i

i
&
4
ki
E-.—un

THESE

)
|
g

Université

de Toulouse En vue de 'obtention du

DOCTORAT DE L’UNIVERSITE DE TOULOUSE
Délivrée par : Université Toulouse III Paul Sabatier (UPS)
Discipline ou spécialité : Informatique

Présentée et soutenue par :
Frangois SCHWARZENTRUBER

Le mercredi ler décembre 2010

Titre :
Seeing, Knowing, Doing : Case Studies in Modal Logic

Directeurs de theése :

Olivier GASQUET

Professeur - Université Paul Sabatier

Rapporteurs :
Frank WOLTER Philippe SCHNEBELEN

Professeur - Université de Liverpool Directeur de recherche - ENS Cachan

Examinateurs :

Nicholas ASHER (Président)
Directeur de recherche - IRIT

Hans VAN DITMARSCH
Chercheur - Université de Séville

John-Jules MEYER

Emiliano LORINI
Professeur - Université d’Utrecht

Chargé de recherche - IRIT

Ecole doctorale :
Mathématiques Informatique Télécommunications (MITT)
Unité de recherche :

Institut de recherche en Informatique de Toulouse (IRIT)

Seeing, knowing, doing
Case studies in modal logic

Francois SCHWARZENTRUBER

Contents

[Acknowledgements/Remerciements|

1 Résumé de la thése en francaais|

[LI Tntroductionl

(1.2 Vers une nouvelle logique modale de l'espace|

(.3 _Connaissance dans Lineland|

(L.4 _Connaissance dans Flatlandl

1.5 Vers la logique STIT} 0.
I giq

[1.6 Probleme de satistiabilité et axiomatisation de fragments de STIT| .

(1.7 Un tragment STIT faiblef

[1.8 Logique modale pour des jeux épistémiques|.

Il .:E I]Ill!!l I!zll{i ! !llll Is:_l‘ll! l lls:ll!::il

[LI0 Conclusionl. o

2__Introduction|

[2.1 Our aim: reasoning about knowledge|

2.1.1 Twoexamples| 0000

2.1.1.1 Muddy children|.

2.1.1.2 Pmsoner’s dilemmal

[2.1.1.3 Towards automated reasoning|

[2.1.2 Possible applications|

2.1.2.1 Toviforkids

|2.l.2.2 & I!]s:!z g‘!;!llls :il

2.1.2.3 Modeling the world|.

2.2 Epistemic modal logicf 0 00000

.21 Syntax]

222 Semantics

[2.2.3 'I'wo decision problems|

2.2.3.1 Model-checking|

[2.2.3.2 Satistiability problem|.

2.3 Complexity classes|

13
13
15
15
16
17
19
20
20
21
22

4 CONTENTS
[2.3.1 Algorithms| 35

[2.3.2 Complexity with time| 36

[2.3.3 Complexity with space| 36

234 Hardnessl. 37

[2.4 'Two standard problems|. 00000 38
2.0 Reasoning in Sb,,|o 38
[2.6 'The product logic S5™ 0oL 43
[2.6.1 Syntax of S5™ oo 43

2.6.2 Semantics of S5™o oo 43

2.6.3 Axiomatics for S5™ oo 44

[2.6.4 Satisfiability problem for a S5"-formula is undecidable] . . . 45

2.7 Contribution of this thesid 45

I Seeing, knowing] 47
[3 Towards new ‘“spatial” modal logics| 49
[3.1 Temporal logics| 49
[3.1.1 Linear temporal logic| 50

[3.1.2 Adding branching/ 0oL 51

8.1.3 Conclusion|. 51

[3.2 Spatial reasoning|o oL 51
[3.2.1 FEuclidean geometry|. L. 51

[3.2.1.1 Real number theory| 52

[3.2.1.2 Modal logic for euclidean spaces|. 95

[3.2.2 Topology|. 95

[3.2.2.1 'T'he mathematical notion of topology|. 55)

[3.2.2.2 Modal logic S4 o7

[3.2.2.3 Qualitative relations: RCC -8/ 59

[3.3 Towards an epistemic spatial modal logic| 60
[3.3.1 Applications for spatial and epistemic reasoningl 60

[3.3.2 In English: time 1s modal; spatial isnot| 61

[3.3.3 Expressivity of temporal logic VS spatial logic|] 61

[3.4 Comparisons between our approach and the literature| 62
[3.4.1 Classical epistemic logic VS Lineland /Flatland|. 62

3.4.2 Spatial logic VS Lineland /Flatland| 63

3.4.3 'Topological epistemic logic VS Lineland/Flatland| 64

4 Knowledge in Lineland| 65
(4.1 Introductionl 65

CONTENTS 5
[M4.2.1 Syntax|. 66

422 Semantics 66

4.2.3 Technical results| 69

4.2.4 Some valid formulaslo o000 72

[4.3 Model checking and satisfiability|. 72
4.3.1 Perception fragment|{ 73

4.3.2 Perception and knowledge] 74

4.4 Axiomatizationlo 79
4.4.1 Perception fragment| 79

4.4.2 Perception and knowledge| 85

[4.5 Conclusion and perspectives| 88
[4.6 Implementation| 88
4.6.1 Pedagogical motivation|. 88

46,2 Howdeositwork @ 89

4.6.3 lechnical informationl. 90

4.6.3.1 'T'he engine in Scheme| 90

4.6.3.2 Thefront endin Javal 92

[> Knowledge in Flatland| 93
Bl Introductionlo 93
0.2 Syntax| e 95
b3 Notations| 95
(.4 Concrete semanticd o o 95
(.5 Two decision problems|o 0000000 98
[5.5.1 A non-successtul qualitative semantics| 99

[b.0.2 ITranslation into real numbers| 101

5.6 Public announcement|o 104
0.6.1 Definitions|. o 104

[5.6.2 Decidability| o oo 105

b.7 Weaker semanticslo oo 106
[5.8 Comparisons|. 107
5.9 Perspectives| 108
(.10 Open questions| e 108
II Doing 111
[6 Towards the lTogic STIT] 113
BI_PDL . . . oo 113
[6.2 Coalition Logicf 0. 114
[6.3 Drawbacks of Coalition Logic| 116

6 CONTENTS
[6.3.1 Combining with epistemic logic: de dicto Vo dere|. 116
[6.3.2 Counterfactual emotions 117
6.3.3 Solutionsl.o 117

(6.4 The STIT logic|, 118
[6.4.1 Syntax| 119
[6.4.2 ‘Traditional semantics with Branching time structure] 119

[6.4.2.1 STIT-branching time structure| 120
[6.4.2.2 Adding choices| o000 121

[6.5 A semantics with Kripke structures| 123
65.1 Definition| Lo 123
[6.5.2 Equivalence]o 124

6.6 Conclusion|. 131

[7 Satisfiability problem and axiomatization of fragments of STIT| 135

[.1 Forget time fora while| 135
7.1.1 roup STy o o o oo o0 oo 136

[7.1.1.1 Group STIT is undecidable] 139
[7.1.1.2 Group STII 1s non-axiomatizablel 139
[7.1.2 Individual STIT plus the grand coalition without time|. . . . 141
(121 Definition| oo 141
[.1.2.2 Semanticsl 141
[7.1.2.3 Complexity|, 146
(124 Axiomatization| 146
[7.1.3 A generalization of individual coalitions|. 147
[7.1.3.1 Complexity|, 158
(132 Axiomatization| 158
[7.1.4 'T'he logic of chains of coalitions| 159
[(.1.4.1 The case when AGTisfixedl 159
(142 The case when AGJ1s variablel 160

[7.2 With the neXt operator] 163
[7.2.1 Individual STIT plus the grand coalition plus neXt operator| 163
[7.2.2 When there i1s only one agent| 165

[7.3 Conclusion and perspectives| 167

8 A weak STIT fragment| 169

8.1 Syntax| 169

8.2 Modeld 170

(8.3 The NCL logic| 172
8.3.1 Definition|o 172
R.3.2 Axiomatization of NCLI. 173

Contents 7
(8.4 Decidability and axiomatization| 183
(8.5 Open questions|o 185

11 Knowing, Doing] 187

[9 Modal logic of epistemic games| 189
9.1 TIntroductionl 189
[9.2 A logic of joint actions, knowledge and preferences|. 191

[9.2.1 Syntax| 191
022 Semantics 193
9.2.3 Axjomatization|. Lo 196
9.3 A logical account of epistemic games| 199
[9.3.1 Best response and Nash equilibrium|. 200
[9.3.2 Epistemic rationality] 201
[9.3.3 Iterated deletion of strictly dominated strategies| 202
9.4 Game transformation| oL 205
[9.5 Impertect information | 000000 210
[9.6 Weaker forms of perfect information|. 215
9.7 Related works|o o 216
9.8 Conclusion| 218

(10 Counterfactual emotions| 219

(10.1 Counterfactual statements in STITI 219
(10.1.1 J could have prevented x| 219
10.1.2 Discussionl o oo 222

(10.2 A STIT extension with knowledge 223
(10.2.1 knowledge| 223
(10.2.2 Definition|o 223
[10.2.3 Decidability] 224
[0.2.4 Axjomatizationl 224

10.3 A formalization of counterfactual emotions 225
(10.3.1 Regret and rejoicingl, 225
(10.3.2 Disappointment and elation| 228
10.3.3 Discussionl o o e 230

[10.4 Related works] 231

(10.5 Conclusionl. 233

[Conclusion and perspectives| 239

Contents

Acknowledgements/Remerciements

Je tiens a remercier mes parents pour m’avoir soutenu pendant ces trois ans de
travail, surtout au téléphone. Je tiens également a remercier profondément Suzanne
Muller, ma professeur de piano de m’avoir apporté tant. Je remercie ma marraine,
Monique Schwarzentruber, d’étre venue me soutenir... 4 ma soutenance.

Je remercie ensuite — bien qu’il n’y est pas d’ordre — mon directeur de thése,
Olivier Gasquet, attentif et toujours a ’écoute. Il sait étre disponible, trés abor-
dable et tres accueillant. Vouvoiement et autres politesses stupides sont bannis
pour laisser place a la franchise, I’honnéteté et le travail. On se montre tel qu’on
est, on dit ce qu’on pense et c¢’est la 'essence méme d’un travail agréable.

Je remercie tous les membres du jury d’avoir relu mon rapport de thése et
d’avoir assisté a ma soutenance a savoir Frank Wolter, Philippe Schnoebelen, John-
Jules Meyer, Hans Van Ditmarsch, Nicholas Asher et Emiliano Lorini.

Personne avec qui j’ai travaillé

e Mon guide Emiliano Lorini qui, sans cesse, m’a fait avancer, m’a ouvert les
yeux sur des problématiques intéressantes. Il a toujours une idée de modé-
lisation intéressante comime les émotions et des concepts de la théorie des
jeux. Par ailleurs, il m’a donné de trés bons conseils a propos de STIT et
Lineland /Flatland. Je le remercie pour son exigence.

e Mon guide Andreas Herzig. Son humeur est toujours positive et tournée
vers 'avenir : penser aux projets, penser aux nouvelles idées, penser a la
communication, penser aux articles futurs, etc. Il est trés a ’écoute et trés
encourageant. I1 m’a beaucoup incité a publier certains des travaux dans des
conférences et a présenter le travail dans certains workshops dans le but de
communiquer nos idées.

e Mon guide Philippe Balbiani. Gréace a lui, le projet Lineland /Flatland a pu
voir le jour. Il m’a guidé pour établir la complétude de Lineland et a ouvert
la voie pour d’autres recherches dans ce domaine. Il m’a aussi appris le panel
des logiques de I'espace que je présente dans le chapitre 1 et comment placer

10

Contents

Lineland /Flatland par rapport a I'état de l'art.

D’autres gens

De I’équipe LiLAC

Nadine Guiraud, attentionnée et a 1’écoute. Pleine d’esprit et d’idées. Elle
est a mes cotés et je sais que je peux compter sur elle. C’est la personne la
plus formidable que je connaisse.

Bilal Said, attentionné et a ’écoute. On a travaillé sur le logiciel LoTREC.
On a aussi fabriqué un stylo électronique pour dessiner sur I’écran d’un or-
dinateur. Je le remercie profondément pour les relectures;

Marwa El Houri, souriante et attentionnée, que je remercie profondément
pour ses relectures ;

Guillaume Feuillade pour sa bonne humeur avec qui j’ai organisé un TER
I’année 2010 avec trois étudiants au sujet de recherche de stratégies dans des
systémes hydrauliques ;

Fahima Cheikh, souriante et joviale;

Mounira Kourjieh, attentionnée et & I’écoute.

Pablo Seban, ami humaniste et pacifique;;

Didac Busquets, co-bureau agréable et discret ;

Srdjan Vesic, souriant et sans-papier;

Emmanuel Navarro pour sa bonne humeur die a Python;

Nguyen Manh Hung de m’avoir aidé pour les dossier ATER ;
Nicholas Asher pour ses discussions de logiciens et sa bonne humeur ;
Jonathan Ben-Naim, fan de recherche d’informations;

Yannick Chevalier, fan de réécriture;

Laurent Perrussel et Jean-Marc Thévenin pour leur bonne humeur (méme
sils sont finalement loins...)

Stergos Afantenos, Anais Cadilhac, Frédéric Moisan, Pierre Bisquert... des
nouveaux !

anciens de LiLAC

Nicolas Troquard pour d’énormes discussions sur STIT ;
Guillaume Aucher le grand fan de Gédel-Escher-Bach ;
Tiago De Lima, féru de méthode des tableaux pour PAL;
Sihem Belabbes et le dessin du dromadaire.

Contents 11

Des autres équipes

Jérome Lang pour m’avoir prété un livre sur la théorie des jeux;

Didier Dubois, Héléne Fargier et Martin Cooper pour une discussion sur un
probléme de complexité (le fragment existentiel de la logique des réels) ;

Florence Dupin de Saint-Cyr - Bannay pour sa bonne humeur un peu extréme
mais tellement agréable ;

Mathieu Serrurier pour quelques discussions et pour avoir donné des TPs
avec lui;

Florence Boué pour sa bonne humeur (bonjour! je viens pour avoir du pa-
pier!);

Meriam Bayoudh pour sa bonne humeur;

Gilles Richard pour sa bonne humeur et sa classe de formules de la logique

des propositions dont le cardinal de I'ensemble des modéles de chaque formule
est égal a 6.

Et aussi...

Martine Labruyére pour m’avoir guidé dans ce monde administratif et dans
la bonne humeur;

Evelyne Terral et Isabelle Babouin pour les missions a I’étranger et aussi
I'organisation de la venue du jury;

Brigitte Marchiset pour les nombreux dépots SVN ;

Jean-Pierre Baritaud pour 'organisation technique de la soutenance.

Les autres chercheurs

Hans Van Dittmarch, pour sa bonne humeur, son violoncelle et ses remarques
a propos de Lineland et Flatland ;

Frank Wolter pour son accueil dans son laboratoire a Liverpool et aussi
d’avoir accepté d’étre dans le jury de ma theése;

Dirk Walther, Daniel Pokrywczynski and Michel Ludwig pour leurs accueils
au laboratoire a Liverpool;

Mikhail Rybakov pour les discussions a propos de la complexité du probléme
de satisfiabilité de S5y avec un nombre fini de propositions;

et Stanislav Kikot pour sa bonne humeur et son originalité.

12

Contents

Mes autre amis

Les

toulousains

Carole Pichereaux pour sa disponibilité et sa bonne humeur;

Karine Villeneuve pour sa bonne humeur et ses idées ;

Stéphanie Flipo pour sa bonne humeur et ses idées ;

Madeleine Weber pour son enthousiasme ;

Jean-Paul Ibrahim et Céline Leredde pour leur bonne humeur (et la petite
Mélina aussi) ;

Marion Lebellego pour ses bonnes idées et son enthousiasme ;

Brice Loustau, Léo Monsaingeon et Julien Lequeurre pour leur folie;
Erwan Hillion, Tiphaine Jézéquel pour leur folie aussi;

Mathieu Leroy-Lerétre pour ses poissons;

Sucen Liu pour sa bonne humeur et ses poissons... tropicaux !

Jean-Marie Crevat, Monique Frémeau et Francois Nirrengarten pour leur
soutien moral ;

Serge Krichevsky et tout son orchestre.

amis lointains (en distance)

Mathieu Gentés, par téléphone le plus souvent ;

Les gens du Master 2 : Sylvain Lemouzy, Aurore Miquel, Mikaél Mayorgas,
assez fous;

Les fourmis de Lemouzy ;

Romain Legendre pour des discussions gEeKs;

Les gens de 'ENS : Clément Dunand, Rayan, Madeleine ;
Sarah Marchoud, toujours pleine d’idées;

Guillaume Grodwohl et Fabien Perrot-Fréchin, loins...

gens que j’ai rencontré sur ma route

Julien Dutant que j’ai rencontré durant ESSLLI 2010 et qui m’a gentillement
ouvert les yeux sur la logique épistémique telle qu’elle est étudiée par les
philosophes. Cela m’a permis de rédiger la remarque [I}

Chapitre 1

Résumé de la thése en francais

1.1 Introduction

Dans le domaine des jeux vidéos par exemple, surtout des jeux de roles, les per-
sonnages virtuels percoivent un environnement, en tirent des connaissances puis
effectuent des actions selon leur besoin. De méme en robotique, un robot percoit
son environnement a I’aide de capteurs/caméras, établit une base de connaissances
et effectuent des mouvements etc. La description des comportements de ces agents
virtuels et de leurs raisonnements peut s’effectuer a I'aide d’un langage logique.

Dans cette thése, on se propose de modéliser les trois aspects “voir”, “savoir”
et “faire” et leurs interactions & 'aide de la logique modale. Dans une premiére
partie, on modélise des agents dans un espace géométrique puis on définit une
relation épistémique qui tient compte des positions et du regard des agents. Dans
une seconde partie, on revisite la logique des actions “STIT” (see-to-it-that ou “faire
en sorte que”) qui permet de faire la différence entre les principes “de re” et “de
dicto”, contrairement a d’autres logiques modales des actions. Dans une troisiéme
partie, on s’intéresse & modéliser quelques aspects de la théorie des jeux dans une
variante de la logique “STIT” ainsi que des émotions contre-factuelles comme le
regret.

Tout au long de cette thése, on s’efforcera de s’intéresser aux aspects logiques
comme les complétudes des axiomatisations et les complexités des problémes de
satisfiabilité d’une formule logique.

L’intégration des trois concepts “voir”, “savoir” et “faire” dans une et une seule
logique est évoquée en conclusion et reste une question ouverte.

Dans cette thése, on se base sur la logique modale épistémique dont la syntaxe
est définie de la maniére suivante :

pu=L1L|pl-p|leVe| K

14 1.1 Introduction

oll p est une proposition atomique et a € AGT.

La construction K,p se lit “I’agent a sait que ¢ est vraie”. La sémantique, elle,
est définie en terme de modéle de Kripke, c’est a dire de structure M = (W, R, V')
ol :

e I/ est un ensemble non vide de mondes possibles ;

e R attribue a chaque agent a une relation épistémique R, qui est une relation
d’équivalence sur W ;

e 1/ est une valuation qui spécifie dans chaque monde quelles propositions sont
vraies.

On peut voir une telle structure comme un graphe ot W est ’ensemble des
sommets du graphe, R regroupe les différents arcs étiquettés et V' les étiquettes
des sommets. On définit ensuite la condition de vérité M,w = ¢ par induction
structurelle sur ¢ de facon usuelle. En particulier pour 'opérateur épistémique,
cela donne :

e M,w = K,y si, et seulement si pour tout v € R,(w), M, v = ¢.

La donnée (M, w) s’appelle un modéle pointé. On dira qu’'une formule ¢ est
satisfiable si, et seulement si il existe un modéle pointé M, w tel que M, w = ¢.
On dira que ¢ est valide si, et seulement si pour tout modéle pointé M, w on a
M, w = .

Les modéles pointés interviennent dans deux problémes de décision :

e Le model-checking : en entrée on donne un modéle pointé M, w et une for-
mule @ et en sortie “oui” si, et seulement si on a M, w = ¢;

e Le probléme de satisfiabilité : en entrée on donne une formule ¢ et en sortie
“oui” si, et seulement si la formule ¢ est satisfiable (autrement dit, il existe
un modéle pointé M, w tel que M, w = ¢).

De maniére assez naturelle, le model-checking est dans P. Concernant le pro-
bléme de satisfiabilité en logique épistémique, Y. Moses et J. Y. Halpern [JYH96]
ont démontré qu’il est respectivement NP-complet s’il y a un seul agent dans le
systéme et PSPACE-complete s’il y a deux agents.

Dans cette thése, on trouvera une réécriture plus concise de ’algorithme pro-
posé dans le papier de Y. Moses et J. Y. Halpern qui décide le probléme de satis-
fiabilité en logique épistémique : il s’agit d’un algorithme alternant qui travaille en

temps polynomial (Figure [2.4).

15

1.2 Vers une nouvelle logique modale de 1’espace

Notre but est de créer une logique modale épistémique a partir de ce que les agents
savent sans communication. Autrement dit, il s’agit de construire une logique qui
parle de ce que les agents savent a partir de ce qu’ils voient. Leurs perceptions
dépendent de la géométrie de 'environnement des agents. Dans 1’état de I'art, il
existe déja une multitude de logiques de 'espace. Citons :

e La théorie des réels du premier ordre (étudiée par Tarski) utilisée en ma-
thématiques dont les symboles sont les nombres, le +, le x, I'égalité, la
comparaison des nombres <, les connecteurs booléens, les quantificateurs
universels et existentiels. Cette logique permet de parler de la géométrie via
un systéme de coordonnées qui bien souvent utilise les nombres réels.

e P. Balbiani et V. Goranko [BG02] ont inventé une logique modale basée sur
des opérateurs modaux comme “toutes les droites qui passent par le point
courant vérifient...”, “tous les points de la droite courante vérifient...” etc.

e La logique modale S4 offre une interprétation topologique de la construction
Ly @ ¢ est vraie dans tout un voisinage autour du point courant.

e RCC-8 est une théorie du premier ordre fournissant des prédicats comme
“deux régions se touchent & la frontiére”, “la premiére région est incluse dans
la seconde” etc.

Toutes ces logiques sont loin de nos besoins : dans toutes ces logiques, la syntaxe
parle de I'espace (le langage contient des opérateurs qui parlent de 'espace et/ou
des variables qui parlent de régions ou de coordonnées) et la sémantique est défi-
nie en termes géométriques. On souhaite construire une logique épistémique sans
opérateurs modaux de 'espace dans la syntaxe et ou la géométrie n’intervient que
dans la sémantique. En d’autres termes, nous voulons une logique épistémique ot
la sémantique d’une formule est donnée uniquement a partir de la localisation des
agents dans I’espace. Nous avons donc décidé de créer notre propre approche.

1.3 Connaissance dans Lineland

Nous créons ici une logique épistémique comme la logique épistémique tradition-
nelle sauf que les mondes possibles sont ici des mondes géométriques ot les agents
occupent une position dans l’espace. Ici, on se place dans un cadre simple ou
Pespace est une ligne. On définit donc un monde de Lineland w = (<,d;r) par
la donnée d’un ordre total strict sur les agents et une fonction dir : AGT —

16 1.4 Connaissance dans Flatland

{Left,Right} qui dit pour chaque agent a si ’agent regarde a gauche (d;r(a) =
Left) ou il regarde & droite (dir(a) = Right).

Ensuite, nous définissons des relations épistémiques R, pour chaque agent a
sur 'ensemble de ces mondes de Lineland. On définit wR,u si, et seulement si
I’agent a voit exactement la méme chose dans le monde w et le monde v.

La syntaxe de la logique qu’on considére ici ressemble beaucoup a la logique
épistémique classique sauf qu’il n’y a pas de propositions atomiques qui sont rem-
placées par des constantes qui parlent de la perception des agents :

pu=ab>b| L] -p|pVel| K

ol a, b sont des agents. La construction a > b se lit “I’agent a voit 'agent b” et
la construction K, se lit “I'agent a sait que la formule ¢ est vraie”.

La sémantique est alors naturelle : w |= a > b se définit directement avec les
localisations des agents a et b qui sont données par < et d?r(a) et w = K,p se
définit de facon usuelle avec la relation R,. On obtient une unique structure de
Kripke spécifique ol les mondes sont exactement les mondes de Lineland et les
relations sont définies ci-dessus.

Les résultats techniques concernent le model-checking et le probléme de satis-
fiabilité qui sont tous les deux PSPACE-complet. On donne un algorithme alter-
nant pour le model-checking a la figure qui utilise un temps polynomial pour
s’exécuter et on prouve la PSPACE-difficulté via une réduction au probléme de
satisfiabilité d’une formule booléenne quantifiée. Il n’est pas étonnant ici que le
model-checking soit PSPACE-difficile et non pas dans P car I'entrée du probléme
n’est pas la donnée d’une structure de Kripke et d’une formule mais d’un seul
monde de Lineland (ordre total < et fonction dir) et d’une formule.

On donne également une axiomatisation compléte de cette théorie épistémique
dans le cas ou les agents sont disposés sur une ligne.

On aborde également I'implémentation d’un model-checker méme si cette im-
plémentation n’est pour 'heure pas efficace (au sens pratique).

1.4 Connaissance dans Flatland

Nous abordons ici la méme approche mais dans le plan. Les agents ont chacun une
position dans le plan. Désormais un monde de Flatland est défini par un couple
(pos, dir) ou :

e pos: AGT — R?;

o dir: AGT — U.

17

ou U désigne le cercle unité.

On associe une position a chaque agent mais aussi une direction vers laquelle
I'agent regarde. On conviendra qu'un agent percoit un demi-plan ouvert dans la
direction vers laquelle il regarde.

De la méme maniére, on définit des relations épistémiques sur ces mondes 14 :
on dira que wR,u si, et seulement si 'agent a voit la méme chose dans w et wu.
Et de la méme maniére nous avons défini une et une seule structure de Kripke
spécifique.

Le language est toujours le méme & savoir :

pu=a>b|L]-p|leVe| K

ou a, b sont des agents.

Le traitement du model-checking et du probléme de satisfiabilité d’une formule
© sont plus compliqués dans le cadre d’'un plan que dans le cadre de la ligne.
Nous n’avons pas réussi a trouver une structure de données concise permettant de
représenter simplement et qualitativement un monde dans le plan. C’est pourquoi
nous n’avons pas de résultat précis concernant la complexité théorique de ces deux
problémes. Nous savons seulement qu’ils sont décidables via une traduction dans
la théorie des réels de Tarski.

Nous proposons deux ébauches. On étend le langage avec des annonces pu-
bliques mais cela ne pose aucun probléme concernant la décidabilité. On propose
aussi une sémantique plus faible ot 'on ne tient plus compte des positions exactes
des agents dans le plan mais uniquement de ce que les agents voient. Dans ce cadre,
le model-checking et le probléme de satisfiabilité sont dans PSPACE. Néanmoins,
une implémentation efficace semble pour I'instant un probléme difficile.

1.5 Vers la logique STIT

Notre but a présent est d’avoir un langage qui parle de ce que les agents font. Il
y a dans la littérature plusieurs formalismes logiques qui semblent correspondre &
notre attente meéme si ce n’est pas le cas :

e La logique PDL est une logique des actions (vues comme des programmes).
C’est une logique modale qui offre des constructions modales comme [7]p
signifiant “aprés I’exécution du programme 7, il y a toujours ¢ qui est vraie.
Le défaut principal de cette logique pour nous est de ne pas parler d’agents !

e La famille des logiques de coalitions (logique de coalition de Marc Pauly,
Alternating-Time Logic etc.) sont des logiques de l'action qui offrent des
constructions modales de la forme ((J))y qui signifie “le groupe d’agents J

18 1.5 Vers la logique STIT

peut faire en sorte que ¢ soit vrai”. Avec cette famille de logiques, on peut
exprimer ce que les agents peuvent faire mais pas du tout ce que les agents
font réellement. En particulier voici deux défauts :

— On ne peut pas mélanger 'une de ces logiques avec la logique épisté-
mique pour exprimer facilement la différence entre de re (je peux faire
une action pour que ¢ soit vraie et je sais laquelle) et de dicto (je sais
que je peux faire une action pour que ¢ soit vraie mais je ne sais pas
laquelle).

— Il est difficile de représenter des émotions contre-factuelles comme le
regret & 'aide de ces logiques étant donné que de telles émotions dé-
pendent des actions qu’on entreprend et non pas juste des actions qu’on
peut entreprendre.

La famille des logiques STIT développé par Belnap etc. correspond a notre
attente. Dans cette thése, j’ai étudié la logique STIT suivante :

o = L | p| (evVe) | ¢ | Ul | Xe

ou [J]p signifie “le groupe d’agents J fait en sorte que ¢ soit vraie” ou X se
lit “ est vraie a l'instant suivant”.

Un modéle de la sémantique donné par Belnap de cette logique est une structure
temporelle branchée (un arbre). Les noeuds de 'arbre sont appelés moments. Une
histoire est une branche (un ensemble maximal linéairement ordonné de moments).
On dira que deux histoires h; et ho se divisent au moment m si le moment m est
le moment le plus dans le futur qui est commun aux deux histoires h; et hs. On
ajoute a chaque moment m d’une structure, une fonction de choix C' qui pour
chaque coalition J, partitionne 1’ensemble des histoires passant par m en classes
d’équivalence. Chaque classe d’équivalence représente un choix de la coalition J.

Bien stir chaque fonction de choix C doit satisfaire des conditions techniques
afin de bien modéliser la notion de choix :

e La propriété d’additivité : les histoires que peuvent choisir ensemble une
coalition J est l'intersection des histoires que peut choisir chaque agent a €
J;

e Pas de choix entre des histoires non divisées : il est impossible a un certain
moment m pour une coalition de choisir entre deux histoires qui ne se divisent
pas en m. En d’autres termes, si deux histoires ne se divisent pas, elles
correspondent toutes les deux aux méme choix des agents;

19

e Indépendance des agents : chaque agent a du systéme peut décider son propre
choix et l'action jointe de la grande coalition AGT composée des actions
choisis par chaque agent existe toujours.

Dans le but de simplicité et aussi afin de pouvoir combiner cette logique, on
donne dans cette thése une sémantique équivalente en termes de modéles de Kripke.

1.6 Probléme de satisfiabilité et axiomatisation de
fragments de STIT

Nous commencons par prouver que la logique STIT atemporelle est indécidable si
le nombre d’agents est supérieur ou égal a 3 via une réduction a la logique modale
produit S5". On prouve également que cette logique n’est pas axiomatisable avec
un nombre fini de schémas d’axiomes et les seules régles de modus ponens et
nécessitation.

C’est pourquoi nous nous intéressons a des fragments ot ’on restreint les coa-
litions autorisées J dans le langage quand on écrit un opérateur [J].

Par exemple P. Balbiani et al. avaient déja montré que, si on ne s’autorise que
des coalitions individuelles, c’est & dire des opérateurs [{a}] ot a est un agent,
alors le probléme de satisfiabilité est NEXPTIME-complet et que ce fragment est
axiomatisable. Dans cette thése, on étend ce résultat & un fragment atemporel plus
grand : on commence par remarquer que si on autorise les opérateurs [{a}] ainsi
que lopérateur pour la grande coalition [AGT] alors le probléme de satisfiabilité
reste décidable et NEXPTIME-complet. Mieux, en fait, si on autorise toutes les
coalitions présentes dans le treillis de la figure [7.3| alors le probléme de satisfiabilité
reste NEXPTIME-complet et la logique demeure axiomatisable. Ces résultats de
décidabilité sont montrés a l'aide d’une filtration que 1'on adapte un peu pour
que les propriétés des modéles restent respectés. En fait, on donne également les
propriétés du modéle fini pour plusieurs classes de modéles avec des bornes sur la
taille de ces modéles. Par ailleurs, on montre que le probléme de satisfiabilité de la
logique ot les coalitions sont imbriquées les unes dans les autres J; C Jo C Js... est
NP-complet si le nombre de coalitions est fixé et PSPACE-complet si le nombre
de coalitions n’est pas connu a l'avance.

On remarque enfin que la logique temporelle avec 'opérateur X peut se plonger
dans la logique atemporelle d’ou on déduit également les complexités pour les
problémes de satisfiabilité. Le probléme de satisfiabilité d’une formule du STIT
individuel avec un seul agent et I'opérateur temporel X est PSPACE-complet et
le probléme de satisfiabilité d’une formule du STIT individuel avec au moins deux
agents et 'opérateur temporel X est NEXPTIME-complet.

20 1.8 Logique modale pour des jeux épistémiques

1.7 Un fragment STIT faible

On a étudié des fragments dans lesquels on a restreint les coalitions que 'on peut
écrire dans une formule. A présent, on étudie un fragment ot I'on interdit I'imbri-
cation des opérateurs modaux, mais en autorisant toutes les coalitions possibles.
Le fragment syntaxique est le suivant :

x:=L1|p|xAx|-x (formules propositionnelles)

Y= [J]x | ¥ A (formules STIT)

pu=x|v]|eANe| e (@) (formules du langage))

Par exemple, la formule [{1}][{1,2}]p n’est pas autorisée dans le langage.

On démontre un résultat de propriété du petit modéle a ’aide d’un argument
de type “sélection de points” : en fait, toute formule satisfiable est satisfiable dans
un modéle de taille polynomiale. De fait, on obtient que le probléme de satisfia-
bilité d’une formule de ce fragment est NP-complet. On donne aussi un résultat
d’axiomatisation : toutes les validités du fragment syntaxique sont démontrables.

1.8 Logique modale pour des jeux épistémiques

A présent, on donne un formalisme logique pour pouvoir raisonner & propos des
jeux épistémiques. Il s’agit d'une logique modale et d’une sémantique en termes de
modéles de Kripke, ainsi que d’une axiomatisation. On donne aussi des résultats
de complexité.

Le langage de cette logique fournit plusieurs opérateurs modaux :

e Un opérateur d’action qui permet des constructions du type “la coalition C'
exécute l'action jointe 05" ;

e [y : “dans tous les états possibles du jeu, ¢ est vraie”;
0 1 “T'agent ¢ sait que ¢ est vraie” ;

e ¢ est vraie dans les mondes qui sont meilleurs non strictement pour 'agent
¢t que le monde courant.

On se place dans un premier temps dans le cadre d’information compléte. Le
probléme de satisfiabilité est NP-complet. On montre aussi comment exprimer les
notions de meilleures réponses, d’équilibres de Nash et de rationalité a I’aide de ce
langage logique. On retrouve des théorémes connus de la théorie des jeux. On dé-
finit aussi la notion de stratégie strictement dominée et ’algorithme d’élimination
des stratégies strictement dominées (IDSDS).

On fournit également une représentation plus concise de cet algorithme en
ajoutant la notion d’une variante d’annonces publiques au langage.

21

On continue notre étude avec les jeux a information incompléte qu’on est aussi
capable de représenter dans notre logique en affaiblissant notre logique a infor-
mation compléte : on relache la contrainte qui liait [J et K;. Dans ce cadre plus
général, le probléme de satisfiabilité est PSPACE-complet a moins qu’il n’y ait
qu’un seul agent et qu'une seule action auquel cas il est NP-complet.

1.9 Emotions contre-factuelles

La logique STIT permet aisément de représenter la notion de responsabilité “le
groupe d’agents J aurait pu éviter que y soit vraie”. Formellement, cela s’écrit de
la fagon suivante :

CHP,x Xy A —[AGT\ J]x.

c’est a dire y est vraie et il est faux que les autres agents font en sorte que y
soit vraie (i.e. les autres permettent —y).

Pour représenter une émotion contre-factuelle on a besoin d’un opérateur épis-
témique. On étend donc le langage de STIT avec un opérateur épistémique.

Bien siir, comme la logique STIT est indécidable, il est souhaitable d’utiliser
un fragment syntaxique de cette logique si on veut l'utiliser en pratique dans
un systéme qui représente des émotions contre-factuelles. On s’intéresse donc au
langage suivant :

X ==L]p|xAx|-x (formules propositionnelles)
= [J]x | ¥ A (formules STIT)
pu=x[Y|enp| e[@)Y K (formules du langage)

Avec ce fragment (qui est une extension du fragment STIT vu précédemment),
le probléme de satisfiabilité d’une formule est PSPACE-complet. De plus, on donne
une axiomatique : toute validité de ce fragment est démontrable.

A présent introduisons des atomes spéciaux good; pour tout agent i € AGT.
Ces atomes spéciaux désignent les mondes qui sont bons pour un agent.

On dira que y est bon pour I'agent i si, et seulement si x est vrai dans tous les

mondes bons. Formellement :

GooDyx & [0)(good; —).

On dira que x est désirable pour I'agent ¢ si, et seulement si 7 sait que y est
quelque chose de bon pour lui :
DES;x ¥ K,GOOD;Y.
On peut ensuite définir dans notre langage quatre émotions contre-factuelles
que sont le regret, la réjouissance, la déception, ’allégresse :

REGRET;Y ' DES,—\ A K,CHP;Y.

22

1.10 Conclusion

REJOICE;y = DES;y A K;CHP,Y.

DISAPPOINTMENT,x % DES,—x A KiCHP 4 (i) X-

ELATION,y & DES;x A K;CHP 4qm (i) X-

Ces quatre émotions sont définies & partir de deux variables :
e selon que 'on désire x ;

e selon que la responsabilité de x vienne de ¢ ou des autres agents.

1.10 Conclusion

Dans cette thése, on a proposé de multiples formalismes en logique modale pour
parler de la perception des agents dans un monde a une dimension ou deux di-
mensions. On a étudié une logique des actions, STIT, ainsi que les fragments. On a
également décrit une logique modale permettant de modéliser certains concepts de
la théorie des jeux. On a développé une logique permettant de décrire des émotions
contre-factuelles.

Les perspectives sont a présent nombreuses :

e Inclure du dynamisme comme des opérations de mise a jour etc. : changement

d’émotions, changement de connaissances sur I'état physique du monde.

Etudier des variantes concernant la perception : d’autres géométries, d’autres
types de perceptions, etc.

Construire un cadre logique permettant de décrire toute la chaine de repré-
sentation des connaissances d’un agent : représentation du monde physique
et des actions des autres agents. On pourrait introduire des axiomes d’inter-
actions entre perception et connaissance qu’une action est réalisée comme :

a>b— ({bty = Ka[{b}]0)

c’est a dire si un agent a voit un agent b et que b réalise une action telle que
@ est vraie alors 'agent a sait que I'agent b réalise cette action.

Trouver une facon d’implémenter efficacement les procédures de décision
pour les logiques présentes dans cette thése. Pour l'instant, raisonner direc-
tement avec la théorie des réels pour faire du raisonnement épistémique sur
le monde est inefficace. Par exemple, le fragment STIT faible est NP-complet
mais nous n’avons pas de bonne procédure de décision, procédure de déci-
sion qui aiderait grandement a la réalisation d’un systéme qui sait raisonner

23

sur les émotions contrefactuelles. L'implémentation de ces procédures de dé-
cisions pourraient étre utilisée pour créer un jeu vidéo ou les personnages
virtuels sont dotés de raisonnement et de représentation des connaissances
en terme d’état du monde virtuel et des actions des autres agents.

24

1.10 Conclusion

Chapter 2

Introduction

This thesis deals with knowledge reasoning using epistemic modal logic. Epis-
temic modal logic was already been studied in the domain of Artificial Intelligence
[JYH96]. The contribution of this thesis is to investigate knowledge reasoning
about two complementary issues: knowledge about the perception of what agents
see in the world (Part [I) and knowledge about actions and also about emotions

(Parts [[T] and [[TI).

2.1 Our aim: reasoning about knowledge

In this section, we first present two examples in order to give an intuition about
reasoning about knowledge, agents, actions, perceptions, etc. We then explain
what is automated reasoning. Finally, we give some applications to illustrate how
reasoning about knowledge can be useful in the real life.

2.1.1 Two examples
2.1.1.1 Muddy children

Let us begin with the famous example of the Muddy children [GO06|, [Pla07],
[FHMV95|. Let us consider three children Fahima, Marwa and Nadine settled as
in the Figure[2.1] In particular, we suppose that their foreheads are dirty. Each of
them do not know whether she is dirty or not but knows that the other are dirty.

Suppose that the following sentences are true for Fahima:
e Fahima does not know that she is dirty.

e Fahima knows that Marwa is dirty.

26 2.1 Our aim: reasoning about knowledge

Figure 2.1: Muddy children with 3 children: Fahima, Marwa and Nadine.

e Fahima knows that Nadine is dirty.

e Fahima knows that Marwa knows that Nadine is dirty.

e Fahima knows that Marwa knows whether Fahima is dirty or not.
e Fahima knows that Nadine knows that Marwa is dirty.

e Fahima knows that Nadine knows whether Fahima is dirty or not.

e [Fahima does not know if Marwa knows that Nadine knows that there is at
least one of the children which is dirty, etc.

Now the father of Fahima, Marwa and Nadine comes and says: “at least one
of you is dirty.” We suppose that each child trusts the father and that each child
knows that the others trust the father and so on. In fact, each of them learn this
fact and thus Fahima knows the following sentence:

e Fahima knows that everyone knows that everyone knows that at least one of
the children is dirty.

The father asks every child if she knows whether she is dirty or not. Every
child answers the truth: actually they do not know. Thus, Fahima makes this
reasoning:

e Suppose [am dirty. Marwa sees and knows that Nadine is dirty. Marwa
would also know that I am dirty. Hence Marwa would know that two children
are dirty. The same for Nadine: she would know that two children are dirty.

2.1.1 Two examples 27

e Suppose [am clean. Marwa cannot imagine she is clean. Otherwise Nadine
would have answered “I am dirty”. In the same way, Nadine cannot imagine
she is clean. Otherwise Marwa would have answered “I am dirty”.

e Conclusion: Nadine and Marwa do the same reasoning. Everybody knows
that there are at least two dirty children.

Then the father asks again to every child if she knows whether she is dirty or
not. Every child answers the truth: actually they do not know. Thus, Fahima
makes this reasoning:

e Suppose I am clean. In this case, Marwa would see that only Nadine is dirty.
Furthermore, as Marwa actually knows that two of the children are dirty
Marwa would have answered “I am dirty”. But this was not the case.

e Conclusion: T know that T am dirty.

This example partly relies on what agents see. If Fahima did not see Marwa
and if she did not know that Marwa sees her etc. she would not have been able
to deduce that she was dirty. In Part [I| we propose a knowledge representation for
problems dealing with perception.

2.1.1.2 Prisoner’s dilemma

Let us consider two boys: Bilal and Pablo. Every day their father give them 5€
for pocket-money. Bilal and Pablo are usually wise but today, they are not: they
have eaten together all the ice cream from the fridge! The father is not aware that
all the ice cream has been eaten. Bilal and Pablo have two choices: admit the fault
to the father or say nothing. But the two boys know how the father can react:

e if they both admit the fault, Bilal will have only 2€ for pocket-money and
Pablo will have only 2€ for pocket-money;

e if they both say nothing, Bilal and Pablo will both have 5€ as usual;

e if Bilal admit the fault and Pablo say nothing, Bilal will have 3€ but Pablo
will have nothing because he is not honest;

e if Pablo admit the fault and Bilal say nothing, Pablo will have 3€ but Bilal
will have nothing because he is not honest.

The best choice (Nash equilibrium) is that they both admit the fault. Indeed,
if Bilal admit the fault, he can win 2€ or 3€. But if Bilal say nothing, he may have
no money from the father. This example partly relies on the knowledge about the
actions and preferences of Bilal and Pablo. In Part [and [[IT] we will give different
representations for problems dealing with actions and preferences.

28 2.1 Our aim: reasoning about knowledge

2.1.1.3 Towards automated reasoning

We want a computer to be able to reason about knowledge (Fahima knows that
her forehead is dirty), action (Bilal say nothing, Pablo admit the fault, etc.), pref-
erences (Bilal prefer to win 2€ than nothing), emotions (Bilal regrets to have said
nothing). We want also the computer to reason about mix of the previous ingre-
dients: for instance, we want to design algorithms able to automatically reason
about sentences like “Bilal knows that Pablo prefer that Fahima feel regret”. In
this sense, this thesis is part of the field of artificial intelligence.

In order to make a computer reason/compute, we need data structures to
represent knowledge, action, preferences, emotions. In this sense, this thesis also
deals about knowledge representation. Throughout this thesis, the most important
data structures are Kripke structures that give a semantics to . Modal logic is
suitable for many reasons:

e Modal logic is close to natural language. For instance, the fact “Fahima
knows that Marwa’s forehead is dirty” is represented by the formula
Krahimadirtynrarwe- The symbol Kpgpime is called a modal operator and
its meaning is “Fahima knows that”. The symbol dirtyyremwe is called an
atomic proposition and represents the atomic fact “the forehead of Marwa is
dirty”. Thus the representation in terms of formulas is easy;

e Like the classical propositional logic, modal logics’ satisfiability problems
and model-checkings (see Definition [3| and []) are often decidable: generally
speaking, it means that we can use modal logics practically with a computer
for automated reasoning.

e Modal logic is expressive. For instance, we can nest modal operators, that
is to say we are able to reason about complex formulas like

KFahima _'KNadine dirtyhfarwa

(“Fahima knows that Nadine does not know that Marwa is dirty”). In par-
ticular, this kind of complex formulas cannot be easily expressed in classical
propositional logic.

Generally speaking, the more a logic is expressive, the more it is difficult to
reason with:

e classical proposition logic is “very” decidable (see Theorem [3)) but not really
expressive;

e Modal logics are often “quite” decidable (see Theorem [5| and “quite” expres-
sive and suitable for artificial intelligence aspects;

2.1.2 Possible applications 29

e the first order logic is undecidable [Chu36|, [Tur37] but “very” expressive,
although not very suitable for artificial intelligence aspects (far from natural
speaking)

2.1.2 Possible applications
2.1.2.1 Toy for kids

An Australian company [Ada09] is developing a teddy bear that can interact with
young kids and propose activities. Modal logic may help this project to have a
clean knowledge representation for the toy for preferences of the kid, knowledge of
the environment of the kid. For instance:

e the teddy bear may know that the kid prefers listen to classical music than
to jazz; (knowledge and preferences);

e the teddy bear may know that if the kid knows that there is a cat in the room
and that the cat is looking at the teddy bear, the kid will cry. (knowledge,
perception, action)

e the teddy bear may understand the notion of regret of an action of the kid
and then sing a happy song to the kid in order to calm her.

2.1.2.2 Video Games

In the domain of video games, there are some specific kinds of games where the
player are evolving in a virtual world (for instance the Middle-earth [TSBH95]).
Such a game is often called role playing game. In the virtual world of such a
role playing game, there are inhabitants, for instance weapon sellers, innkeepers,
kings, dwarfs, warriors, etc. Those characters are artificial and are designed by
the computer. In particular, the computer controls the behaviors of those different
agents and the behavior of an agent is closely related to her knowledge about the
world as well as agents actions, preferences, emotions etc. For instance:

e Dwarfs hates when elves wear hats (preferences);
e Dwarfs prefer to have axes than swords;

e The dwarf Bilal knows that the elf Pablo has sold his weapon (knowledge
and action);

e The elf Pablo regrets to have sold his weapon but the dwarf Bilal does not
know it (knowledge, action and emotion).

30 2.2 Epistemic modal logic

Thus, modal logics seem to provide a clean framework to represent knowledge
of an artificial inhabitant of the virtual world of a role playing game and then to
deduce a rational behavior of such an agent.

2.1.2.3 Modeling the world

Another more application of logician is to understand and to explain the world.
As the physician Niels Bohr has modeled the atom with a planetary-model atom,
modal logicians may model knowledge reasoning etc. with Kripke modal logic
defined below.

2.2 Epistemic modal logic

Epistemic modal logic is a modal logic [BDRV(2], [Che80|, [HC72], [GO06], [Hin62]
concerned by the notion of knowledge. Its name comes from the Greek word
emioTnun or “episteme” meaning knowledge.

2.2.1 Syntax

In this section we present the language of epistemic logic [JTYH96|. The syntax is
the raw symbols. Let us consider a countable infinite set ATM of atomic propo-
sitions and a finite non-empty set AGT of agents. The language is defined by the
following rule:

o == p | L | ¢ | (¢Ve) | K

where p ranges over ATM and a ranges over ATM.

The intuitive meaning of K, is “agent a knows that ¢ is true”. K, is called a
modal operator. As usual T =3 =1 (o A1) =0 =(=pV =), Ky =% = K,—p,
o — P =% (mp V) and (p >) =2 ((p —) A (¢ <). We follow the
standard rules for omission of parentheses.

Example 1 The formula sun A ~K,sun means “the sun is shining but the agent
a does not know that the sun is shining”.

Now there are formulas that seem to be always false: 1, K,sun A —sun, etc.
There are formulas that seem to be always true: -1, K,un V =K un, etc. There
are formulas that can be true: sun A =K, sun, etc. In order to formally classify
formulas that seem to be always false, formulas that can be true and formulas
that seem to be always true, we define in the next section the semantics of the
epistemic logic.

2.2.2 Semantics 31

Figure 2.2: A model with possible worlds

2.2.2 Semantics

As we have seen, it seems that some formula are always true, some of them are
surely false and some of them are sometimes true and sometimes false. In fact,
the truth of a formula depends on a context: to say whether a formula is true or
not we need a model.

Models are here made up of possible worlds. This kind of semantics have
been introduced by Kripke in [Kri63|. The reader can find more informations in
[Che80], [BDRV02| and [HC72]. The idea is that we model a real life situation
by considering different worlds. One world is reported to be the real world. Then
we introduce relations R, for each agent a modeling the knowledge. Given two
worlds w and v, wR,v means that agent a cannot distinguish world w from world
v: they are both possible worlds for agent a. Finally we obtain a graph: vertices
are worlds and edges is given by the relation R,.

Example 2 The Figure[2.9 shows a Kripke model for the formula sun A=K sun.
The world (or node) w stands for the real world. As agent a does not know that
the sun is shining, she can imagine a world u where the sun is not shining. Such
a world she can imagine s called a possible world.

In what follows, we formally define the model:

Definition 1 (model)
A model is a tuple M = (W, R, V') where:

e W is a non-empty set of worlds
o R:AGT — W x W is an equivalence relation;

o V:ATM — 2V,

32 2.2 Epistemic modal logic

A model M is sometimes called a Kripke structure, a Kripke model and so
on. Given a model M = (W, R, V), the couple (W, R) is called a frame [BDRV02]
IGKWZ03|. V is called valuation. The notion of frame is important in order to
prove completness of an axiomatics [Sah75]. Elements of W are sometimes called
nodes, states, possible worlds, possible states and so on. For all agents a, R, is
an equivalence relation. Indeed the relation “are indistinguishable from agent a”
is supposed to be an equivalence relation.

In order to define how to evaluate modal formulas over a Kripke model, we
give the following truth conditions:

Definition 2 (truth conditions)
We define M, w = ¢ by induction on ¢:

e M, wEpiff weV(p)

o M,w 1

e MwE oV iff Myw = ¢ or M,w =

e M,w = K, iff for all u € W, wR,u implies M, u |= ¢.

The formula K,y is true in w iff holds in all possible worlds for agent a. The
more possible worlds an agent have the more she is ignorant. On the contrary,
when a agent a knows everything, then the set of all possible worlds R, (w) is {w}:
she only the real world as possible world. The operation of learning consists in
deleting worlds in the model, for instance public announcements (see [Pla07| and
Chapter [4 B [9).

We have supposed the relation R, to be an equivalence relation. That is why
those formulas are true in all worlds in all models:

o Ku(p = ¢) = (Kap A Katp) (K);

o Kap — ¢ (T);

o K,po — K,K,p (positive introspection) (4);

o Ko — K,~K,p (negative introspection) (5)

This logic is called S5,, where n is the number of agents in AGT. Traditionally
S5 is the logic with only one operator associated with one equivalence relation and
S5,, is called the fusion of Sb, S5,... and S5 (n times).

Remark 1 Some authors think that requiring the relation to be an equivalence
relation is too strong:

2.2.3 Two decision problems 33

e Hintinkka rejects the the negative introspection (5) “unless you happen to be
as sagacious as Socrates”. [HinG2] He models epistemic reasoning with the

logic S4 (see Subsubsection .

o Stalnaker [Sta06] studies the combination of the logic of belief K D45 (aziom
5 for beliefs does not yield to a contradiction), the logic of knowledge S4 plus
the interactions B,y — K,B,p (positive introspection of beliefs), =B,p —
K,—Bu.p, K.p — Bap (knowledge implies belief), By — B,K,p (strong
belief) where B, means “agent a believes that”. In this system, he claims that
we can prove B,y < KJQM and that the operator K, verifies the principles
of the logic S4.2.

o Williamson rejects the positive introspection (4) in [Wil02].
We decide in this thesis to focus on the system S5 for the sake of simplicity.

Now we can consider two classical decision problems linked to the Definition
of truth conditions.

2.2.3 Two decision problems

A decision problem |[Pap03] asks a question about a mathematic object (the input)
that requires either a “yes” or a “no” answer (the output). In this subsection, we
consider two classical decision problems: the model-checking and the satisfiability
problem.

2.2.3.1 Model-checking

Definition 3 (model-checking)
The model-checking is the problem traditionally defined as follows:

e Input: a finite Kripke structure M = (W, R, V), a point w € W and a
formula ¢;

e Output: Yes iff M, w = .

In the model-checking, the input is made up of a graph M (a finite Kripke
structure), a world w and a formula ¢. The corresponding question about the
input M, w, ¢ is to know whether M, w = ¢ or not. Model-checking has been
widely studied in the litterature [BBET01| especially for temporal logics and their
applications. Note that in Chapter [4] and [5, we will study specific kinds of model-
checking where the input is a bit different. More specifically we do not give a
Kripke structure as an input but another compact data structure representation
of it.

34 2.3 Complexity classes

2.2.3.2 Satisfiability problem

A formula ¢ is said to be satisfiable iff there exists a mode M = (W, R, V) and a
world w € W such that M, w = ¢.

Definition 4 (satisfiability problem)
The satisfiability problem is traditionally defined as follows:

e Input: a formula ¢;

e Output: Yes iff the formula ¢ is satisfiable.

In the satisfiability problem, the input is a formula ¢ and the corresponding
question about the input ¢ is to know whether ¢ is satisfiable or not.

In the same way a formula is said to be wvalid iff = is not satisfiable. We can
also be interested to the validity problem but we prefer to deal with the satisfiability
problem. This choice is subjective: some people of LILAC Team are focusing on
satisfiability problems, model constructions and tableau methods etc. and are
developing a satisfiability problems’ solver for modal logic [Sail0]. Furthermore,
the satisfiability problem is the “dual” of the validity problem in the sense that a
formula ¢ is valid iff = is not satisfiable. In fact, the main concern of this thesis
is to study satisfiability problems in different contexts: epistemic modal logic with
an original semantics dealing with geometry (part , logics dealing with agents’
actions (part and logics mixing knowledge and actions (part . The word
“satisfiability” is one of the most used word in this thesis!

2.3 Complexity classes

In this Section, we are interested in the notion of algorithm for solving decision
problems and of complexity classes. Algorithms are effective, constructive, me-
chanical methods designed to solve decision problems. Running an algorithm re-
quires time and space (memory) in order to compute the ouput of the decision
problem.

The Church-Turing thesis [Tur37], [Chu36| states that the computation of an
algorithm can be carried out a Turing machine. Usually, the following definitions
are given in terms of Turing machine and the interested reader can find more on
this in [Pap03], [CKS8I]. Here for the sake of clarity, we decided to give some
intuitions about the definition of determinism, non-determinism, alternation, P,
NP etc. in terms of algorithms.

2.3.1 Algorithms 35

2.3.1 Algorithms

In this subsection, we present the notion of deterministic, non-deterministic and
alternating algorithms. An algorithm is made up of affectations x := v, conditional
if | for loops etc. An algorithm takes an input 7 and may succeed, fail or never halt.
For a thorough introduction to the subject of algorithms see |[Knu73|, [AHUS83| or
[CLRI2]. The notion of algorithm is informal and closer to the reality (programs
in Java, Scheme etc.)

An algorithm is said to be deterministic iff there is no choice during the execu-
tion of the algorithm. If the machine is in a given state, then there is only one next
state. We say that a deterministic algorithm decides a decision problem P iff for
all input ¢ the algorithm succeeds on the input ¢ if the output of 7 in the problem
P is “yes” and the algorithm fails on the input ¢ if the output of ¢ in the problem
P is “no”. We also say that P is decidable. Otherwise the problem is undecidable.
Typically, algorithms written in Java, Scheme etc. are deterministic.

An algorithm is said to be non-deterministic iff there are existential choices
during the execution of the algorithm. Sometimes, the algorithm can choose a value
for a variable and can guess a whole Kripke structure. At some existential choice
of a value in a fixed finite set VALUES for a variable z, the algorithm succeeds
iff there is a value v € VAILUES such that the execution with x = v will succeed.
The algorithm succeeds iff there exists a successful execution. A non-deterministic
algorithm decides a decision problem P iff for all input ¢ the algorithm succeeds
on the input ¢ iff the output of 7 in the problem P is “yes”. Note the asymmetry
in the way of treating the “yes” and the “no” instances [Pap03][Section 2.7].

An algorithm is said to be alternating iff there are existential and universal
choices and negating state during the execution of the algorithm. At some exis-
tential choice of a value in a fixed finite set VALLUES for a variable z, the algorithm
succeeds iff there is a value v € VAILUES such that the execution with x = v will
succeed. At some universal choice of a value in a fixed finite set VALUES for
a variable z, the algorithm succeeds iff for all value v € VALUES the execution
with x = v will succeed. At some negating state, the algorithm succeeds iff what
remains to execute fails. An alternating algorithm decides a decision problem P
iff for all input ¢ the algorithm succeeds on the input i iff the output of 7 in the
problem P is “yes”.

Of course, all deterministic algorithms are non-deterministic and
all non-deterministic algorithms are alternating. Several examples of algorithms
are given in this thesis.

36 2.3 Complexity classes

2.3.2 Complexity with time

We give direct definition of complexity class P, NP, AP, EXPTIME, NEXPTIME.
For more details, see [Pap03].

A problem is in P iff there exists a deterministic algorithm running in polyno-
mial time that can solve it. More precisely, there exists a polynomial P such that
for any input 7 of size |i| the algorithm runs in less than P(]i|) steps.

A problem is in NP iff there exists a non-deterministic algorithm running in
polynomial time that can solve it. More precisely, there exists a polynomial P
such that for any input i of size |i| all executions (due to existential choices) of the
algorithm terminate in less than P(|i]) steps.

A problem is in AP iff there exists a non-deterministic algorithm running in
polynomial time that can solve it. More precisely, there exists a polynomial P
such that for any input ¢ of size |i| all executions (due to existential and universal
choices) of the algorithm terminate in less than P(|i|) steps.

A problem is in EXPTIME iff there exists a deterministic algorithm running
in exponential time that can solve it. In other words, there exists a polynomial P
such that for any input 7 of size |i| the algorithm runs in less than 2°(°) steps.

A problem is in NEXPTIME iff there exists a non-deterministic algorithm
running in exponential time that can solve it.

2.3.3 Complexity with space

A problem is in PSPACE iff there exists a deterministic algorithm requiring a
polynomial amount of memory that solves it. More precisely, the algorithm decides
the problem and there exists a polynomial P such that for any input 7 of size [i|
the execution of the algorithms requires less that P(|i|) bits of memory.

A problem is in NPSPACE iff there exists a non-deterministic algorithm requir-
ing a polynomial amount of memory that decides it. More precisely, there exists a
polynomial P such that for any input ¢ of size |i| the algorithm requires less than
P(]i]) bits of memory. Even more precisely, there exists a polynomial P such that
for any input ¢ of size |i|, every execution (due to existential choices) requires less
than P(|i]) bits of memory. Notice that the definition of NPSPACE does not even
require that the algorithm halts on all computations.

Actually, the two both notions are the same:

Theorem 1 (Savitch’s Theorem)[Pap03], [Sav70] PSPACE = NSPACE.

The Savitch’s Theorem says that for every problem such that there exists a
non-deterministic algorithm using a polynomial amount of memory that can solve

2.3.4 Hardness 37

it, there exists a deterministic algorithm using a polynomial amount[l] of memory
that can solve it.
Actually, we have that |[CKS81]:

Theorem 2 PSPACE = NSPACE = AP.

Note that the notion APSPACE also exists and we let the reader imagine the
definition.

2.3.4 Hardness

Informally, a problem is NP-hard iff it encodes in itself the difficulty of all NP
problems. More formally, a problem P is NP-hard iff for all problems () in NP,
there exists a translation tr:

e for all input ¢ of @, Q says “yes” to ¢ iff P says “yes” to tr(i);

e {r can be computed in polynomial time that is to say there exists an algorithm
running in polynomial time with the following specification:

— Input: ¢;
— Output: tr(Q).

A problem is said to be NP-complete iff it is both NP-hard and in NP. Humans
wonder whether “P = NP” or “P # NP” [Co006] and there is a possibility to
get rich (1000000%!) if you get the good answer. In particular, if we prove that
one satisfiability problem that are NP-complete presented in this thesis (as the
satisfiability problem in Lineland without epistemic operators presented in Chapter
or the fragment of STIT presented in Chapter [§) is in P, we get rich.

More seriously, knowing whether P — NP or P # NP has a tremendous con-
sequences in real life. Suppose that P = NP. On the one hand, cryptographers
would have to hurry up because their decision problems are often NP-complete
hence in P so that their cryptosystems would be easily broken. On the other hand
this may be a good news concerning many decision problems of logistics that are
NP-complete thus in P. Unfortunately many computer scientists believes that P
NP.

I'may be a bit more!

38 2.5 Reasoning in S5,

2.4 Two standard problems

In order to prove that a problem belongs to a certain class of complexity, we can
clearly exhibit an algorithm that can solve it. On the other hand, for proving
hardness we need standard problems.

Theorem 3 [Coo71] The satisfiability problem of the classical propositional logic
(SAT) is NP-complete.

Theorem 4 [SM73] The satisfiability problem of the quantifier propositional logic
(QSAT), that is to say, the logic whose language is defined by:

o == p | oA | ~@ | Vpp

where p ranges over a countable infinite set ATM of atomic propositions is
PSPACE-complete.

These two standard problems shall be used to prove hardness of the satisfiability
problems in Lineland (Chapter 4) and Flatland (Chapter . The SAT problem
will be also useful to prove hardness for the fragment of STIT in Chapter |8 The
latter is also useful to prove complexity result for the satisfiability problem of the
epistemic logic when the number of agents is greater that 2.

The Figure sums up the relationship between the different complexity
classes.

2.5 Reasoning in S5,

According to [JYH9G], if the number of agents is equal to 1, the satisfiability
problem is NP-complete. If the number of agents is greater that 2, the satisfiability
problem is PSPACE-complete. Although it has been already proven in [JYH96],
we are going to prove again that it is in PSPACE for many reasons. The first
reason is to have a compact version of the algorithm (an alternating one) that can
solve the satisfiability problem. The second reason is because we will adapt this
algorithm in Chapter [L0] for an extension of the epistemic logic.

Theorem 5 The satisfiability problem of the epistemic logic is in PSPACE.
PRrROOF.

In this proof, we extend the notation M, w = ¢ to sets of formulas: if X is a
set of formulas, then M, w = X stands for “for all formulas ¢ € ¥, M, w | ¢”.

39

decidable problems

NEXPTIME
EXPTIME

AP = PSPACE = NPSPACE
e QSAT

T
) o SAT

Figure 2.3: Complexity classes

Figure [2.4] shows an algorithm that can solve the satisfiability problem of S5,
of a set of formulas X, that is to say the algorithm is supposed to succeed iff the
set of formulas ¥ is satisfiable. We give here an alternating procedure sat(..., 1).
In the same way we can define the procedure sat(..., 2) by exchanging 1 and 2.
For all ¥, the call sat(X, 1) terminates because at each sub-call there is at least
one modal operator that disappears. It runs in polynomial time. We leave to the
reader to check that if n = 1, the algorithm is non-deterministic so that it proves
that the satisfiability problem of S5 is in NP. For all formulas ¢, we define the set

CL(p) = SF(p) U{~ | € SF(p)}.

CL(p) contains all the sub-formulas of ¢ and their negations. Let {(X) be the
number of operators in the formula of ¥ that has the maximal number of operators.
We prove by induction on [() that iff all formulas of ¥ begins with K; or Kj,
then we have sat(X, i) succeeds iff ¥ is satisfiable.

For all epistemic formulas we have equivalence between ¢ is satisfiable and K 1P
is satisfiable. In order to check the satisfiability of a single formula ¢, we simply
call the procedure sat({Kp}, 1).

Basic case

If [(X) = 1, then for sure there is no recursive call. The correctness of the
algorithm is proven like the inductive case.

40

2.5 Reasoning in S5,

function sat(3, 1)

n := the number of operator K; and K, appearing in X

(3) choose [a set of at most n subsets of C'L(X) such that there exists
S € B such that ¥ C S.

Check K¢, K1), fﬁw and Boolean coherence:

o forall SefB,¢ € Sxor wes.

forall S, 5" € 8, K1y € S iff Ky € S
forall S, 5" € 8, K1y € S iff Ky € S

for all S € B, K¢ € S implies ¢ € S}

for all S € B, Ky € S implies ¢ € S}

for all S € 8, K19 € S iff there exists S’ € 38 such that ¢ € S;

¢1Aw265iﬂ(¢165andw265);
.¢1v¢265iﬁ(¢1680r¢268);

(V) choose S’ € 3)
if there exists a formula of the form K51 in 57,
| call sat({K,0 € S'} U {Kx0 € 5}, 2)

Figure 2.4: Algorithm that can solve the satisfiability problem of S5, of a finite
set of formulas X

| Inductive case| Let us consider a given set of formulas X such that all formulas

of ¥ begins with K or Kj.

(=) We prove that sat(X, 1) succeeds implies that ¥ is satisfiable.

If sat(X, 1) succeeds, we are to construct a “tree-like” model M = (W, R, V)
such that there exists w € W such that M,w | X. sat(X, 1) succeeds
means that every call (possibility zero!) sat({K»0 € S'}U{K,0 € S'}, 2) has
succeeded. We have [({K,0 € S'} U {K,0 € $'}) < I(Z). So by induction
for all S’ € B there exist a model M = (W5 RY' RY V) and a world
w¥ € W¥ such that M w¥ = {K,0 € S’} U{K,0 € 5'}.

The model M is obtained with the points S’ of 5 and by gluing the pointed
models M5, w® to S’ for all S’. Broadly speaking, concerning the relations,

(3 is a l-equivalence class in M. S’ is in the 2-equivalence class of w®" inher-
ited from M. For other points of one model M, relations are inherited

41

Figure 2.5: The model M

directly those in M?®". Concerning the valuation, for all points coming from
a model M%', the valuation is inherited. For a point S’ € 3, a proposition
is true in S’ iff it belongs to S’. Now let us explain the construction of
M = (W, R, V) in more details:

— W is the union of 3 and all the worlds of all M® where S’ ranges /3;

— [is a l-equivalence class. For all " € 3, the 2-equivalence class of S’
is the union of {S’} and the 2-equivalence class of w® in M. The
l-equivalence class of a point in a model M%" is the same in M and
M5 The 2-equivalence class of a point not in the 2-equivalence class
of a w¥ in a model M is the same in M and M.

— V is defined in the following way. For all propositions appearing in ¢,
for all worlds S’ € B, we have p € V(') iff p € S. Other propositions
are false over 3. For worlds from a model M®', the valuation is inherited
from the valuation of M.

The final result is a pointed model (M, S) satisfying for ¥. To prove it,
we prove by induction on ¢ that (A) for all ¢» € CL(p), for all §" € g,
M, S Eyifty e S.

(Propositions) It follows the Definition of V.

42

2.5 Reasoning in S5,

(Boolean cases) Left to the reader.
(K11)) The coherence test makes that true.
(K91p) Let S” € 8 be such that Ky € 5.

Lemma 1 For all sub-formulas € of K, we have for all v € W9,

Mv e iff MY v e

PROOF.
Let us begin to prove the Lemma (1| by induction on e.

(Propositions)
(Boolean cases)
(K16)

(K20)

ok.

ok.

M, v = K0 iff for all o' € Ry(v), M,v" = 6. By induction, it is
equivalent to for all v € RY' (v), M*',v' |= 0. So it is equivalent to
M v | K.

M,v | Ko iff for all v € Ry(v), M,v" = 6. Tt implies for all
v € RY (v), M,v = 6. By induction it implies for all v’ € RS (v),
M v = 6, that is to say M5 v = K.

Reciprocally, suppose that M v = Ky0. We have v’ € Ré\/‘sl (v),
M5 o' |= 0. By induction (Lemma it implies for all v" € Ry(v)\
{5}, M,v" = 6. Moreover if S” € Ry(v) we also have to prove
that M, S’ = 6. In this case, as K50 is a sub-formula of €, we have
either K,0 € S" or Ky0 € S'. Ky0 & S’ leads to M v |= —K,0,
hence contradiction. So K56 € S’. It implies 6 € S’. By induction
(A) it means M, S’ |= 6.

Now let us prove the equivalence M, S’ = Ky iff Kot € S'.

[<=]Let S" € B be such that K31 € S’. Let us prove that M, S’ |= Ky1.
As Ky € 8" we have that ¢ € S’ by test of coherence. So by induction
(A) we have M, S’ = 9. Furthermore we have M5 w¥ | Ky, that
is to say for all v € Ré\/‘sl (w¥), M% v | 9. By Lemma [} for all
v e RM (wS) M, v = 4. Finally, M, S | Ko,

[=Let S” € B be such that Kyp ¢ S, hence Ko=) € S'. We have
M5 S = Ky—p. Thus there exists v € Ry(w®’) such that M v |=
=t By Lemma [l] it is equivalent to M,v | —). As S'Ryw® and
wS Ryv, we have S'Ryv. Hence M, S = Ky

(<) ¥ is satisfiable implies that sat(X, 1) succeeds.
Suppose that ¥ is satisfiable in a pointed model M, w where M = (W, R, V).

43

Consider the set of sub-formulas of X of the form K4 true in w. For each
such a sub-formula K9 we consider the corresponding world in u, € R;(w)
such that M, uy = 9.

Now we consider the execution of sat(p, 1) such that § contains the set
of sub-formulas true in w and the set of sub-formulas true in w, for all ¥
corresponding to a sub-formula K.

As M is a model and because we have created a set in 3 corresponding to
u,, for all sub-formulas K1 [is coherent.

Now let " be a set in 8 such there exists Ko1) € S'. S’ corresponds either to
w or a world w,, in the model M. In any case, S’ corresponds to a world in M
which satisfies all formulas of S’. That is why we can find a world in Ry(u)
satisfying the formula {K,0 € S’} U {K,0 € S'}. We have [({K,0 € S’} U
{K,0 € §'}) < I(2). By induction, the call sat({K,0 € S’} U{K,0 € S'}, 2)
succeeds. So sat(p, 1) succeeds.

2.6 The product logic 55"

In this part, we are going to present the product logic S5". The reader is referred
to [GKWZ03| for more details.

2.6.1 Syntax of 55"

The language of S5" logic is built from a countably infinite set of atomic proposi-
tions ATM and modal symbols {1,...,n}. The language Lgs» of S5" is therefore
defined by the following BNF:

o == plop|(@Ap)| Oy

where p ranges over ATM and i ranges over {1,...,n}.

2.6.2 Semantics of S5"

A Kripke model for the product logic S5" is a Cartesian product. More precisely:

Definition 5 (S5"-model)
A S5™model is a tuple (X, R, V') where:

o X =X; X x Xp;

44 2.6 The product logic 55"

e R is a mapping associating to every i € {1,...,n} the equivalence relation R;
defined by R; = {{(x1,...,%0), (Y1, .., yn)) € X? | for all j #4, x; = y;};

o V:ATM — 2X.

The logic S5" and S5,, are different. The logic S5,, is the fusion of S5, S5 ...
and S5 (n times) and there are no interaction between the modal operators. On
the contrary, in S5", models are cartesian product and in that sense there are
interactions between the different modalities: for instance the formula [;l;¢ <>
U;0; is valid for all ¢, 7, ¢.

2.6.3 Axiomatics for S5"

Definition 6 (finitely axiomatizable)

[GKWZ03|, Chapter 1] A logic L is finitely axiomatizable if there is a finite set Az
of formula schemes such that ¢ € L iff there is a sequence (¢1, ..., ¢x) of ¢ such
that for 1 < i < k, one of the following holds:

e cither ¢; is a tautology of classical proposition logic or an instance of an
axiom in Ax;

e cither ; is obtained by necessitation from ¢; where j < ¢;
e or y; is obtained by modus ponens from ¢; and ¢, where j, k < ;
® Y=
Theorem 6 [GKWZ03, th. 8.2] If n > 3 then S5" is not finitely axiomatizable.

Nevertheless S5" is axiomatizable if we weaken the definition of what an ax-
iomatization is:

Theorem 7 [Ven98] S5™ is axiomatized by the following aziom schemasﬂ'
e some axiom system of classical propositional logic;
e S5(00;);
o [0« L;0;0.

and the following rules:

2We prefer give here a simpler axiomatics.

2.6.4 Satisfiability problem for a S5"-formula is undecidable 45

e Modus Ponens rule:
- o — 9

=9

e Necessitation rule:
Fop

e Rectangle Rule:
F(pAT(pAp) =
a2
where 7(x) = U1 ... Oa[(Aicr,ny 01+ Gim1Qit1 - OnX) = X]-

where p does not occur in ¢

Remark 2 The rectangle rule is called unorthodox rule because the syntactic
derivation requires an added constraint. Here: “where p does not occur in ¢’

2.6.4 Satisfiability problem for a S5"-formula is undecidable

Theorem 8 [GKWZ03, th. 8.6] If n > 3, the problem of satisfiability of a formula
of S5" s undecidable.

2.7 Contribution of this thesis

The contribution of this thesis is to give flavors to the standard epistemic modal
logic introduced in Section in two ways: first we will study the knowledge
about what agents see, broadly speaking about perception of an agent in Part
As the perception of an agent strongly deals with geometry, this part will first
begin with a state of art about geometry and modal logic (Chapter [3). In this
chapter we will see that it is difficult to give a meaning about a perception of an
agent from what has already been studied in this area simply because there is no
agent in those formalisms. We then propose a new version about epistemic modal
logic and perception in a Lineland (Chapter , that is to say we suppose that
the geometry is a line. We propose an algorithm for the model-checking and the
satisfiability problem of the Lineland version of this epistemic modal logic. We
also give a complete axiomatization. Of course, considering the world as a line
is daring. That is why we propose another version of the epistemic modal logic
where the version is Flatland [AbD84] (Chapter [f), that is to say, the world is a
plane. We prove that the logic is decidable although we do not know the exact
complexity. Finding an interesting axiomatization of the Flatland version of this
logic is an open question. We also propose a weak version of Flatland epistemic
logic.

46 2.7 Contribution of this thesis

In the Part [I[I, we focus on the notion of action via the modal logic STIT (“see
to it that”). This part begins with a state of art of existing logic of agency. In
particular we see that the drawback of classical modal logic of agency like Coalition
Logic CL [Pau02|, Alternating-Time Logic ATL [AHK99] are not expressive enough
to capture the notion of execution of actions. Indeed, they only capture the notion
of capabilities of agents. In CL, ATL and so on, we can say that a group of agents
has a strategy to ensure that a property ¢ is true but we cannot express that a
group of agents actually performs a strategy to ensure a property (. This kind of
sentences can indeed be expressed in the logic STIT. In Chapter [0, we introduce
the state of art about the logic STIT and we study the satisfiability problem and
the axiomatizability of the group version of STIT. In order to have better results
of decidability of the group version of STIT, we be interested in a weak fragment
of group STIT in Chapter [8l Somehow, the Part [[I) is a continuation of the thesis
of [Tro07] containing the satisfiability problem of the individual version of STIT.

In the Part we are interested in applications of STIT: epistemic games in
Chapter [9] and counterfactual emotions in Chapter [I0] In this part, we give a
“STIT-flavor” to the standard epistemic modal logic. In Chapter [0 we see how
to represent an epistemic game via Kripke semantics and how to express Nash
equilibrium and the algorithm of Iterated Deletion of Strictly Dominated Strategies
in the language. In Chapter we extend the standard epistemic modal logic with
the fragment of STIT of Chapter |8} We then see how to represent counterfactual
emotions in the language. More precisely, we see how to capture the notion of
regret, rejoice, disappointment and elation. We also provide complexity results
about the satisfiability problem both in Chapter [9 and [I0]

Pardll PardI]
~ 3 % . .
Seeing, knowing, doing

[\

—
PardIT]l

Part 1

Seeing, knowing

Chapter 3

Towards new “spatial” modal logics

In multi-agents applications, agents need to reason about what they see or not, and
about what they know that other agents see or not. One may think of multi-players
games for example, where the aim is to formalize that some agent, just by seeing
where are her partners, knows that no enemy could sneak upon her from behind
without being seen by the partners. We point out modal logics are often decidable
(see Subsubsection and that is why we would like the formalization to be
in modal logic.

In order to formalize what a agent see, we need geometrical concepts. In other
words, we are interested in spatial logics. But when we read the literature about
temporal logics and spatial logics we may wonder why modal logics have been
more famous in temporal logics than in spatial logics. In this chapter we try to
answer to this question. In order to do this, we propose here a very modest state
of art about temporal reasoning (Section and then a modest state of art in
formalization of geometrical concepts in logic (Section . Then we propose our
crucial idea for providing a new modal logic for spatial reasoning (Section .
Finally we compare our idea to existing works (Section [3.4)).

3.1 Temporal logics

In Subsection we saw two kinds of algorithms: those without choices (de-
terministic algorithms) and those with choices (non-deterministic ones and alter-
nating ones). In the same manner, we can model the time in two ways. One can
think of the time as linear or as branching.

50

3.1 Temporal logics

3.1.1 Linear temporal logic

Linear temporal logic (LTL) [Pnu77] is a modal logic that expresses temporal con-
cepts and considers the time as resolved (linear) and discret. The language of
Linear temporal logic provides several modal constructions:

e X means that ¢ holds in the “next” state;
e F'p means that ¢ holds eventually (in the future);
e G means that ¢ is always true;

e Uy means that ¢ holds until v is true.

The reader may be interested of other versions of “Linear temporal logic” (even

if they are not called so in the literature) where there are only F' and G operators
[GKWZ03|. In what follows we give an overview for some of these logics:

e a modal logic where the discreteness is no more enforced: S4.3 is the modal

logic of all models where the relation is a total order. It is also the logic
where the domain is the set of real numbers R or the set of rational numbers
Q and the relation is <;

a modal logic where the discreteness is enforced: S4.3 @ G(G(p — Gp) —
p) — (FGp — Gp). Models (W, R, V) are such that W is the set of natural
numbers and the relation R is <;

a modal logic where the discreteness is no more enforced and the relation is
strict: K4.3 is the modal logic of all models where the relation is a strict
total order. It is NOT the logic of the class of models (W, R, V') where W is
the set of real numbers or the set of rational numbers and the relation R is
<5

a modal logic where the discreteness is no more enforced but continuity is
enforced: K4.3® F'T & GGp — p. Models (W, R, V) are such that W is the
set of real numbers (or the set of rational numbers) and the relation R is <;

a modal logic where the discreteness is enforced: K43 ® FT & G(Gp —
p) = (FGp — Gp). Models (W, R, V') are such that W is the set of natural
numbers and the relation R is <.

All those logics are different, that is to say they have different sets of satisfiable

formulas. For all those logics, the satisfiability problem is NP-complete [Seg70],
[Gol82], [ONS&0(], [SC85).

3.1.2 Adding branching 51

3.1.2 Adding branching

Linear temporal logic can easily be extended to provide reasoning about branching
time by adding two new modal operators:

e FE: there is a branch in which ¢ holds;
e Ap: the formula ¢ holds in all branchs.

This logic is called CTL" (for “Computational Tree Logic Star”) [EH8G]. It em-
beds Linear Temporal Logic and it also embeds Computational Tree Logic (CTL)
ICE82] [EHS5| which a syntactic fragment where operators of branching and time
are fused. Surprisingly CTL does not embed LTL.

3.1.3 Conclusion

LTL and CTL are modal logics expressive enough to capture different qualitative
notions used especially in computer science:

e safety means that the system will never be in a “bad” state. For instance
AG=crash means that the system will never crash;

e liveness means that the system will eventually be in a good state whatever
the branch. For instance AF'terminate may mean that the program will
eventually terminate in all branchs;

e fairness means that a property will holds infinitely often. For instance
AG AF'refresh may mean that the program will infinitely often refresh the
screen.

Those notions are suitable to verify if a system matches with its specification.
Furthermore you can note that LTL, CTL and CTL* have good complexity results
both for model-checking and for the satisfiability problem.

3.2 Spatial reasoning

There are mainly two approaches to represent geometry: euclidean geometry and
topology. Broadly speaking this section is an overview of the Chapters 4, 5, 6, 7
and 9 of the book [APHvBO7].

3.2.1 Euclidean geometry

Euclidean geometry is the domain of geometry where we study the relations be-
tween points and lines in terms of orthogonality and parallelism.

52 3.2 Spatial reasoning

3.2.1.1 Real number theory

A very powerful way to describe geometric facts consists in using coordinates of
points. For instance to say that the point C' is in the line (AB) you can write the

property

N, (e —xa) = A X (2 —24)) A (Yo —ya) = A X (yp — ya))

where X is a variable and x4, xp,xc,ya,YB,yc are variables denoting the co-
ordinates of the points A, B and C.
The lines (AB) and (AC) are orthogonal is represented by

(xp —xa) X (¥c —2a) + (yB — Ya) X (Yo — ya) = 0.

Of course, this logic is quantitative and not only qualitative. For instance we
can express that the distance between the points A and B is equal to 3 by

(xa—x8)*+ (ya —yp)* = 3%

In this subsection we deal with the first order theory of real numbers. This
theory was initially studied in [Tar51].
Here are other examples of formulas in this logic:

e Ve, x>0—dy,z =y Xuy;
o Ve, Vy,z <y—dz,x<zAz<uy.

Those formulas are interpreted over real numbers.

Syntax Let us introduce the syntax of the first order theory of real numbers.
Let VAR = {z,y,...} be a countable set of variables.

Definition 7 (expression)

An ezpression is defined by the following BNF:
E:=z|0|1|E+E|EXE
where x € VAR. We note EXPR the set of all expressions.

Definition 8 (language)

The language Ly is defined by the following rule:
pu=E=E|E>E|T|eVe|-p|Vrp
where z € VAR and E € EXPR.

3.2.1 Euclidean geometry 53

Semantics Now we can give the semantics of those formulas. Broadly speaking,
variables are interpreted as real numbers. Each symbol’s ("+7, ’x’, etc.) interpre-
tation is natural. Nevertheless, we prefer to give it in details.

Definition 9 (interpretation)
An interpretation I is a map from V to R.

Definition 10 (interpretation of expressions)
Given an interpretation [: VAR — R, we extend [to a map /7" : EXPR — R
as follows:

o I (0) = 0
o [7(1) =1
o [“P"(z) = I(x) for all x € VAR;

o [V (B4 E') = [V (E) + [V (E');

° Iexpr(E' % E/) —]ea:pr(E) X Ie:cpr(E/).

Definition 11 (interpretation of formulas)
Give an interpretation I and a formula ¢ € Lg, we define I = ¢ by induction:

o [}~ 1

o [=1 Vg iff Il= 1 or I = o
o I |=—piff I~ ¢

o [|Ee=c iff [P (e) = [P (€);

o [=e>¢ iff [P (e) > 1777 (€);
o [=V, piff forall v e R, I[z =] = .
where I[z :=v] : VAR — R is defined as follows:

o [[x:=](y) =1I(y) for all y € VAR \ {x};

54 3.2 Spatial reasoning

Decidability
Proposition 1 [Wei93] [Tar51), [Eng83] The problem:
o mput: p € Lg;

e output: yes if ¢ is satisfiable (i.e. there exists I such that I = ¢); no
otherwise

18 decidable and in EXPSPACE.

An easy-to-understand algorithm is provided in [Eng83|]. This algorithm relies
basically on the idea of quantifier eliminations . Technical procedures are very
close to the Theorem of Sturm (|[Eng83], [Stul]). Given a polynomial P(X), this
theorem makes a bridge between:

e the number of distinct roots of P in the interval]a,b[. (Notice that the
simple existence of such a root is expressed by a quantifier formula dz,a <
zAx <bAP(zx)=0);

o w(a)—w(b) where w(a) is the number of changes of sign in P(a), Py(a), ..., P.(a)
and w(b) is the number of changes of sign in P(b), Pi(b),..., P.(b), where
Py, ..., P. are polynomials we can algorithmically compute from P. (That
is to say we have deleted the quantification “3Jx”)

The reader can also find an online version of the presentation of the algorithm pre-
sented like a game-book: http://www.irit.fr/“Francois.Schwarzentruber/
realgelim/index.html.

The existential fragment We just point out a result in [Can88| and |[Ren8§|.

Theorem 9 The problem:

e input: a formula of the form Jxy, Iz, ..., Jrpp(xy, ..., x,) where xy,... 2,
are variables and @(xy, ..., x,) is a boolean formulas where atomic predicates
are of the form Ey = Ey or By > FEy where Ey and Ey are expressions over
the variables xq, ... x,;

o output: yes iff the formula is true.

18 in PSPACE.

Implementations The theory of real numbers is successful in term of imple-
mentation. You can find a solver for it in http://redlog.dolzmann.de/.

http://www.irit.fr/~Francois.Schwarzentruber/realqelim/index.html
http://www.irit.fr/~Francois.Schwarzentruber/realqelim/index.html
http://redlog.dolzmann.de/

3.2.2 Topology 55

3.2.1.2 Modal logic for euclidean spaces

Instead of using on the entire real number theory to model euclidean spaces, one
may focus on a fragment of it: a modal logic [BG02]. The domain of a model
is a set of points and lines of an euclidean space. The model is made up of four
relations €, 3, ||, L defined as follows:

e = € A standing for “the point = belongs the line A”;

e A > r standing for “the line A contains the point z”;

e A || A’ standing for “the line A is parallel to the line A"

e A LA standing for “the line A is orthogonal to the line A"

The syntax is pure modal logic. One distinguishs formulas for points and
for lines and may have different modalities corresponding the relations described
above. Here is an example of a formula that we can express in this logic:

AN(E)AN[3]g) A E]~g

meaning “we consider a point in which A is true and this point belongs to a
line on which A is true and ¢ is true in all points of A. Furthermore, —q is true in
all lines passing by the point A.”

Unfortunately the axiomatics is rather complicated: it requires an unortho-
doz rule (see Remark . The complexity of the satisfiability problem is high
(NEXPTIME-complete) even if there is only [€] and [||] in the language [BG02].

3.2.2 Topology
3.2.2.1 The mathematical notion of topology

One may have a pedagogical introduction in Topology and formal definitions in
[GC97|. Topology has many applications. In mathematical analysis, it allows to
define the notions of continuity of a function, limit of a function and therefore the
notion of derivability and so on. It also allows to classify geometrical spaces: it
does not care about distances between two points but it considers the general shape
of the space. In topology, we describe a space given how the neighborhood of a
point looks like. For me, topology should be called “the science of neighborhoods”.
Formally:

Definition 12 (topological space)
Let E be a set. Let 7 be a set of subsets of E. (E,7) is called a topological space
if:

56 3.2 Spatial reasoning

Figure 3.1: Three isomorphic topological spaces

e).E e
e for all set of indexes I, (A;)icr € 71, U;e; Ai € T3

e for all finite set of indexes I, (A;);er € 77, Nic; Ai €T

An element of 7 is called an open set of E. Intuitively, given an open set A € 7,
for each point x € A, A must include a whole neighborhood of . The set 7 is often
implicit and/or omitted and in that case we say that E is a topological space.

Example 3 Let R be the set of all real numbers. The classical “topological space”
(R, 7) is made as follows: T contains all the sets U that are unions of intervals of
the form]a,b] where a < b.

With these settings, A = [0,1] is not an open set. Indeed, 0 € A and for A to
be an open it must contain a set of the form | — € €| for € > 0 and this is not the
case.

We say that f : E — F' is continuous iff for all opens O of F'| the preimage
f7YO) is open.

As usual with “algebraic” structures we can introduce isomorphisms: f: £ —
F is an isomorphism iff f is bijective, f is continuous and f~! is continuous.
Two topological spaces E' and F' are isomorphic if and only if there exists an
isomorphism from F to F. We are not going to give the formal definition of an
isomorphism. Isomorphisms help us to classify the different topological spaces.

The Figure [3.1] shows three drawings of three isomorphic topological spaces.
The Figure [3.2] shows you some topological spaces.

Isomorphisms has been wisely studied in the litterature. For instance here is a
consequence of [L.E12] saying that the notion of topology captures the notion of
dimension:

3.2.2 Topology 57

NN
S ee
SN 3

Figure 3.2: Some topological spaces

Theorem 10 If R™ and R™ are isomorphic then n = m.

In Chapter {4 and 5| we will define two different logics called Lineland (for R)
and Flatland (for R?). The two logics are different so the modal language we will
introduce is expressive enough to capture the difference between one-dimensional
and two-dimensional spaces.

3.2.2.2 Modal logic S4

This subsubsection is a summary of [vBB07|. Tarski [Tar38|, [MT44] introduces
a semantics in modal logic for topological spaces considered now as classical. Let
ATM be a countable set of atomic propositions. Let us consider the standard
modal language L given by the following rule:

p u=p | L | 0| (pVe) | O

where p € ATM.

Formulas are evaluated in a point of the space. The formula p means that the
property represented by the atomic proposition p is true in the current point. The
formula e means that ¢ is true all around the current point. More precisely,
there exists a neighborhood U containing the current point such that ¢ is true in
all points of U.

More formally a model, called topo-model for this logic is a tuple M = (E, 7, V)
where:

e (E,7) is a topological space;

58 3.2 Spatial reasoning

Figure 3.3: A topo-model M

e V is a valuation that is to say a map from E to 24™M,

Definition 13 (truth conditions)
Truth of modal formulas is defined inductively as follows:

e M,z Epiff pe V(x),

e M,z = O iff there exists U € 7 such that 2 € U and for all y € U,
M,y = .

Example 4 Let us consider the topo-model depicted by the Figure[3.3 The topo-
logical space is R? and its usual topology. For all x € R?, we have water € V(x)
iff in x we have water.

We have M, w |= Owater, M,u = -Owater A Qwater and M, v = O-water.

We have the following results of axiomatization:
Theorem 11 Let ¢ be a formula in the language L. We have equivalence between:
e ¢ is provable in the system S4;

e © is valid in a Kripke structure such that the relation is reflexive and tran-
sitive (Salquist theorem, [BDRV02]);

e o is valid over the class of topo-models [MT44)];

3.2.2 Topology 59

e ¢ is valid over the class of topo-models M = (E,7,V) where (E,T) is the
Fuclidian space R™, for any strictly positive integer n [MT44];

o © is valid over the class of topo-models M = (E,7,V) where (E,T) is the
Cantor space [Min98].

The proof of those results can be found in the reference written in the theorem
or also in [vBBO7|. One can notice that the ezrpressivity of the language L is
quite poor. In particular, it does not make the difference between the difference
topological spaces R, R?, R3, etc.

Theorem 12 [BDRV02] The satisfiability problem of S4, that is to say, the fol-
lowing problem.:

e input: a giwen formula ¢ in the language L;

o output: yes iff there exists a topo-model M = (E,7,V) and a point v € E
such that M,z = .

is PSPACE-complete.

Recent works have increased the expressivity of S4 by the universal modality
[V] (in all worlds) or the modality [#] (in all different worlds).

3.2.2.3 Qualitative relations: RCC — 8

RCC — 8 [RCC92] is a first order logic for spatial reasoning. Variables z, y, etc.
are interpreted by region of a topological space. The logic is also made up of eight
binary predicates in order to compare regions. We note RELgrcc_s the set of those
eight binary predicates. For instance if x and y are variables interpreting sets of
points X and Y in a topological space, the predicate EFC' € RELgrcc_s (externally
connected) such that the meaning of EC(z,y) is that X°NY° =0 and X NY # 0,
that is to say X and Y are connected on their boundaries. The Figure |3.4| shows
the interpretation of the eight relations of RELgrcc_s.
The syntax of the language of RCC — 8 is defined by the following rule:

p u= Rzy) | o | eAe | ~¢ | Vop
where x ranges over a set of variables and R over the set RELrcc_g of the
eight relations of RCC — 8.
Generally speaking, the satisfiability problem in RCC — 8 of a given first order
formula is undecidable, more precisely not recursively enumerable. [LW0G]
Nevertheless, it has been proved (with CSPSAT’s formalism) that the following
satisfiability problem:

60 3.3 Towards an epistemic spatial modal logic

ONNG
C)) ®

DC(a,b) EC(a,b) PO(a,b) TPP(a,b)

) (@) (o) (1)
2@ (@ (O
TPP~'(a,b) NTPP(a,b) NTPP'(a,b) EQ(a,b)

Figure 3.4: The eight RCC — 8-relations

e Input: aformula of the form ¢ = 3x1, 3a, ... I, \; jeri .y Vrecq) BT, z5)
where n is a positive integer, C'(7, j) a subset of RELrcc_s;

e Output: Yes iff the formula ¢ is consistent.

is NP-complete. [RN99).

3.3 Towards an epistemic spatial modal logic

Our approach is to create a modal logic where the syntax is the traditional epis-
temic modal logic whereas the semantics is spatial. In this section, we show why
our approach is interesting.

3.3.1 Applications for spatial and epistemic reasoning

In robotics, agents are located in the world and may perceive the world with
cameras. Those perception may infer some knowledge about the world. Hence we
need a formal approach to model this knowledge.

In video games, for instance in platform games, artificial agents have artificial
behavior. For instance an enemy e may attack the hero h if e knows that A is not

3.3.2 In English: time is modal; spatial is not 61

looking at e. This behavior is directly related to perception and knowledge.

3.3.2 In English: time is modal; spatial is not

In English, time is expressed easily with a conjugation or with the modal auxiliary
“will” so that it is easy to translate some simple English sentences in temporal
modal logic.

Example 5
It is cloudy. cloudy
It will rain. Frain

The weather was sunny. Psunny where P is a past modal operator.

We can also express in temporal modal logic some other subtleties like “could”,
“must”, “would”, “might” that can have a counterfactual meaning.

Example 6
It must rain tomorrow. AXrain
It might be sunny tomorrow. FE X sunny.

On the contrary, spatial information generally needs adverb of place, etc. This
linguistic argument supports that spatial reasoning is not adapted to be modeled
in modal logic. If our aim is to have a spatial modal logic, it is preferable to build
a modal logic using epistemic modalities and push the spatial reasoning aspect
into the semantics.

3.3.3 Expressivity of temporal logic VS spatial logic

When we read the literature about temporal logics and spatial logics we may
wonder why modal logics have been more famous in temporal logics than in spatial
logics. We have seen in Section that Linear Temporal Logic (LTL) [Pnu77]
and Computational Tree Logic (CTL) [CE82] |[EHS85| are expressive enough for
industrial needs: we can express safety (the system will never be in a “bad” state),
liveness (the system will be in good state) and fairness (the property will holds
infinitely often). Moreover the complexity of the satisfiability problem and the
model-checking are often quite reasonable.

On the contrary we have also seen in Section that spatial reasoning is not
so successful because its high expressivity requires also high complexity for solving
the satisfiability problem.

In our approach, the satisfiability problem is in many cases in PSPACE.

62 3.4 Comparisons between our approach and the literature

3.4 Comparisons between our approach and the
literature

3.4.1 Classical epistemic logic VS Lineland /Flatland

In the classical epistemic modal logic S5,,, wR,v stands for w and v are indis-
tinguishable for the agent a. The epistemic logic S5, has been combined with
temporal modal operator [HV8§|. In such temporal epistemic modal logic, the
properties of total recall (no forgetting) and no learning are modeled as a con-
straint of the epistemic relation and the temporal relation. Kripke worlds are
abstract: they are valuations.

On the contrary, in our approach, we would like to describe a situation directly
by the graphical and natural representation of the system (position and direction
of agents) and not with a Kripke structure. In fact, we also have one “canonical”
Kripke structure made up of those graphical Kripke worlds that embed some ge-
ometrical informations: the position of agents and the direction where they look.
(see Definition [14] and Definition In the same way, the epistemic relation of an
agent a is “built-in” and relies on geometry concepts: as depicted in Figure 3.5 two
Kripke worlds are indistinguishable for agent a iff agent a sees the same thing in
both worlds.

Other built-in logics in the literature There are other logics in the literature
where the semantics is built-in, that is to say where Kripke’s worlds are not abstract
valuations and where the epistemic relations take into account the structure of
those Kripke’s worlds.

In [FHMV95| (Chapter 3), the author consider global states (you can think of

them as possible worlds). A state is a tuple (s, $1,...,s,) where s, is the state
of the environment and s; is the state of agent i for all agent 7. Global states
S = (8¢, 81,--+,8,) and 8" = (s.,8],...,s) are then said to be indistinguishable to

agent i if agent ¢ has the same state in both s and ¢, i.e., if s; = s.. In other worlds,
the epistemic relation is not arbitrary but directly built-in from the definition of
states.

In [Jag09], the author develops a logic for rule-based agents. It is not the
epistemic relation which is built-in but the belief change. A state s defines the
belief of the agent: agent believes ¢ iff ¢ € V(s). Then the relation of belief change
works as follows: T'is a transition relation on states and s7u means the agent in
state s can gain some belief and be in state ¢. This relation T is built-in with
respect to a set of rules. In particular the relation 7" must satisty the following
statement: if a rule A\ ...\, — A matches with the belief of the agent in state s
then there must exist a state u such that sTu and V(u) = V(s) U {A}.

3.4.2 Spatial logic VS Lineland /Flatland 63

Co @S

&) o O
5
S

9

Figure 3.5: Two Kripke worlds that are undistisguishagle for agent a

In the same manner, in our approach, we provide a logic in which wR,u, that
is to say, world u is possible for agent a in u, iff agent a sees the same thing both
in w and u.

3.4.2 Spatial logic VS Lineland/Flatland

In the same way, in the next two chapters, we develop epistemic modal logic based
on geometry. Our approach will be rather different concerning the syntax. In
S4, RCC — 8, we have spatial operators like [J = “in the neighborhood”, EC =
“are externally connected”, etc. whereas in the next two chapters the syntax relies
on the standard epistemic modal logic and will provide the classical knowledge
operator K,p meaning “agent a knows that ¢”. This is motivated because we
want to focus on epistemic reasoning.

Concerning the semantics, our approach is quite similar to the logic seen in
this chapter. Indeed, in Chapter [4] and [5] we have also decided to encode the
geometrical structure in the model.

Nevertheless, our approach is also different. In logics seen in this chapter, the
domains in the semantics are geometrical entities:

e in S4 points x of a topo-model are points of the topological space;

64 3.4 Comparisons between our approach and the literature

e in the geometry seen in Subsection [3.2.1.2] the domain is the union of points
and lines of the geometrical space;

e in RCC — 8, the domain is the set of regions of the space, etc.

Our approach rely on a Kripke model where a possible world is defined as the
values of positions for all agents of the system. The epistemic relation will be
defined directly from the possible worlds in term of what agents see.

3.4.3 Topological epistemic logic VS Lineland /Flatland

In the topological epistemic logic presented in [MP92|, [PMS07| and [Hei06|, the
authors provide an epistemic modal logic based on the accuracy of the observation.
Concerning the semantics, models are topo-models M = (E, 7, V). The language
made up of two operators [J (and its dual {) and K interpreted as follows, for all
x € FE, U € 7 such that x € U:

o M,(z,U) EOpiff M, (z,V) | ¢ for all V € 7 such that x € V C U;

o M, (z,U) |= Qpiff there exists V € 7 such that z € V C U and M, (z,V) =
s

o M,(z,U) = Kpif M,(y,U) =y forallyeU.

In (z,U), x € E represents the real world but the accuracy/precision of the
observation is such that the agent only knows that the real world is in U € 7. The
reading of the modal operators are:

o M, (z,U) = Qy: it is possible to have a better precision of the observation,
that is to say, to have V' C U instead of U such that ¢ is true. In other
worlds, the agent can make an effort to improve her precision such that ¢ is
true.

e M, (z,U) = Ky: the agent knows that ¢ is true, that is to say, according
to the current precision of the observation represented by U, ¢ is true in all
possible worlds y € U.

There are crucial differences between their approach and ours:

e For them, the geometry is used to represent the state of knowledge. For us,
the geometry is devoted to give a position and a direction to agents. In this
sense, their logic is abstract like S5,,.

e In their logic, there is only one agent.

Chapter [4] is devoted to the case where agents are points and are located on
the line. In Chapter [5] agents are located on the plane.

Chapter 4

Knowledge in Lineland

4.1 Introduction

As we have seen in the previous Chapter, while many authors in Artificial In-
telligence and Computer Science [FHMV95| developed epistemic logic and others
have studied qualitative spatial reasoning [RNO7| [CHOI], fewer works concern
their combination (but we can cite [PMS07| and [Hei06] which combine a spatial
modal operator dealing with topology and an epistemic modal operator). For sure,
one must then ask question about how knowledge is founded; in this Chapter, we
choose to investigate the case where factual knowledge is based on what agents see.
More precisely, we consider a framework where agents can see both other agents
and where they are looking at. We do not provide operators in the language to
deal with space but only an epistemic operator for each agent in the language.
Of course, our aim is to tackle concrete situations in the plane or in the space,
but in this chapter we will focus on one dimension: agents are disposed along a
line, looking right or left (see example of fig. [4.1)). We will see that this simple case
is already hard from the computational point of view (both model checking and
satisfiability are PSPACE-complete). Interestingly, the obvious semantics induced
by such situations can be axiomatized as shown in Section [4.4] thus providing a
basis for a theory of knowledge about some qualitative geometry, which, we believe
is the necessary condition for tackling the problems of model checking and the
satisfiability problems in dimensions 2 and 3 and provide reasonable algorithms.

CREEIRE

aq (05} as ag

Figure 4.1: Example of a lineworld

66 4.2 Lineland

This chapter is organized as follows: we present an epistemic language Lpg
and its perception fragment £p and their semantics in Section 4.2l Then we deal
with the model-checking and satisfiability in Section Finally we propose an
axiomatization in Section This chapter is an extension of [GS10] and [Sch09].

4.2 Lineland

4.2.1 Syntax

In this subsection, we introduce a language similar to the language of the standard
language of epistemic logic S5, (see Subsection . Let AGT be a countable
set of agents with typical members denoted a, b,.... In this paper, the language
L py of our epistemic theory is defined by the following rule:

o u= abb | L | ~p | (¢Vy) | Kup

where a,b € AGT. The formula a > b is read “agent a sees agent b’ and
is called a perception literal. The formula K,y is read “agent a knows that ¢
is true”. As usual T =% -1 (p A) =% (=p VvV), K,p =% =K,—p,

(o —) = (=p V) and (¢ + P) =2 ((¢ =) A (¥ —). We follow the
standard rules for omission of parentheses.

We will also be interested by the perception fragment Lp C Lpx without
epistemic operators:

@ = a>b | L | =p | (¢Vy)

where a,b € AGT. Formulas in Lp are called perception formulas.

4.2.2 Semantics

In this Subsection, we define one Kripke structure based on worlds and epistemic
relations. Worlds are called here lineworlds. The geometry of Lineland is encoded
directly inside such a world. A lineworld is the description of the arrangement of
agents like in Figure It is formally defined below in Definition [I4 Epistemic
relations between lineworlds rely on the perception of the agents (Definition .

Definition 14 (lineworld)
A lineworld w is a tuple (<, dir) where:

e < is a strict total order over AGT, that is to say:

— < is irreflexive: for all a € AGT, a £ a;

4.2.2 Semantics 67

— < is transitive: for all a,b,c € AGT, if a < b and b < ¢ then a < ¢;
— < is trichotomous: for all a,b € AGT, we have a < b, b < a or a = b.

e dir : AGT — {Left,Right}

The set of all lineworlds is noted W. Let us remark that if AGT is finite then
the cardinality of W is equal to card(AGT)! x 2¢“AGT) " Given a lineworld w =
(<, dfr}, the relation < specifies how agents are ordered in the lineworld w from
left to right. This relation is a total order because the shape of a world is a line.
It is strict in order to prevent two agents to be at the same place (this is just a
technical restriction). The mapping dir specifies whether an agent is looking left
or right.

Example 7 The Figure represents the lineworld (<, dfr} defined by:
o a1 < ag < az < ay,

o dir(a;) = dir(as) = dir(as) = Right; dir(as) = Left.

From the relation < and the function dfr, we can define if an agent a sees
another agent .

Definition 15 (truth conditions)
We define w |= ¢ by induction on ¢:

o w = ar>biff either (dir(a) = Left and b < a) or (dir(a) = Right and a < b);
o w1

o w = ypiff w ¢

e whkoVyiffukporwky.

The semantics of w |= a > b is intuitive: agent a sees agent b iff either b is on
the left of ¢ and a’s direction is left or b is on the right of a and a’s direction is
right.

Example 8 Let us reconsider the lineworld w depicted in Figure 4.1 We have
w = ay > az because dir(ay) = Right and ay < as. Note that agents are transpar-
ent: here agent as s transparent and agent a; sees beyond agent as.

Now we define the notion of mirror image of a lineworld as depicted in Figure
It is useful for defining the epistemic relation.

68 4.2 Lineland

Definition 16 (mirror image)

— — /
Let w = (<, dir),v = (<',dir) € W. We write w ~ v iff either w = v or w is the
marror image of v, that is to say:

o forall a,b € AGT, a < biff b <’ a;

e and for all a € AGT, dir(a) = Left iff dir (a) = Right.
g

BOOD-TDTO

aq a9 as Qg as (05} aq

Figure 4.2: A lineworld and its mirror image.

Let us note that ~ is an equivalence relation on W such that each equivalence
class is made up of exactly two lineworlds. Given w € W and a € AGT, we note
V(a)y = {b€ AGT | w = ar>b}. Tt is the set of all agents that agent a sees in
the lineworld w. Now we define the epistemic relation R, between worlds.

Definition 17 (epistemic relation)

Let a € AGT. We define the epistemic relation R, on the set of worlds W. For
all w = (<, d;rw> € W and v € W, we have wR,v iff there exists u = (<, dgru>
such that:

® U R

o Via)yw = V(a)u;

o for all b € V(a)w, diry(b) = dir,(b);

o forall b,c € V(a), U{a}, b <, ciff b <, c.

Two worlds w and v are epistemically indistinguishable (wR,v) for agent a iff
agent a sees exactly the same things in both worlds. Note that R, is an equivalence
relation on W. For all agents a and for all lineworlds w, R,(w) denotes the set
of all lineworlds u such that wR,u. From now, the truth condition for K, is
standard: K, is true iff ¢ is true in all epistemically indistinguishable worlds for
agent a.

Definition 18 (truth conditions)
We define w |= K, iff for all u € R,(w), u = .

4.2.3 Technical results 69

a, b ab a,b a, b

-
DTSR e

k.

®
&'
=
2,
<
:

52
)) W J

ab a,b ab a b

Figure 4.3: Kripke structure when AGT = {a, b}.

Example 9 Consider the lineworld w depicted in Figure [{.1. ~ We have
w = Kya>as, wE 2Kga >az and w | Kgyaz > ay.

The Figure [4.3] shows the Kripke structure when AGT = {a,b}. Nodes (rect-
angles) represent worlds, that is to say lineworlds where agents are settled in
Lineland. Edges represent relations R, and Ry.

4.2.3 Technical results

Now we give a characterisation of < and dir in terms of truth conditions of per-
ception formulas. We leave as an exercise to the reader to verify the following
Proposition:

Proposition 2 Let w = (<,dfr) € W. Let ag € AGT. Suppose that d;r(ao) =
Right. We have:

e Forallbe AGT, b < ag iff b # ayg and w = —ag > b;
o Forallce AGT, ag < c iff w |= ag > ¢;
e For allb,c € AGT such that b # ag and ¢ # ay,
b<ciff (b#c) and
[either (1) w = —ag > b,w = —ag > c and w = b> ag <> b> ¢

or (2) w = —ag > b,w = ag > c
or (3) w = ag > b,w = ag > c and w E b> ag <> —b > ¢];

70 4.2 Lineland

o Forallbe AGT,

d;r(b) = Right if wEag>b<+ —b>ag orb=ag
=LeftifwlEay>b< b>ay and b # ay.

The previous Proposition ensures that the order < and the function dir are
completely described by the truth conditions of the perception formulas involved
in the Proposition. This leads to a characterization of =:

Theorem 13 For all w,u € W, we have equivalence between:
1. w=u;
2. For all p € Lp we have w = ¢ iff u = p;

3. For all ¢ € Lpy we have w = ¢ iff u = ¢.

PROOF.
(i) = (iil) | By induction on ¢.

(iii) = (ii) | Follows direclty from the fact that Lp C Lpg-.

(ii) = (i) | Let us take ag such that diry(ag) = Right (if such a ao does not

exist simply take the mirror image of w instead of w). Now, if dir,(ag) = Left,
let v be the mirror image of u. Otherwise if dir,(ao) = Right, let v be w.

Obviously, dir,(ap) = Right. By applying Proposition [2 and (ii) we obtain
v=w. Thus, w~u. B

We shall say that a formula ¢ is satisfiable iff there exists a lineworld w € W
such that w = ¢. A formula ¢ is said to be valid iff for all lineworlds w € W, w |= ¢.

Let G C AGT such that G is finite. We introduce the notion of G-describing
conjunction. Such a conjunction completely describes a situation concerning all
agents in G.

Definition 19 (G-describing conjunction)
A G-describing conjunction is a maximal satisfiable conjunction of litterals of the
form b > c or —b > ¢ where b,c € G.

Example 10 —a>aAa>bA—-b>aA-b>bis a{a,b}-describing conjunction.
First, we prove that we can entirely describe a lineword with the truths of

literals of the form a > b, that is to say, the truth of an epistemic formula only
depends on their truths.

4.2.3 Technical results 71

Lemma 2 Let ¢ be a formula of Lpg. Let G = {b€ AGT | b occurs in ¢}. Let
O be a G-describing conjunction. Let w,w' € W be such that w = ® and w' = ®.

We have w = ¢ iff W' = .

PROOF.

By induction on ¢. Only the modal case is non-trivial that is to say when ¢
is of the form ¢ = K. Let w,w’ € W be such that w = ® and v’ |= ®. Suppose
that w = K1) and let us prove that w’ = K. Asw = K1, there exists u = (<4
(dir,) € Ry(w) such that u = . Let ¢ = A, pegiurans @5 DA Ngyeciusass 705 b.
¢ is a G-describing conjunction such that u = (. Now we are going to prove that
there exists v’ € R,(w’) such that v’ |= (.

Let V ={a}U{be G| w | arb}. In other words, V' contains the set of all
agents that a sees plus a herself. Assume without loss of generality that d;rw(a) =
diry (a) = diry(a) = Right. By applying Proposition [2| with ag = a, we obtain
the following statements, referred below as (*):

o for all b € V, diry(b) = diry (b);
o forallb,ce V, b <, ciff b <y c.
Now, we define u' = (<, dfru/> as follows. The relation <, is defined by:

e the restriction on V of <, is defined as the retriction on V of <, for all
byceV,b<y,ciff b <, c;

e the restriction on AGT\ V of <, is defined as the retriction on AGT\ V of
<y forall b,c € AGT\V, b <y ciff b <, ¢

e every agent in AGT\V is on the left of every agent in V: forallb € AGT\V
and forallce V, b <, c.

The relation <,/ is a total order: it is clearly irreflexive, transitive and trichoto-
mous. The function dir, is defined by:

o forall b eV, diry(b) = dir. (b);
o forallbe AGT\V, diry(b) = dir,(b).

In other words, all agents that agent a sees (in V') have the same position both
in w and «’. All agents that agent a does not see (in AGT \ V') have the same
position both in u and u'.

By Definition of R, we have u'R,w’. Now let us prove that v’ |= ¢, that is to
say we have to prove that for all b,c € G we have u = b> ciff v’ |=b1> c. As the
semantics of b > ¢ only depends on the positions of b and ¢, we simply check that:

72 4.3 Model checking and satisfiability

1. for all b,c € G, b <, ciff b <, c. Indeed:

e If b, c are both in G\ V, then the result follows by Definition of <.

e lfbce GNV, b <y ciff b <, ciff b <, ¢ (because of (*)) iff b <, ¢
(because uR,w)

e Ifbe G\ V and ¢c € GNV, then by Definition of <,,, we have always
b <, c. We also have b <,, a, hence b <, a (by Definition of R,) and
a <, c. Therefore, a <, c. As <, is transitive, we have always b <, c.

e Ifbe GNV and ¢ € G\ V, then by Definition of <./, we do not have
b <. c¢. And we do have ¢ <, b so we do not have b <, c.

2. for all b € G, dir,(b) = dir,(b). Indeed:

e If b € G\ V, then by Definition of dir,, we have dir,(b) = dir,(b).

e If b e GNV, then we have diry (b) = diry (b) = diry(b)(x) = dir,(b)
(by Definition of R,).

Finally, we have proved that v’ [= (. As v’ = ¢, we have by induction v’ [1.
Hence w' = K. B

4.2.4 Some valid formulas

As the relation R, is an equivalence relation on W, all instances of axioms of S5
are valid. In particular K,p — ¢, K,pp — K, K,p and - K,p — K,~K,p.
Interestingly, the formulas below are valid too:

o K,b>c— al> b

e Ifb#£c,a>b+ Kb>cV K,~br> ¢

K,(b>cVdr>e) = K,b>cV K, dD> e

o Kb>a— K, Ky... K,Ky(b>aAar>b);

K, Kyed N KpyK,e>d — K, KK, ... Kyer> d.

4.3 Model checking and satisfiability

In this Section, we are interested in the model checking and the satisfiability prob-
lems.

4.3.1 Perception fragment 73

Definition 20 (model checking in lineland)
We call model checking in lineland the following problem:

e Input: a formula ¢, a lineworld w (where only agents occurring in ¢ are
taken into account);

e Output: Yes if we have w = ¢. No, otherwise.

Definition 21 (satisfiability problem in lineland)
We call satisfiability problem in lineland the following problem:

e Input: a formula ¢;

e Output: Yes if there exists a lineworld w € W such that w = ¢. No,
otherwise.

4.3.1 Perception fragment

Remark 3 As for the standard propositional logic, the model checking problem of
a giwen formula from Lp in a given lineworld is easily proved to be in P.

Let us now consider the satisfiability problem of a given formula from Lp.

Theorem 14 The satisfiability problem of a formula in the perception fragment
Lp is NP-complete. If we restrict the language to a fized finite number of agents
then it is in P.

PROOF.

In order to show that the satisfiability problem of a given formula from Lp is
NP-hard, we shall reduce SAT to it. Let py, ps,... be a non-repeating enumeration
of a countable set of Boolean variables. Let a,, € AGT and aq,as,... be a non-
repeating enumeration of AGT\ {ay}. For all Boolean formulas ¥ (p1,...py), let
P =1(a; > oo, - - ., an B> as) be a corresponding formula in £p. We claim that ¢
is satisfiable iff v/ is satisfiable.

Suppose that 1 is satisfiable. Thus, there exists a lineworld w such that
w | Y. We simply extract the valuation v from the lineworld w as follows:
v(p;)) = 1iff w = a; > as. The reader is asked to show by induction on 1 that
v(W(pr,...,pn)) =1Liff w E (a1 D> aoo,- .., an B> Goo)-

Suppose that 1 is satisfiable. Hence, there exists a valuation v such that

v(1h) = 1. We define a lineworld w = (<, dir) from the valuation v by:
0) <Ay <+ < Upos

e For all positive integers 4, dir(a;) = Right iff v(p;) = 1;

74 4.3 Model checking and satisfiability

procedure sat(p(ay,...,a,))
choose a strict total order < on {ay,...,a,};
choose a mapping dir : {ay, ..., a,} — {Left,Right};
if (<,dir) = ¢ then
| accept
else
\ reject

endIf
endProcedure

Figure 4.4: Algorithm to decide satisfiability in £p.

e dir(as) = Right.

As the reader is asked to show by induction on ¥, w | (a1 > sy - -+, Gp B> Goo)
iff v(Y(p1,...,pn)) = 1.

Moreover, the formula ¢ can be computed in logarithmic space. Hence, SAT
is reducible in logarithmic space to the satisfiability problem in L£p. Thus, the
satisfiability problem in L£p is NP-hard. It is in NP since the procedure sat of
Figure|4.4| provides a non-deterministic decision procedure solving it in polynomial
time.

Of course, if we restrict the language to a fixed finite number of agents, then
the procedure sat can be easily transformed into a deterministic procedure solving

the satisfiability problem in £p in polynomial time.
[|

4.3.2 Perception and knowledge

Theorem 15 The model checking of a formula in the epistemic language Lpy in
a gwen lineworld is in PSPACE.

PROOF.

Since APTIME — PSPACE [CKS81], it suffices to prove that the model check-
ing problem is in APTIME. The alternating procedures istrue and isfalse of the
Figure take as input a lineworld w and a formula ¢ from Lpg. The call
istrue(w, p) stops with a reject iff w & ¢ and the call isfalse(w, p) stops with a
reject iff w = .

Their executions depend primarily on ¢. FEach case is either existential or
universal. For exemple, for istrue, the case 1V s is existential. It is an accepting
case iff for some ¢ € {1, 2}, the case y; is accepting for istrue. Thus it corresponds
to the fact that ¢y V ¢y is true at w iff for some i € {1,2}, @; is true at w. As

4.

3.2 Perception and knowledge

75

procedure istrue(w,)

e

match (¢)
T: accept ;
a > b: .
if (a < b and dir(a) = Right)
or (b < a and dir(a) = Left)
then
| accept
else
\ reject
endIf
V1V o

2:

choose (3)i € {1,2};
call istrue(w, ;);

Y call isfalse(w,);

J

€

K-
choose (Y)u € W;
if u € R,(w) then
| call istrue(u,)
else
| accept
endIf
endMatch
ndProcedure
procedure isfalse(w, ¢)
match (y)
T: reject ;
a > b
if (a < b and dir(a) = Right)
or (b < a and dir(a) = Left)
then
\ reject
else
| accept
endIf
Y1V o
choose (V)i € {1,2};
call isfalse(w, p;);

—p: call istrue(w,);

K
choose (F)u € W,
if u € R,(w) then
| call isfalse(u,)
else
\ reject
endIf
endMatch
ndProcedure

Figure 4.5: Algorithm for model checking.

76 4.3 Model checking and satisfiability

well, for isfalse, the case ¢ V o is universal. It is an accepting case iff for each
i € {1,2}, the case ¢; is accepting for isfalse. Thus it corresponds to the fact
that o1 V 9 is false at w iff for each i € {1,2}, ¢; is false at w.

In the call istrue(w, ¢) and the call isfalse(w,), the input w is a lineworld
where we only take into account agents occuring in . It is the same for the world
u € W chosen in the cases K, 1. Remark that this non-deterministic choice can
be done in linear time in the number of agents and that checking if u € R,(w) can
be done in quadratic time in the number of agents. Hence, this algorithm works
in polynomial time. Wl

Remark 4 Satisfiability problem in lineland is also in PSPACE. Indeed, in order
to check if a formula o is satisfiable, we non-deterministically choose a lineworld w
where we only take into account agents occuring in @ and then we call istrue(w,).

Theorem 16 The model checking of a formula in the epistemic language Lpy in
a given lineworld 1s PSPACE-hard. The satisfiability problem of a formula in the
epistemic language Lpy 1S also PSPACE-hard.

PROOF.
The most fundamental complete decision problem for PSPACE is QSAT
[Pap03]: given Boolean quantifiers Q, . .., Q,, pairwise distinct Boolean variables

P1,---,Pn and a Boolean formula ¢ (py,...p,), determine whether Q,p, ... Q1p1¥
holds.

We shall reduce QSAT to the Lineland model checking problem. More pre-
cisely, given Boolean quantifiers @4, ..., Q,, pairwise distinct Boolean variables
P1,---,Pn and a Boolean formula ¢ (py, . . ., p,), we shall construct a finite lineworld
w, = (<p, dZTn) and a formula ¢, in Lpg such that Q,p, ... Q1p1¢ holds iff
Wy, = @n. Suppose aq, by, ag, by, ... is a non-repeating enumeration of AGT. Let

Qnpn - - Q1p10(p1, ..., pn) be an instance of QSAT.
First, we associate to Q.pn...QipY(p1,...pn) a finite lineworld

Wy, = (<q, ern) such that:
® Upt1 <n ay, b17 vy O, b’rw
. d;rn(anﬂ) = Left.

Secondly, we associate to Q,p, . .. Q1p1¥(p1, - - . pn) the formulas g, @1,. .., @,
in Lpg as follows:

) gpozw(blbal,...,bnban);

e and for all positive integers i, if ¢ < n then if (); = V then ¢; = K,

~

wi1) else p; = Ky, (puta, N\ pi_1)

1+1 (pUtaz -

4.3.2 Perception and knowledge 7

W, @ ’al,bl,ag,bg,...,an,bn ‘

Ap+1

27N 0% ?
Wp—1 @ =/ ’ ay, b17 2, b?a ceeyp—1, bn—l ‘
b, an,

Ap+41

S T S O

Wn—2 =/ Nt ’ ay, bla a2, b2a <oy Qn—9, bn—2 ‘

Ap41 bn an bnfl Ap—1

w OTOW O %
Ap41 bn Ay, b,;-,l Ap—1 bl aq

Figure 4.6: w, will be step-by-step transformed into linewords of the form

Wp—1, Wp—2, - . - Wo.

a

Figure 4.7: Agent a; alone.

where for all positive integers 4, if i < n then put,, = /\;;11 —a; > a; A /\3;11 —a; >
bj Na; > a1 N\ a; > b;.

For all positive integers 4, if ¢ < n then the guard K, (put,, — ...) corre-
sponds to the Boolean quantifier (); = V and the guard [A(am(putai A ...) corre-
sponds to the Boolean quantifier (); = 3. Successively interpretating these guards,
the reader may easily verify that w,, will be step-by-step transformed into linewords
of the form w,_1,w,_s, ..., wy described in Figure [4.6]

During the process leading to wy, put,, means “the relative positions and the
directions of a1, @y, bp, an_1,b,_1, . .. a;, b; are fixed whereas the relative positions
and the directions of a;_1,b;_1,...a1,b; are still to be chosen”. Obviously, the
lineworld w,, and the formula ¢, in £pg can be computed in logarithmic space.
We claim that Q.p, ... Qip1¢(p1,- .., pn) holds iff w, = ¢,. To prove this claim,
we proceed by induction on the nonnegative integer n.

Suppose n = 0. Hence 1 is equivalent either to L or T. Moreover, w,
is the finite lineworld described in Figure 4.7}

Finally ¢, is nothing but 1. As the reader is asked to show, ¢, holds iff
Wy E pn.

Let n be a nonnegative integer such that for all Boolean quantifiers @)1, ... Q,,
for all pairwise distinct Boolean variables pq,...p, and for all Boolean formulas

78 4.3 Model checking and satisfiability

@ @ @ ’al,bl,a%bg,...,an,bn‘

Ap42 n+ 1 Qn+1

@ @ @ ’al,bl,aQ,b%...,an,bn‘

Ap42 n+1 an+1

Sk

s

Figure 4.8: The worlds w;- and w,’ .

V(p1y -y Pn)s Qubn - Qip1Y(p1, ... ps) holds iff the corresponding lineworld w,,
and the corresponding formula ¢, in £pg are such that w, | ¢,.

Let Q1,Qo, ... Qn, Qni1 be Boolean quantifiers py, pa, . . . pn, Pny1 be pair-
wise distinct Boolean variables and ¥ (p1,p2, ..., Pn, Pnr1) be a Boolean formula.

Let wy11 be the corresponding lineworld and ¢,,.1 be the corresponding formula
in Lpg. We consider two cases: @11 =V and Q,,.1 = 3. The case (),;1 = 3 is
similar to the case (0,1 = V. For this reason we only give the proof for Q),,,; = V.

In the case Qni1 =V, Qni1Pnt1@nPn - - Qip1Y(P1, - - - Pns Puy1) holds iff both
Qubn - Qip1b(p1, ... pn, L) and Q,p, ... Qip1tb(p1, ..., T) holds. Let w and
w,! be the lineworlds described in Figure

Let o+ and ¢, be the formulas in £ pj correspondmg respectively to Q,p, . ..

Qip1(p1, .- P, L) and Qupy, ... Q1p190(p1,-..pn, T). By induction hypothetis,
ann ce Q1p1¢(p1, -+ DPns J—) holds iff wi_ ’: (,Di‘ and ann s Q1P1¢(p1, -+ Dns T)
holds iff w,! = ¢, . Hence Q1901 Qnpn - - - Q1p10(P1, - - - Pry Pny1) holds iff wk =
ol and w,! =). Now, obviously, w,11 FE ¢, iff wt E o and w! = /.
Finally, Qn+1pn+1ann s Q1p1¢(p1, e ~pnupn+1) holds iff Wn+1): Prt1-

This terminates the proof that the Lineland model checking problem is PSPACE-
hard. To demonstrate that the satisfiability problem in Lineland is PSPACE-hard
too, it suffices to prove that the Lineland model checking problem is reducible
to the satisfiability problem in Lineland. Let w be a finite lineworld and ¢ be a
formula in Lpr. We define G = {b € AGT | b occurs in ¢}. Let @ be the formula
Napecwzars @™ 0N Ny e wpzasy 7@ > b. This formula @ is a G-maximal conjunc-
tion. We have w |= ¢ iff the formula ¢ A ® is satisfiable. Indeed, from left to right
it follows directly from the fact that w = ®. Reciprocally, if ¢ A @ is satisfiable,
there exists a world u such that u = ¢ A ®. But then, as w = ®, the Lemma
gives that w = ¢.

[|

Finally:

Corollary 1 The model checking and the satisfiability problems in the epistemic
language L pyi are PSPACE-complete.

79

The PSPACE-hardness of the model checking problem in the language L pj is
related to the fact that one lineworld implicitly defines an exponential number of
possible lineworlds.

4.4 Axiomatization

4.4.1 Perception fragment

The following axiomatics describes the geometry of Lineland that agents perceive.

Definition 22 (theory P)

We define P as the smallest set of formulas of £p closed by modus ponens and
containing all Boolean tautologies and also the following formulas as proper ax-
ioms:

(Azy) —ar> q;

(Azg) a>b,cA(c>a<>c>b) = (mb>a <+ b c);

(Azg) "a>bA—-a>cA(c>a<> c>b) — (b>c b>a);

(Azy) ra>bAa>c— (b>a+ b c);

(Azs) —a>bA-a>cA-a>dA(b>a <« b>c)A(c>a > c>d) — (b>a <> b>d);

(Azg) a>bAa>cNa>dA(b>a <> —b>c)A(ec>a < —e>d) — (b>a <> —b>d)
for all a,b,c,d € AGT.

The axiom Ax; means that an agent never sees herself. There are no mirrors
in Lineland and the axiom Az, means that if b is between a and ¢, then b sees
either a or c. The axioms Awxs and Az, are true because agents are transparent.
The axioms Axs and Azrg means that the ordering on the line is transitive.

Theorem 17 The axiomatics is sound: each formula of P is valid.

PROOF.

|[sketch] The soundness is only verification. We only give here the proof that
Azga>bAha>cAha>dA(b>a <+ b>c)A(c>a <+ c>d) = (b>a < —b>d)
is valid.

Let w € W be such that (*) w = a>bAa>cAa>dA(b>a <> —b>c)A(c>a <>
—c>d). Suppose that without loss of generality agent a is looking right. As a sees

b, ¢, and d, the world w looks like %9 e

Now we consider two cases on the truth of b > a in w:

80 4.4 Axiomatization

e br>ais truein w: (*)implies w = —br>c: w looks like @ o @ o ?@? e
a C

Now we consider two cases on the truth of ¢ > a:

Da?
— c>ais true in w. Therefore, w = —ce>d: |w = @ @ @ @
a c

— c>aand c>d: |w= @ @ @ ?@?
e “b>aand b>c: w= @ @ ?@?

Case on c > a:

— c¢>aistrue and ~¢c> d: |w = @ @ @ ?@?
— c>aand c>d: |w= @ @ @ ?@?

In all framed images, we can check that w = (b>a > —b>d). B

As usual, a set I' of formulas is P-consistent iff there is no finite subset
{¢1,.--,on} C T such that o1 A--- A p, — L € P. Such a P-consistent set
[is called mazimal iff there is no P-consistent set [such that I' C I''. We sup-
pose the reader to be familiar with the Lindenbaum’s lemma and properties of
maximal consistent set. For details, see [BDRV02].

Now, we define the canonical lineworld of a maximal consistent set. Given a
maximal consistent set I' and an agent ag, the lineworld w® denotes a lineworld
where ag’s direction is right and where all formulas in ' are true. Note that the
following Definition looks like the condition of Proposition 2]

Definition 23 (canonical model)
Let ag € 4GT. Let I' be a maximal P-consistent set. We define the lineworld
wi® = (<, dir), called canonical lineworld of I, by:

e Forallbe AGT, b < ag iff b # ag and —ag > b € T}

e Forall ce AGT, ag < ciff ag>c €T

e For all b,c € AGT such that b # ay and ¢ # ay,

4.4.1 Perception fragment 81

b < ciff (b+#c)and
leither (1) —ag>b,—ay>ceT and b>ag > b>cel
or (2) mag>b,ag>cel
or (3) ag>b,ag>ceTland br>ay +> ~b>ceT;

e Forall b € AGT,

dir(b) = Right if ag > b <> —b>ag € I or b = ag;
=Leftifag>b<> b>ap €' and b # ay.

Now we just have to check that the canonical lineworld is a lineworld in the
sense of Definition < is a total order and dir is well-defined. This will be
ensured by the proper axioms of the theory P.

Proposition 3 For all ag € AGT, for all I' mazimal P-consistent set, wi® € W.

PROOF.
Given wi® = (<, dir), we check that < is a strict total order.

By Definition, it is obvious.

< is trichotomous.‘ Let b,c € AGT be such that b # c. Let us consider the simple case: b = ag
or ¢ = ag. Without loss of generality, suppose b = ag. If ag > ¢ € " then
ap < c. If mag > c €I then c < qy.

Now we are treating the general case where b # ag, ¢ # ag and b # c. Let us
prove it by contradiction. Suppose we have b £ ¢ and ¢ £ b.

Now let us consider the four different following cases (depending on whether
ap > b € I" or not and whether ag > ¢ € ' or not):

— First case: ag > b,—ag > ¢ € I'. The condition (2) in the Definition of
¢ < b (see Definition [23)) is true. So we have ¢ < b hence contradiction.

— Second case: —ag > b,ag > ¢ € I'. In the same way, the condition (2) in
the Definition of b < ¢ is true. So we have b < ¢ hence contradiction.

— Third case: ag>b,ag>ceT.

As b £ c and ¢ £ b, the condition (3) of the definition of b < ¢ and
the condition (3) of the definition of ¢ < b are false. So we have:
b>ag <> b>cel (f)and c>ag < c>beT. Asay>bAay>cA
(c>ag ¢ c>b) = (mb>ag ¢ br>c) € I' (Azy), modus ponens gives
(mbr>ap <> b>c) € T'. This contradicts (*).

82 4.4 Axiomatization

— Fourth case: —ag>b,—ag>c € I'. Asb £ cand ¢ £ b, the condition (1)
of the definition of b < ¢ and the condition (1) of the definition of ¢ < b
are false. So we have: b>ag <» =b>ce ' (*) and c>ag <> ~c>bel
—ag > bA—ag>cA(e>ag ¢ —c>b) = (b>c > b>ag) € I' (Axs).

So (b> ¢ <> br>ag) € I'. This contradicts (*).

< is transitive. ‘ Suppose that b < ¢ and ¢ < d and let us prove that b < d. The proofs when

b = ag or ¢ = ag are left to the reader. We only consider here the complex
case when b # ag and ¢ # ag. By Definition b < c implies that:

— either (1) mag>b,—ap>ceT and b>ag <> b>c €T,

—or (2) mag>b,ag>c eIy

—or (3)ag>bag>celand b>ag+ —b>ceT.

In the same way, ¢ < d implies that:

— either (1) mag>c¢,may>d € and c>ag <> c>d €T
—or (2)) mag > ¢,ap > d € T
—or (3)ay>c,ap>deland c>ay > ~c>del.

Hence, we have to consider the following 9 cases.

— (1) (1")We have —ag>b, nag>c, ~ag>d € I'. We have br>ag < b>c and
cl>ag <> c>d. It suffices to prove that b>ag <> b>d € I'. This follows
from the axiom of transitivity (Axs) —agt>bA—ag>cA—ag>dA(b>ag <
b>c)A(c>ag <> c>d) — (b>ag+>b>d) €T

— (1) (2°) Tt gives directly (2) for b < d.

— (1) (3’) We have —ag > b, mag > ¢, a9 > ¢,a9 > b € I" and this is simply
impossible because I' is consistent.

— (2) (1) We have ag > ¢, nag > ¢ € I' and this is impossible.
— (2) (2") We have ag > ¢, ~ag > ¢ € I' and this is impossible.

— (2) (3") We have —ag > b, ag > ¢, a9 > d and ¢ > ag <> ¢ > d. Sure, we
have —ag > b and ag > d. So we have the point (2) of the Definition of
b<d.

— (3) (1) ap > ¢,—ag > ¢ € I' and this is impossible.
— (3) (2) ap > ¢,—ap > ¢ € I' and this is impossible.

— (3) (3) This case looks like the case (1) (1) except that we use here
axiom (Axg).

4.4.1 Perception fragment 83

If all the possible cases, we have b < d.

Now we prove that the formulas true in wi® are exactly the formulas in I'.

Lemma 3 (truth lemma) For all ag € AGT, for all T mazimal P-consistent
set, for all p € Lp, p € T iff wi® = .

PROOF.
By induction on .

WeprovethatagbceFifpr}:aobc.

If ag > ¢ € T, then by definition of <, we have ay < ¢. Moreover
dir(ag) = Right. Hence wr | ag > c.

Reciprocally, if wr = ag > ¢, it implies ag < ¢ because aq is looking
right. Hence, by definition of <, ag>c eI

We prove that b> ag € I iff wr = b > ay.

Suppose that b>ag € T.

x First case : ag>b eI
By definition of <, we have ay < b. By definition of dir(b), as
ag>b ¢ b>ag € I', we have dir(b) = Left. Hence, by Definition
of the truth condition we have wr = b > aq.

x Second case : —ap > b € I'. This case is similar. By definition of
<, we have b < ao. By definition of dir(b), dir(h) = Right. So
wr): b agp.

And reciprocally, suppose that wr = b > ay.

« Case b < ag: we must have dir(b) = Right. So by Definition of dir,
we have ag > b <> =b > ag € I'. By Definition of b < ag, we have
—ag>bel'. Hence b>ag €T

x Case ag < b: Similar to the previous case.

Let us prove the truth lemma for the case b > ¢ where b, ¢ # ay.

Suppose b > c € I" and let us prove that wr = b > c.

We have to consider two cases: either b < c or ¢ < b. Let us study the
case b < c.

84 4.4 Axiomatization

% Suppose (2). Thus —ag > b,ag > ¢ € T, i.e. by Definition of <:
b < ag < c. Let us prove that d;r(b) = Right, i.e. we have to prove
that ag > b <> =br>ag € I'. As we have —ag > b € I' we have to
prove that br>ag € T'.

We have a>cA—-a>b— (b>a <> b>c) el (Ary) and b>cel
(hypothesis) so b > ag € I

* Suppose (3). Thus ag > b,ap > ¢ € T, i.e. by Definition of <:
ag < b < c. Let us prove that dir(b) = Right, i.c. we have to prove
that ag>b <> -br>ag € I'. But ap>b € I'. So we have to prove
—b>ay € I'. But by (3), we have =b>ag <> b>ce'and b>c e T

« Suppose (1) (b < ¢ < ag). Let us prove that dir(b) = Right. We
have to prove that ag > b <> =b>ag € I'. But mag>b € I'. So we
have to prove b > ay € I'. But by (1), we have b>ag <> b>c e
and b>c e I

Reciprocally, suppose that wr = b > ¢ and let us prove that b> ¢ € I'.
We have to consider the following two cases:
+ The case dir(b) = Right and b < ¢: we have ag > b <> —b>ag € I'.
We have to consider again two cases:

1. map>b eI hence b> ag € I' because dfr(b) = Right.
We have to consider again two cases:
* —ag > ¢ € I'. Then by Definition of b < ¢, we have b> ag <+
br>cel, sowehave b>c eI
*ag>c el But aqg>cA-ag>b — (b>ag <> b>c) € I' (Azy)
we have b>c e T

2. ag>b € I': left to the reader.

% The case dir(b) = Left and ¢ < b is similar and left to the reader.

(Boolean cases) They are left to the reader.

[|
Corollary 2 Valid formulas of Lp are exactly formulas in P.

In the previous Definition 23], we have based the construction of the canonical
lineworld to a particular agent ag. In fact, the canonical model does not depend

on the choice of ay € AGT. More precisely:

Proposition 4 For all ag, by € AGT, for all T' mazimal P-consistent sets, we
have w ~ w.

4.4.2 Perception and knowledge 85

PROOF.

By Proposition [13] and Lemma [3| W

The previous Proposition will be useful in next Subsection for the axiomatiza-
tion with knowledge operators.

4.4.2 Perception and knowledge

The axiomatics for the perception and epistemic modal logic lies on the notion
of G-what-a-perceives-mc. It corresponds to a conjunction which specifies exactly
the factual information agent a knows about agents in G.

Definition 24 (G-what-a-perceives-mc)

Let G C AGT be such that G is finite and non-empty. Let a € G. We say that ¢
is a G-what-a-perceives-me iff ¢ is a conjunction of litterals such that there exists
a subset V C (G such that:

e forall b € V, ar> b appears in ;
e forallbe G\ V, —ar>bappears in ¢;
e for all b € V, for all ¢ € G, either b > ¢ or —b > ¢ appears in y;

e ¢ is satisfiable.

In the previous Definition, the set V' represents the set of agents seen by agent
a. The first and second items correspond to the information about agents that
agent a sees and does not see. The third item corresponds to what agents visible
to a see. The fourth item implies that a ¢ V. Now we give an axiomatization
describing the interaction between knowledge and perception.

Definition 25 (theory PK)

We define PK as the smallest set of formulas of £ pj closed by modus ponens and
necessitation rules and containing all Boolean tautologies, all proper axioms of P
and also the following formulas as proper axioms:

(Azk) Kalp = 1) = (Kap = Kotb);
(Az7) a>b— K,a> b

(Azg) —~a>b— K,—a>b;

(Azg) a>bAbD>c— Kb ¢

(Azy) a>bA-D>c— K,—bD> ¢

86 4.4 Axiomatization

(Az11) ¢ — K,® where @ is G-what-a-perceives-mc and ® is any G-describing
conjunction containing ¢.

The axiom Az says that an agent knows when she is seeing somebody (positive
introspection). The axiom Axg says that an agent knows when she is not seeing
somebody (negative introspection). In that sense, an agent a is aware of the
existence of the other agents and knows whether she sees b them or not. The
axiom Axg says that a is aware of the perception of the agents she sees. The
axiom Axpo says that a is aware of the non-perception of the agents she sees. The
axiom Ax; says that a always can imagine all possible situations compatible with
her perceptions. The last axiom can be recursively enumerated since deciding
satisfiability of a formula in £p is in NP (Theorem . Actually, we do not know
if Az11 can be replaced by a finite set of axioms.

Note that any instances of T, 4, 5 for K, are in PK. This follows from Corollary
Bl and the fact that such instances are valid.

Example 11 Let us consider G = {a,b,c}. The formula ¢ = —a>a A a>
bA—-ar>cANb>aAN—-b>bAb>cis a G-what-a-perceives-mec. The formula
S =-a>aNa>bA-a>cAb>aA-D>OAb>cAcD>aANc>bA—-cDcis
an G-describing conjunction which subsumes p. So ¢ — K,® is an aziom of the
theory PKC.

We let the reader check that the axiomatics is sound: each formula of the
theory PK is valid.

The notion of maximal PX-consistency is defined as usual. Obviously, given
a maximal PIC-consistent set I" of formulas in Lpg, [' N Lp is maximal and P-
consistent in £ p. Therefore, for all ag € AGT, one may associate to I' the lineworld
wi® as in Definition 23] Note that since I" is maximal and consistent, given an agent
a and given a finite set of agents G, I' constains a unique G-what-a-perceives-mc.
Now let us demonstrate that the formulas true in wi® are exactly the formulas in
.

Lemma 4 (truth lemma) For all ag € AGT, For all p € Lpg, for all T mazi-
mal PIC-consistent set, ¢ € I' iff wi® = .

PROOF.

We prove the truth lemma by induction on the modal degree of the formula
. If ¢ is a formula in L£p then by Lemma , ¢ € I' iff wi® = . Boolean cases
are left to the reader. We are left with the case p = K 1.

Suppose that K, € I'. We have to prove that wi® & K,1. In other words,
we have to prove that for all u € R,(w”), u = 9. Let G = {b € AGT

4.4.2 Perception and knowledge 87

| b occurs in p}. Let y be the G-what-a-perceives-mc contained in I'. Let
us take u € W such that wi®R,u. Let ® be the G-describing conjunction
true in u. By Definition of R,, we have that ® subsumes y. Thus, the
instance y — K,® of Azy; is in . Hence K,® € I'. Since K., € T, then
by axiom Axy with K,, the necessitation rule with K, and modus ponens,
the singleton {® A ¢} is consistent. By Lindenbaum’s lemma, there exists
a maximal P/C-consistent set A containing the formula ® A ¢). The modal
degree of the formula ® A1 is strictly less that the modal degree of K, 1. So
we can apply the induction hypothetis with ® A ¢: we have w® E @ A 1.
But v = ®. Hence by Lemma [2 v = 1. This holds for all u € R,(wf).
Finally v = K.

Reciprocally suppose we have f(aw € I'. And let us prove that wf® =
Kq. By Proposition 4} up to ~-equivalence, there is only one I'-canonical
lineworld. For this reason, it suffices to prove that w{ | K,. Using
Az with K,, the necessitation rule with K, and modus ponens, it follows
that the set S = {¢} U {x | Kux € I'} is consistent. Let A be a maximal
PIK-consistent set containing S. By induction, we obtain w} = . So
it suffices to prove that wiR,w%. Let Vi = {b € AGT | w{ = a > b} and
Va={be€ AGT | wi | ar> b}.

We have Vi = Va. Indeed:

If wf =ar>bthen a>be . By Avy we obtain K,a > b € I'. Hence by
definition of A, a > b € A. Hence by induction, w% = a > b.

If wg = a>bthen ma>b € I'. By Azg we obtain K,—a>b € I'. Hence
by definition of A, —a > b € A. Hence, w} ~ ar>b.

For all b € V., for all ¢ € AGT, we have the following equivalence referred
as (*): b>ceTliff b c € A. Indeed:

Ifb>c e, since a>b € I' the axiom Azg and modus ponens give that
K.,br>c € T'. Hence by Definition of A, b> ¢ € A.
If =b>ceTl, by Az, we have K,~b>c € I'. Hence -b>c € A.
We are going to check differents points of the Definition [17] using the Defini-
tion of w{ and w} (Definition [23)):
— First V(a)ye = Vo = Va = V(@)ws;
— We have for all b,c € V(a)ye, b <ya ciff b <,q ¢ because Vi = Va and
(*);
— For all b € V(a)uwg, d;rw%(b) = dfrwz(b) because Vi = Va and (*).

88 4.6 Implementation

Hence w{R,w%. Finally, we proved that w{ = K1),
[

Corollary 3 Valid formulas of Lpg are exactly formulas in PK.

4.5 Conclusion and perspectives

&)

c

a@@ @

Figure 4.9: Example of a flatworld w.

We have studied an epistemic logic interpreted over lineworlds where knowledge
of agents is based on what they can see. We have given a complete axiomatization
and tight decision procedures for model checking and satisfiability problems.

We do not know if our epistemic logic is finitely axiomatizable. In other re-
spects, it is unknown whether PSPACE-hardness of the model checking and the
satisfiability problems still hold when we the construction K, is allowed for agents
a which belongs to a finite set AGT" C AGT.

In the next Chapter, we extend our work to Flatland [Abb84], i.e. interpreting
formulas of Lpg in flatworlds: a flatworld is specified by giving to any agent a
position in the plane and a direction the agent is looking in. For example, in Figure
[4.9] agent a sees b and d but cannot see c.

4.6 Implementation

Algorithms to solve the model-checking problem and the satisfiability problem in
Lineland has been implemented in Scheme/Java.

4.6.1 Pedagogical motivation

In addition to robotics and video games application, Lineland (and also Flatland
etc.) is a pedagogical tool. Epistemic logic has the syntax and the semantics of

4.6.2 How deos it work ? 89

|4 Lineland E=REERTST)

((2 knows (1 sees 2)) and (3 knows p)) v \/ satisfiable!

click with left button: move agents and lamps
click with right button: change agents' direction and lamps' status

© ¢ 90

Figure 4.10: Screenshot of the model-checker for Lineland

modal logic and contrarily to temporal logics, it is perhaps more difficult to explain
where the possible worlds come from to students who lack a strong background in
logic. This is a reason why we study a concrete example of multi-agent system:
we put agents in a space (here a line) and then ask “what do agents know about
lamps, about the knowledge of other agents about lamps and so on.?” Our logic is
implemented as a pedagogical tool in order to illustrate any epistemic logic course.
Indeed, students can easily understand some epistemic logic on concrete examples,
like the Muddy-children puzzle where each child must guess whether her forehead
is muddy or not by considering the others’ and knowing that at least one of them
is muddy.

Our approach can also be compared to the pedagogical approach in [BE93|
where there are objects like cubes and pyramids and where one can write formulas
in first order logic to check properties of and relations between these objects. Here
our approach is similar: we put agents and lamps in flatland and then, we can
write formulas in epistemic logic to check whether some property is true.

4.6.2 How deos it work ?

As you can show in the Figure [4.10] the graphical user interface is divided in two
parts:

e the line you can write the formula you want to check. The language is similar
to the theoretical language and based on the syntax of Scheme;

90 4.6 Implementation

e a drawing of a lineworld. You can move agents and lamps with the mouse.
You can also change direction of an agent or the state of a lamp.

The language for formulas is the following:
e Agents are natural numbers;

e lamps are a lower-case character;

o (... sees ...);

(... or ...);

e (... and ...);

(... or ...);

e (... knows ...);

(announce).

4.6.3 Technical information
4.6.3.1 The engine in Scheme

The language Scheme [EA93]| is adapted to write this kind of algorithms for many
reasons:

e Pattern matching of expressions (formulas) is supported;

e The syntax of Scheme is such that we can directly use a syntax for formulas
closed to the formal definition;

e The syntax is simple and the language is dynamically typed so it is suitable
for a prototype;

e Scheme can embedded into a Java application via Kawa so it is multi-
platform too.

The Figure 4.11| shows the main function of the program written in Scheme:
the function is a model-checker. It checks if the formula is true in the world,
provided the context. The context is here in order to deal with a sequence of
public announcements.

You can download the program on the Internet for more information: http:
//www.irit.fr/"Francois.Schwarzentruber/lineland/.

http://www.irit.fr/~Francois.Schwarzentruber/lineland/
http://www.irit.fr/~Francois.Schwarzentruber/lineland/

4.6.3 Technical information 91

(define (mc—with—context world context formula)
(match formula

("top #t)

((phi ’or psi)

(or (mc—with—context world context phi)

(mc—with—context world context psi)))

(('not phil)

(not (mc—with—context world context phil)))

((phil ’and phi2)

(and (mc—with—context world context phil)

(mc—with—context world context phi2)))

((phil ’implies phi2)

(or (not (mc—with—context world context phil))

(mc—with—context world context phi2)))

((a ’knows phi)

(validin—with—context
(worldset—delete—not—satisfying
(world—getpossibleworlds world a) context)
context
phi))

((’announce phi psi)

(let ((newcontext (list context ’and phi)))
(if (mc—with—context world context phi)

(mc—with—context world newcontext psi)
#t)))

((a ’sees b)

(sees? world a b))

(p (world—getvalue world p))))

Figure 4.11: The function for the model-checking in Scheme

92 4.6 Implementation

4.6.3.2 The front end in Java

The language Java is adapted in order to create the graphic user interface for many
reasons:

e Java offers the suitable and easy to use Application Programming Interface
(API) Swing [ELW 98| adapted to design graphic user interface;

e Java is multi-platform via a virtual machine |[LY99].

The interface between Java and Scheme is the library kawa: http://www.gnu.
org/software/kawa/. This library provides a Scheme interpreter that enables to
execute Scheme code from a Java program.

Open questions
e Is the logic of Lineland finitely axiomatizable?

e What is the complexity of the satisfiability problem if we restrict construc-
tions of the form K, so that a belongs to a finite and fixed set of agents?

http://www.gnu.org/software/kawa/
http://www.gnu.org/software/kawa/

Chapter 5

Knowledge in Flatland

5.1 Introduction
In the previous Chapter we have studied the logic of perception and knowledge
when the dimension of the space is one. In this Chapter we are interested in the

logic of perception and knowledge when the dimension is two: Flatland.
This chapter is organized as follows:

e We present again the epistemic language Lpg in Section [5.2}
e We recall geometric standard notations in Section [5.3;

e We present the semantics of £ py in Section

e We deal with decidability of the logic in Section [5.5}
e We add public announcements in Section
e We talk about perspectives in Section

As for Lineland, initially, the first formalization of Flatland [BGS10] used
agents and lamps. The aim of the lamps was to denote propositions in the world.
For instance, as you can see in the muddy-children puzzle, Figure lamps are
kind of propositions and here represents the state of foreheads. If ¢; is on, then it
means that the forehead of agent a; is dirty. In Figure [5.1] the forehead of agent
as is clean but the foreheads of the other agents are dirty. As for Lineland, we
can easily encode the state of a lamp by extra agents as following: a lamp ¢; is on
(Figure iff the agent /; is looking at agent a; (Figure That is why we have
decided to delete lamps from the language and the models.

94 5.1 Introduction

Figure 5.1: Muddy-children in flatland with lamps (denoting the state of foreheads)

|2®®
I3Q@ a, \@Qh
|4®® a4 3 a®®|
BCLE oW
S, & ©
,®|é /

Figure 5.2: Muddy-children in flatland with only agents (the state of foreheads are
encoded by agents)

95

5.2 Syntax

In this Section, we recall the language of perception and knowledge introduced in
Subsection [£.2.1] for Lineland.
Let AGT = {a,b,c...} be a countable set of agents.

Definition 26 (language)
The language Lpy is defined by the following BNF:

pu=abb| L]-p| (V)| K
where a,b € AGT.

As usual, (p Avp) =9 =(=p Vv). Kyp =% K, —p. We follow the standard
rules for omission of parentheses. Let agt(¢) be the set of all agents occurring in
. The formula K b > c is read “agent a knows that b sees agent c”.

As for Lineland, £p denotes the set of formulas without epistemic modality.

5.3 Notations

In this Section, we recall some basic notions of geometry. We note N the set of
natural numbers and R the set of real numbers. We note R? the real plane. If
a € R? we note a = (ay,a,) where a,,a, € R: a, is called abscise of a and a,, is
called ordinate of a. If a,b € R, we define ab € R? as ab = (b, — a,, b, — ay).
The scalar product of a and b is a.b = a,xb, + a,xb, € R. If z € R?, we define
|2|| = vz.z. ||z|| is called euclidian norm of the vector .
Let U = {x € R? | ||z|| = 1}. U is called unit circle.

5.4 Concrete semantics

The semantics is not defined with a class of models but directly with a concrete
flatland situation. A flatworld is a situation where all agents have a location
(position and direction at which they look) in the plane , all lamps have a position
and a state (on or off). From it, we will obtain a spatially grounded epistemic
logic. Formally:

Definition 27 (flatworld)
A flatworld w is a tuple (pos, dir) where:

e pos: AGT — R?;
o dir: AGT — U:

96 5.4 Concrete semantics

The set of all worlds is noted W.

In a flatworld w = (pos, dir), for all agent a, pos(a) is the position of agent a
in the plane. For all agent a, the vector dir(a) of norm 1 denotes the direction
where agent a is looking. The agent see all the closed half-plane in the direction
dir(a).

Example 12 The Figure of Muddy children is a flatworld in the sense of
Definition [27
e AGT = {&1,...,&8,€1,...,£8};

e pos(ay) = (cos(Er),sin(E)); (positions of agents ay,)
(

e pos(ly) = (L.1xcos(Er), 1.1xsin(ER)); (positions of agents ()

o dir(ay) = (— cos(&r), —sin(EM)) ; (directions of ax,)

o dir(ay) = (= cos(E), —sin(EM)); (directions of ax, for all k # 2)
o dir(ay) = (0,1)

Now we define the set of all points that an agent a sees.

Definition 28 (cone)
Let us consider a flatworld w = (pos, dir,val). For all a € AGT, we note cone,,(a)
the set {z € R? | dir(a).pos(a)z > 0} .

As depicted in the Figure cone,(a) is the closed half-plane of all points x such
that dir(a).pos(a)z > 0. We could change this Definition:

e Agent can see the open half-plane;
e Agent can see only a cone of angle a: cone,(a) = {x € R? | dfr(a).pos(a)x > cos(oz)Hpos(a)‘

e An agent can be myopic and does not see what is at a distance greater than
r, etc. coney,(a) = {x € R? | dir(a).pos(a)z > 0 and ||pos(a)z|| < r}.

Agent can see the open half-plane: cone,(a) = {r € R? | er(a).pos(a)m > 0};

e Agent can see only a cone of angle a: cone,(a) = {x € R? | dfr(a).pos(a):z: > cos(a)Hpos@).

Here for the sake of simplicity, we adopt the Definition

Now we define the epistemic relation over worlds. For all w,u € W, wR,u
means that agent a cannot distinguish w from u, i.e. agent a sees the same objects
in w and u. Differences between w and u only lie in positions, directions, states of
objects that agent a does not see. Formally:

97

cone(a)

Figure 5.3: cone,(a) = closed half-plane seen by agent a

Definition 29 (epistemic relation)
Let a € AGT. We define the relation R, over worlds w = (pos, dir) and u =:

<pos’,d;r,>: wRu iff:
o forall b e AGT,
pos(b) € coney,(a) iff pos'(b) € cone,(a);
e and for all b € AGT, if pos(b) € cone,(a) then
pos(b) = pos'(b) and dir(b) = dgr/(b).

The Figure presents two worlds linked by R,: agents ¢, d are seen by agent b

and so they have the same positions and directions in both worlds. But, agent a

can change directions and positions provided she remains invisible from agent a.
Obviously, the relation R, is an equivalence relation.

Definition 30 (truth conditions)

Let w = (pos,d?r,val} € W and ¢ be a formula of Lpg. We define w = ¢ by
induction:

o wit L

o w = a>biff pos(b) € coneyl(a);
w eV iff ws g or w =
w =~ iff w

98 5.5 Two decision problems

@ .

R ©

|
/

e
aq

Figure 5.4: Two worlds linked by R,

o wk K, iff for all u € W, wR,u implies u = 1.

We shall say that a formula ¢ is satisfiable iff there exists a flatworld w € W
such that w = . Formula ¢ is said to be wvalid iff for all worlds w € W, w = .
Since R, is an equivalence relation on W, then the axioms of classical epistemic
logic S5,, are valid:

o Kup — ¢;
o K,p— K K,p;

o ~K,p— K,~K,p.

5.5 Two decision problems

In Subsection [5.5.1] we see that finding a qualitative semantics is not so trivial.
That is why we remain with a quantitative representation of worlds: in Subsection
3.2.1.1] , we recall the theory of real numbers enabling us to reduce the model-
checking and satisfiability of an epistemic formula in flatland in subsection .
Let us recall the Definitions of the problem of model-checking and satisfiability.

Definition 31 (model-checking in flatland)

We call model-checking in Flatland the following problem:

e Input: a formula ¢ € Lpy, a description of the flatworld w;

5.5.1 A non-successful qualitative semantics 99

(g

/7 a |

'b 1C //Q’

Figure 5.5: flatworld where agents b, a, lamps ¢, m,n are aligned

e Output: Yes iff we have w |= ¢. No, otherwise.

In Definition the description of the flatworld w only objects occurring in ¢
are taken in account. Positions of agents are supposed to have rational coordinates
because we need a data structure to represent positions of agents. In the same way,
we need a data structure to represent directions of agent.. We do not represent
directions with angles... because the logic of real numbers with the function cos
is... undecidable. Indeed, if we cos, we can define m and then define integers and
Peano’s arithmetic is undecidable. We represent dir(a) by the abscise d;r(a)x,

supposed to be rational and the sign of the ordinate dgr(a)y. The value of d?r(a)x

and the sign of d;r(a)y entirely determine dir(a) because er(a)z =1- d;r(a)i.

Definition 32 (flatland-satisfiability problem)
The flatland-satisfiability problem is the following problem:

e Input: a formula ¢ € Lpg;

e Output: Yes iff there exists a flatworld w such that w |= ¢.

5.5.1 A non-successful qualitative semantics

One idea could be that facts of the form a>b are sufficient to represent a situation.
The Figures 5.5/ and [5.6| gives us two worlds where we have the same valuation (*)
for those facts. In both situations:

e a>b, al>c, al>d are true;

100 5.5 Two decision problems

Figure 5.6: flatworld where objects b, a, £, m,n are not aligned

e ~b>a, b>c, b>d are true;
e c>a, cl>b, nc>>d are true;
e ~d>a, ~dr>b, ~d > c are true.

Nevertheless, in the situation of the Figure the formula p = Ky(a>bAar>d A —a > c)
holds whereas this formula ¢ is false in the situation of the Figure 5.5 Indeed:

e ¢ holds in the flatworld of Figure because agent a can imagine the flat-
world of the Figure [5.4

e ¢ does not hold in Figure 5.5 because as pos(b), pos(c), pos(d) are aligned for
all possible worlds u for agent b, pos(b) € cone,(a), and pos(d) € cone,(a),
implies pos(c) € cone,(a), because cone,(a) is a convexr set. Hence in the
flatword of Figure [5.5] the formula Ky(at>bAat>d — ar> c) holds.

To sum up, we have exhibited two worlds (one of Figure and one of [5.5)),
satisfying the same extra propositions of the form a > b but not the same epistemic
formulas. What agents see or not does not determine a unique epistemic situation.
This means that representing a flatland situation is not trivial. In other worlds,
the Lemma [2]is no longer true in Flatland. We tried other formalization that takes
into account that such and such agents are aligned, or that the former is on the left
of the latter, etc. but unsuccessfully. The existence of a qualitative and complete
representation of a flatworld remains an open question.

5.5.2 Translation into real numbers 101

5.5.2 Translation into real numbers

In order to translate a formula of £ px into the logic of real numbers, we will intro-
duce numerated situations to simulate the truth condition of K,1. (see Definition
We need the set of variables VAR to contain some extra variables (written in
bold face):

e Foralln € Nand for alla € AGT, the set VAR contains the variables pos; ,
and pos; ,. They will be equal respectively to the abscise and ordinate of
the position of the agent a in the situation number n.

e Foralln € Nand for all a € AGT, the set VAR contains the variables dir],
and diry ,. They will be respectively equal to the abscise and ordinate of
the direction of the agent a in the situation number n.

We define the following abbreviations:

e DIR(n,p) says the variables of directions of agents of the formula ¢ represent
vectors of the unit circle U:

DIR(n,) = Nocagi() ||dir, ||? = 1 where ||dir, || is the expression dirf} , %
dir , + diry,x diry,

e FORALL(n,) =V pos},,,...V pos} , V pos; .V pos]

Y dir”

Yy,a1’ Y,ak

.V diry , V diry .V diry

T,a1’ "’ Yy,a1? "

where agt(p) = {a1,...,a}.

FORALL(n,) is a “for all quantifier” over all variables interpreted as po-
sitions of objects, directions of agents and valuations of atoms of ¢ in the
situation number n.

e The formula EPI(n,a,y) will be a formula of Lr saying that the situations
number n and n + 1 are linked by the epistemic relation R,, i.e. are similar
w.r.t. what agent a sees. More precisely, the variables representing the
situations number n and n + 1 are satisfying the constraints of Definition
Moreover, in EPI(n,a,y) we are only interested about objects of the
formula ¢. Formally:

EPI(n,a,9) = Nycagi(n) [dir, .posTpos) > 0 ¢

— n+1 -
dir, .posilpos Tt > 0]A

Nocagt(p) dir, .pos”pos; > 0

1 _

— (posy,” = pos;, A pos,’ = pos; ,/\

102 5.5 Two decision problems

e n+1 _ e n e n+1 o e n
dlr%b = dlrmb A dll‘y’b = dll‘yyb)].
Tk o : : 2N n n 2N
where dir,.pos]pos? is the expression dir} , X (pos},— pos,)+ diry , X

(pos; , — pos,,) etc.

Now we we can give the translation of a formula of Lpg into Lr. Given ¢ € Lpg
and n € N, we introduce 7(n, ¢) € Lg whose meaning is “y is true in the situation
number n”.

Definition 33 (translation)
We define the translation 7 : N x Lpr — Lg by, for all n € N:

e 7(n,)= 1;

e 7(n,ar>b) = (dir, .postposy);

o 7(n, 1V 2) = 7(n, 1) VT (n, 92);
o 7(n,~p) = =7(n, ¢);

o 7(n,K,p) = FORALL(n+1,¢)
DIR(n+1,9) N EPI(n,a,9) — 7(n+1,¢).

where FORALL(n+ 1,¢), DIR(n+ 1,¢), EPI(n,a,) are defined above.

Let us explain 7(n, K,p): the variables of the situation number n are such
that for all situation number n + 1 [FORALL(n + 1,¢)]|, if the directions are
correct [DIR(n+ 1,)] and if the situation number n + 1 is linked to the situation
number n by R, [EPI(n,a,p)] then the formula ¢ is true in the situation number
n+1|r(n+1,¢)|. The Definition 7(n, K,p) simulates the truth condition of K,
(Definition by using numerated situations.

Proposition 5 For all p € Lpg, for alln € N, for all w = (pos,dfr) e W, we
have:

w = iff I |E1(n,e) for all I € Inter(n,w,¢) where Inter(n,w, y) is the set
of all interpretations I such that:

o I(pos;’a) = pos(B)., 1(posZ’a) = pos(B), for all a € agt(p);

o I(dir,,) = dir(a)y, 1(diry) = dir(a), for all a € agt(p);

5.5.2 Translation into real numbers 103

PROOF.
Let V¢ = {pos”,dir }. By induction on ¢. The property is P(¢) =“for all

n €N, for all w € W, we have w |= ¢ iff I = 7(n,)"

Left to the reader.

w | g iff w = @ iff not|for all I € Inter(n,w,¢), I |=7(n,p)| iff there exists
I such that (*) and I £ 7(n, ¢) iff there exists I € Inter(n,w,) and I &= —=7(n, @)
iff there exists I € Inter(n,w,¢) and I = 7(n,) for all I € Inter(n,w,) and
I = 71(n,—¢). (because the interpretation of 7(n, =¢) only depends of pos”, dfrn).

w = Ky iff for all u € R,(w) u |= o iff for all u € W such that Definition
u = . By induction, it is equivalent to for all u € W such that Definition 4, for
all J € Inter(n+ 1,u,¢), J =1(n+1,¢). (1)

For all I € Inter(n,K,p), I |E 7(n,K.p). It is equivalent to for all
I € Inter(n,w,K,p), for all interpretation J such that Ijyne = Jjyne and
J |= epi(n,a,p) we have J = 1(n+1,¢). (2)

Let us prove (1) < (2). Suppose (1). Let I € Inter(n,w, K,p) and J such
that Ijyne = Jyyne and J |= epi(n, a,). Let u € W such that:

) [(posgﬂ) =pg for all B € AGT N y;

o](d_i’rzJrl

)=dpforall be AGTN ;
and for all objects it is like in w. We can prove that u € R,(w). And as J €
Inter(n + 1,u,), we have by (1), we have J = 7(n + 1,¢) and we have proved
(2).

On the contrary, suppose (2). Let u € R,(w) and J € Inter(n+ 1,u,). Let
I € Inter(n,w, K,p) and let K be as J plus Kjyne = Ijyne. As u € Ry(w), we
have K = epi(n,a,p). So K |= 7(n+1,0). As Jyni1e = Kjynire, J | 7(n+1, ¢).
We have proved (1).

|

Corollary 4 The L pg-satisfiability problem is decidable.
PROOF.
Given ¢ € Lpg and w = (p, d, 7), we have ¢ is satisfiable iff DIR(0,) AT(0, ¢)

is R-satisfiable. And 7 is computable (and in polynomial time!). B

Corollary 5 The model-checking in flatland in decidable.

104 5.6 Public announcement

PROOF.

Given ¢ € Lpg and w = (pos, d;r> such coordinates of positions are rational
and abscises of directions are rational. We have w |= ¢ ift INIT (w,) A 7(0, ¢)
is R-satisfiable where INIT (w) is a formula saying that the flatworld number 0 is
the flatworld w. More precisely:

INIT (w,) =
Nacagi(p)(POSsa = pos(a)s) A (posy, = pos(a),)A
/\‘lGagt(lp)K dir%a = dzr(a)m) A (dirg,a Aa 0)]/\
DIR(0,)
where:
o A, = “="iff dir(a), = 0;

o N, ="“>"iff dfr(a)y > 0;
o N, ="<"iff dfr(a)y < 0.

[|

We have tried to solve the satisfiability problem for small formulas of £py by
treating the translation of it with the solver REDLOG for the real logic [Wei93]:
it is slowﬂ! In the Chapter , we have proved that the model-checking problem
and the satisfiability problem are PSPACE-complete in lineland. We conjecture
(and hope!) that, in flatland, these decision problems are PSPACE-complete too.

5.6 Public announcement

As done in [Pla07] we can extend our framework with public announcements. This
is essentially motivated by modeling examples like Muddy children. With public
announcements, an agent will be able to learn something about the part of the
actual flatworld which he can not see. The technique is classical: we add an
operator [¢!] and we define semantics as in S5,,.

5.6.1 Definitions
Our new language £' is defined by the following rule:
pu=a>b|L]-¢|(eVe)| K| ple

where a,b € AGT.

1130 seconds to solve the non-validity of K,on, on a 1.5Ghz processor!

5.6.2 Decidability 105

The formula [p!]t) says that if ¢ holds in the current situation then publicly
announcing ¢, i.e. restricting the current situation to the set of all worlds where
¢ holds, creates a new situation where ¢ holds. From now, we write U, w = ¢ and
it means that ¢ is true in w given that U is the set of all worlds compatible with
all announcements already made.

Definition 34 (truth conditions)
Let U be a set of worlds (U C W). Let w € U. We define U, w |= ¢ by induction:

e UwkEarbiff wEar> b
Uw = oV o iff Uyw = g or Uyw = o
U,w i~ iff Uyw [¢

Uw | K iff for all w' € U, wR,w'

implies U, w' = ;

Uyw = [y iff Uyw | ¢ implies U’ w =
where U' = {w' € U | U, v’ = ¢}.

Example 13 (Muddy-children) Let us consider the flatworld w depicted in the
Figure (2.1 We have

VV,@U }Z [/\ /\ a; > 6]'][\/ El > CI,Z'][/\ _'Kaigi > CLZ'!VKalfl >a.

i€{1..8} je{1...8},j#i ie{1...8} ie{1...8}

where the construction a; > {; models the proposition “agent © sees the forehead
of agent 77, the formula /\ie{l...S} /\je{lmg}’#i a; > {; means that all agents i sees
the forehead of all agents 7 and the construction £; > a; means “the forehead of
agent 1 s dirty”.

We shall say that a formula ¢ is satisfiable iff there exists a flatworld w € W
such that W, w | ¢. Formula ¢ is said to be walid iff for all worlds w € W,

Ww = .

5.6.2 Decidability

As in the previous Section, we define a translation from £' into Lg. Here, we need
lists of formula. list(£') denotes the set of lists of formula in £'. The empty list is
noted []. Given) € £' and a list L € list(L'), we denote by [/ : L] the list whose
first element is ¢ and whose queue is L.

106 5.7 Weaker semantics

Definition 35 (translation)
We define the translation 7 : N x list(L£') x Lpx — Lg by: for all n € N,

o 7(n,L,1)=1;

e 7(n,L,a>b) =71(n,a>b);

(
(
o 7(n,L,p1 V p2) = 7(n, L, 1) V 7(n, L, p);
o 7(n,L,~p) = ~(n, L, p);

(

o 7(n,|[|,Kup) = FORALL(n+1,¢)
DIR(n+1,¢0) N EPI(n,a,9) = 7(n+1,¢).;

o 7(n,[¢p: L], Kyp) = FORALL(n+ 1,¢),
DIR(n+1,¢) N EPI(n,a,¢) A7(n, L,1)
—=T1(n+1,¢);

o 7(n, L, [¥1¢) = 7(n, L,) = 7(n, [: L], ¢).

where FORALL(n+1,¢), DIR(n+1,¢), EPI(n,a,y) are defined in Subsection
.52

Here is the Proposition of correctness of the translation:

Proposition 6 For all ¢ € L', for alln € N, for all w € W, we have: w = ¢ iff
I'\=1(n,p) for all I € Inter(n,w,).

In the same way, reasoning about knowledge and public announcements in

flatland is decidable.

5.7 Weaker semantics

With the Definition agents are “very clever”. They can make the difference
between aligned points, points exactly settled on the conic of equation 2% —3y? = +
In real life, humans and also robots have not this capabilities. For instance, stars
in the sky seems to appear on a sphere (the celestial sphere) but stars are not
settled on a sphere at all. Since we do not have such perfect abilities, we decide
to make the Definition 29 weaker.

Let us define V,,(a) = {b € AGT | pos(b) € cone,(a)}.

Here is a version of a Definition for the epistemic relations where agents can
only know whether an agent a sees an agent b or not but they have no information
about the exact positions of agents in mind:

107

Definition 36 (epistemic relation)
Let a € AGT. We define the relation R, over worlds w = (pos,dir) and u =:
o
(pos’, dir): wRyu iff:
o Vy(a) = Vyu(a);
e For all agent b, c € V,,(a), c € V,,(b) iff ¢ € V,,(b).
From now we have two semantics for flatland:

e theinitial one where agents are clever and knows the exact positions of agents
with Definition

e the new one where agents are stupid and only take care about what agents
sees with Definition We note Fgupia the satisfiability symbol for this
variant.

Theorem 18 The model checking:
o nput: a flatworld w and a formula @;

o output: yes if w such that W Fsupia ©; no otherwise.
and the satisfiability problem:
o input: a formula p;

o output: yes if there exists a flatworld w such that w =supia ©; o otherwise.

are PSPACE.

PROOF.

The Figure provides an algorithm to solve the model-checking of Flatland
with FEgpupia. A flatworld w is now represented by the set of all literals of the form
a > b which are true, where a and b are agents appearing in the formula ¢.

In order to test if flatworld w is satisfiable we simply use the PSPACE-procedure
provided by [9| W

5.8 Comparisons

Proposition 7 Let ¢ € Lp (i.e. formula has no modal operator but only literals
of the form a>b).

We have equivalence between ¢ is valid in the clever version Flatland and ¢
is valid in the stupid version of Flatland. If ¢ is valid in (clever/stupid) Flatland
then ¢ s valid in Lineland.

108 5.10 Open questions

PROOF.
We can represent a lineworld as a flatworld. B

Proposition 8 K;(-a>bAa>c— (b>a <> b c)) is valid in Lineland but not
in Flatland (both versions).

—d>aN—-d>bA=d>c— —Ki(-ma>bAa>c— (b>a <> br>c)) is valid in
Flatland (both versions) but is not valid in Lineland.

Proposition 9 There exists a valid formula for clever agents which is not valid
for stupid agents.

There exists a valid formula for stupid agents which is not wvalid for clever
agents.

PROOF.

Let o =b>cAb>dA-b>a— Ky(a>bAa>dA—ar>c). The formula ¢ is
valid for stupid agents but not for clever agents.

—al>bA-a>cA-a>d— Ka¢ is valid for clever agents but not for stupid

agents.
|

5.9 Perspectives

There are many perspectives emerging from this work, some of them already
brought up in the paper are long range perspectives: enrich the situation by adding
obstacles or indirect sight (like mirrors), and take into account the shape of objects.
At shorter term, we aim at solving the questions concerning the exact complexity
class of flatland-satisfiability and model-checking problems, and concerning the de-
cidability and complexity issues with the common knowledge operator CK ;. This
is a way to compare Lineland, Flatland and Spaceland. Finally, we aim at imple-
menting an efficient a flatland solver especially to have a good pedagogical tool for
students in epistemic modal logic.

Acknowledgment. Thanks to Andreas Herzig and Emiliano Lorini for their
advices.

5.10 Open questions
e [s the logic of Flatland axiomatizable?
e Is the logic of Flatland in PSPACE?
e Is the logic of Flatland in PSPACE-hard?

109

procedure istrue(w,)
match (¢)
T: accept ;
a > b
accept iff a>b € w
V1V o
choose (3)i € {1,2};
call istrue(w, ¢;);
—p: call isfalse(w,));
K-
choose (Y)u € W;
if u € R,(w) then
if u satisfiable then
| call istrue(u,)

else
| accept
endIf
else
| accept
endIf
endMatch
endProcedure
procedure isfalse(w, o)
match (y)
T: reject ;
a > b:
accept iff a>b € w
Y1V iy

choose (V)i € {1,2};

call isfalse(w, p;);
W: call istrue(w,);
K-

]

choose (F)u € W,

if u € R,(w) then
if wu satisfiable then

| call isfalse(u,))

else
\ reject

endIf

else

\ reject
endIf
endMatch
endProcedure

Figure 5.7: Algorithm for stupid agents

110 5.10 Open questions

e How to implement Flatland?

e Combine the operator Q¢ “the agent make an effort such that ¢” ([MP92],
[IPMSO07| and [Hei06]) and Flatland: the semantics of { may consist in widen
the vision cone of an agent.

Part 11

Doing

Chapter 6

Towards the logic STIT

Actions are omnipresent in real life and in computer science. For instance in chess
game “moving a pawn” or “castling” are actions. For instance in robotics, actions
can be “walk” or “turn the head”.

In this chapter we first present well-known formalizations in modal logics deal-
ing with actions and/or choice of actions by agents. We will see the drawbacks
of those formalism in terms of expressivity. Then we introduce individual STIT
(“sees-to-it-that’) logic and finally the group STIT logic.

6.1 PDL

In this section we introduce the famous logic PDL [FL79| devoted to deal with
actions and even more precisely programs. Let us consider a countably infinite set
of atomic propositions ATM and a countably infinite set of atomic actions ACT .
The language of PDL is defined in the following way:

o = p | o | (pAy) | [t

where p ranges over ATM and 7 ranges over the set of all reqular expressions
formed over the set of atomic actions ACT and with operators ; and *[f]

We do not give the semantics, axiomatization here. You can find an axioma-
tization and more information in [BDRV02|. Nevertheless we give an intuition of
the semantics:

e An atomic proposition p is true means that the interpretation of it in the
current state of the program/device/game is true;

! There are more complex version of PDL with U, N, ¢?, etc.

114 6.2 Coalition Logic

e [a]y means that ¢ is true in all states reachable from the current state by an
execution of the atomic action a (for instance “set a variable v to 17, “push
the button”; etc.). We simply say that [a]p iff after executing a we have .

o [m1; ™o is true means ¢ is true after executing o then ¢, we have y;

e [1*]¢ is true means @ is true after executing a finite number of times the
action 7.

As you can see, this logic is quite interesting to speak about actions: we can
tell the outcomes/effects of an action. But it does not talk at all about agents.

Drawbacks of PDL In PDL, there is only one agent: the “computer” executing
the program. As you can see, there are no agents mentioned in the language and
we can not express interaction between different agents. For instance we can not
express cooperation between several agents such that if agent 1 executes 7 and if
agent 2 executes my they ensure a property ¢ whatever the program of agent 3 is.

6.2 Coalition Logic

In this section, we present the logic of Coalition [Pau02|. This logic is inspired
from PDL in the sense that this logic speaks about the outcomes/effects of actions
performed by agents. In this logic, no actions are mentioned but only group of
agents. Coalition Logic provides a construction of the form ((J))y meaning that
“the group of agents J can ensure the property ¢ in the next state” or more
precisely “agents of J have actions in their repertoire such that if they execute
those actions then they ensure the property ¢ in the next time whatever the other
agents do”.

More precisely the language of Coalition logic is defined by the following rule:

p u=ploe | (eAe) | (D)
As designed by Pauly [Pau02], semantics of Coalition Logic is in terms of neigh-
borhood models, that is, models providing a neighborhood function, associating a

world to a set of neighborhoods, or clusters. (See [Che80, Chap. 7] for details
about those models.)

Definition 37 (effectivity function)
Given a nonempty set of states S, an effectivity function is a function E : 2467 —
22° " An effectivity function is said to be:

o J-mazimal iff for all X C S| if S\ X & E(AGT\ J) then X € E(J);

115

e outcome monotonic iff for all X, X' C S and for all J C AGT, if X € E(J)
and X C X’ then X' € E(J);

o superadditive iff for all Jy, Jo, if J; N Jy = 0 then for all X;, X, C S, if
X € E(Jl) and X, € E(JQ) then X; N X, € E(Jl U JQ)

The function E intuitively associates every coalition J to a set of subsets of S (or
set of outcomes) for which J is effective. That is, J can force the world to be in
some state of X, for each X € E(J).

Definition 38 (playable effectivity function)
Given a nonempty set of states S, an effectivity function F : 2467 — 22° is said
to be playable iff the following conditions hold:

1. forall J, 0 & E(J) (Liveness)
2. forall J, S € E(J) (Termination)
3. Fis AGT-maximal

4. E is outcome-monotonic

5. E is superadditive

A coalition model is a pair ((S, F), V') where:
e S is a nonempty set of states;

o F: 5 — (2467 5 22°) associates every state s with a playable effectivity
function E(s).

o V.S — 2P ig 4 valuation function.

We will write E(J) instead of E(s)(J) to denote the effectivity of the group J at
the state s.

Truth conditions are standard for Boolean operators. We evaluate the coali-
tional operators against a coalition model M and a state s as follows:

M;s = ((J)p it {t | Mt = ¢} € Es(J)

Alur et al. propose a similar formalism called Alternating- Time Logic (ATL) in
JAHK99] which is an extension of Coalition Logic plus time expressivity. The idea
is namely the same than Coalition Logic except that ATL deals with long-term
strategy.

116 6.3 Drawbacks of Coalition Logic

6.3 Drawbacks of Coalition Logic

Compared to PDL, Coalition Logic enables us to speak about ability. Nevertheless
Coalition Logic has some drawbacks.

6.3.1 Combining with epistemic logic: de dicto VS de re

When an agent make a plan in order to get a certain property ¢ he must take
in account its own knowledge/belief about the world and about other agents’
action. We can distinguish essentially three different situations mixing abilities
and knowledge.

1. The agent has an action a in his repertoire to ensure ¢ but she does not
know that she has this action a.

Example 14 Player Marwais playing chess and actually she has a strategy
to perform a checkmate but as she is beginner in chess she does not know she
can perform a checkmate. This situation can actually be represented in modal
logic using a Coalition Logic operator and an epistemic operator:

((Marwa))chessmate N =K yarwa ((Marwa))chessmate.

2. The agent knows that she has an action to ensure ¢ and she knows exactly
which action she has to execute to ensure ¢. This situation is called “de re”
(of the thing): the agent has a specific action in mind.

Example 15 Imagine the situation where Marwa is near a lamp which is off
and a button [BHTO07d]. Suppose that Marwa knows that the button controls
the lamp. Then Marwa knows that she has an action (toggling the button) in
order to get the lamp on. Furthermore she knows that the action is “toggling”.

3. The agent knows that she has an action to ensure ¢ but she can not identify
this action. This situation is called “de dicto” (of the word): the agent can
give a word to this action but can not associate this word to a specific action
ensuring (.

Example 16 Imagine the situation where Marwa has the credit card of Bilal
but she does not know its 4-digit pin code. In this situation, Marwa knows
that she can have money from a cash machine. Actually she knows that she
has an action in order to get money, that is to say to write the correct 4-digit
pin code but she does not know which pin code she has to write.

6.3.2 Counterfactual emotions 117

Example 17 [HT06] Imagine the situation where Marwa is blind and is
located into a room where the light is off. She is near a button enabling to
switch the state of the light. Marwa can ensure the light to be on by pressing
the button but as she does not know the state of the light she does not whether
she has to toggle the button or not.

Whatever you try to combine the epistemic operator and the coalition logic
operator you will not be able to express the difference between the “de re” and the
“de dicto” situations. The Coalition logic operator is not expressive enough.

6.3.2 Counterfactual emotions

As you can see in Chapter |10} formalization of regret is made up of two ingredients:

e the agent who regret ¢ now knows that ¢ is true;

e She also knows that she could have prevented ¢, that is to say she would
have an action a in her repertoire such that ¢ would be false if she would
performed the action a (the actions of other agents are fixed).

We claim that Coalition Logic is not expressive enough to express counterfac-
tual emotions like regret: the notion of “agent a could have prevented ¢” is different
from the Coalition Logic. Indeed “agent a could have prevented ¢” requires to have
an operator enabling to examine a change of action a by continuing to fix actions
of other agents.

6.3.3 Solutions

Many logicians [JA07, [Jon03, [JvdH04, VOJ05, [Sch04] have studied quite elegant
adapted version of Coalition Logic in order to capture the notion of “de re” and
“de dicto”.

For instance in [JAQT7], the authors provide “ad hoc” non-standard operators:

o K,((a))y: agent a knows that she can ensure ¢ and knows a specific strategy
in order to get ¢ (“de re”);

o K,((a))p: agent a knows that she can ensure ¢ but not necessarily she knows
about a specific strategy (“de dicto”).

Coalition logic is a non-normal logic in the sense that the semantics is not
describe in the natural way of relations and standard truth conditions. As you can
see in the truth conditions of ((.J))¢, the semantics can be reformulated as follows:

118 6.4 The STIT logic

e there exists a set of points A € E(J) (this set corresponds to the choice of
actions for all agents in J);

e such that for all state ¢t € A we have M, t |= ¢. (that is to say, whatever the
other agents are doing, ¢ will be true)

In this thesis we study the point of view of [HT06]: we claim that we can
model “de re” and “de dicto” principles and counterfactual emotions (see Chapter
with standard epistemic logic using only normal modal logic. This leads to
the idea to decompose the ((J)) operator into three normal operators in the same
principle than in [GH93| and more precisely [BHTO05]:

e a “diamond” operator { to model the existential part of choosing an action
for agents of J;

e a “box” operator [J] in order to browse all actions of agents that are not in
J.

e and finally a “next” operator X in order to model time.

In this formalism, the “de re” is formalized by
OKa[J] X
and “de dicto” is formalized by
K, OlJ] X .

In this thesis, we will be interested about the operators ¢ and [J] without time
operators. Those operators are operators of the sees-to-it-that modal logic.

Broersen et al. showed that ATL can be embedded into a strategic version
of Chellas STIT, by identifying ((J))X ¢ with (0)[J]X¢ and ((J))(eUv) with
(0Y[J)(@U). [BHTOGa]. This highlights that the modal operators of CL [Pau02]
and ATL [AHK99| are nothing but fusions of three modal operators. STIT-logics
are therefore the most general formal framework for agency, allowing not only to
reason about what agents can do, but also about what they do, contrary to CL
and ATL.

6.4 The STIT logic

In philosophy of action constructions of the form [i stit :] were introduced by
Belnap et col. [BPX01], read “agent i sees to it that ¢” or “i brings it about
that ¢”. In this paper, we focus on the basic version that is called Chellas STIT

6.4.1 Syntax 119

[Che92|] (thus baptized by [HB95]), noted [i cstit : ¢| in the literature. (The
original operator defined by Chellas is nevertheless notably different since it does
not come with the principle of independence of agents that plays a central role in
STIT theory.) The Chellas STIT was extended to group agency in [BPX01, Section
10.C] and [HorO1b, Section 2.4|. For a set of agents J, the formula [J cstit : ¢]
reads “group J sees to it that ¢”. We here write [J]y instead of [J stit : ¢]. These
logics moreover have a modal operator of historical necessity that is identified with
0],

We present two semantics to interpret formulas in the language of group STIT
with the “next” operator. In this section, we recall the orginal semantics in terms
of Belnap’s branching-time models [BPX01]. In the next section, we will define
an equivalent semantics closer to standard presentations of Kripke models. For
that matter you can already find such a semantics in terms of Kripke models in
IBHTO8| and [HSO8| for the STIT without temporal operators.

6.4.1 Syntax

Let ATM be an enumerable non empty set of atomic propositions, let n be a
positive integer and let AGT = {1,...n} be a finite (non empty) set of agents.
The language Lxcstir of logic XCSTIT is defined by the following BNF:

o == L | p| (eVe) | ~¢ | [Je | Xe

where p € ATM and J ranges over 2497,

The construction [J]p is read “group J sees to it that ¢ is true”. When J = 0,
the construction [l means that ¢ is historically necessary. The construction
X reads “¢ will be true in the next moment”. We define the following standard
abbreviations: T =% =1 (o A1) =% =(=p A 1)) and (J)p =9 =[J]—~p. We
follow the standard rules for omission of parentheses.

Remark 5 The version of STIT is called “Chellas’ STIT”. There exists another
version of STIT called individual deliberative STIT providing a construction of the
form [adstit:p] meaning that “agent a sees to it that ¢ is true and @ is not neces-
sarily true”. Of course we can define this operator in our language by [adstit:p] =

[{a}]e A =[0]p. For more details, see [BPX01], [Wan06).

6.4.2 Traditional semantics with Branching time structure

Semantics is given to formulas of Lxcstt in terms of a branching-time (BT) struc-
ture augmented by an agent choice (AC) function. TLet us introduce first the
STIT-branching time structure. As we deal with the “next” operator, we suppose
in this paper the time to be discrete. Moreover, we suppose the time to be without
endpoints.

120 6.4 The STIT logic

6.4.2.1 STIT-branching time structure

Definition 39 (STIT-branching time structure)
[BPXO01][p. 30] A discrete STIT-branching time structure without endpoints (BT-
structure) is a tuple (M, <) where:

e M is a non empty set of moments;
o < is tree-like that is to say:

1. for all m € M, m < m (reflexive);

2. for all my,mq,mg € M, m; < ms and my < mgs implies m; < mg
(transitive);

3. for all my,my € M, my < my and my < m;y implies m; = my (antisym-
metric);

4. for all my,mo,mg € M, m; < mg and my < mg implies m; < msy or
ms < my (unique past);

5. for all mqo, mg € M, there exists m; € M such that m; < my and
my < mg (historical connection);

6. forall my, my € M, if m; < mo then there exists ms such that m; < msg,
ms < mgy and there is no m’ € M such that m; < m’ < ms (discrete-
ness);

7. for all my, there exists mo such that m; < my (seriality).

You can think of moments as states. m; < my means that the state m, is
before or equal to mo. This relation is transitive (Item 2.) Item 3. says that if m;
is before my and ms before m; then m; and ms, are the same moment. Items 4.
and 5. entail a tree structure. Item 6. means that the relation is discrete, that is
to say, given a moment my, we can speak about moments which strictly just after
my. Item 7. says there is a future.

Definition 40 (history)

A history of a BT-structure (M, <) is a maximal set of linearly ordered mo-
ments from M.

Notation 1 The set of all histories of (M, <) is noted HM or simply H.

Notation 2 The set of all histories passing through m € M is noted H or simply
H,,. Formally: HY = {h € HM | m € h}.

6.4.2 Traditional semantics with Branching time structure 121

i&
=N

A Yx

\O\

ha

Figure 6.1: Undivided and divided histories

Defin