are estimated by Monte Carlo with 10000 replications of the procedure, and are given in the
last two columns of the table for the different sample sizes n = 100 and n = 500.

First, we consider the model Y = exp(X) + ε.

estimator auxiliary variable n = 100 n = 500

ρ̂1 (Horvitz-Thompson) none 2.64.10−1 5.02.10−2

ρ̂2 (calibration) x 6.90.10−2 1.33.10−2

ρ̂3 (oracle) exp x 1.00.10−2 2.00.10−3

ρ̂4 (AMEM m = 1) (1,x) 2.60.10−2 5.01.10−3

ρ̂5 (AMEM m = 2) (1,x,x2) 1.05.10−2 2.30.10−3

ρ̂6 (AMEM m = 3) (1,x,x2,x3) 1.02.10−2 2.10.10−3

ρ̂7 (AMEM m = 4) (1,x,x2,x3,x4) 1.03.10−2 2.03.10−3

ρ̂8 (AMEM m = 5) (1,x,x2,x3,x4,x5) 1.08.10−2 2.24.10−3

The high quadratic risk of the Horvitz-Thompson estimate ρ̂1 compared to the other esti-
mators points out the improvement of the estimation due to calibration. Note also a significant
gain of efficiency between ρ̂2 and ρ̂4, simply due to the addition of the constant in the set of cal-
ibration constraints. Among AMEM estimators, ρ̂6 seems to be the most efficient when n = 100
while ρ̂7 has the smallest estimated quadratic risk when the sample size grows to n = 500.
So, the optimal number of constraint increases with the sample size, going from m = 3 when
n = 100 to m = 4 when n = 500. A problem of over-fitting is observed for a too large number
of constraints, as we see that the quadratic risks increase when m goes past its optimal value.
Increasing the number of constraint seems necessary to have an efficient estimation, although a
good balance must be found between the two indexes m and n.

With an exponential relationship between Y and X, polynomial functions appear to yield a
good estimation of the population mean in a AMEM procedure, as we see that AMEM estimators
perform almost as well as the oracle ρ̂3 under a suitable number of constraint. This is not
surprising, given that the exponential function can be relatively well approximated by low degree
polynomials on the interval [2; 3].

We now study the case Y = 4/X+ε. We consider the same eight estimators of 1
N ty, the quadratic

risks are estimated by Monte-Carlo from 10000 simulated samples, as previously. Results are
given for three values of (N,n), namely (2500, 100), (2500, 500) and (5000, 1000).
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estimator auxiliary variable (2500, 100) (2500, 500) (5000, 1000)

ρ̂1 none 1.53.10−2 3.1.10−3 1.5.10−3

ρ̂2 x 2.58.10−2 5.1.10−3 2.4.10−3

ρ̂3 4x−1 1.01.10−2 1.9.10−3 8.9.10−4

ρ̂4 (1,x) 1.07.10−2 2.3.10−3 1.2.10−3

ρ̂5 (1,x,x2) 1.03.10−2 2.2.10−3 1.1.10−3

ρ̂6 (1,x,x2,x3) 1.07.10−2 2.0.10−3 9.9.10−4

ρ̂7 (1,x,x2,x3,x4) 1.08.10−2 2.0.10−3 9.7.10−4

ρ̂8 (1,x,x2,x3,x4,x5) 1.08.10−2 2.1.10−3 9.6.10−4

A first surprising result is the negative effect of calibration, pointed out by the quadratic risk
of ρ̂2 larger than that of ρ̂1. This bad use of the auxiliary information is due to weak linear
correlation between Y and X with cov(X,Y ) ≈ 0 while the correlation coefficient E(XY )/E(X2)
is far from zero. Nevertheless, this drawback is partly corrected by adding the constant in the
set of calibration constraints, which corresponds to ρ̂4. The optimal number of constraints grows
with the sample size as expected, as we see that the most efficient AMEM estimator is given for
m = 2 when (N,n) = (2500, 100), m = 3 or m = 4 when N = 2500, n = 500 and m = 5 when
N = 5000, n = 1000. The quadratic risk is in each case quite close to that of the oracle ρ̂3. In
spite of the inappropriate projection basis in this example, AMEM estimation still turns out to
be rather satisfactory, provided that the number of constraint is properly chosen.

4.5 Proofs

4.5.1 Technical lemmas

Lemma 4.5.1 Under A4.1 and A4.2, for any sequence {a(xi, yi)}i∈U = {ai}i∈U such that
1
N

∑
i∈U |ai|3 = O(1),

n

N2
E
∑
i,j∈U

∆ijaiaj ≥ (1− π)var(a(X,Y )) + o(1)

with equality if and only if A4.3 also holds. Moreover, under A4.1 to A4.3, the quantity
n
N2

∑
i,j∈U ∆ijaibj converges in probability toward cov(a(X,Y ), b(X,Y )) for all sequence {bi}i∈U

satisfying the same conditions as {ai}i∈U .

Proof. For such a sequence a = {ai}i∈U , A4.1 and A4.2 yield:

n

N2

∑
i,j∈U

∆ij aiaj =
n

N2

∑
i∈U

∆ii a
2
i +

n

N2

∑
i6=j

∆ij aiaj

=

(
n

N2

∑
i∈U

∆ii

)
E(a(X,Y )2) +

 n

N2

∑
i6=j

∆ij

E(a(X,Y ))2 + o(1)
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Denote by Pn(U) the set of all subsamples s of U with n elements. By Jensen inequality,

∑
i,j∈U

∆ij =
∑

s∈Pn(U)

(∑
i∈s

di

)2

p(s)−N2 ≥

 ∑
s∈Pn(U)

(∑
i∈s

di

)
p(s)

2

−N2 ≥ 0

which implies that
∑

i6=j ∆ij ≥ −
∑

i∈U ∆ii. Thus:

n

N2

∑
i,j∈U

∆ij fifj ≥

(
n

N2

∑
i∈U

∆ii

)
var(f(X,Y )) + o(1).

Since
∑

i∈U πi = n, we know that n
N2

∑
i∈U ∆ii ≥ 1− n

N by convexity of x 7→ 1/x on R∗+. Hence

n

N2

∑
i,j∈U

∆ij aiaj ≥ (1− π)var(a(X,Y )) + o(1)

without equality for all sequence a if A4.3 is not true. The end of the lemma follows directly by
using the same guideline applied to a and b. In particular, it holds when a = b.

4.5.2 Proof of Theorem 4.3.1

Let p̂ = {p̂i}i∈s where p̂i = πiŵi. We have

p̂ = arg min
p∈S

n∑
i=1

Λ∗ν(pi),

where S = {p ∈ Rn : 1
n

∑n
i=1 pix̃i = tx}. The proof is similar to that of Theorem 1.2.3. For a

fixed p ∈ Rn, let νp be the I -projection of ν0 onto Sp = {µ ∈ P(Rn) : Eµ(P ) = p}. Following the
proof of Theorem 1.2.3, we know that K(νp|ν0) = Λ∗ν0(p) =

∑n
i=1 Λ∗νi(pi), where the last equality

follows from the assumption ν0 = ⊗i∈sνi. We conclude in the same way as for Theorem 1.2.3.

4.5.3 Proof of Proposition 4.3.2

This is a classic convex optimization problem. Let L be the Lagrangian associated to the
problem:

L(λ,w) =
∑
i∈s

Λ∗νi(wiπi)− λ
t

(∑
i∈s

wixi −Ntx

)
where λ ∈ Rk is the Lagrange multiplier. The solutions to the first order conditions satisfy for
all i ∈ s,

wi = diΛ
∗
νi
′−1

(λtdixi),

where we recall that the functions Λ∗νi are assumed to be strictly convex, so that Λ∗νi
′−1

exists
for all i, and is equal to Λ′νi . Now it suffices to apply the solutions of the first order conditions

to the constraint to obtain an expression of the solution λ̂:

1

N

∑
i∈s

diΛ
′
νi(λ̂

tdixi)xi − tx = 0⇐⇒ λ̂ = arg min
λ∈Rk

∑
i∈s

Λνi(λ
tdixi)− λttx.
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The equivalence is justified by the fact that Λνi is strictly convex, and therefore, so is λ 7→∑
i∈s Λνi(λ

tdixi)− λttx. For that reason, λ̂ is uniquely defined. We finally obtain an expression
of the calibrated weights

∀i ∈ s, ŵi = diΛ
′
νi(λ̂

tdixi).

4.5.4 Proof of Proposition 4.3.3

Let F : λ 7→ 1
N

∑
i∈s difi(λ)xi, and G : λ 7→ 1

N

∑
i∈s digi(λ)xi. We call respectively λ̂ and λ̃ the

solutions to F (λ) = tx and G(λ) = tx. We have

F (λ̂) = F (0) +Xnλ̂+ o(‖λ̂‖)

and then (tx − t̂HTx ) = Xnλ̂ + o(‖λ̂‖). By assumption, Xn is invertible for large values of n
since it converges toward an invertible matrix X. Thus, whenever t̂HTx is close enough to tx,
there exists λ0 in a neighborhood of 0 such that F (λ0) = tx. By uniqueness of the solution, we
conclude that λ0 = λ̂. Hence, for large values of n,

λ̂ = X−1
n (tx − t̂HTx ) + o

(
1√
n

)
.

A similar reasoning for λ̃ yields ‖λ̃ − λ̂‖ = o(n−1/2). Thus, λ̂ and λ̃ converge toward 0 and by
Taylor formula:

fi(λ̂) = 1 + ztiλ̂+ o

(
1√
n

)
= 1 + ztiλ̃+ o

(
1√
n

)
= gi(λ̃) + o

(
1√
n

)
.

It follows that t̂y and t̃y are asymptotically equivalent.
We know that MEM estimation reduces to taking fi(.) = Λ′νi(dix

t
i.) in a GC procedure.

Hence, in that case, ∇fi(0) = diΛ
′′
νi(0)xi. Since the variance of a probability measure νi is given

by Λ′′νi(0), two MEM estimators with prior distributions having the same respective variances
are asymptotically equivalent. Furthermore, a Gaussian prior νi ∼ N (1, qiπi) has a log-Laplace
transform Λνi : t 7→ πiqit

2/2 + t which corresponds to fi(λ) = Λ′νi(dix
t
iλ) = 1 + qix

t
iλ. The

resulting MEM estimator is thus the instrument estimator obtained with instruments zi =
qixi, i ∈ s.

4.5.5 Proof of Theorem 4.4.2

We decompose the AMEM estimator as follow

t̂y(Φm) = t̂HTy + (tΦ − t̂HTΦ ) + (t̂HTΦ − tΦ − (t̂HTΦm − tΦm)) + (B̂Φm− 1)(tΦm− t̂HTΦm ).

We have by assumption

n

N2
E Ep(t̂HTΦ − tΦ − (t̂HTΦm − tΦm))2 → 0 and (B̂Φm− 1)→ 0

Therefore, the terms (t̂HTΦ−Φm
− tΦ−Φm) and (B̂Φm− 1)(tΦm− t̂HTΦm

) are asymptotically negligible in

comparison to (tΦ − t̂HTΦ ) as m→∞. We conclude using Lemma 4.5.1.
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Chapter 5

Threshold regularization of inverse
problems

A number of regularization methods for discrete inverse problems consist in considering
weighted versions of the usual least square solution. These filter methods are generally restricted
to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. In
this paper, we point out that in several cases, non-monotonic sequences of filters may appear
more appropriate. We study a regularization method that naturally extends the spectral cut-
off procedure to non-monotonic sequences and provide several oracle inequalities, showing the
method to be nearly optimal under mild assumptions. We extend the method to inverse problems
with noisy operator and provide efficiency results in a conditional framework.

5.1 Introduction

We are interested in recovering an unobservable signal x0, based on noisy observations of the
image of x0 through a linear operator A. The observation y satisfies the following relation

y(t) = Ax0(t) + ε(t),

where ε(.) is a random process representing the noise. This problem is studied in [CGPT00],
[HO93], [Lou08] and in many applied fields such as medical imaging in [Nat01] or seismography
in [SG88] for instance. When the measured signal is only available at a finite number of points
t1, ..., tn, the operator A must be replaced by a discrete version An : x 7→ (Ax(t1), ..., Ax(tn))t,
leading to a discrete linear model

y = Anx0 + ε,

with y ∈ Rn. Difficulties in estimating x0 occur when the problem is ill-posed, in the sense that
small perturbations in the observations induce large changes in the solution. This is caused by
an ill-conditioning of the operator An, reflected by a fast decay of its spectral values bi. In such
problems, the least square solution, although having a small bias, is generally inefficient due to
a too large variance. Hence, regularization of the problem is required to improve the estimation.
A large number of regularization methods are based on considering weighted versions of the least

85
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square estimator. The idea is to allocate low weights λi, or filters, to the least square coefficients
that are highly contaminated with noise, thus reducing the variance, at the cost of increasing
the bias at the same time. The most famous filter-based method is arguably the one due to
Tikhonov (see [TA77]), where a collection of filters is indirectly obtained via a minimization
procedure with `2 penalization. Tikhonov filters are entirely determined by a parameter τ that
controls the balance between the minimization of the `2 norm of the estimator and the residual.
Another well spread filter method that will be given a particular attention, is the spectral cut-off
discussed in [BHMR07], [EHN96] and [Han87]. One simply considers a truncated version of the
least square solution, where all coefficients corresponding to arbitrarily small eigenvalues are
removed. Thus, spectral cut-off is associated to binary filters λi, equal to 1 if the corresponding
eigenvalue bi exceeds in absolute value a certain threshold τ , and 0 otherwise.

A common feature of spectral cut-off and Tikhonov regularization is the predetermined
nature of the filters λi, defined in each case as a fixed non-decreasing function f(τ, .) of the
eigenvalues b2i , and where only the parameter τ is allowed to depend on the observations. How-
ever, in many situations, non-monotonic sequences of filters may seem to be more appropriate.
Actually, optimal values for λi generally depend on both the noise level, which is determined
by the eigenvalue bi, and the component, say xi, of x0 in the direction associated to bi. A
restriction to monotonic collections of filters may turn out to be inefficient in situations where
the coefficients xi are uncorrelated to the spectral values bi of the operator An.

Regularization methods involving more general classes of filters have also been treated in the
literature. For example, the unbiased risk estimation (URE) introduced by Stein in [Ste81] and
studied in this context in [CGPT00], applies to arbitrary classes of filters, dealing in particular
with non-monotonic collections. However, this approach has proven inefficient in low regularity
cases. More recently, the risk hull method, discussed in [CG06], is shown to be an improvement of
URE and this is confirmed by simulation studies. Here, we focus on a specific class of projection
estimators that extends the spectral cut-off to non-monotonic collections of filters. Precisely, we
consider the collection of unrestricted binary filters λi ∈ {0, 1}, known as projection filters. The
computation of the estimator relies on the choice of a proper set of coefficients m ⊆ {1, ..., n},
which increases the number of possibilities compared to the spectral cut-off. We show this
method to satisfy a non-asymptotic oracle inequality, when the oracle is computed in the class
of projection filters. Moreover, we show our estimator to nearly achieve the rate of convergence
of the best linear estimator in the maximal class of filters, i.e. when no restriction is made on
λi.

It many actual situations, the operator An is not known precisely and only an approximation
of it is available. Regularization of inverse problems with approximate operator is studied in
[CH05], [EK01] and [HR08]. In this paper, we tackle the problem of estimating x0 in the
situation where we observe independently a noisy version b̂i of each eigenvalue bi. We consider a
framework where the observations b̂i are made once and for all, and are thus seen as non-random.
We provide a bound on the conditional risk of the estimator, given the values of b̂i, in the form
of a conditional oracle inequality.

The chapter is organized as follows. We introduce the problem in Section 5.2. We define our
estimator in Section 5.3, and provide two kinds of oracle inequalities and numerical applications.
Section 5.4 is devoted to an application of the method to inverse problems with noisy operators.
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The proofs of our results are postponed to Section 5.5.

5.2 Problem setting

Let (X , ‖.‖) be a Hilbert space and An : X → Rn (n > 2) a linear operator. We want to
recover an unknown signal x0 ∈ X based on the indirect observations

y = Anx0 + ε, (5.1)

where ε is a random noise vector. We assume that ε is centered with covariance matrix σ2I,
where I denotes the identity matrix. We endow Rn with the scalar product 〈u, v〉n = 1

n

∑n
i=1 uivi

and the associated norm ‖.‖n and we note A∗n : Rn → X the adjoint of An. Let Kn be the kernel
of An and K⊥n its orthogonal in X which we assume to be of dimension n. The fact that An is
surjective ensures that the observation y provides information in all directions. If this condition
is not met, one may simply reduce the dimension of the image in order to make An surjective.

The efficiency of the estimator relies first of all on the accuracy of the discrete operator An
and how ”close” it is to the true value A. The convergence of the estimator toward x0 is subject
to the condition that the distance of x0 to the set K⊥n tends to 0, which is reflected by a proper
asymptotic behavior of the design t1, ..., tn. This aspect is not discussed here, we consider a
framework where we have no control over the design t1, ..., tn and we focus on the convergence
of the estimator toward the projection x†.

Let {bi;φi, ψi}i=1,...,n be a singular system for the linear operator An, that is, Anφi = biψi
and A∗nψi = biφi and b21 ≥ ... ≥ b2n > 0 are the ordered non-zero eigenvalues of the self-adjoint
operator A∗nAn. The φi’s (resp. ψi’s) form an orthonormal system of K⊥n (resp. Rn).

In this framework, the available information on x0 consists in a noisy version of Anx0. As a
result, estimating the part of x0 lying in Kn is impossible, based only on the observations. The
best approximation of x0 one can get without prior information is the orthogonal projection of
x0 onto K⊥n . This projection, noted x†, is called best approximate solution and is obtained as
the image of Anx0 through the generalized Moore-Penrose inverse operator A†n = (A∗nAn)†A∗n,
where (A∗nAn)† denotes the inverse of A∗nAn, restricted to K⊥n . By construction, the generalized

Moore-Penrose inverse A†n can also be defined as the operator for which {b−1
i ;ψi, φi}i=1,...,n is a

singular system. We refer to [EHN96] for further details.

Searching for a solution in the subspace K⊥n allows to reduce the number of regressors to n.
Then, estimating x† can be made using a classical linear regression framework where the number
of regressors is equal to the dimension of the observation. Decomposing the observation in the
singular basis {ψi}i=1,...,n leads to the following model

yi = bixi + εi, i = 1, ..., n,

where we set yi = 〈y, ψi〉n, εi = 〈ε, ψi〉n and xi = 〈x0, φi〉. It now suffices to divide each term
by the known singular value bi to observe the coefficient xi, up to a noise term ηi := b−1

i εi.

Equivalently, this is obtained by applying the Moore-Penrose inverse A†n in the model (5.1).

We thus consider the function y† = A†ny ∈ K⊥n , defined as the inverse image of y through An
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with minimal norm. Identifying y† with the vector of its coefficients y†i = b−1
i yi in the basis

{φi}i=1,...,n, we obtain

y†i = xi + ηi, i = 1, ..., n. (5.2)

The covariance matrix of the noise η = (η1, ..., ηn)t is diagonal in this model, as we have E(ηiηj) =
σ2

n b
−1
i b−1

j 〈ψi, ψj〉n which is null for all i 6= j and equal to σ2
i := σ2

n b
−2
i if i = j. The model can

be somehow interpreted as a linear regression model with heteroscedastic noises, the variances
σ2
i being inversely proportional to the eigenvalues b2i . In the case where ε in the original model

(5.1) is Gaussian with distribution N (0, σ2I), the noises ηi remain Gaussian in (5.2).

This representation points out the effect of the decay of the singular values bi on the noise
level, making the problem ill-posed. To control the noise with a too large variance σ2

i , a solution
is to consider weighted versions of y†. For some filter λ = (λ1, ..., λn)t, note x̂(λ) ∈ K⊥n the

function defined by 〈x̂(λ), φi〉 = λiy
†
i for i = 1, ..., n. Filter-based methods aim to cancel out the

high frequency noises by allocating low weights to the components y†i corresponding to small
singular values. A widely used example is the Tikhonov regularization, with weights of the form
λi = (1 + τσ2

i )
−1 for some τ > 0. The Tikhonov solution can be expressed as the minimizer of

the functional

‖y −Anx‖2 +
τσ2

n
‖x‖2, x ∈ X ,

which makes the method particularly convenient in cases where the SVD of A∗nAn or the coeffi-
cients y†i are not easily computable. We refer to [Cav08] and [TA77] for further details.

Another common filter-based method is the truncated singular value decomposition or spec-
tral cut-off studied in [BHMR07], [EHN96] and [Han87]. An estimator of x0 is obtained as a

truncated version of y†, where all coefficient y†i corresponding to arbitrarily small singular val-
ues are replaced by 0. This approach can be viewed as a principal component analysis, where
only the highly explanatory directions are selected. The spectral cut-off estimator is associated
to filter factors of the form λi = 1{i ≤ k}, where 1{.} denotes the indicator function and k
is a bandwidth to be determined. Data-driven methods for selecting suitable values of k are
discussed in [Cav08], [CG06], [Han87], [Var73] and [Var79].

A natural way to generalize the spectral cut-off procedure is to enlarge the class of estimators
by considering non-ordered truncated versions of y†, as made in [Lou08], [LL08] or [LL10] (see
also Examples 1 and 2 in [CGPT00]). This approach reduces to a model selection issue where
each model is identified with a set of indices m ⊆ {1, ..., n}. Precisely, for m a given model,
define x̂m ∈ K⊥n as the orthogonal projection of y† onto Xm := span{φi, i ∈ m}, that is, x̂m
satisfies

〈x̂m, φi〉 =

{
y†i if i ∈ m,
0 otherwise.

The objective is to find a model m that makes the expected risk E‖x̂m − x0‖2 small. The
computation of the estimator no longer relies on the choice of one parameter k ∈ {1, ..., n} as for
spectral cut-off, but on the choice of a set of indices m ⊆ {1, ..., n}, which increases the number
of possibilities. In particular, this approach allows non-monotonic collections of filters that may



5.3. THRESHOLD REGULARIZATION 89

perform better than decreasing sequences obtained by spectral cut-off. To see this, write the
bias-variance decomposition of the estimator x̂m for a deterministic model m:

E‖x̂m − x0‖2 = E‖x0 − x†‖2 +
∑
i/∈m

x2
i +

∑
i∈m

σ2
i .

In these settings, it appears that in order to minimize the risk, best is to select indices i for
which the component x2

i is larger than the noise level σ2
i . A proper choice of filter should depend

on both the variance σ2
i and the coefficient x2

i . Consequently, the resulting sequence {λi}i=1,...,n

has no reason of being a decreasing function of σ2
i if some coefficients x2

i are large enough to
compensate for a large variance.

5.3 Threshold regularization

The construction of the projection estimator reduces to finding a proper set m. An optimal
value for m (minimizing the risk) is obtained by keeping small simultaneously the bias term∑

i/∈m x
2
i and the variance term

∑
i∈m σ

2
i in the expression of the risk E‖x̂m − x0‖2. Following

this argument, a minimizer of the risk E‖x̂m − x0‖2 is obtained by selecting only the indices i
for which the coefficient x2

i is larger than the noise level σ2
i . An optimal model is thus given by

m∗ :=
{
i : x2

i ≥ σ2
i

}
. The coefficients xi being unknown to the practitioner, the optimal set m∗

can not be computed in practical cases. For this reason it is referred to as an oracle.

We shall now provide a model m̂ constructed from the available information, that mimics
the oracle m∗. Fixing a threshold on the coefficients xi being impossible, we propose to use a
threshold on the coefficients y†i . Precisely, consider the set

m̂ =
{
i : y†2i ≥ 4σ2

i µi

}
=

{
i : y2

i ≥
4σ2µi
n

}
,

for {µi}i=1,...,n a sequence of positive parameters to be chosen and where we recall that yi =

biy
†
i . Obviously, the behavior of the resulting estimator x̂m̂ relies on the choice of the sequence

{µi}i=1,...,n: the larger the µi’s, the more sparse is x̂m̂. It must be chosen so that the resulting
set m̂ contains only the indices i for which the noise level is small compared to the actual value
of xi, but the only knowledge of the observations y†i and the variances σ2

i makes it a difficult
task.

A number of thresholding procedures have been studied in the inverse problem literature.
In [LL10], Loubes proposes a `1 penalization procedure to the inverse problem, corresponding
to a soft-thresholding approach with a threshold on y2

i of the order c logn
n σ2, for some c > 0.

In [AS98], Abramovich and Silverman discuss an approach based on the decomposition of the
observation in a wavelet basis, for which the coefficients can be selected via a thresholding
criterion. Here again, a threshold of the order c logn

n σ2 is suggested. For these two approaches,
the threshold is a linear function of the variance, which with our notations, corresponds to taking
a parameter µi = c log n that does not depend on i. In Theorem 5.3.1, we discuss the accuracy
of a non-linear threshold that involves a logarithmic term of the variance.
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5.3.1 Oracle inequalities

In the definition of m̂, the choice of the parameters µi is crucial. Too large values of µi
will result in an under-adjustment, keeping too few relevant components y†i to estimate x0. On

the contrary, a small value of µi increases the probability of selecting a component y†i that is
highly affected with noise. Thus, it is essential to find a good balance between these two types
of errors. In the next theorem, we provide a nearly optimal choice for the parameters µi, under
the condition that ε has finite exponential moments.

For i = 1, ..., n, note γi := η2
i /σ

2
i = nε2

i /σ
2. We make the following assumption.

A5.1. There exist K,β > 0 such that ∀t > 0,∀i = 1, ..., n, P(γi > t) ≤ Ke−t/β.

In a Gaussian model, the γi’s have χ2 distribution with one degree of freedom. The condition
A5.1 holds for any β > 2, taking K =

√
1− 2/β.

Theorem 5.3.1 Assume that A5.1 holds. For some θ > 0, set µi = β log(e + θσ2
i ). The

estimator x̂m̂ satisfies

E‖x̂m̂ − x†‖2 ≤ E‖x̂m∗ − x†‖2 +
(

6β log(e+ θ‖x†‖2) + 2
) ∑
i∈m∗

σ2
i +

2Kβn

θ
.

Remark 1 This theorem establishes a non-asymptotic oracle inequality. The first residual
term is comparable to that in Corollary 1 in [Lou08] for θ ∼ n2. The second residual term can be
controlled by an appropriate choice of θ. While choosing θ ∼ n2 is sufficient to make this term
negligible, a more accurate value may be chosen depending on the known sequence {σ2

i }i=1,...,n,
in order to find a good balance between the two residual terms, making the inequality as sharp
as possible.

Remark 2 The method requires knowledge of the operator An, the variance σ2 and the
constant β in the condition A5.1. Note however that knowing the constant K is not necessary
to build the estimator.

Remark 3 In an asymptotic concern, the accuracy of the result stated in Theorem 5.3.1
relies on the convergence rate of the residual term to zero, compared to the risk of the oracle.
The residual term

∑
i∈m∗ σ

2
i is actually the variance term in the bias-variance decomposition of

x̂m∗ , and therefore, it is bounded by the risk of the oracle. As a result, for θ of the order n,
the estimator x̂m̂ is shown to reach at least the same rate of convergence as the oracle up to a
logarithmic term, which warrants good adaptivity properties. The logarithmic term vanishes in
the convergence rate if the bias term

∑
i/∈m∗ x

2
i dominates in the risk of the x̂m∗ . Precisely, the

oracle inequality is asymptotically exact as soon as the residual term log n
∑

i∈m∗ σ
2
i is negligible

compared to the bias term
∑

i/∈m∗ x
2
i . In this case, it follows from Theorem 5.3.1 that

E‖x̂m̂ − x†‖2 = (1 + o(1)) E‖x̂m∗ − x†‖2.

Of course, this condition is hard to verify in practice and assuming it is true reduces to make
strong regularity assumptions on the asymptotic behavior of x0 and An.
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The estimator x̂m̂ being built using binary filters λi ∈ {0, 1}, it is natural to measure its
efficiency by comparing its risk to that of the best linear estimator in this class. Nevertheless,
we see in the next corollary that a similar oracle inequality holds if we consider the oracle in the
maximal class of filters, that is, allowing the λi’s to take any real value.

Corollary 5.3.2 Assume that the condition A5.1 holds, the estimator x̂m̂ of Theorem 5.3.1
satisfies

E‖x̂m̂ − x†‖2 ≤
(

12β log(e+ θ‖x†‖2) + 4
)

inf
λ∈Rn

E‖x̂(λ)− x†‖2 +
2Kβn

θ
.

This result is a straightforward consequence of Lemma 5.5.2 in the Appendix, where it is shown
that the oracle in the class of binary filters λi ∈ {0, 1} achieves the same rate of convergence up
to a factor 2, as the best filter estimator obtained with non-random values of λ. This results
points out that the class of unrestricted binary filters only induces a slight loss of efficiency
compared to the maximal class.

5.3.2 Rates of convergence and adaptation

Interest of oracles lies in the fact that the best estimator in a given class will often achieve
the optimal rate of convergence. In many situations, comparing the risk of the estimator to that
of an oracle might be sufficient to deduce optimality results, as well as adaptivity properties. In
the literature of inverse problems, rates of convergence of oracles are obtained under regularity
conditions on the map x0 and the spectrum of An. In the literature, examples of commonly
studied regularity spaces for x0 are Sobolev classes of functions

x0 ∈ S(s, L) =

{
x ∈ X :

n∑
i=1

〈x, φi〉2 i2s ≤ L

}
, s, L > 0,

and analytical functions

x0 ∈ A(s, L) =

{
x ∈ X :

n∑
i=1

〈x, φi〉2 e2is ≤ L

}
, s, L > 0.

We refer for instance to [Cav08] and [LR09a]. To calculate rates of convergence, we also need
to take into consideration the nature of ill-posedness of the inverse problem. For instance, we
say the problem is mildly ill-posed if there exist constants 0 < c < C and t > 0 such that
c i−t ≤ |bi| ≤ C i−t and severely ill-posed if c e−it ≤ |bi| ≤ C e−it.

In this setting, one may be interested in calculating optimal rates of convergences of estima-
tors. A way of defining these optimal rates is to consider the risk of the best possible estimator
when the true function is the hardest to estimate in a given class C ⊂ X . Precisely, denote by
X the set of estimators of x0 (i.e. the set of measurable functions of y), the so-called minimax
risk knowing that x0 ∈ C, is given by

R∗(C) = inf
x̂∈X

sup
x∈C

E‖x̂− x‖2.
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For the Sobolev and analytical classes of functions, the minimax rates of convergence are given
by

R∗(S(s, L)) = O
(
n−

2s
2s+2t+1

)
and R∗(A(s, L)) = O

(
(log n)2t+1

n

)
for mildly ill-posed problems and

R∗(S(s, L)) = O
(
(log n)−2s

)
and R∗(A(s, L)) = O

(
n−

2s
2s+2t

)
for severely ill-posed problems (see [Cav08]). In general, the regularity of the true function x0

is unknown. Therefore, a desirable property for an estimator is that it achieves minimax rates
of convergence for several classes of functions.

It is also possible to gather the regularity conditions on x0 and An into a single source
condition, relating the behavior of x0 to the regularity of the operator An (see for instance
[BHMR07], [CR07], [EHN96] or [FLn08]). Here is a simple example for which we deduce the
rate of convergence of the estimator under a polynomial source condition.

Proposition 5.3.3 (Polynomial source condition) Assume there exists δ ∈ (0; 2) such that∑n
i=1 |xi|δ|bi|δ−2 = O(1), then the estimator x̂m̂ obtained for θ = n2 satisfies

E‖x̂m̂ − x†‖2 = O
(
n
δ−2
2 . log n

)
.

For mildly ill-posed inverse problems with |bi| ∼ i−t, it is pointed out in [Lou08] that this rate
of convergence corresponds to the minimax rate in the Sobolev class S(s, L) if 1

δ = 1
2 + s

2t+1 up
to a log n factor. Indeed, we have in this case

δ − 2

2
=

2t+ 1

2t+ 2s+ 1
− 1 = − 2s

2t+ 2s+ 1
.

For more discussion on rates of convergence, we refer to [Cav08], [DJ98] and [LR09a].

5.3.3 Comparison with unbiased risk estimation and risk hull method

In a general point of view, the estimator x̂m̂ can be obtained via a minimization procedure,
using a BIC-type criterion for heteroscedastic models,

x̂m̂ = arg min
x∈X

{
‖y† − x‖2 + 4

n∑
i=1

σ2
i µi1{〈x, φi〉 6= 0}

}
.

However, expressing the estimator as the solution to a minimization problem does not ease
the computation. The method requires in any case calculation of the SVD of A∗nAn and the
coefficients y†i , which may be computationally expensive. On the other hand, the computation
of the estimator is simple once the decomposition of y† in the SVD of A∗nAn is known, as it
suffices to compare each coefficient y†2i to the threshold 4σ2

i µi.
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Let us compare our approach to some other methods. First, we discuss the unbiased risk es-
timation (URE) studied in [CGPT00] in the inverse problem framework. The method constructs
an estimator of x0 via the minimization of an unbiased estimate of the risk, over an arbitrary set
Λ of filters. When restricted to the class of projection filters λi ∈ {0, 1}, unbiased risk estimation
reduces to minimizing over the collection M of all subsets of {1, ..., n}, the criterion

m 7→ ‖y† − x̂m‖2 + 2
∑
i∈m

σ2
i .

The minimum is achieved for the set m = {i : y†2i ≥ 2σ2
i }, which corresponds to taking µi = 1/2.

This choice is shown to be asymptotically efficient in Proposition 2 in [CGPT00] under strong
regularity conditions. However, it is pointed out that this threshold is too low whenever the
inverse problem has a high degree of ill-posedness.

A good alternative to URE is the risk hull method (RHM) discussed in [CG06]. Rather than
considering an unbiased estimate of the risk, the idea of RHM is to find a function `(λ) that
bounds the risk from above, uniformly over the class Λ of filters. So, let `(.) be such that

E sup
λ∈Λ

{
‖x̂(λ)− x†‖2 − `(λ)

}
≤ 0. (5.3)

The estimator is then defined via the minimizer λ̃ of λ 7→ `(λ) over Λ. By the previous inequality,
we obtain an upper bound of the risk by

E‖x̂(λ̃)− x†‖2 ≤ E `(λ̃).

The risk hull ` has to be chosen as small as possible, while still satisfying (5.3), in order to
obtain a sharp bound on the risk of the estimator x̂(λ̃). An analytic form of the minimal risk
hull may be difficult to obtain but it can be computed by Monte-Carlo. In the class of projection
filters where all filter λ can be canonically identified with a model m ⊆ M, the objective is to
find ` :M→ R such that

E sup
m∈M

{∑
i/∈m

x2
i +

∑
i∈m

η2
i − `(m)

}
≤ 0.

Although it is not necessarily minimal, convenient is to consider a risk hull of the form `(m) =
δ +

∑
i/∈m x

2
i +

∑
i∈m ci, where δ ≥ 0 is a tolerance term and the ci’s are such that

E sup
m∈M

{∑
i∈m

(η2
i − ci)

}
=

n∑
i=1

E
[
(η2
i − ci)1{η2

i ≥ ci}
]
≤ δ,

in order to recover (5.3). Of course, the true coefficients x2
i are unknown, but they can be

replaced by their unbiased estimates y†2i − σ2
i , as suggested in [CG06]. Under A5.1, it appears

that taking ci ∼ c log n σ2
i yields a δ of the order n−α

∑n
i=1 σ

2
i for some α ≥ 0. On the other

hand, adding a term log σ2
i in the expression of ci enables to obtain a tolerance term δ that

does not involve the variances σ2
i (see for instance the proof of Lemma 5.5.1), which somehow

justifies the choice of the threshold used in Theorem 5.3.1.
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5.3.4 Simulations

We shall now see numerical applications. We consider an heteroscedastic non-parametric
regression model,

yi = xi + σiεi, i = 1, ..., n,

with εi ∼ N (0, 1). This model illustrates the discrete inverse problem, where the observation is
expressed via the singular value decomposition of the operator An. So, the xi’s stand for the
coefficients of x0 in the singular basis {φi}, i.e. xi = 〈x0, φi〉. The noises εi are independently
drawn from a standard Gaussian distribution. The variance of the model is determined by the
non-decreasing sequence {σ2

i }i=1,...,n which reflects the decay of the spectrum of AnA
∗
n. For now,

we do not need to specify the value of basis {φi}, as it is not directly involved in the model.
Consequently, the function of interest x0 is not fully determined. Nevertheless, this framework
covers several possible values for x0, depending on the underlying value of the operator An.
Graphical examples will be given in the sequel. For sake of objectivity, the coefficients xi are
randomly drawn from independent centered Gaussian variables xi ∼ N (0, v2

i ), with variances
v2
i to be made precise later. The coefficients xi are drawn once and for all and are treated as

non-random, which means that the risk of an estimator R(x̂) = E‖x̂− x†‖2 is to be understood
as an expectation conditionally to the xi’s.

The risk of x̂m̂ is compared to that of the following oracles

• xm∗ is the optimal threshold estimator defined in Section 5.3.3, obtained with the filters
λi = 1{x2

i ≥ σ2
i }.

• x∗sco is the best spectral cut-off estimator, obtained with the filters λi = 1{i ≤ k∗}, with
optimal bandwidth k∗.

• x∗lin is the best filter estimator, obtained with the filters λi = x2
i /(x

2
i + σ2

i ).

We calculate the risk of the estimators by Monte Carlo with 10000 replications of the procedure,
for different degrees of ill-posedness. We consider a well-posed problem with σ2

i = 1/n, mildly ill-
posed inverse problems with a polynomial growth of the variances (here σ2

i = i/n and σ2
i = i2/n)

and a severely ill-posed problem with σ2
i growing exponentially (here σ2

i = 2i/n). The noises
εi being Gaussian, we compute our estimator taking a small value of β satisfying the condition
A5.1, namely β = 2.1. The risks R(.) are given in the following table for the estimator and for
the oracles. Next to the risk of x̂m̂, is noted between brackets the ratio R(x̂m̂)/R(xm∗). We
consider the estimator obtained with two values of θ, namely θ = 1 and θ = n. In each case, we
vary two aspects which are the sample size n and the value of the sequence {v2

i }i=1,...,n reflecting
the decay of the coefficients xi.
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Case 1. n = 50, x2
i ∼ 1.

σ2
i = 1/n σ2

i = i/n σ2
i = i2/n σ2

i = 2i/n

R(x̂m̂) (θ = 1) 1.00 (×1.08) 34.2 (×2.07) 61.9 (×1.09) 58.6 (×1.01)

R(x̂m̂) (θ = n) 1.00 (×1.08) 50.2 (×3.02) 61.1 (×1.08) 59.8 (×1.04)

R(xm∗) 0.93 16.6 56.7 57.8

R(x∗sco) 1.00 24.4 59.0 57.8

R(x∗lin) 0.84 12.0 44.7 56.3

Here, the signal has roughly the same intensity along all directions, as the coefficients xi are
independently drawn from the same standard Gaussian distribution. As a result, the function is
easy to calculate whenever the noise is small compared to the signal (e.g. the case σ2

i = 1/n), but
it yields a high risk, even for the best possible estimators when the variance increases. Remark
that the estimator x̂m̂ performs especially well with a high degree of ill-posedness (e.g. the cases
σ2
i = i2/n and σ2

i = 2i/n), where only few components of the signal are tractable. Indeed, we
see that the risk of x̂m̂ is close to that of the oracles (with a ratio smaller than 1.1). It seems
that the estimator obtained with θ = 1 shows good adaptivity properties.

To illustrate these results, we consider the family of functions {cos(kπ.), sin(kπ.), k ∈ N},
forming an orthogonal system on L2([−1; 1]). We assume that the coefficients xi are the decom-
position of the signal in this basis. The well-posed situation is not problematic as the function
can be easily estimated in this case. Here, we see an example of the mildly ill-posed case with
σ2
i = i/n. We here compare the oracle on the left graphic to the estimator obtained with tuning

parameter θ = 1.

Figure 5.1: Mildly ill-posed problem σ2
i = i/n

Taking the value θ = 1 (right graphic) clearly causes underfitting, although it is not too far
from the oracle (left graphic). Naturally, the smoothness of the estimation increases with larger
values of the parameter θ. The following graphic confirms that taking a larger tuning parameter
(here θ = n) is overly cautious.
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Figure 5.2: Mildly ill-posed problem σ2
i = i/n

With a too high degree of ill-posedness, a part of the signal can not be estimated. In
particular, this situation where the coefficients xi are roughly of the same order makes the
signal hardly tractable when the noise level increases. As a result, even in mildly ill-posed
problems, the oracle can be far from the true function. We now see the case σ2

i = i2/n.

Figure 5.3: Mildly ill-posed problem σ2
i = i2/n

Again, the estimator selects too few variables. Although, the difference with the oracle is
negligible compared to the gap with the actual function.
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Case 2. n = 50, x2
i ∼ i−1.

σ2
i = 1/n σ2

i = i/n σ2
i = i2/n σ2

i = 2i/n

R(x̂m̂) (θ = 1) 1.60 (×1.69) 26.9 (×1.98) 70.7 (×1.60) 55.4 (×1.02)

R(x̂m̂) (θ = n) 2.07 (×2.18) 39.6 (×2.91) 72.1 (×1.63) 56.6 (×1.05)

R(xm∗) 0.95 13.6 44.2 54.0

R(x∗sco) 1.00 18.7 48.5 54.0

R(x∗lin) 0.87 9.69 36.1 50.2

Setting the sequence v2
i of the order i−1 (precisely here v2

i = 25/i) causes an attenuation in
the signal corresponding to a decreasing trend of 1/i in the coefficients x2

i . As we see in this
table, the method seems adapted to well-posed problems as well as severely ill-posed problems.
The method seems less efficient when dealing with mildly ill-posed problems although the ratio
between the risk of the estimator and that of the oracle remains satisfactory (less than 2 in
the worst situation for the estimator with θ = 1). It appears that the relative efficiency of the
estimator is increased as the degree of ill-posedness grows.

The decay of the coefficients xi, reflected by a decreasing sequence {v2
i } in the calculation of

x0 leads to a smoother function, which makes it more natural to estimate. The mildly ill-posed
case with σ2

i = i/n is shown in the two graphics below.

Figure 5.4: Mildly ill-posed problem σ2
i = i/n

With a higher degree of ill-posedness, only a small part of the signal is tractable by the oracle,
which is efficiently recovered by the estimator. In the two following graphics the estimator x̂m̂
is close to the oracle x̂m∗ .
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Figure 5.5: Ill-posed problems σ2
i = i2/n and σ2

i = 2i/n

Case 3. n = 50, x2
i ∼ i−2.

σ2
i = 1/n σ2

i = i/n σ2
i = i2/n σ2

i = 2i/n

R(x̂m̂) (θ = 1) 1.96 (×2.38) 9.27 (×1.47) 30.4 (×1.94) 44.0 (×1.29)

R(x̂m̂) (θ = n) 2.32 (×2.82) 11.2 (×1.78) 46.9 (×2.98) 46.9 (×1.38)

R(xm∗) 0.82 6.29 15.7 34.1

R(x∗sco) 0.97 6.89 18.4 39.8

R(x∗lin) 0.71 4.50 13.0 26.8

Here the decrease of coefficients xi is more important, due to smaller values of v2
i , taken of the

order 1/i2. As previously, we see in this table that the estimator performs well for severely
ill-posed problems, as we observe a particularly small relative risk for σ2

i = i2/n and σ2
i = 2i/n.

Figure 5.6: Well-posed and mildly ill-posed problems σ2
i = 1/n and σ2

i = i/n
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The estimation with a high degree of ill-posedness is also satisfactory compared to the oracle.

Figure 5.7: Ill-posed problems σ2
i = i2/n and σ2

i = 2i/n

Case 4. n = 100, x2
i ∼ 2−i.

σ2
i = 1/n σ2

i = i/n σ2
i = i2/n σ2

i = 2i/n

R(x̂m̂) (θ = 1) 0.15 (×2.46) 1.19 (×7.18) 0.68 (×2.24) 0.52 (×1.70)

R(x̂m̂) (θ = n) 0.14 (×2.31) 0.23 (×1.37) 1.26 (×4.13) 1.09 (×3.59)

R(xm∗) 0.06 0.17 0.30 0.30

R(x∗sco) 0.06 0.21 0.30 0.30

R(x∗lin) 0.05 0.13 0.26 0.28

In the case treated here, we consider a fast decay of the coefficients x2
i , leading to a relatively

smooth function. We observe that with a low degree of ill-posedness, the parameter θ = n
actually leads to a more efficient estimate than the value θ = 1. What happens is that the
threshold obtained with θ = 1 is not sufficiently high to prevent selecting observations yi that
are strongly affected with noise. Although the events where the estimator wrongfully selects a
highly noisy observation is relatively rare, it has a devastating effect on the estimation is the
noise level is high. To avoid this issue, increasing the tuning parameter is effective, although it
generally yields an overly smooth estimator.

On the next graphics, we see the same estimator, obtained with parameter θ = 1 for different
observations y. The estimation is good most of the time, the situation on the right graphic occurs
with probability approximately 0.1.
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Figure 5.8: Mildly ill-posed problem σ2
i = i/n

As a matter of fact, the nature of the inverse problem makes the function difficult to estimate by
some common methods. On the left graphic below, we show the comparison with the Tikhonov
estimator obtained with optimal tuning parameter τ∗. In this situation, the Tikhonov method
seems unable to achieve the approximate shape of x0. On the right graphic, the threshold
estimator obtained with tuning value θ = n is clearly well adapted to this specific problem.

Figure 5.9: Mildly ill-posed problem σ2
i = i/n

The threshold is calculated to prevent selecting too noisy coefficients. For instance, assume
that the signal is null in a given direction, i.e. xi = 0. The observation is thus only noise
yi = ηi. For a given threshold, say ciσ

2
i , the probability of wrongfully selecting the variable is

only bounded by P(y2
i ≥ ci) ≤ K exp(−ci/β), while the error in the risk caused by wrongfully

selecting the index i is greater than ci. Thus, we may choose a threshold sufficiently high to
compensate the maximal loss in the risk. As a result, the estimator is robust to low probability
events that have a devastating effect on the estimation, at the cost of being overly smoothed in
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most cases. In the previous examples, we observed that taking θ of order n, as it is somehow
suggested by the theory, may lead to underfitting issues. Actually, this threshold is overly
cautious as it generally selects too few variables, although it enables to control the risk. On the
other hand, the value θ = 1 yields an efficient estimate with high probability, but may be far
from the true value in presence of outliers.

5.4 Regularization with unknown operator

We shall now discuss a situation where the operator An is not precisely known and is observed
with a noise, independently from y. This situation is studied in [CH05], [EK01] or [HR08]. Here,
the method discussed in the previous section does not apply since it required complete knowledge
of the operator An.

As in [CH05], we assume that the eigenvectors φi and ψi are known. This seemingly strong
assumption is actually met in many situations, for instance if the problem involves convolution
or differential operators which can be decomposed in Fourier basis (see also the examples in
[Cav08]). Thus, only the eigenvalues bi are unknown and we assume they are observed indepen-
dently of y, with a centered noise ξi with known variance s2 > 0:

b̂i = bi + ξi, i = 1, ..., n.

The method discussed in this paper is different according to whether the eigenvalues are known
exactly or observed with a noise. Thus, we need to assume here that s is positive and the known
operator framework can not be seen as a particular case. Moreover, we assume the ξi’s are
independent and satisfy the two following conditions.

A5.2. There exist K ′, β′ > 0 such that ∀t > 0,∀i = 1, ..., n, P(ξ2
i /s

2 > t) ≤ K ′e−t/β′ .

A5.3. There exist C,α > 0 such that ∀i = 1, ..., n, min{P(ξi < −αs),P(ξi > αs)} ≥ C.

As discussed previously, the condition A5.2 means that that the ξi’s have finite exponential
moments. The condition A5.3 is hardly restrictive, and is fulfilled for instance as soon as the
ξi’s are identically distributed. As we shall see in the sequel, the method requires knowledge of
the constant α (or at least an upper bound for it), but no information on the constants β′, K ′

or C is needed to build the estimator.

Knowing the eigenvectors of A∗nAn allows us to write the model in the form

yi = bixi + εi, i = 1, ..., n.

In our framework where the actual eigenvalues bi are unknown, a natural estimator of each
component xi is obtained by ỹi = b̂−1

i yi, provided that b̂i 6= 0. However, it is clear that this

estimate is not satisfactory if b̂i is far from the true value (consider for instance the extreme
case where b̂i = 0 or if b̂i and bi are of opposite signs). Actually, the naive estimator b̂−1

i can
not be used efficiently to estimate b−1

i because it may have an infinite variance. In [CH05], the
authors fix a threshold w the estimate can not exceed and consider an estimator of b−1

i equal to
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b̂−1
i if |b̂i| > 1/w and null otherwise. As we shall see below, we use the same idea here, where

the threshold fixed on the b̂i’s is implicitly part of the variable selection process.
We can reasonably assume that null values of b̂i do not provide any relevant information and

can not be used to estimate x0. Thus, to avoid considering trivial situations, we assume that all
b̂i are non-zero. In all generality, the ỹi’s can be viewed as noisy observations of xi by writing

ỹi = xi + η̃i, i = 1, ..., n,

with ỹi = b̂−1
i 〈y, ψi〉n and η̃i = b̂−1

i (εi − ξixi), where we recall εi = 〈ε, ψi〉n. As in the previous
section, we propose a threshold procedure to filter out the observations ỹi that are potentially
highly contaminated with noise. Here, the noise η̃i is more difficult to deal with because it
depends on the unknown coefficient xi.

Our objective is to find an optimal variable selection criterion conditionally to the b̂i’s. In
order to do so, we consider a framework where the b̂i’s are observed once and for all, and are
treated as non-random. Thus, we define as an oracle, a model m∗ξ minimizing the conditional

risk Eξ‖x̂m − x†‖2, where Eξ(.) denotes the expectation knowing ξ = (ξ1, ..., ξn)t. Following a
similar argument as in the previous section, a model minimizing the conditional risk contains
only the indices i for which the coefficient x2

i is larger than the noise level. Hence, we may define
m∗ξ = {i : x2

i > Eξ(η̃2
i )}. A notable difference here is that the noise η̃i actually depends on the

value xi. We can calculate the conditional expectation of η̃2
i , given by

Eξ(η̃2
i ) = σ̂2

i + b̂−2
i ξ2

i x
2
i ,

where we set σ̂2
i = n−1b̂−2

i σ2. After simplifications, it appears that the optimal model condi-
tionally to the ξi’s can be expressed in the two following equivalent forms

m∗ξ =

{
i : 2|b̂i| >

σ2

n|bi|x2
i

+ |bi|
}

=

{
i : x2

i >
σ2

n(b̂2i − ξ2
i )
, |b̂i| >

|bi|
2

}
.

In the first expression, we see that the oracle selects indices i for which the observation b̂i exceeds
a certain value depending on both xi and bi. Interestingly, components ỹi corresponding to
observations b̂i smaller than half the true eigenvalue bi are not selected in the oracle, regardless
of the coefficient xi. Here again, the optimal model m∗ξ can not be used in practical cases since
it involves the unknown values xi and ξi. We can only try to mimic the optimal threshold, based
on the observations ỹi and b̂i. Consider the set

m̂ξ =
{
i : ỹ2

i > 8σ̂2
i νi, |b̂i| > αs

}
,

where {νi}i=1,...,n are parameters to be chosen and α is the constant defined in A5.3. With this

definition, only the indices for which the observation b̂i is larger than a certain value, namely
αs, are selected. This conveys the idea discussed in [CH05], that when bi is small compared to
the noise level, the observation b̂i is potentially mainly noise. Remark however that in [CH05],
the lower limit for the observed eigenvalues is s log2(1/s), while in our method, it is chosen of
the same order as the standard deviation s.

Define the set M = {i : |bi| < 2αs}.
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Theorem 5.4.1 Assume that the condition A5.1 holds. The threshold estimator obtained with
νi = β log(n2σ̂2

i ) satisfies,

Eξ‖x̂m̂ξ − x
†‖2 ≤

(
K ′1 log n+K ′2

)
Eξ‖x̂m∗ξ − x

†‖2 +
∑
i∈M

x2
i + κ(ξ),

with K ′1 = max{18β, 4α−2β′}, K ′2 = max{9(β log ‖x†‖2 + 1), 1}, and

κ(ξ) =
4Kβ

n
+ 4

∑
i/∈m∗ξ

ξ2
i x

2
i

α2s2
1{ξ2

i > s2β′ log n}.

Moreover, if A5.2 holds, E(κ(ξ)) = O
(

logn
n

)
.

The main interest of this result lies in the fact that it provides an oracle inequality, conditionally
to the b̂i’s. In particular, the conditional oracle x̂m∗ξ is more efficient than the estimator obtained

by minimizing the expected risk m 7→ E‖x̂m−x†‖2, since the optimal set m∗ξ is allowed to depend
on the ξi’s. We see that the estimator x̂m̂ξ performs almost as well as the conditional oracle.
Indeed, the residual term κ(ξ) is independent from ξ with high probability, and its expectation
is negligible under A5.2 as pointed out in the theorem. The non-random term

∑
i∈M x2

i is small
if the eigenvalues bi are observed with a good precision, i.e. if the variance s2 is small. Moreover,
this term can be shown to be of the same order as the risk under the condition A5.3.

Corollary 5.4.2 If the conditions A5.1, A5.2 and A5.3 hold, the threshold estimator defined
in Theorem 5.4.1 satisfies

E‖x̂m̂ξ − x
†‖2 ≤ K ′4 log n E‖x̂m∗ξ − x

†‖2 +
K ′5 log n

n
,

for some constants K ′4 and K ′5 independent from n and s2.

With a noisy operator, we manage to provide an estimator that achieves the rate of convergence
of the conditional oracle, regardless of the precision of the approximation of the spectrum of An.
Indeed, the constants K ′4 and K ′5 in Corollary 5.4.2 do not involve the variance s2 of ξ. Actually,
the variance only plays a role in the accuracy of the oracle. The result is non-asymptotic and
requires no assumption on s2.

5.5 Proofs

5.5.1 Technical lemmas

Lemma 5.5.1 Assume the condition A5.1 holds. We have

• E
[
(η2
i − x2

i )1{i ∈ m̂}
]
≤ 2Kβσ2

i e
−µi/β.

• E
[
(x2
i − η2

i )1{i /∈ m̂}
]
≤ σ2

i (6µi + 2).
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Proof. Using the inequality (a+b)2 ≤ 2a2 +2b2, we find that η2
i −x2

i ≤ 2η2
i −y

†2
i /2. By definition

of m̂, we get

(η2
i − x2

i )1{i ∈ m̂} ≤ 2σ2
i (γi − µi)1{i ∈ m̂} ≤ 2σ2

i (γi − µi)1{γi ≥ µi},

where we used that X ≤ X1{X ≥ 0}. We finally obtain for all i /∈ m∗,

E
[
(η2
i − x2

i )1{i ∈ m̂}
]
≤ 2σ2

i

∫ ∞
0

P(γi ≥ t+ µi) dt ≤ 2Kβσ2
i e
−µi/β,

as a consequence of A5.1. For the second part of the lemma, write x2
i − η2

i = y†2i − 2ηiy
†
i which

is bounded by 3y†2i /2 + 2η2
i , using the inequality 2ab ≤ 2a2 + b2/2. This leads to

E
[
(x2
i − η2

i )1{i /∈ m̂}
]
≤ σ2

i (6µi + 2).

Lemma 5.5.2
inf
m∈M

E‖x̂m − x†‖2 ≤ 2 inf
λ∈Rn

E‖x̂(λ)− x†‖2.

Proof. The minimal values of the expected risks can be calculated explicitly in the two classes
considered here. Minimizing over Rn the function λ 7→ E‖x̂(λ)− x†‖2, we find that the optimal
value of λi is reached for λ∗i = x2

i /(x
2
i +σ2

i ). On the other hand, we know that m 7→ E‖x̂m−x†‖2
reaches its minimum at m∗ = {i : x2

i ≥ σ2
i }, yielding

inf
λ∈Rn

E‖x̂(λ)− x†‖2 =

n∑
i=1

x2
iσ

2
i

x2
i + σ2

i

and inf
m∈M

E‖x̂m − x†‖2 =
∑
i∈m∗

σ2
i +

∑
i/∈m∗

x2
i .

By definition, if i ∈ m∗, 2x2
i /(x

2
i + σ2

i ) ≥ 1. In the same way, 2σ2
i /(x

2
i + σ2

i ) ≥ 1, for all i /∈ m∗.
We conclude by summing all the terms.

Lemma 5.5.3 Assume the condition A5.1 holds. We have, for all i = 1, ..., n,

• Eξ
[
(η̃2
i − x2

i )1{i ∈ m̂ξ}
]
≤ 4Kβ σ̂2

i e
−νi/β +

4ξ2
i x

2
i

α2s2
.

• Eξ
[
(x2
i − η̃2

i )1{i /∈ m̂ξ}
]
≤ 9σ̂2

i νi + 8Eξ(η̃2
i ) + x2

i1{|b̂i| ≤ αs}.

Proof. Remark that η̃2
i = b̂−2

i (εi − ξixi)2 ≤ 2b̂−2
i ε2

i + 2b̂−2
i ξ2

i x
2
i . Using that x2

i ≥ ỹ2
i /2 − η̃2

i , we
deduce

η̃2
i − x2

i ≤ 4b̂−2
i ε2

i + 4b̂−2
i ξ2

i x
2
i −

ỹ2
i

2
.

Writing m̂ξ = {ỹ2
i > 8σ̂2

i νi} ∩ {|b̂i| > αs}, we find

(η̃2
i − x2

i )1{i ∈ m̂ξ} ≤ 4σ̂2
i (γi − νi)1{γi ≥ νi}+ 4b̂−2

i ξ2
i x

2
i1{|b̂i| > αs},

where we recall that γi = nε2
i /σ

2. Clearly, b̂−2
i 1{|b̂i| > αs} < α−2s−2 and the result follows

using the condition A5.1. For the second part of the lemma, remark that the complement of m̂ξ

is {ỹ2
i ≤ 8σ̂2

i νi, |b̂i| > αs} ∪ {|b̂i| ≤ αs}. Using the inequality x2
i − η̃2

i ≤ (1 + θ−1)ỹ2
i + θη̃2

i for
θ = 8, we get

(x2
i − η̃2

i )1{i /∈ m̂ξ} ≤ 9σ̂2
i νi + 8η̃2

i + x2
i1{|b̂i| ≤ αs}.
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Lemma 5.5.4 If A5.2 holds, we have

ξ2
i ≤ s2β′ log n+ ξ2

i 1{ξ2
i > s2β′ log n},

with E
(
ξ2
i 1{ξ2

i > s2β′ log n}
)

= O(n−1 log n).

Proof. Write ξ2
i ≤ s2β′ log n 1{ξ2

i ≤ s2β′ log n} + ξ2
i 1{ξ2

i > s2β′ log n}. To bound the first
term, we use the crude inequality 1{ξ2

i ≤ s2β′ log n} ≤ 1. For the second term, we have as a
consequence of A5.2,

E
[
ξ2
i 1{ξ2

i > s2β′ log n}
]

=

∫ ∞
0

P
(
ξ2
i 1{ξ2

i /s
2 > β′ log n} > t

)
dt

= s2β′ log n P(ξ2
i /s

2 > β′ log n) + s2

∫ ∞
β′ logn

P(ξ2
i /s

2 > t) dt

≤ K ′β′s2(1 + log n)

n
.

5.5.2 Proof of Theorem 5.3.1

Write

‖x̂m̂ − x0‖2 = ‖x̂m∗ − x0‖2 +
∑
i/∈m∗

(η2
i − x2

i )1{i ∈ m̂}+
∑
i∈m∗

(x2
i − η2

i )1{i /∈ m̂}.

The objective is to bound the terms E[(η2
i − x2

i )1{i ∈ m̂}] and E[(x2
i − η2

i )1{i /∈ m̂}] separately.
By Lemma 5.5.1, we know that E

[
(η2
i − x2

i )1{i ∈ m̂}
]
≤ 2Kβσ2

i e
−µi/β, which gives for µi =

β log
(
e+ θσ2

i

)
,

E
[
(η2
i − x2

i )1{i ∈ m̂}
]
≤ 2Kβ

σ2
i

e+ θσ2
i

≤ 2Kβ

θ
.

On the other hand, if i /∈ m̂, Lemma 5.5.1 warrants

E
[
(x2
i − η2

i )1{i /∈ m̂}
]
≤ σ2

i

(
6β log(e+ θσ2

i ) + 2
)
.

Since i ∈ m∗, log(e+ θσ2
i ) ≤ log(e+ θ‖x†‖2). We conclude by summing all the terms.

5.5.3 Proof of Proposition 5.3.3

It suffices to show that the oracle x̂m∗ achieves the rate of convergence E‖x̂m∗−x†‖2 = O
(
n
δ−2
2

)
.

For this, write

E‖x̂m∗ − x†‖2 =
∑
i∈m∗

σ2
i +

∑
i/∈m∗

x2
i ≤

n∑
i=1

|xi|δσ2−δ
i ,

by definition of m∗. We deduce

E‖x̂m∗ − x†‖2 ≤ n−
2−δ
2 σ2−δ

n∑
i=1

|xi|δ|bi|2−δ,

proving the result.
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5.5.4 Proof of Theorem 5.4.1

The proof starts as in Theorem 5.3.1. We have

‖x̂m̂ξ − x
†‖2 = ‖x̂m∗ξ − x

†‖2 +
∑
i/∈m∗ξ

(η̃2
i − x2

i )1{i ∈ m̂ξ}+
∑
i∈m∗ξ

(x2
i − η̃2

i )1{i /∈ m̂ξ},

and the objective is to bound the conditional expectation of each term separately. Using suc-
cessively Lemma 5.5.3 and Lemma 5.5.4, we get

Eξ
[
(η̃2
i − x2

i )1{i ∈ m̂ξ}
]
≤ 4Kβ

n2
+ 4α−2s−2ξ2

i x
2
i ≤

4β′ log n

α2
x2
i + κi(ξ),

with

κi(ξ) =
4Kβ

n2
+

4ξ2
i x

2
i

α2s2
1{ξ2

i > s2β′ log n}.

By Lemma 5.5.4, we know that κ(ξ) =
∑

i/∈m∗ξ
κi(ξ) is such that

E(κ(ξ)) ≤ 4(Kβ + 2α−2K ′β′‖x†‖2 log n)

n
= O

(
log n

n

)
.

On the other hand, Lemma 5.5.3 gives, for θ = 8,

Eξ
[
(x2
i − η̃2

i )1{i /∈ m̂ξ}
]
≤ 9σ̂2

i νi + 8Eξ(η̃2
i ) + x2

i1{|b̂i| ≤ αs}.

For all i ∈ m∗ξ , we know that |b̂i| ≥ |bi|/2. Thus, if i ∈ m∗ξ , 1{|b̂i| ≤ αs} ≤ 1{i ∈ M},
where we recall M = {i : |bi| < 2αs}. We know also that, if i ∈ m∗ξ , then σ̂2

i ≤ x2
i . Thus,

νi = β log(n2σ̂2
i ) ≤ 2β log n+ β log ‖x†‖2. Noticing that σ̂2

i ≤ Eξ(η̃2
i ), we find

Eξ
[
(x2
i − η̃2

i )1{i /∈ m̂ξ}
]
≤ (18β log n+ 9β log ‖x†‖2 + 8)Eξ(η̃2

i ) + x2
i1{i ∈M}.

The result follows by summing all the term, using that the risk of the oracle x̂m̂ξ is

Eξ‖x̂m∗ξ − x
†‖2 =

∑
i/∈m∗ξ

x2
i +

∑
i∈m∗ξ

Eξ(η̃2
i ).

5.5.5 Proof of Corollary 5.4.2

It suffices to show that the term
∑

i∈M x2
i is of the same order as the risk of the oracle. Write

E‖x̂m∗ξ − x
†‖2 ≥

n∑
i=1

x2
iP(i /∈ m∗ξ) ≥

n∑
i=1

x2
iP(|b̂i| ≤ |bi|/2).

For all i ∈ M , the probability P(|b̂i| ≤ |bi|/2) is greater than C as a consequence of A5.3. We
deduce

∑
i∈M x2

i ≤ C−1E‖x̂m∗ξ − x
†‖2.
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5.6 Appendix: Regularization by aggregation

In the problem of recovering the function x0, several competing estimation procedures can
be used. Rather than searching for the best estimator among all considered solutions, one may
be interested in considering a solution expressed as a combination of the existing estimates.
This approach, known as aggregation, has been recently studied in the frame of non-parametric
regression models in [BTW06], [BTW07], [JN00] and [Tsy03]. Assume we have a collection
x = (x̂1, ..., x̂M ) (with 2 ≤ M ≤ n) of preliminary estimators of x0, independent from the
observations. The x̂j ’s can be viewed as preliminary estimators of x0, constructed from a
training sample. Aggregation procedures aim to build an estimator of x0 by combining in a
suitable way the functions x̂1, ..., x̂M . The purpose is to filter out irrelevant elements in the
collection x̂1, ..., x̂M as well as to combine several possibly competing estimators. Thus, an
estimator is sought as a linear combination of the x̂j ’s, called aggregate, and noted

xλ = xλ =

M∑
j=1

λj x̂j ,

for λ = (λ1, ..., λM )t lying in some subset Λ of RM . Several kinds of aggregation frameworks
are studied in the literature, depending on restrictions made on the possible values of λ. This
restrictions are reflected through the choice of the set Λ. Most common examples are arguably
convex aggregation (C), linear aggregation (L) and model selection aggregation (MS) studied
in [BTW07], [BTW06], [Tsy03], [JN00] in a homoscedastic model. The objective of convex
aggregation is to select the optimal estimator lying in the convex hull of x̂1, ..., x̂M , which
corresponds to Λ = {λ ∈ [0; 1]M ,

∑M
j=1 λj ≤ 1}. Linear aggregation aims at finding the best

linear combination of the x̂j ’s, allowing λ to take any value in RM . Finally, model selection
aggregation aims to select the best estimator among the collection x̂1, ..., x̂M , which corresponds
to considering λ in the usual basis of RM .

For the regularization of the discrete inverse problem (5.1) treated in Section 5.2, most
methods restrict the choice of the solution in a set of linear estimators {x̂α = Rαy, α ∈ S},
where {Rα, α ∈ S} is a collection of linear operators and α is a tuning parameter. This is the
case for instance of the Tikhonov regularization as well as the spectral cut-off or more general
projection estimators, where the solution can be expressed using a smooth version of the pseudo
inverse of An,

x̂α = Φα(A∗nAn)A∗ny.

Here, Φα is a bounded approximation of the inverse function and the application of Φα to the
diagonalizable operator A∗nAn is to be understood as an operation on the spectrum (see Section
1.3.1). In general, we may restrict without loss of efficiency the number of possible values of
α to a finite set S = {αj , j = 1, ...,M}, leading to a finite collection of candidate estimators
{x̂j = x̂αj , j = 1, ...,M}. The main question in the estimation problem is then to choose
a value α̂ of the tuning parameter leading to an efficient estimate x̂ = x̂α̂. Equivalently, we
search for the best estimator in the finite class {x̂j , j = 1, ...,M} given an observation of y. A
natural objective is to minimize the expected quadratic risk E‖x0− x̂α̂‖2, however this quantity
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is hard to evaluate because the resulting estimator x̂α̂ is no longer linear, as α̂ depends on the
observation y. So, a usual compromise in such situations is to compare the risk of the estimator
to that of the best estimator in the class, or to the best linear combination

E‖x0 − x̂‖2 ≤ inf
λ∈RM

E‖xλ − x0‖2 + ∆n,

where ∆n is a residual term we want as small as possible (ideally of the same order as the minimal
risk). While some methods to select a suitable value of α have been treated in the literature
(see for instance [Cav08] or [FLn08]), we propose an aggregation approach that constructs an
estimator as a linear combination of the candidate estimators x̂1, ..., x̂M .

5.6.1 The heteroscedastic case

As discussed in Section 5.2, a discrete inverse problem with known operator can be treated
as an heteroscedastic model with known variance. Thus, in order to extend the aggregation
framework to inverse problems, we study the aggregation process in a heteroscedastic model.
We consider the usual non-parametric model where the function of interest x0 is observed at
a finite design t1, ..., tn. For sake of simplicity, we shall identify a map u with the vector of
its coordinates u = (u(t1), ..., u(tn))t ∈ Rn. Thus, in the sequel, we use the notation x0 =
(x0(t1), ..., x0(tn))t ∈ Rn. We consider the following model

y = x0 + ε,

with y ∈ Rn. Here, the noise ε is assumed centered with known covariance matrix Σ, which
we assume positive definite. Typically, we have Σ = σ2(A∗nAn)†/n in the inverse problem
framework treated in Section 5. We note S = span{x̂1, ..., x̂M} in Rn and ΠS the orthogonal
projector onto S in Rn. Moreover, for a set of indices m ⊆ {1, ...,M}, we define in the same
way Sm = span{x̂j , j ∈ m} and the associated projector ΠSm .

Viewing the preliminary estimators x̂1, ..., x̂M as a collection of regressors, the aggregation
problem can be treated as a classical linear model. It is well known that the least square
solution x̂ = arg minx∈S ‖y−x‖2n may lead to overfitting issues, especially with a large number of
regressors. So, rather than to minimize the quadratic loss over the linear span S, it is generally
more efficient to consider a solution in a subspace E ⊆ S. In this way, the construction of
the estimator involves two distinct aspects which are finding a proper model E ⊆ S (variable
selection) and choosing the best candidate in this model (regression). When the regression step
is made via minimum least square, the estimator can be simply expressed as the orthogonal
projection of y onto E and the accuracy of such estimates relies on the choice of the projection
subspace E.

In a homoscedastic model (i.e. when Σ = σ2I), the question of the best projection space E
(which is to be understood as the minimizer of the quadratic risk E‖ΠEy − x0‖2) can be given
a simple and natural answer. Remark that the risk can be expressed as

E‖ΠEy − x0‖2 = ‖(I −ΠE)x0‖2 + E‖ΠEε‖2 = ‖x0‖2 + Tr
(
ΠE(σ2I − x0x

t
0)
)
,

where Tr(M) stands for the trace of M . Thus, it appears that the best projection space contained
in S is given by E∗ = span{ΠSx0} if ‖ΠSx0‖2 > σ2 and E∗ = {0} otherwise. However, this
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information is irrelevant since E∗ is unknown and estimating E∗ basically reduces to estimating
ΠSx0. In the heteroscedastic case, determining the best projection space E∗ is not as direct. The
same calculation shows that minimizing the quadratic risk reduces to minimizing the criterion

E 7→ Tr
(
ΠE(Σ− x0x

t
0)
)
, E ⊆ S.

Actually, determining the optimal projection space E∗ involves calculating the spectral decom-
position of the symmetric operator ΠSΣΠS − (ΠSx0)(ΠSx0)t. More precisely, it appears that
the minimizer E∗ is the linear span of the eigenvectors of ΠSΣΠS − (ΠSx0)(ΠSx0)t associated
to negative eigenvalues. Once again, E∗ is unknown in practice since it depends on x0.

It is presumably hopeless to intend to estimate the best projection model over all subspaces
of S. For computational feasibility, it is generally necessary to restrict the choice of E to a
finite collection of submodels. In the Gaussian case, classical penalized procedures such as
Mallows Cp, Akaike information criterion (AIC) or Bayesian information criterion (BIC) lead to
projection estimators where the projection space is estimated in the class {Sm,m ⊆ {1, ...,M}}.
This class of submodels is quite natural although one drawback of these methods remains their
computational cost. Indeed, the correlation between the regressors x̂1, ..., x̂M makes it difficult
to evaluate the accuracy of selecting a variable x̂j independently from the other variables. To
overcome this issue, a solution is to consider a collection of submodels generated by orthogonal
variables. As we shall see in the heteroscedastic case, the family of eigenvectors of ΠSΣΠS turns
out to be a particularly convenient orthogonal basis. The idea is to restrict the observation to
the linear span of x̂1, ..., x̂M and then to write the data in an appropriate basis in order to have
uncorrelated noises (but still with possibly unequal variances). Precisely, let {σ2

i , vi}i=1,...,M be
an orthogonal system of ΠSΣΠS , that is 〈vi, vj〉 = 1{i = j} and

∀u ∈ Rn, ΠSΣΠS u =
M∑
i=1

σ2
i 〈u, vi〉vi.

Let yi = 〈y, vi〉, xi = 〈x0, vi〉 and εi = 〈ε, vi〉, we have the following relation

yj = xj + εj , j = 1, ...,M,

where the noises εj satisfy E(εiεj) = vtiΠSΣΠSvj = σ2
i 1{i = j}. The objective is to estimate

x0 by a linear combination of the x̂j ’s. Equivalently, we aim to estimate ΠSx0 =
∑M

i=1 xivi,
which can be made using a threshold procedure on the coefficients yi. Denote by M the set
of all subsets of {1, ...,M} and for all m ∈ M, note Vm = span{vj , j ∈ m}. We consider a
projection estimator of the form x̂m = ΠVmy. We know that the model minimizing the risk is
given by m∗ = {j : x2

j ≥ σ2
j } (see Section 5.3). So, in order to mimic the oracle x̂m∗ , we define

the estimator x̂ = x̂m̂ where

m̂ = {j : y2
j ≥ 4σ2

jµj},

with {µj}j=1,...,M a sequence of tuning parameters to be determined. Although the construction
of the estimator requires the calculation of the singular system {σ2

i , vi}i=1,...,M , the computa-
tional cost is low compared to penalized methods such as AIC or BIC because we do not need
to compare each submodel one at a time. Here, we simply choose to select or not the variable
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vj in the model in function of the value of yj . By construction, the estimator x̂ belongs to S

and thus, it can be written as an aggregate x̂ = x
λ̂

for some λ̂ ∈ RM . Define the function

p(λ) =
M∑
i=1

σ2
j 1{〈xλ, vj〉 6= 0}, λ ∈ RM .

Theorem 5.6.1 Assume there exist positive constants K,β such that E[exp(ε2
j/βσ

2
j )] ≤ K, for

all j = 1, ...,M . For some θ > 0, set µj = β log(e+ θσ2
j ), then the estimator x̂ satisfies

E‖x̂− x0‖2 ≤ inf
λ∈RM

{
‖xλ − x0‖2 + p(λ)

}
+ (6β log(e+ θ‖x†‖2) + 2)

∑
j∈m∗

σ2
j +

2Kβn

θ
.

This theorem provides an oracle inequality for the estimator x̂. Remark that the first residual
term can be expressed in function of the minimizer λ∗ = arg minλ∈RM ‖xλ − x0‖2 + p(λ) as we
have

∑
j∈m∗ σ

2
j = p(λ∗).

Proof. A direct application of Theorem 5.3.1 yields

E‖x̂− x0‖2 ≤ inf
m∈M

E‖x̂m − x0‖2 + (6β log(e+ θ‖x†‖2) + 2)
∑
j∈m∗

σ2
j +

2Kβn

θ
.

Note K(m) = {λ ∈ RM : 〈xλ, vj〉 6= 0 ⇔ j ∈ m} and remark that p(.) is constant over K(m).
We conclude using that RM = ∪m∈MK(m) and writing for all m ∈M,

E‖x̂m − x0‖2 = ‖ΠVmx0 − x0‖2 +
∑
j∈m

σ2
j = inf

λ∈K(m)
{‖xλ − x0‖2 + p(λ)}.

The aggregate x̂ obtained with this approach requires the calculation of the singular value
decomposition of the matrix ΠSΣΠS . Writing the observations in this particular basis leads to
a model with uncorrelated noises, which makes it easier to handle. Thus, while the method can
be interpreted as a penalized procedure, the computation of the estimator is simple and does
not involve the calculation of a penalized criterion for all 2M models.

One desirable property of most penalized procedures is the sparsity of the solution. Here, the
method induces the sparsity of the solution in the orthogonal basis {vi}i=1,...,M and therefore,
it has no reason of being associated to a sparse parameter λ. If we are concerned with the
sparsity of λ, penalized procedures for aggregation as studied in [BTW07] and [BTW06] are
more appropriate. The methods proposed in these papers rely on penalizations on the number
of non-zero components of λ or on the `1-norm of λ, both known to favor low-dimensional
values of the parameter. While the properties of the aggregate are obtained in a homoscedastic
Gaussian regression framework, a generalization of these results to heteroscedastic models could
provide an efficient regularization method for inverse problems via aggregation.
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Régularisation de problèmes inverses linéaires avec opérateur inconnu 

 
 
 
Résumé: 
 
Dans cette thèse, nous étudions des méthodes de résolution pour différents types de problèmes 
inverses linéaires. L'objectif est d'estimer un paramètre de dimension infinie (typiquement une 
fonction ou une mesure) à partir de l'observation bruitée de son image par un opérateur linéaire. 
Nous nous intéressons plus précisément à des problèmes inverses dits discrets, pour lesquels 
l'opérateur est à valeurs dans un espace de dimension finie. Pour ce genre de problème, la non-
injectivité de l'opérateur rend impossible l'identification du paramètre à partir de l'observation. Un 
aspect de la régularisation consiste alors à déterminer un critère de sélection d'une solution parmi un 
ensemble de valeurs possibles. Nous étudions en particulier des applications de la méthode du 
maximum d'entropie sur la moyenne, qui est une méthode Bayésienne de régularisation permettant 
de définir un critère de sélection à partir d'information a priori. Nous traitons également des 
questions de stabilité en problèmes inverses sous des hypothèses de compacité de l'opérateur, dans 
un problème de régression non-paramétrique avec observations indirectes.  
 
 
 
 
 
 

Regularization of linear inverse problems with unknown operator 
 
 
 
Abstract:  
 
We study regularization methods for different kinds of linear inverse problems. The objective is to 
estimate an infinite dimensional parameter (typically a function or a measure) from the noisy 
observation of its image through a linear operator. We are interested more specifically to discret 
inverse problems, for which the operator takes values in a finite dimensional space. For this kind of 
problems, the non-injectivity of the operator makes impossible the identification of the parameter 
from the observation. An aspect of the regularization is then to determine a criterion to select a 
solution among a set of possible values. We study in particular some applications of the maximum 
entropy on the mean method, which is a Bayesian regularization method that allows to choose a 
solution from prior informations. We also treat stability issues in inverse problems under compacity 
assumptions on the operator, in a general nonparametric regression framework with indirect 
observations. 
 
 
 
 
Mots-clefs: problèmes inverses, régularisation, statistiques Bayésiennes, entropie. 
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