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Résumé

Cette thèse est consacrée à l’étude, à différentes échelles, de modèles cinéti-
ques de particules en interaction, dont le vecteur vitesse est contraint à rester
sur la sphère unité S de Rn. Ces modèles interviennent dans la description du
comportement d’individus dans des sociétés animales telles que des bancs de
poissons ou des nuées d’oiseaux. En particulier, nous nous intéressons à des
modèles avec une interaction d’alignement, comme le modèle de Vicsek [74] :
les particules se déplacent à vitesse constante et modifient simultanément leur
orientation en fonction de l’orientation moyenne des particules voisines.

Dans une première partie, nous commençons par étudier l’influence de
deux modifications dans la version continue en temps du modèle de Vicsek
proposée par P. Degond et S. Motsch dans [28], où un modèle macroscopique
est obtenu, lorsque le système est observé à grande échelle en temps et en
espace. En permettant aux paramètres du modèle individuel de dépendre de
la densité locale de particules, et en introduisant de l’anisotropie dans les
noyaux d’observation (cela peut modéliser un angle de vision restreint), nous
montrons que le modèle macroscopique garde la même forme : une équation de
conservation de la densité ρ > 0 de particules, et une équation non conservative
pour leur orientation moyenne Ω ∈ S, données par

∂tρ + ∇x · (c1ρΩ) = 0. (1)
ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0. (2)

La seule différence réside dans le fait que les coefficients du modèle ainsi
obtenu dépendent de la densité, et nous montrons que cela peut entraîner la
perte de l’hyperbolicité dans certains régimes. Nous établissons une méthode
permettant de calculer un développement asymptotique, à tout ordre, des
coefficients du modèle lorsque le paramètre de concentration tends vers 0 ou
vers l’infini.

Nous étudions également une autre modification du modèle individuel,
dans laquelle le taux de relaxation vers la direction moyenne des particules
voisines est proportionnel à leur quantité de mouvement. Nous montrons
qu’à grande échelle, ce modèle présente un phénomène de transition de phase
lorsque la densité traverse un seuil, et nous dérivons un modèle macroscopique
dans chacun des deux régimes. Nous obtenons un modèle de type diffusion dans
la région de faible densité, où la distribution des vitesses des particules est iso-
trope. Quand la densité ρ est au dessus du seuil, la limite macroscopique est
constituée du même système (1)-(2) d’équations aux dérivées partielles. Les
développements asymptotiques des coefficients quand la densité est grande ou
proche du seuil permettent de montrer que le système n’est pas hyperbolique
dans ces régimes.

Finalement, nous introduisons un modèle, inspiré de la version continue
en temps du modèle de Vicsek, où les particules se déplacent sur une variété
Riemannienne générale (dans la plupart des simulations du modèle de Vicsek
original, cela correspond au tore plat). Nous montrons que le système est
bien défini, et qu’il possède la propriété de propagation du chaos, ce qui nous
permet de dériver une limite de type champ moyen dans la limite d’un grand
nombre de particules. Dans le cas de la sphère unité usuelle S2, nous effectuons
des simulations numériques du système de particules obtenu.
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Dans une seconde partie, nous analysons la dynamique de la version ho-
mogène en espace du modèle avec transition de phase introduit dans la pre-
mière partie. Nous obtenons une équation de Fokker–Planck non linéaire, qui
est en fait appelée équation de Doi [32] avec potentiel dipolaire. Cette équa-
tion apparaît dans l’étude de suspensions de polymères en forme de bâton-
nets (elle peut être vue comme un flot-gradient de la fonctionnelle d’énergie
libre d’Onsager [65]), et est habituellement étudiée avec le potentiel dit « de
Maier–Saupe ». Nous montrons que le système est bien posé pour une condi-
tion initiale dans n’importe quel espace de Sobolev, et décrivons les solutions
stationnaires en toute dimension. Nous obtenons l’existence d’un seuil pour
l’intensité du bruit au-delà duquel l’unique équilibre est la distribution uni-
forme. En deçà de ce seuil, on obtient une variété d’équilibres indexés par une
orientation Ω ∈ S. Nous montrons que toute solution converge dans tout es-
pace de Sobolev vers un unique équilibre, et nous caractérisons les conditions
initiales pour lesquelles la solution converge vers la distribution uniforme. Pour
le cas sous-critique, nous construisons une nouvelle fonctionnelle d’entropie,
à l’aide de décomposition en harmoniques sphériques, et cela nous donne un
taux global exponentiel de convergence vers l’équilibre uniforme. Dans le cas
surcritique, nous pouvons obtenir un taux local exponentiel de convergence
vers l’équilibre, et dans le cas critique, nous prouvons que la convergence vers
la distribution uniforme est algébrique en temps. Finalement, nous montrons
que les outils que nous avons utilisés peuvent être appliqués à l’équation de
Doi avec le potentiel de Maier–Saupe, et nous donnons des résultats de conver-
gence vers un état stationnaire pour toute condition initiale en dimension 2.
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Abstract

This thesis is devoted to the study, at different scales, of kinetic models of
interacting particles whose velocity is constrained to stay on the unit sphere S
of Rn. These models aim to describe the behavior of individuals inside animal
societies such as fish schools or flocks of birds. In particular, we are interested
in models with alignment interaction, such as the Vicsek model [74]: particles
move with constant speed and synchronously update their direction according
to the mean orientation of their neighbors.

In a first part, we start by investigating the influence of two modifications
in the time-continuous version of the Vicsek model proposed by P. Degond
and S. Motsch in [28], where a macroscopic model is derived when the system
is observed at large scale in time and space. Letting the parameters of the
individual model depend on the local density, and introducing anisotropy in
the observation kernels (this can model a restricted angle of vision), we prove
that the macroscopic model has the same form: a conservative equation for the
density ρ > 0, and a non-conservative equation for the mean orientation Ω ∈ S,
given by

∂tρ + ∇x · (c1ρΩ) = 0. (3)
ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0. (4)

The only difference is that the coefficients of the model depend on the density,
and we show that this can lead to the loss of hyperbolicity in certain regimes.
We provide a method to compute the expansion, up to any order, of the
coefficients of the model when the concentration parameter goes to 0 or to ∞.

We also study another modification of the individual model, where the
rate of relaxation towards the mean direction of the neighbors is proportional
to their local momentum. We prove that, at large scale, this model presents
a phenomenon of phase transition when the density goes across a threshold,
and we derive a macroscopic model in each of the two regimes. We obtain
a diffusive type model in the region of low density, where the distribution of
the velocities of the particles is isotropic. When the density ρ is above the
threshold, the macroscopic limit consists in the same system (3)-(4) of partial
differential equations. Using the asymptotic expansions of the coefficients
when the density is large or close to the threshold, we can prove that the
system is not hyperbolic in these regimes.

We finally introduce a model inspired by the time-continuous version of
the Vicsek model, where the positions of the particles live on a Riemannian
manifold (instead of the flat torus which is the framework of most of the
simulations of the Vicsek model). We prove its consistence, we show that it
satisfies the propagation of chaos property, which allows to derive a mean-field
limit as the number of particles goes to ∞. In the case of the 2-dimensional
unit sphere S2, we perform some numerical simulations.

In a second part, we analyze the dynamics of the space homogeneous ver-
sion of the model with phase transition introduced in the first part. We ob-
tain a non-linear Fokker–Planck equation, actually called the Doi equation [32]
with dipolar potential. This equation arises in the study of suspensions of rod-
like polymers (as a gradient flow of the Onsager free energy functional [65]),
and is usually studied with the so-called Maier–Saupe potential. We prove the
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well-posedness of this system for an initial condition in any Sobolev space, and
describe the steady-states in any dimension. We get that there is a threshold
for the noise intensity over which the only equilibrium is the uniform distri-
bution. Under this threshold, there is a manifold of equilibria indexed by an
orientation Ω ∈ S. We prove that any solution converges in any Sobolev space
to a unique equilibrium, and characterize the initial conditions leading to the
uniform distribution. For the subcritical case, we construct a new entropy by
a decomposition in spherical harmonics, which gives a global exponential rate
of convergence to the uniform distribution. In the supercritical case, we are
able to give a local exponential rate of convergence to the equilibrium, and in
the critical case, we prove that the convergence to the uniform distribution is
algebraic in time.

We finally show that the tools we used in the case of the dipolar potential
can be applied to the Doi equation with Maier–Saupe potential, and give
results of convergence to a steady-state for any initial condition in dimension 2.
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Introduction générale

1 Motivation

Nous nous intéressons à l’étude de divers modèles de comportement collectif dans
des systèmes comportant un grand nombre de particules, par exemple des modèles
de déplacements de poissons à l’intérieur d’un banc, ou d’oiseaux dans une nuée.
Ces modèles ont récemment donné lieu à de nombreuses questions, très stimulantes
d’un point de vue mathématique [10]. Une des questions récurrentes sur ce sujet est
la compréhension de la manière dont les comportements collectifs voient le jour sans
meneur, par exemple à l’aide seulement d’interactions locales. De tels phénomènes
sont courant dans la nature, on peut observer par exemple un alignement global des
poissons dans un banc, ou la formation de structures et de motifs cohérents dans
des nuées d’oiseaux, même si les individus semblent n’interagir qu’avec un nombre
réduit de voisins.

Un modèle de déplacement très en vogue, proposé par Vicsek et al. [74], a été
l’objet de beaucoup d’attention, au vu de sa capacité à reproduire ces phénomènes
complexes et de son minimalisme. La règle d’interaction minimale était en fait déjà
présente dans d’autres modèles [3, 67, 49, 23], appelés « modèles à trois zones », qui
incluent de l’attraction à grande distance et de la répulsion à courte distance. Ces
modèles ont pour but de décrire de façon réaliste le comportement d’animaux, tan-
dis que le modèle de Vicsek se focalise sur les propriétés essentielles de l’interaction
d’alignement, sans prétendre être aussi réaliste. Le modèle revient à considérer des
particules se déplaçant à vitesse constante, et changeant simultanément leur orien-
tation pour prendre (à un bruit angulaire près) l’orientation moyenne des particules
voisines. Pour contourner le problème de confinement qui se pose alors, à la place
d’introduire de l’attraction à grande distance par exemple, le modèle impose une
condition de périodicité spatiale. D’un point de vue plus géométrique, la dynamique
des particules a lieu sur le tore plat.

Dans ce cadre, un grand nombre de simulations de ce modèle et de variantes
ont été effectués [46, 16, 62], qui montrent des phénomènes remarquables. La pre-
mière chose que l’on observe est que, lorsque le bruit diminue, le système, dans son
comportement global, est le siège d’un phénomène de transition de phase : quand
le bruit est fort, les particules semblent se déplacer de façon aléatoire dans un état
ambiant désordonné, et lorsque le bruit est faible, on peut observer la formation de
structures cohérentes, et de fortes corrélations entre les orientations des particules.
De nombreuses discussions se sont portées sur le fait de savoir si cette transition de
phase est continue ou discontinue, la conclusion est que le nombre de particules dans
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la simulation du modèle a une influence forte sur ce qui est observé, et la transition
de phase devient nette lorsque le nombre de particules est important.

La seconde chose que l’on remarque est l’émergence, au bout d’un temps suffi-
samment long, de motifs cohérents. On peut observer des bandes à haute densité
dans lesquelles le paramètre d’ordre est élevé, qui se déplacent dans une région désor-
donnée de faible densité. La direction de propagation de ces bandes est également
reliée à la géométrie du domaine : les bandes se déplacent dans une direction de pé-
riodicité, et choisissent une direction avec plus de probabilité qu’une autre suivant
la période spatiale du domaine dans ces directions.

À partir de là, trois axes d’études nous apparaissent importants d’un point de
vue mathématique : premièrement, comprendre le comportement du système dans la
limite d’un grand nombre de particules (dans le but d’une description mathématique
du phénomène de transition de phase), deuxièmement, tenter d’expliquer, dans la
limite d’un temps d’observation long, l’émergence de structures cohérentes et les lois
qui les régissent, et finalement étudier le rôle joué par la géométrie de ces structures
et du domaine.

L’étude mathématique de ce modèle, dans l’optique de ces trois axes, a été le
point de départ du travail présenté ici, et poursuit le travail de Degond et Motsch [28].

2 Aperçu du sujet
Pour attaquer le problème de la description du comportement d’un système de par-
ticules lorsque le nombre de particules tend vers l’infini, la stratégie est de considérer
la densité de probabilité de trouver une particule dans une position donnée, avec une
vitesse donnée. La description cinétique du système limite est alors faite à travers la
détermination de l’évolution temporelle de cette densité de probabilité. En général,
cette évolution est donnée par une équation aux dérivées partielles, et c’est là qu’ar-
rive le premier problème lorsqu’on cherche à étudier la limite du modèle de Vicsek
quand le nombre de particules est grand. En effet, nous n’avons pas de description
continue en temps du comportement des particules, les particules changeant seule-
ment leur orientation de façon synchrone et régulière. C’est une des objections que
l’on peut former à propos du modèle de Vicsek : même si, spatialement, il n’y a pas de
meneur pour la dynamique, les interactions étant localisées en espace, ces dernières
ne sont pas indépendantes en temps, il y a une synchronisation globale à travers une
horloge qui donne des pas de temps réguliers. Deux approches peuvent permettre de
contourner ce problème, tout en restant dans l’esprit du modèle minimal de Vicsek.

La première a été proposée par Pierre Degond et Sébastien Motsch dans l’ar-
ticle [28], l’idée est de remplacer le comportement discret en temps par une relaxation
continue vers l’orientation des particules voisines. Au coût de l’ajout d’un nouveau
paramètre ν (en fait, ce paramètre remplace le pas de temps qui est effectivement un
paramètre du modèle original, et non un pas de temps de discrétisation), pouvant
être vu comme une fréquence de relaxation vers l’orientation moyenne locale, ils ont
pu dériver formellement un modèle cinétique de champ moyen, sous la forme d’une
équation de type Fokker–Planck sur la densité de probabilité f des particules :

∂tf + ω · ∇xf + ν∇ω · ((Id − ω ⊗ ω)Ω̄f f) = d∆ωf, (2.1)
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où la fonction f dépend du temps t > 0 et des variables d’espace x ∈ R3 et de
vitesse ω ∈ S2. Le paramètre d représente l’intensité du bruit, et le vecteur Ω̄f ∈ S2
désigne une direction cible, calculée à partir de f (de manière non locale), au point x.
Enfin, ∇ω· et ∆ω sont les opérateurs de divergence et de Laplace–Beltrami sur la
sphère, et la matrice Id − ω ⊗ ω est la projection sur le plan orthogonal à ω. Cette
méthode est le point de départ de la majeure partie de ce rapport.

Une autre approche pour régler ce problème de synchronisation globale est de
donner à chaque particule une horloge propre pour son changement d’orientation,
sous la forme d’un processus de Poisson de fréquence donnée ν (nous avons donc
besoin également d’introduire un nouveau paramètre de fréquence), les horloges
étant toutes indépendantes, ce qui permet de voir le modèle comme un processus de
sauts. Un travail sur ce sujet a été entrepris avec Emmanuel Boissard et Sébastien
Motsch lors d’une visite à l’Université du Maryland, mais n’est pas assez abouti
pour prendre place dans ce rapport. Une remarque à faire sur cette approche est
qu’elle peut permettre de définir un modèle de type Vicsek qui se situe dans un cadre
unidimensionnel, et cela a été récemment proposé comme un modèle de déplacement
d’essaims de criquets dans [34].

Le problème de trouver alors une description macroscopique du modèle continu
en temps, lorsque l’on observe à une grande échelle temporelle, a également été traité
dans le même article [28] par Pierre Degond et Sébastien Motsch. Nous résumons ici
leurs résultats.

Une fois que l’équation cinétique (2.1) est obtenue (au moins formellement), ils
s’agit toujours d’une description à petite échelle en temps et en espace, et nous
ne pouvons donc pas observer les structures macroscopiques. L’idée est de faire un
changement d’échelle en temps et en espace, appelé changement d’échelle hydrody-
namique, à travers l’introduction d’un petit paramètre ε et l’étude des propriétés
du modèle lorsque ε → 0. Ce changement d’échelle a pour effet de rendre l’interac-
tion locale en espace, et lorsque ε → 0, la densité de probabilité f ε est contrainte
d’être un équilibre pour un certain opérateur Q, dans une variété de dimension 3
paramétrée par la densité locale de masse ρ et une orientation Ω appartenant à la
sphère unité de R3 (la dynamique des particules ayant lieu dans R3) : les équilibres
sont des la forme ρMκΩ, où MκΩ est la distribution de Von-Mises d’orientation Ω
et de paramètre de concentration κ = ν

d
. Même si le bruit est grand, l’orientation

de l’équilibre est bien définie, et on n’observe pas de phénomène de transition de
phase avec cette limite hydrodynamique, contrairement aux observations dans les
simulations de modèle de Vicsek.

L’étape suivante consiste à dériver les équations d’évolution pour la masse ρ et
la direction Ω. La conservation de la masse donne une première équation, mais il
n’y a pas d’autre relation de conservation évidente pour obtenir d’autre équation, et
l’objet principal de [28] est d’introduire la notion d’invariants de collision généralisés
qui permet d’obtenir l’équation d’évolution de Ω. Le modèle obtenu est le système
non conservatif d’équations aux dérivées partielles du premier ordre suivant :∂tρ+ ∇x · (c1ρΩ) = 0.

ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0.
(2.2)

où les coefficients c1, c2 et λ satisfont 0 < c2 < c1 < 1 et λ > 0. Ce système est
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hyperbolique. À notre connaissance, il s’agit du premier modèle qui a cette forme
non conservative, dans le contexte de limites macroscopiques de systèmes constitués
d’un grand nombre de particules en interaction. Ceci provient de la particularité
de la contrainte de vitesse unité pour les particules, qui peut être naturelle dans la
modélisation de phénomènes biologiques tels que des déplacements d’animaux, et
qui a bien moins de sens lorsque l’on modélise les dynamiques microscopiques de
gaz dilués, qui sont à la source de toute cette théorie cinétique.

Enfin, concernant le troisième axe de cette étude, c’est-à-dire l’analyse du rôle
joué par la géométrie du domaine, il y a peu d’analyse mathématique rigoureuse
à ce sujet, à notre connaissance. Les observations [16, 62] mettant en évidence des
bandes se déplaçant, fortement ordonnées, sont toujours faites dans le cas du tore
plat (conditions aux limites périodiques), et montrent que le mouvement a plutôt
tendance à se faire le long de géodésiques de longueur minimale. Nous n’avons pas
connaissance d’études sur une généralisation du modèle à d’autres configurations
géométriques, comme la sphère unité (on pourrait par exemple décrire des individus
se déplaçant à la surface de la Terre).

La première partie de ce rapport concerne la poursuite de l’étude de ces modèles
de Vicsek continus en temps (nous nous plaçons également cette fois-ci en dimen-
sion n > 2 quelconque, et pas seulement dans le cas n = 3). En particulier, puisque
le paramètre ν de relaxation a été introduite arbitrairement dans le modèle (un tel
paramètre étant nécessaire pour définir proprement une relaxation), nous sommes
libres de lui donner une forme plus générale. Dans l’article original [28], ce paramètre
pouvait dépendre de l’angle entre la vitesse de la particule et sa direction cible. Dans
le chapitre 1, nous laissons ν dépendre également d’une densité moyenne locale ρ̄
et nous introduisons de l’anisotropie dans le noyau d’observation, c’est-à-dire que
la façon dont chaque particule calcule sa direction cible par rapport aux particules
voisines peut dépendre de son orientation. Ceci permet de modéliser par exemple
un angle de vision restreint pour les individus, ou le fait que dans certaines espèces,
les individus prennent plus en compte ceux situés en arrière, de façon à éviter de
se faire manger (ces interactions sont appelées interactions de cannibalisme et ob-
servées dans [8] pour une espèce de criquets). Dans le chapitre 2, nous prenons ν
proportionnel à la norme de la quantité de mouvement moyenne des voisins. Cela
revient à dire que les individus ont tendance à s’orienter plus rapidement dans la di-
rection moyenne de leurs voisins si ces derniers sont nombreux et fortement alignés.
Cette rétroaction positive sur l’alignement entraîne l’apparition d’une transition de
phase, et on retrouve les propriétés du modèle discret original, ce qui donne lieu à des
questions très stimulantes. Enfin, l’objet principal du chapitre 3 est l’introduction
d’une généralisation de modèle de Vicsek continu en temps lorsque les particules
sont contraintes à se déplacer sur une variété Riemannienne, avec des simulations
numériques dans le cas de la sphère unité bidimensionnelle. Ce modèle généralisé
inclut le modèle de [28] et celui du chapitre 2, lorsque la variété est Rn. Les détails
et nos principales contributions à l’étude de ces généralisations du modèle de Vicsek
continu en temps sont donnés dans la prochaine partie de cette introduction.

Le modèle introduit au chapitre 2 nous a mené à l’étude de sa version homogène
en espace, sur la sphère unité S de Rn, qui présente la même propriété de transition
de phase. Lors de l’étude de ce problème, nous avons remarqué qu’il s’agissait d’un
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cas particulier d’une classe plus large de modèles décrits par l’équation de Doi (aussi
appelée équation de Smoluchowski), une équation non linéaire et non locale de la
forme suivante : ∂tf = ∇ω · (f∇Ψf ) + τ∆ωf,

Ψf (ω, t) =
∫
SK(ω, ω̄) f(t, ω̄) dω̄.

(2.3)

Cette équation a été introduite par Doi [32] comme un flot gradient pour la fonc-
tionnelle d’énergie libre de Onsager :

F(f) = τ
∫
S
f(., ω) ln f(., ω)dω + 1

2

∫
S×S

K(ω, ω̄)f(., ω) f(., ω̄) dωdω̄. (2.4)

Cette fonctionnelle a été proposée par Onsager [65] pour décrire les états d’équi-
libre de suspensions de polymères en forme de bâtonnets, donnés par les points
critiques de cette fonctionnelle. Dans le travail original de Onsager, le noyau était
de la forme K(ω, ω̄) = |ω× ω̄|, mais il existe une autre forme plus simple, introduite
plus tard par Maier et Saupe [58], qui mène à des résultats similaires : K(ω, ω̄) =
1
n

− (ω · ω̄)2. En particulier, on observe un phénomène d’hystérésis lorsque le para-
mètre τ , qui représente une température, varie en allant de grandes valeurs vers des
petites puis retournant à des valeurs élevées.

Le modèle qui nous intéresse corresponds au cas où K(ω, ω̄) = −ω · ω̄, appelé
potentiel dipolaire, et peu d’études ont été faites concernant ce modèle seul. L’étude
de ce modèle est l’objet du chapitre 2, motivée par une compréhension plus fine du
modèle spatialement inhomogène, et nous a menés à l’étude de l’équation de Doi avec
potentiel de Maier–Saupe, qui a récemment fait l’objet de nombreuses recherches du
point de vue d’une rigoureuse analyse mathématique.

Nous présentons ici ce qui a été fait précédemment à propos de l’étude mathé-
matique de cette équation.

La caractérisation des équilibres a commencé en 2004 en dimension n = 2 pour le
potentiel de Maier–Saupe avec l’article [20] contenant un résultat partiel, qui a été
ensuite complété par trois groupes indépendants [22, 38, 57] (de plus, une famille plus
générale de noyaux est traitée dans [38], incluant le potentiel dipolaire, toujours en
dimension n = 2). Dans le cas où la température τ est inférieure à 1

4 , la distribution
uniforme est le seul état stationnaire, et quand τ < 1

4 , il y a aussi une autre famille
d’équilibres, qui sont non isotropiques, symétriques, et diffèrent l’un de l’autre par
une simple rotation (ils sont appelés équilibres nématiques).

Le cas de la dimension 3 est un peu plus élaboré, puisque l’on a besoin tout
d’abord de montrer que tout état stationnaire est axisymétrique. Après le résul-
tat partiel [20], la caractérisation complète a été donnée en 2005, indépendamment
dans [37, 55, 88]. On peut observer un phénomène fascinant d’hystérésis avec deux
seuils pour la température : τc = 2

15 et τ ∗ > τc. Lorsque τ > τ ∗, la distribution
uniforme est l’unique état stationnaire ; lorsque τ est compris entre 2

15 et τ ∗, deux
autres familles d’équilibres prolates (concentrés aux alentours de deux points anti-
podaux) voient le jour ; enfin lorsque τ > 2

15 , une de ces familles se transforme en des
équilibres oblates (concentrés autour d’un grand cercle). En analysant la stabilité au
sens d’une minimisation locale de l’énergie libre de Onsager, cette dernière famille
apparaît être instable pour τ < τ ∗, ainsi que la distribution uniforme pour τ < 2

15 .
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Les autres équilibres sont stables, dans ce même sens. Ainsi, si l’on part d’une tempé-
rature τ élevée, le seul équilibre stable (la distribution uniforme) reste stable jusqu’à
ce que τ atteigne 2

15 , et si l’on part d’une valeur faible, l’unique famille d’équilibre
stable (une des deux familles d’équilibre nématiques prolates) reste stable jusqu’à
ce que τ atteigne τ ∗ > 2

15 , ce qui donne le phénomène d’hystérésis.
L’article [37] de Fatkullin et Slastikov considère également le cas du potentiel

dipolaire en dimension 3 : quand τ > 1
3 , la distribution uniforme est le seul équilibre,

et une famille d’équilibres, qui diffèrent l’un de l’autre par une simple rotation,
apparaît lorsque τ < 1

3 , où l’équilibre uniforme devient instable, au sens où il ne
minimise plus l’énergie libre.

Dans [89], un couplage entre les potentiels dipolaire et de Maier–Saupe est pro-
posé, et les seuls équilibres stables sont alors nécessairement symétriques. Enfin,
récemment, une caractérisation unifiée de ces équilibres dans de nombreux cas a été
donnée [78], incluant le cas du potentiel de Maier–Saupe en dimension quelconque.
L’idée principale est de prouver que le paramètre d’ordre tensoriel d’orientation est
une matrice avec au plus deux valeurs propres distinctes, ce qui permet de réduire
le problème.

Concernant la dynamique en temps, quelques résultats ont été donnés, pour le
potentiel de Maier–Saupe seulement, en dimension 2 et 3. L’existence, l’unicité, la
positivité et l’analyticité en espace d’une solution sont affirmées pour une condition
initiale positive et continue dans [19, 21], qui montre aussi que le système est dis-
sipatif dans une certaine classe de Gevrey de solutions. Récemment, l’existence de
variétés inertielles a été établie [76, 77]. Mais cela ne fournit pas la preuve de la
convergence vers un équilibre donné.

Un grand nombre de variantes ont été proposées et étudiées [80, 85, 87, 90, 75, 39]
incluant des forces extérieures, d’élongation par exemple, ou un flot de cisaillement,
ou modélisant des phénomènes plus complexes avec de la dépendance en espace.
Enfin, très récemment, quelques résultats ont été donnés en dimension 2 permettant
de comprendre un peu mieux le cas du noyau original de Onsager [18, 56, 79, 81],
basé sur l’analyse des états stationnaires.

Notre principal apport dans ce domaine concerne la description dynamique du
système lorsque le temps tends vers l’infini, qui a été peu traitée, et est détaillée
dans la partie suivante.

3 Apports principaux
L’étude de différentes versions du modèle de Vicsek continu en temps a donné des
résultats intéressants : l’introduction de modifications dans le modèle permettent de
comprendre les caractéristiques importantes du modèle, qui présentent une sorte de
robustesse par rapport à la limite macroscopique finale.

Dans le chapitre 1, le résultat principal est que le modèle macroscopique (2.2) est
encore la limite formelle du modèle de champ moyen, même si le noyau d’observation
n’est pas isotropique et si les paramètres ν et d dépendent de la densité locale ρ̄.
Cela confirme la capacité de ce modèle macroscopique à être un représentant na-
turel des modèles de déplacement de particules interagissant sur leur alignement,
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avec une contrainte de vitesse unité, puisqu’il apparaît également comme limite
d’un autre modèle de déplacement appelé « Persistent Turning Walker Model »,
lorsqu’une interaction d’alignement est prise en compte [30]. Toute l’information
portée par les modifications qui ont été introduites apparaissent alors au travers
des coefficients c1, c2, et λ. Par exemple, comme dans ce chapitre les paramètres
du modèle dépende d’une densité locale, on obtient que les coefficients du modèle
macroscopique dépendent de ρ.

Une des avancées de ce chapitre est également la position du problème dans
n’importe quelle dimension n > 2 dans un cadre général. La méthode des inva-
riants collisionnels généralisés est encore valide, et nous avons montré qu’ils ont une
définition naturelle dans ce cadre.

Enfin, un résultat spécifique de ce chapitre concerne la présentation d’une mé-
thode qui permet d’obtenir un développement asymptotique des coefficients du mo-
dèle, à tout ordre et en toute dimension, lorsque le paramètre de concentration κ = ν

d

tend vers zéro ou vers l’infini. Cela permet d’étudier les propriétés des coefficients,
même dans le modèle original, où nous pouvons voir que le coefficient c2 est infé-
rieur à c1 dans les deux cas limites κ → 0 et κ → ∞. Cela permet également de
montrer que dans certains cas, le modèle macroscopique n’est pas hyperbolique (le
coefficient λ devenant négatif), et c’est une caractéristique nouvelle du modèle qui
amène d’importantes questions.

Avec le modèle du chapitre 2, nous avons trouvé une manière d’obtenir une
transition de phase à l’échelle macroscopique, tout en ayant un modèle continu en
temps très proche du modèle discret. En utilisant des résultats du chapitre 4, ainsi
qu’une analyse fine d’une constante de Poincaré spécifique, nous pouvons donner des
arguments qui vont dans le sens d’une convergence en tout point, vers un équilibre
local. Ce dernier peut être de deux types différents, soit la distribution uniforme,
isotropique sur la sphère, si la densité ρ est inférieure au seuil critique ρ∗ = n, ou
une distribution avec une orientation donnée Ω dans le cas où ρ > ρ∗.

Le traitement mathématique de cette transition de phase consiste à dériver deux
modèles différents, selon si la densité est en dessus ou au-dessous du seuil ρ∗ = n.
Nous obtenons au final un modèle macroscopique à deux phases, avec de la diffu-
sion non linéaire dans la région de faible densité, et toujours le modèle macrosco-
pique (2.2) dans la région de densité élevée. La description du comportement de la
frontière entre ces deux régions reste un problème subtil. Encore une fois, le modèle
se pose naturellement en toute dimension n, et les résultats sont donnés dans un
cadre général.

La dernière chose importante à noter est que nous pouvons directement utili-
ser les résultats du chapitre 1 qui concernent les développements asymptotiques des
coefficients, et nous obtenons que λ < 0 dans les deux cas limites. À l’aide d’approxi-
mations numériques, nous observons en fait que l’on a toujours λ < 0. Cela signifie
que le modèle n’est pas hyperbolique dans toute la phase ordonnée. Toutefois, sous la
contrainte d’une dynamique n’ayant lieu que le long d’une direction, nous obtenons
une réduction du modèle qui présente un caractère moins pathologique, et on peut
avoir de l’hyperbolicité dans certaines régions de l’espace des états.

L’introduction du modèle de Vicsek continu en temps sur une variété Rieman-
nienne effectué dans le chapitre 3 est, à notre connaissance, quelque chose de ré-
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ellement nouveau. Nous avons pu définir un modèle général qui inclut la plupart
des modèles étudiés aux chapitres 1-2, ainsi que le modèle original [28]. Sous des
restrictions de régularité du noyau d’observation et du coefficient ν du modèle, nous
prouvons la propagation du chaos, en suivant le travail récent [13], et nous obtenons
une limite de champ moyen qui correspond exactement à l’analogue de (2.1) sur une
variété Riemannienne.

Les simulations numériques effectuées sur la sphère S2 donnent alors une nouvelle
vision sur le mouvement collectif de particules se déplaçant à vitesse constante.

Passons maintenant à la description de notre apport principal à l’analyse des
dynamiques dans l’équation (2.3).

La première chose à souligner est que nous avons fait un lien entre des sujets qui
n’étaient pas reliés au premier abord. L’un vient de la biologie, l’autre de l’étude de
suspensions de polymères en forme de bâtonnets, qui sont loin d’être des particules
autopropulsées. Le point commun est que la dynamique se passe sur la sphère unité.
En fait, pour être précis, dans le cadre des polymères en forme de bâtonnets, leur
orientation est un élément de l’espace projectif, puisqu’on ne fait pas la distinction
entre un bâtonnet et son opposé (il n’a pas de sens privilégié). Mais il est pratique
de travailler avec des fonctions sur la sphère, qui sont donc considérées comme
étant paires. Cette considération n’a alors pas de sens pour le potentiel dipolaire
puisque, pour les fonctions paires, l’équation (2.3) avec potentiel dipolaire se ramène
à l’équation de la chaleur.

Dans le cas du potentiel dipolaire, notre contribution constitue la majeure partie
de son étude, à notre connaissance. Les équilibres avaient été seulement classifiés
précédemment par Fatkullin et Slastikov en dimension 2 [38] et 3 [37]. Notre travail
dans le chapitre 4 donne tout d’abord une classification complète des états station-
naire en toute dimension. Mais il inclut également des résultats d’existence, unicité,
régularité instantanée, stricte positivité, et des bornes uniformes dans tout espace
de Sobolev Hs pour une condition initiale positive dans un quelconque Hp, p ∈ R.
À partir de cela, nous obtenons une version du principe de LaSalle adaptée au pro-
blème, qui donne que la solution converges vers un unique ensemble d’équilibres.
Nous développons alors l’énergie libre d’Onsager et son terme de dissipation autour
d’un équilibre mobile adapté à f , et finalement, à l’aide d’un argument d’équation
différentielle ordinaire, nous pouvons contrôler le déplacement de cet équilibre mo-
bile. Notre travail montre que n’importe quelle solution converge vers un équilibre
donné, à un taux exponentiel lorsque τ est différent de la valeur critique 1

n
, et à un

taux algébrique pour τ = 1
n
. En outre, nous pouvons déterminer le type d’équilibre

de la limite selon la condition initiale : quand τ < 1
n
, les seules conditions conditions

initiales menant, en temps long, vers la distribution uniforme sont celles avec un
premier moment nul.

En utilisant des harmoniques sphériques en dimension n, nous explicitons une
étonnante relation de conservation mettant en jeu un opérateur appelé « Laplacien
conforme ». Dans le cas où τ > 1

n
, cette relation de conservation peut être vue

comme la dissipation d’une nouvelle entropie, qui donne de la convergence avec un
taux exponentiel global vers la distribution uniforme.

Dans le chapitre 5, nous utilisons les outils développés pour le cas du potentiel
dipolaire dans le cadre plus étudié du potentiel de Maier–Saupe, ce qui donne une
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compréhension nouvelle du cas de la dimension 2, qui est très similaire au cas du
potentiel dipolaire : il y a convergence vers un équilibre donné pour n’importe quelle
condition initiale, à un taux exponentiel lorsque τ 6= 1

4 . Nous utilisons également
ici une relation de conservation spéciale, qui a été observée dans [19] dans un cas
particulier, mais pas utilisée de façon optimale. Nous pouvons donc aussi déterminer
le type d’équilibre de la limite selon la condition initiale : quand τ < 1

4 , les seules
conditions initiales menant, en temps long, vers la distribution uniforme sont celles
avec un second moment nul.

4 Présentation des résultats

Ch. 1 A continuum model for alignment of self-propelled
particles with anisotropy and density-dependent pa-
rameters

Dans ce chapitre, nous étudions le modèle suivant, pour N particules dont les po-
sitions sont notées Xk ∈ Rn et les orientations ωk ∈ S (la sphère unité de Rn),
avec k ∈ J1, NK, écrit sous la forme d’un système d’équation différentielles stochas-
tiques couplées, dans la formulation de Stratonovich :dXk = ωkdt,

dωk = ν(ρ̄k)(Id − ωk ⊗ ωk)ω̄k dt+
√

2d(ρ̄k) (Id − ωk ⊗ ωk) ◦ dBk
t ,

(4.5)

où (Bk
t ) sont des mouvements Browniens standards à valeurs dans Rn. Ce système

exprime le fait que les particules se déplacent à vitesse constante 1, suivant leur
orientation, qui est relaxée vers l’orientation cible ω̄ à un taux ν(ρ̄) et soumise à un
mouvement Brownien d’intensité

√
2d(ρ̄) (le terme Id −ωk ⊗ωk est la projection sur

l’hyperplan orthogonal à ωk).
Les termes qui induisent un couplage sont la densité ρ̄k et l’orientation cible ω̄k,

donnés par

ρ̄k = 1
N

N∑
j=1

K̃
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
,

ω̄k = J̄k

|J̄k|
, où J̄k = 1

N

N∑
j=1

K
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
ωj,

où K et K̃ sont des noyaux d’observations permettant de calculer par rapport aux
voisins une valeur moyenne locale d’une quantité donnée. Par exemple pour prendre
en compte seulement les voisins situés « devant », et à moins d’une certaine dis-
tance R, le noyau serait donné par K(r, γ) = 1{r6R}1{γ>0}.

Les fonctions positives ν et d sont arbitraires. Le choix de ν et d constant,
et du fait que le noyau K dépend seulement de sa première variable, correspond
exactement à la version continue en temps du modèle de Vicsek proposée dans [28].
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Le but de ce chapitre est de dériver le modèle macroscopique suivant, à partir
du système de particules (4.5) :∂tρ+ ∇x · (c1(ρ)ρΩ) = 0,

ρ (∂tΩ + c2(ρ)(Ω · ∇x)Ω) + λ(ρ) (Id − Ω ⊗ Ω)∇xρ = 0,
(4.6)

où les fonctions c1, c2, et λ seront définies en (4.9) et (4.10)-(4.11).
La première étape est d’écrire un modèle de champ moyen pour le système de

particules, comme en (2.1), et de procéder ensuite à un changement d’échelle hydro-
dynamique, qui consiste à introduire un petit paramètre ε et écrire f ε(εx, ω, εt) =
f(x, ω, t). Après quelques développements, on obtient

ε(∂tf
ε + ω · ∇xf

ε + αP (f ε) + α̃ P̃ (f ε)) = Q(f ε) +O(ε2) , (4.7)

où les constantes α et α̃ dépendent seulement des noyaux d’observation K et K̃.
Ces constantes sont positives si le noyau est dirigé vers l’avant, et plus l’« angle de
vision » est grand, plus la constante associée au noyau l’est. Les opérateurs P et P̃
agissent sur f et sur ses dérivées spatiales, et Q est donné par

Q(f) = − ν(ρf )∇ω · ((Id − ω ⊗ ω)Ωff) + d(ρf )∆ωf,

ρf =
∫

ω∈S
f(., ω) dω ,

Ωf = jf

|jf |
, avec jf =

∫
ω∈S

ω f(., ω) dω ,

Au vu de l’équation (4.7), lorsque ε → 0, la fonction f ε devient un équilibre, c’est-
à-dire une fonction f 0 telle que Q(f 0) = 0. En introduisant la distribution de Von-
Mises de paramètre de concentration κ > 0 et d’orientation Ω ∈ S :

MκΩ(ω) = eκ ω·Ω∫
S e

κ υ·Ω dυ
, (4.8)

et en définissant l’opérateur linéaire LκΩ par

LκΩ(f) = −∇ω ·
[
MκΩ∇ω

(
f

MκΩ

)]
,

on remarque que l’opérateur Q(f) s’écrit sous la forme Q(f) = −d(ρf )Lκ(ρf )Ωf
(f),

avec κ(ρ) = ν(ρ)
d(ρ) , et il est alors facile de voir que si Q(f) = 0, alors f est de la

forme ρMκ(ρ)Ω.
On a alors que jMκΩ = c1(κ)Ω, avec

c1(κ) = 〈cos θ〉Mκ , where〈γ(cos θ)〉Mκ =
∫ π

0 γ(cos θ)eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
. (4.9)

Si nous intégrons l’équation (4.7) sur la sphère, on obtient ∂tρ+ ∇x · (j) = 0, ce qui
nous donne l’équation d’évolution de la densité :

∂tρ+ ∇x · (c1(κ)ρΩ) = 0.
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Pour obtenir l’équation sur Ω, nous définissons les invariants collisionnels géné-
ralisés CκΩ (associés à κ > 0 et Ω ∈ S) comme l’espace vectoriel suivant :

CκΩ =
{
ψ|
∫

ω∈S
LκΩ(f)ψ dω = 0, ∀f s.t. (Id − Ω ⊗ Ω)jf = 0

}
.

Nous trouvons alors qu’un invariant collisionnel généralisé est de la forme C+hκ(ω ·
Ω)A · ω, avec A arbitraire, orthogonal à Ω, et hκ est une fonction positive et ré-
gulière (donnée comme la solution d’un problème elliptique). Nous pouvons alors
multiplier (4.7) par hκ(ω · Ω)A ·ω et intégrer, on obtient que A ·X = 0 pour un vec-
teur X donné et pour tous les vecteurs A qui sont orthogonaux à Ω. Finalement X
est aligné avec Ω, et écrire (Id−Ω⊗Ω)X = 0 donne exactement la deuxième équation
de (4.6), avec

c2 = c̃1 − α d (n c̃1 + κ 〈cos2 θ〉
M̃κ

) , avec c̃1 = 〈cos θ〉
M̃κ

, (4.10)
λ = 1

κ
+ ρ κ̇

κ
[ c̃1 − c1 + α̃ d (κ 〈sin2 θ〉

M̃κ
− n c̃1) ] + 1

2 α̃ ρ ḋ (n− 1 + κ c̃1) , (4.11)

où le point est la dérivée par rapport à ρ, et avec la notation

〈γ(cos θ)〉
M̃κ

=
∫ π

0 γ(cos θ)hκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

. (4.12)

Enfin, dans une seconde partie, nous développons une méthode pour obtenir
un développement asymptotique, à n’importe quel ordre, lorsque κ → 0 ou κ →
∞, d’expressions de la forme 〈f(θ)〉Mκ et 〈f(θ)〉

M̃κ
. Ceci nous permet d’obtenir les

développements des coefficients, et prouve que le coefficient λ peut devenir négatif,
et le système (4.6) perd alors son hyperbolicité.

Ch. 2 Macroscopic limits and phase transition in a system
of self-propelled particles

Dans ce chapitre, la modification du modèle individuel semble, au premier abord,
être une simplification : on remplace νω̄k dans (4.5), par νJ̄k, c’est-à-dire que l’on ne
divise pas par la norme. L’interaction est alors une somme d’interactions binaires,
toujours interprétée comme une relaxation vers ω̄k, mais à un taux proportionnel
à |J̄k|. Le système prend la formedXk = ωkdt,

dωk = ν(Id − ωk ⊗ ωk)J̄k dt+
√

2d (Id − ωk ⊗ ωk) ◦ dBk
t ,

(4.13)

J̄k = 1
N

N∑
j=1

K(Xj −Xk)ωj, (4.14)

où (Bk
t ) sont des mouvements Browniens indépendants à valeurs dans Rn. La limite

de champ moyen est alors donnée par∂tf + ω · ∇xf + ν∇ω · ((Id − ω ⊗ ω)J̄f f) = d∆ωf

J̄f (x, t) =
∫
S(K ∗ f)(x, ω, t)ω dω,

(4.15)



12 Introduction générale

où ∗ désigne la convolution par rapport à la variable d’espace. À l’aide d’un change-
ment d’échelle en espace, en temps et en densité (en ne supposant plus que f est une
densité de probabilité sur Rn × S, mais simplement la densité d’une mesure finie),
on peut supposer sans perte de généralité que ν = d = 1 et que

∫
Rn K(ξ)dξ = 1. On

peut noter que cette limite de champ moyen est plus facile à traiter, puisque la sin-
gularité en J̄ = 0, et la propagation du chaos a été effectivement prouvée récemment
dans [13].

Le changement d’échelle hydrodynamique donne, si K(ξ) dépend seulement de
la norme |ξ| :

ε(∂tf
ε + ω · ∇xf

ε) = Q(f ε) +O(ε2), (4.16)

avec Q(f) = −∇ω · ((Id − ω ⊗ ω)Jff) + ∆ωf

Jf (x, t) =
∫
S f(x, ω, t)ω dω.

(4.17)

Ici, les équilibres de Q sont toujours donnés par ρMκΩ, pour ρ > 0 et Ω ∈ S
arbitraires, oùMκΩ est définie en (4.8), et où le paramètre de concentration κ satisfait
la condition de compatibilité ρκ = c(κ), avec c(κ) défini en (4.9). Nous avons alors
l’alternative suivante :

Proposition 1. Condition de compatibilité, équilibres.

• Si ρ 6 n, il y a une seule solution à la condition de compatibilité : κ = 0. Le
seul équilibre est la fonction constante f = ρ.

• Si ρ > n, la condition de compatibilité a deux solutions : κ = 0 et une
unique solution strictement positive, qui sera notée κ(ρ). Mise à part la fonc-
tion constante f = ρ (le cas κ = 0), les équilibres forment une variété de
dimension n : les fonctions de la forme f = ρMκ(ρ)Ω, où Ω ∈ S est un vecteur
unitaire arbitraire

À l’aide d’arguments de stabilité et de taux de convergence vers l’équilibre pour
la version homogène de (4.16) fournis par les résultats du chapitre 4, nous sommes
amenés à considérer un modèle macroscopique constitué de deux zones : la limite
formelle, lorsque ε → 0 de la fonction f ε est donnée par une fonction f(x, ω, t) qui
satisfait

• f(x, ω, t) = ρ(x, t) avec ρ(x, t) < n, dans la région « désordonnée » Rd où l’on
a n− ρε(x, t) � ε,

• f(x, ω, t) = ρ(x, t)Mκ(ρ)Ω(x,t) avec ρ(x, t) > n, dans la région « ordonnée » Ro

où l’on a ρε(x, t) − n � ε.

Dans la région de désordre, la limite formelle satisfait ∂tρ = 0, nous nous intéressons
donc à une approximation à l’ordre un du modèle. Un développement de Chapman–
Enskog mène à un modèle de diffusion non linéaire :

Proposition 2. Modèle de diffusion dans la zone de désordre.
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Lorsque ε tend vers zéro, la correction (formelle) à l’ordre un de la solution du
système de champ moyen mis à l’échelle hydrodynamique, dans la région Rd ⊂ Rn

où l’on a n− ρε(x, t) � ε, est donnée par

f ε(x, ω, t) = ρε(x, t) − ε
nω · ∇xρ

ε(x, t)
(n− 1)(n− ρε(x, t))

,

où la densité ρε satisfait l’équation de diffusion suivante :

∂tρ
ε = ε

n− 1
∇x ·

(
1

n− ρε
∇xρ

ε

)
. (4.18)

Dans la région ordonnée, la méthode des invariants collisionnels généralisés fonc-
tionne et on peut dériver le modèle hydrodynamique (2.2) :∂tρ+ ∇x · (ρΩ) = 0,

ρ(∂tΩ + c̃(Ω · ∇x)Ω) + λ(Id − Ω ⊗ Ω) = 0,

où la vitesse c dépendant de κ(ρ) est définie en (4.9), la vitesse c̃ est donnée
par 〈cos θ〉

M̃κ(ρ)
avec la notation (4.12) et

λ = ρ− n− κ(ρ)c̃
(ρ− n− κ(ρ)c)κ(ρ)

.

La méthode de développement asymptotique introduite au chapitre 1 permet d’ob-
tenir les développements suivants :
Proposition 3. Développement des coefficients lorsque la densité est grande ou
proche du seuil critique.

On a les développements asymptotiques des coefficients c, c̃, et λ suivants :
• Lorsque la densité ρ est proche de n :

c =
√

n+2
n

√
ρ− n+O(ρ− n),

c̃ = 2n−1
2n

√
n+2

√
ρ− n+O(ρ− n),

λ = −1
4
√

n+2
1√
ρ− n

+O(1).

• Lorsque la densité ρ tend vers l’infini :
c = 1 − n−1

2 ρ−1 + (n−1)(n+1)
8 ρ−2 +O(ρ−3),

c̃ = 1 − n+1
2 ρ−1 − (n+1)(3n+1)

24 ρ−2 +O(ρ−3),
λ = −n+1

6 ρ−2 +O(ρ−3).

En particulier, on voit que puisque λ < 0 dans ces deux cas limites (numé-
riquement, on peut observer que c’est toujours le cas), alors le système n’est pas
hyperbolique.

Si nous contraignons les dynamiques à avoir lieu le long d’une seule direction,
nous obtenons une condition d’hyperbolicité mettant en jeu l’angle entre Ω et cette
direction de propagation, qui doit être inférieur à un angle critique θc qui satisfait :

θc =


π
2 − 2√

n+2
√

n

√
ρ− n+O(ρ− n) quand ρ → n,

arctan(
√

n+1
√

6
4 ) +O(ρ−1). quand ρ → ∞.
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Ch. 3 An individual time-continuous Vicsek model on a
Riemannian manifold

Dans ce chapitre, nous étendons les dynamiques du modèle de Vicsek à une va-
riété Riemannienne générale. La plupart des études numériques sur les dynamiques
d’auto-organisation ont été faites sur le même espace géométrique : le tore plat, ou
de façon équivalente un carré avec des conditions aux limites périodiques. Mais cette
géométrie particulière a une influence sur les dynamiques. Pour cette raison, nous
nous intéressons à une étude analytique et numérique du modèle de Vicsek sur une
variété Riemannienne quelconque.

La première chose à faire est de décrire l’évolution d’une particule orientée (x, ω)
sur une variété Riemannienne M donnée (de métrique g). À cet effet on introduit le
fibré unitaire tangent UM associé à M :

UM := {(x, ω) | x ∈ M, ω ∈ TxM and |ω|g = 1},

où TxM est l’espace tangent à M au point x. La variété UM est l’espace naturel à
considérer pour l’évolution d’une particule orientée de vitesse unité.

Nous proposons d’abord un modèle décrivant la dynamique d’une seule parti-
cule (x, ω), se déplaçant à vitesse constante de norme un, dans un « champ de force
orientationnel » η et dont l’orientation est soumise à un mouvement Brownien d’in-
tensité

√
2d. En coordonnées locales, elle est donnée par une équation différentielle

stochastique de Stratonovich :dxi = ωi dt,
dωi = ηi dt+

√
2d∑j(σij − ωi∑

k,` ω
` g`k σkj) ◦ dBj

t −∑
j,k Γi

jk ω
j ωk dt,

où Bt est un mouvement Brownien standard dans Rn (ou de façon équivalente, les Bi
t

sont n mouvements Browniens réels standard indépendants), et (σij) est l’inverse de
la racine carrée (parmi les matrices symétriques définies positives) de la matrice (gij)
donnant la métrique en coordonnées locales. Nous montrons que ce système est
bien défini comme un processus stochastique à valeurs dans UM , et nous donnons
l’équations aux dérivées partielles satisfaite par sa loi.

Nous donnons ensuite une formulation globale de ce système d’un point de vue
extrinsèque, dans le cas où la variété M est plongée de manière isométrique dans Rm,
pour m > n : dx = ω dt,

dω = η dt+
√

2d πx,ω ◦ dBt + IIx(ω, ω) dt,

où Bt est un mouvement Brownien standard dans R2m, où πx,ω est la projection
sur l’espace tangent TωSx

g à Sx
g (la sphère unité de l’espace tangent TxM) en ω, et

où IIx(ω, ω) est la seconde forme fondamentale associée à la variété Riemannienne
plongée.

Dans une deuxième partie, nous proposons une extension de la vitesse moyenne
locale J̄ en un point x de M à l’aide du transport parallèle le long des géodésiques.
La dynamique de Vicsek continue en temps est alors simplement donnée comme
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une relaxation de la vitesse d’une particule ωk vers la direction portée par la vitesse
moyenne J̄(xk).

∂tf + gx(ω,∇h
xf) + ∇x

ω · (ν πx,ωJ [f ]f) = d∆x
ωf,

où le « gradient horizontal » ∇h
xf correspond au gradient spatial de f , où ∇x

ω· et ∇x
ω·

sont les opérateurs de divergence et de Laplace–Beltrami sur Sx
g , la sphère unité de

l’espace tangent TxM , et où

J [f ](x, ω) =
∫

UM
K(x, ω, x′)τx,x′(ω′)f(x′, ω′) dµ(x′, ω′),

où τx,x′(ω′) est le transport parallèle de ω′ le long de la géodésique joignant x à x′, K
est un noyau d’observation, et µ est la mesure naturelle sur UM , appelée mesure de
Liouville ou cinématique.

Enfin, nous illustrons notre modèle par quelques simulations sur la sphère S2.
Nous observons la formations de groupes se déplaçant dans la même direction. Mais
en contraste avec le modèle de Vicsek sur le tore plat, il n’y a pas émergence d’une
direction globale pour l’ensemble des particules.

Ch. 4 Dynamics in a kinetic model of oriented particles with
phase transition

Dans ce chapitre, nous étudions la dynamique de l’équation de Doi (2.3) avec po-
tentiel dipolaire, qui prend la forme suivante :∂tf = −∇ω · ((Id − ω ⊗ ω)J [f ]f) + τ∆ωf,

J [f ] =
∫
S ω f(., ω) dω.

(4.19)

Nous donnons tout d’abord des résultats d’existence et d’unicité d’une solution
faible, pour une condition initiale dans un espace de Sobolev quelconque.

Theorem 1. Étant donnée une mesure de probabilité initiale f0 dans Hs(S) (ce qui
est toujours le cas pour s < −n−1

2 ), il existe une unique solution faible f de (4.19)
telle que f(0) = f0. Cette solution est globale en temps. De plus, f ∈ C∞((0,+∞) ×
S), avec f(t, ω) > 0 pour tout t strictement positif.

Nous avons également les estimations suivantes, donnant de la régularité ins-
tantanée et des bornes uniformes (pour m ∈ N, la constante C ne dépendant que
de τ,m, s), pour tout t > 0 :

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs .

En annexe, nous montrons de plus que la solution est analytique en espace.
En définissant l’énergie libre de Onsager F et son terme de dissipation D par

F(f) = τ
∫
S
f ln f − 1

2 |J [f ]|2,

D(f) =
∫
S
f |∇ω(τ ln f − ω · J [f ])|2,
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nous obtenons, pour une solution f de l’équation de Doi (4.19), la relation de conser-
vation suivante :

d
dt

F + D = 0.

Ceci nous permet de donner une adaptation du principe d’invariance de LaSalle à
notre cadre d’équations aux dérivées partielles.

Proposition 4. Principe d’invariance de LaSalle
Soit f0 une mesure de probabilité sur la sphère S. Nous désignons par F∞ la

limite de F(f(t)) quand t → ∞, où f est la solution de l’équation de Doi (4.19)
avec condition initiale f0.

Alors l’ensemble E∞ = {f ∈ C∞(S) s.t. D(f) = 0 and F(f) = F∞} est non
vide.

De plus f(t) converge dans toutes les normes Hs vers cet ensemble d’équilibres,
au sens suivant :

lim
t→∞

inf
g∈E∞

‖f(t) − g‖Hs = 0.

Nous caractérisons alors les équilibres, de la forme MκΩ où κ satisfait la condition
de compatibilité c(κ) = τκ.

Proposition 5. Condition de compatibilité

• Si τ > 1
n
, il n’y a qu’une solution à la condition de compatibilité : κ = 0. Le

seul équilibre est la fonction constante f = 1.

• Si τ < 1
n
, la condition de compatibilité a exactement deux solutions : κ = 0 et

une unique solution strictement positive, que nous noterons κ(τ). Mise à part
la fonction constante f = 1 (le cas κ = 0), les équilibres forment une variété
de dimension n − 1 : les fonctions de la forme f = Mκ(τ)Ω, où Ω ∈ S est un
vecteur unitaire arbitraire.

À l’aide d’une analyse fine des harmoniques sphériques en dimension quelconque,
nous obtenons une identité remarquable, pour une fonction h de moyenne nulle sur
la sphère : ∫

S
∆̃n−1h∇ωh = 0,

où ∆̃n−1 est le « Laplacien conforme »sur la sphère unité, donné, pour une harmo-
nique sphérique Y ` de degré `, par ∆̃n−1Y

` = `(` + 1) . . . (` + n − 1)(` + n − 2)Y `.
C’est un opérateur différentiel quand n est impair, et pseudodifférentiel quand n est
pair.

Cette identité remarquable mène à une nouvelle relation de conservation, pour
une densité de probabilité f solution de (4.19), de la forme

1
2

d
dt

‖f − 1‖2
H̃− n−1

2
= −τ‖f − 1‖2

H̃− n−3
2

+ 1
(n− 2)!

|J [f ]|2,

où ‖ · ‖
H̃− n−1

2
et ‖ · ‖

H̃− n−3
2

sont des normes de Sobolev spécifiques associées au
Laplacien conforme, équivalentes aux normes usuelles H− n−1

2 et H− n−3
2 .
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Dans le cas où τ > 1
n
, cette loi de conservation peut être vue comme la dissipation

d’une nouvelle entropie donnée par ‖f−1‖2
H̃− n−1

2
, et on obtient la convergence globale

vers l’équilibre uniforme, avec un taux (n − 1)(τ − 1
n
) dans cette norme faible, qui

peut être ensuite étendue à toute norme Hs, avec s > −n−1
2 .

Si J [f0] 6= 0 nous montrons que J [f(t)] 6= 0 pour tout t > 0 (si J [f0] = 0, l’équa-
tion se ramène à l’équation de la chaleur, et la solution converge exponentiellement
vite vers la distribution uniforme). Dans le cas où τ < 1

n
, nous pouvons alors définir

le vecteur unitaire Ω(t) comme J [f(t)]
|J [f(t)]| . À l’aide du principe de LaSalle, nous obte-

nons que f − Mκ(τ)Ω(t) converge vers zéro, nous pouvons alors développer D et F
autour de Mκ(τ)Ω(t) dans une « norme mobile » (un L2 à poids donné par Mκ(τ)Ω(t),
qui dépend du temps). Nous obtenons alors la convergence exponentielle vers zéro
de la différence f − Mκ(τ)Ω(t). Enfin, en dérivant l’équation différentielle satisfaite
par Ω(t), on peut contrôler sa dérivée par ‖f − Mκ(τ)Ω(t)‖, ce qui donne que Ω(t)
converge avec un taux exponentiel vers un certain Ω∞ ∈ S. Avec de l’interpolation,
on obtient le résultat suivant :

Proposition 6. Si τ < 1
n
, il existe un taux asymptotique de convergence exponen-

tielle r∞(τ) > 0, en norme Hp quelconque, vers un état d’équilibre donné.
Plus précisément, pour tout r < r∞(τ), il existe t0 > 0 (dépendant de f0 et de p)

tel que pour tout t > t0, on a

‖f(t) −MκΩ∞‖Hp 6 e−rt.

Lorsque τ est proche de 1
n

on a r∞(τ) ∼ 2(n− 1)( 1
n

− τ).

De la même manière, dans le cas critique τ = 1
n
, on développe D et F autour de

la distribution uniforme, et on obtient que le taux de convergence est donnée par C√
t
.

Ch. 5 A note on the dynamics in the Doi equation with
Maier–Saupe potential

Dans ce court chapitre, nous montrons que les outils utilisés dans le cas du potentiel
dipolaire peuvent être adaptés pour obtenir des résultats dans le cas du potentiel de
Maier–Saupe.

On considère l’équation aux dérivées partielles non locale sur S suivante, pour
une densité de probabilité f sur la sphère :∂tf = ∇ω · (f∇ωΨf ) + τ∆ωf,

Ψf (ω, t) =
∫
SK(ω, ω̄) f(t, ω̄) dω̄.

(4.20)

Le potentiel de Maier–Saupe est donné par K(ω, ω̄) = 1
n

− (ω · ω̄)2.
Dans le cas général d’un noyau polynomial, nous donnons les même résultats

d’existence et d’unicité, de stricte positivité et de régularité que dans le Théorème 1,
et l’adaptation du principe d’invariance de LaSalle (Proposition 4) est toujours va-
lide.

Nous définissons le paramètre d’ordre tensoriel d’orientation par

S[f ] =
∫
S
( 1

n
Id − ω ⊗ ω)fdω,
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et nous donnons une propriété d’instabilité dynamique de la distribution uniforme
quand τ est en dessous de la valeur critique τc = 2

n(n+2) :

Proposition 7. Instabilité de la distribution uniforme au-dessous d’un seuil.
Si on a S[f0] = 0, alors S[f(t)] = 0 pour tout t > 0, et l’équation de Doi (4.20)

devient l’équation de la chaleur sur la sphère. La solution converge exponentiellement
vite vers la distribution uniforme.

Si on a S[f0] 6= 0, alors S[f(t)] 6= 0 pour tout t > 0. De plus, dans le cas
où τ < 2

n(n+2) , la solution ne peut pas converger vers la distribution uniforme.

On montre enfin, en dimension 2, que l’on a les mêmes résultats de convergence
que dans le cas du potentiel dipolaire, qui est très similaire.



General introduction

1 Motivation

We are interested in the study of various models of collective behavior in systems with
a large number of particles, such as models of displacement of fish in schools, or birds
in flocks for example. These models have recently given rise to many challenging
issues, in a mathematical point of view [10]. One of the frequent question on this
topic is the understanding of how collective behavior can occur without a leader, for
example with only localized interactions. Such phenomena are recurrent in nature,
for example the strong alignment of fish in a school, or the formation of coherent
structures and patterns in flocks of birds, even if the individuals seem to interact
only with a few number of neighbors [6].

A popular model of displacement proposed by Vicsek et al. [74] has attracted a
lot of attention, with respect to its ability to reproduce these complex phenomena
and to its minimalism. Actually the minimal interaction rule on the alignment was
present in other models [3, 67, 49, 23], called “three-zone models”, which include
a long-range zone of attraction and a short-range zone of repulsion. These models
aim at describing realistic behavior of animals, whereas the Vicsek model tries to
focus on the essential properties of the alignment interaction, without claiming to
be realistic. The model considers particles moving with constant speed and updat-
ing synchronously their orientation by taking (up to an angular noise) the mean
orientation of their neighbors. If the particles can move freely in the whole plane,
we cannot observe strong correlation since the diffusion implies that the particles
go to infinity. Therefore in order to deal with this problem of confinement, instead
of adding a long range attraction for example, the model impose the dynamics to
be periodic in space. In a more geometric point of view, the particle dynamics take
place on the flat torus.

In this framework, a lot of numerical simulations of this model and variants have
been performed [46, 16, 62], showing striking phenomena. The first thing to remark
is that, as the noise decreases, the global behavior of the system undergoes a phase
transition phenomenon: when the noise is large, the particles seem to move ran-
domly in a disordered ambient state, and when the noise is low, one can observe
the formation of coherent structures, and strong correlations between the orienta-
tions of the particles. Whether this phase transition is continuous or discontinuous
has raised a lot of discussions, the conclusion being that the number of particles in
the simulation has a strong influence on what is observed, and the phase transition
becomes sharper with a large number of particles.
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The second observation is the emergence, in large time, of coherent patterns. One
can observe large travelling bands of high density in which the order parameter is
high, moving across a disordered region of low density. The direction of propagation
of these bands is also closely related to the geometry of the domain: the bands travel
in the direction of periodicity, and chose one direction more probably than one other
depending on the space period of the domain along these directions.

From this, three axes of study appears in a mathematical point of view: first, un-
derstanding the behavior of the system in the limit of a large number of particles (in
the aim of a mathematical description of the phase transition phenomena), second,
trying to explain, at the limit of a long time observation, the emergence of coherent
structures and their governing laws, and finally investigating the role played by the
geometry of the coherent structures and of the domain.

The mathematical study of this model, in view of these three axes, was the
starting point of the present work, following the work of Degond and Motsch [28].

2 Overview of the subject
Regarding the description of the behavior of a system of particles when the number
of them goes to infinity, the usual strategy is to consider the probability to find
a particle at a given location, with a given velocity. The kinetic description of the
system is then done through the determination of the evolution in time of this density
probability function. In general, this is given by a partial differential evolution
equation, and this is where the first problem arises when we want to study the limit
of the Vicsek model when the number of particles is large. Indeed, we do not have
a continuous description in time of the behavior of the particles, which is only given
by the synchronous update of the velocities. This is one of the objections we can
raise about the Vicsek model: even if there is no spatial leader, and the interaction
are local in space, they are not independent in time, a global synchronization is done
through the clock of the time steps. Two approaches can be taken to overcome this
problem, while staying in the spirit of the Vicsek minimal model.

The first one has been proposed by Pierre Degond and Sébastien Motsch in [28],
the idea is to replace the discrete behavior by a continuous relaxation to the orien-
tation of the neighbors. At the cost of introducing a new parameter ν (actually, this
parameter replaces the time step, which is a parameter in the original Vicsek model,
and not a discretization time step), viewed as a frequency of relaxation towards the
local mean orientation, they are able to derive formally a mean-field kinetic equation
of Fokker–Planck type for the density probability f of the particles, of the following
form:

∂tf + ω · ∇xf + ν∇ω · ((Id − ω ⊗ ω)Ω̄f f) = d∆ωf, (2.1)

where the function f depends on the time t > 0, the space variable x ∈ R3, and
the velocity variable ω ∈ S2. The parameter d is the intensity of the noise, and
the vector Ω̄f ∈ S2 denotes a target orientation computed with respect to f (in a
non-local way), at the point x. Finally, ∇ω· and ∆ω stand for the divergence and
Laplace–Beltrami operators on the sphere, and the matrix Id−ω⊗ω is the projection
on the plane orthogonal to ω. This method is the starting point of the main part of
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this report.
Another approach to overcome the problem of global synchronization is to give to

each particle its own clock for the orientation updating, under the form of a Poisson
process with a given frequency ν (so we also have to introduce a new parameter), all
the clocks being independent and this allows to define a pure jump process. Some
work on this topic has been done in collaboration with Emmanuel Boissard and
Sébastien Motsch while visiting him in Maryland, but is not enough completed to
take place in this report. One thing to remark is that this approach can also be used
to define a Vicsek-like model which takes place in a one-dimensional framework,
and have been recently proposed as a model for displacements of migratory locusts
in [34].

The problem of finding then a macroscopic description of the model in large time
has also been addressed by in the same paper [28] by Pierre Degond and Sébastien
Motsch. Let us summarize here their results.

Once the kinetic equation (2.1) for the density probability function f is obtained
(at least formally), it is still a description at a small scale in space and time, so
we cannot observe the macroscopic structures. The idea is to perform a scaling in
time and space, called hydrodynamic scaling, introducing a small parameter ε and
investigating the properties of the model as ε → 0. This scaling has the effect of
localizing the interaction in space, and when ε → 0, the probability density f ε is
constrained to be an equilibrium for a given operator Q, in a three-dimensional man-
ifold parameterized by the local density of mass ρ and an orientation Ω belonging to
the unit sphere of R3 (the dynamics of the particles take place in R3): the equilibria
have the form ρMκΩ, where MκΩ is the Von-Mises distribution of orientation Ω and
concentration parameter κ = ν

d
. Even if the noise is large, the orientation of the

equilibrium is well defined, and we cannot observe a phenomenon of phase transition,
in contrast with the observations in the simulations of the Vicsek Model.

The next step is to derive the evolution equations for the mass ρ and the direc-
tion Ω. The conservation of mass gives a first equation, but there is no other obvious
conservation relation to get the remaining equation, and the main object of [28] is to
introduce the notion of generalized collisional invariants which allows to get the evo-
lution equation for Ω. The resulting model is the following non-conservative system
of first order partial differential equations:∂tρ+ ∇x · (c1ρΩ) = 0.

ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0.
(2.2)

where the coefficients c1, c2 and λ satisfy 0 < c2 < c1 < 1 and λ > 0. This
system is proved to be hyperbolic. As far as we know, this is the first model which
has such a non-conservative form in the context of macroscopic limits of systems
of large number of interacting particles. This comes from the particularity of unit
speed constraint for the particles, which can be natural regarding to the modeling of
biological phenomena such as animal displacements, and had much less sense when
modeling the microscopic dynamics of dilute gases, from which all this kinetic theory
comes.

Finally, regarding the third axe of study, namely the investigation of the role
played by the geometry of the domain, there is not a lot of mathematical rigorous
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analysis, to our knowledge. The observations [16, 62] of strongly ordered moving
bands are always done in the case of a flat torus (periodic boundary conditions),
showing that the movement is more likely to take place along a geodesic of minimal
length. The generalization of the model to other geometrical configurations, such as
the unit sphere (one can imagine for example the description of individuals moving
on the surface of the Earth), has not been studied yet, as far as we know.

The first part of this report is then concerned with further study of these time-
continuous Vicsek models (we also consider here dynamics in an arbitrary dimen-
sion n > 2 instead of the only case n = 3). In particular, since the parameter ν of
relaxation was arbitrarily introduced in the model (and such a parameter is needed
to define properly the relaxation), we are free to take a more general form for this pa-
rameter. In the original work [28], this parameter could depend on the angle between
the velocity of the particle and its target direction. In Chapter 1, we let ν depend
also on a local density ρ̄ and we introduce anisotropy in the kernel of observation,
that is to say that the way each particle compute the target orientation with respect
to their neighbors may depend on the orientation of the particle. This enables to
model for example a restricted angle of vision for the individuals, or the fact that
in some species, the individuals take more into account the ones located behind, in
order to avoid to be eaten (this is called a cannibalistic interaction and have been
observed in [83] for a species of locust). In Chapter 2, we take ν proportional to
the absolute value of the mean momentum of the neighbors. That is to say that the
individuals tends to relax more rapidly to the direction of their neighbors if these
last ones are numerous and strongly aligned. This positive feedback on the align-
ment strength leads to the apparition of phase transition, recovering the features of
the original discrete model, which gives rise to challenging issues. Finally, the main
object of Chapter 3 is the introduction of a generalization of the time-continuous
Vicsek model, when the positions of the particles are constrained to live on a Rie-
mannian manifold, with numerical simulations in the case of the 2-dimensional unit
sphere. This generalized model includes the model of [28] and of Chapter 2, when
the manifold is Rn. The details of the main contributions brought by the study of
these generalizations of the time-continuous Vicsek are given in the next section.

The model introduced in Chapter 2 led to the study of its spatial-homogeneous
version on the unit sphere S of Rn, which presents the same property of phase
transition. When studying this problem, we remarked that this was a special case
of a broad class of models described by the so called Doi equation (or Smoluchowski
equation), a nonlinear and nonlocal equation of the following form:∂tf = ∇ω · (f∇Ψf ) + τ∆ωf,

Ψf (ω, t) =
∫
SK(ω, ω̄) f(t, ω̄) dω̄.

(2.3)

This equation was introduced by Doi [32] as a gradient flow equation for the Onsager
free energy functional:

F(f) = τ
∫
S
f(., ω) ln f(., ω)dω + 1

2

∫
S×S

K(ω, ω̄)f(., ω) f(., ω̄) dωdω̄. (2.4)

This functional was proposed by Onsager [65] to describe the equilibrium states
of suspensions of rod-like polymers, given by the critical points of this functional.
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In the original work of Onsager, the kernel had the form K(ω, ω̄) = |ω × ω̄|, but
there is another form, introduced later by Maier and Saupe [58], which leads to
similar quantitative results: K(ω, ω̄) = 1

n
− (ω · ω̄)2. In particular, one observes a

phenomenon of hysteresis when the parameter τ , which represents a temperature,
goes from large to small values, and back to large values.

The model we were interested in corresponds to the case K(ω, ω̄) = −ω · ω̄,
called the dipolar potential, and few studies have been done concerning this model
alone. The study of this model is the object of Chapter 4, motivated by the better
understanding of the spatial inhomogeneous version of Chapter 2, and opened us
to the study of the Doi equation with Maier–Saupe potential, which has received
recent interest, from the point of view of rigorous mathematical analysis.

Let us review what have been done previously with respect to the mathematical
study of this equation.

The characterization of equilibria started in 2004 in dimension n = 2 for the
Maier–Saupe potential with the paper [20] containing a partial result, which was
then completed by three independent groups in [22, 38, 57] (moreover, a whole
family of different kernels is treated in [38] including the dipolar potential, still in
dimension n = 2). In the case where the temperature τ is greater than or equal to 1

4 ,
the uniform distribution is the unique steady-state, and when τ < 1

4 , there is also
another family of equilibria, which are non-isotropic, symmetric, and differ from one
to another by a simple rotation (called nematic equilibria).

The case of the dimension 3 is a little bit more elaborated, since we need first
to show that any steady-state is axisymmetric. After the partial result [20], the
complete characterization was provided in 2005, independently in [37, 55, 88]. One
can observe a fascinating hysteresis phenomena with two thresholds for the temper-
ature: τc = 2

15 and τ ∗ > τc. When τ > τ ∗, the uniform distribution is the unique
steady-state, when 2

15 < τ < τ ∗, two other families of prolate (concentrated around
two antipodal points) nematic equilibria appear, and when τ < 2

15 , one of this fami-
lies transforms into oblate equilibria (concentrated around a great circle). Analyzing
stability as local minimization of Onsager free energy, this last family is proved to
be unstable for τ < τ ∗, as well as the uniform distribution for τ < 2

15 . The other
equilibria are stable in this sense. Hence, starting from a large τ , the only stable
equilibrium (the uniform distribution) stays stable until τ reaches 2

15 , and starting
from a small τ , the only family of stable equilibria (the prolate nematic equilibria)
stays stable until τ reaches τ ∗ > 2

15 , which gives the hysteresis phenomenon.
The paper [37] by Fatkullin and Slastikov also considers the case of the dipolar

potential in dimension 3: when τ > 1
3 , the uniform distribution is the only equi-

librium, and a family of equilibria which differ from one to another by a is simple
rotation is added when τ < 1

3 , where the uniform equilibrium becomes unstable, in
the sense of the minimization of the free energy.

In [89], a coupling between the Maier–Saupe and the dipolar potential is pro-
posed, and the only stable equilibria are proved to be symmetric. And finally,
recently, a unified characterization of these equilibria in many cases has been pro-
vided [78], including the case of the Maier–Saupe potential in any dimension. The
main idea is to prove that the so-called orientational tensor order parameter is a
matrix with at most two distinct eigenvalues, which allows to reduce the problem.
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Regarding the dynamics in time, a few results were given, for the Maier–Saupe
potential only, in dimension 2 and 3. Existence, uniqueness, non-negativity, and
spatial-analyticity of a solution are claimed for a continuous nonnegative initial
condition in [19, 21]. The system is proved to be dissipative in a certain Gevrey
class of solution. Recently, the existence of inertial manifolds has been established
[76, 77]. But this does not provide convergence in time to a given equilibrium.

A lot of variants were proposed and studied [80, 85, 87, 90, 75, 39] including
external forces such as elongational force or shear flow, or modelling more complex
phenomena with space dependence. And finally, very recently, some results were
provided in dimension 2 to understand the case of the original Onsager kernel [18,
56, 79, 81], based on the analysis of the steady states.

Our main contributions to this field concerns the dynamical description of the
system as time goes to infinity, which has not been treated a lot, and will be detailed
in the next section.

3 Main contributions
The study of different time-continuous versions of the Vicsek model has given some
interesting results: introducing modifications in the model let us understand the key
features of the model, those which show some kind of robustness with respect to the
final macroscopic limit.

In Chapter 1, the main result is that the macroscopic model (2.2) is still the for-
mal limit of the mean-field model, even if the kernel of observation is non-isotropic,
and if the parameters ν and d depend on a local density ρ̄. This confirms this macro-
scopic model as a natural model arising as a model of displacement of a large number
of particles interacting on their alignment and with a constraint of unit speed, since
it appears also for another kind of model of displacement called “Persistent Turn-
ing Walker Model”, when alignment interaction is taken in account [30]. All the
information from the modifications which have been introduced appears through
the coefficients c1, c2 and λ. For example, here, since the parameters of the model
depend on a local density ρ̄, so do the coefficients of the macroscopic model.

One of the advances that have been achieved in this chapter is also a clear
statement of the problem in any dimension n > 2 in a unified framework. The
methodology of generalized collisional invariants is still valid, and we have proved
that they have a natural definition in this framework.

Finally, a specific result of this chapter is the presentation of a method which
allows to have an asymptotic expansion of the coefficients of the model, up to any
order, in any dimension, when the concentration parameter κ = ν

d
tends to zero or

to infinity. This allows to investigate the properties of the coefficients, even in the
original model, where we see that the coefficient c2 is always smaller than c1 in the
two limits κ → 0 and κ → ∞. This also proves that the macroscopic model can
be non-hyperbolic, since the coefficient λ can be negative, and this is really a new
feature of this model, which leads to important questions.

In the model of Chapter 2, we have found a way to get a macroscopic phase tran-
sition, while having a time-continuous model very close to the discrete one. Using



3 Main contributions 25

results of Chapter 4, together with a fine analysis of a specific Poincaré constant,
we are able to provide arguments which confirm the convergence, at each point, to
a local equilibrium. This last one can be of two different types, either the uniform
distribution, isotropic on the sphere, if the density ρ is less than the critical thresh-
old ρ∗ = n, or a distribution with a given orientation Ω in the case where ρ > ρ∗.

The mathematical treatment of this phase transition consists in the derivation of
two different models, depending whether the density is under or above the thresh-
old ρ∗ = n. We finally get a two-phase macroscopic model, with nonlinear diffusion
in the region of low density, and still the macroscopic model (2.2) in the region
of high density. The description of the behavior of the boundary between these
two regions is a challenging problem. Once again, the model is naturally set in
a n-dimensional framework, and the results are stated in a unified framework.

The last important thing to note is that we can directly use the results of
Chapter 1 which concern the asymptotic expansions of the coefficients, and we get
that λ < 0 in the two limit regimes. Using numerical computations, we see that we
actually have λ < 0 in any case. This means that the system (2.2) is non-hyperbolic
in all the ordered region of high density. However, under the constraint that the
dynamics only take place along one direction, we obtain a reduced model which
presents a less pathological behavior, and we have hyperbolicity in some regions of
the states space.

The introduction of the time-continuous Vicsek model on a Riemannian manifold,
done in Chapter 3, is, to our knowledge, a really new thing. We have been able to
define a general model which includes most of the models studied in Chapters 1-2,
and also the original continuous model of [28]. Under regularity restrictions on the
kernel of observation and on the coefficient ν of the model, we prove the propagation
of chaos, following the very recent work [13], and we obtain a mean-field limit which
corresponds exactly to the analogous of (2.1) on a Riemannian manifold.

The numerical simulations performed on the sphere S2 give then a new vision on
the collective motion of particles with unit speed.

We now turn to the description of our main contributions to the analysis of the
dynamics in Doi equation (2.3).

The first thing to emphasize is that we have made a link between subjects which
were not related at first glance. One of them comes from biology, the other from the
study of suspensions of rod-like polymers, which are far to be self-propelled particles.
The common point is that the dynamics take place on the unit sphere. Actually,
to be precise, in the case of rod-like polymers, the orientation is an element of the
projective space, since we do no distinguish between a rod and its opposite (the
rod does not carry an arrow). But this is convenient to work with functions on the
sphere, so the functions are considered to be even. This consideration makes no
sense with the dipolar potential since, for even functions, the equation (2.3) with
dipolar potential reduces to the heat equation.

In the case of the dipolar potential, our contribution constitutes the main part of
the study, as far as we know. The equilibria had been classified before by Fatkullin
and Slastikov in dimension 2 [38] and 3 [37]. Our work in Chapter 4 gives first a com-
plete classification of the steady-states in any dimension. But it also includes results
of existence and uniqueness, instantaneous regularity, positivity, and uniform bounds
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on any Sobolev space Hs for an initial non-negative condition in any Hp, p ∈ R.
From this, we can then get an adapted version of LaSalle’s principle which gives that
the solution converges to a unique set of equilibria. Then, we expand the Onsager
free energy and its dissipation term around a moving equilibrium adapted to f , and
finally, using an ODE argument, we can control the displacement of this moving
equilibrium. Our work gives that any solution converges to a given equilibrium,
with exponential rate when τ is not the critical value 1

n
, and with algebraic rate

when τ = 1
n
. Moreover, we can classify the types of equilibria of the limit with

respect to the initial condition: when τ < 1
n
, the only initial conditions leading in

long time to the uniform distribution are those with vanishing first moment.
Using spherical harmonics in dimension n, we provide an astonishing conservation

relation involving the so-called conformal Laplacian. In the case where τ > 1
n
, this

conservation relation can be seen as a dissipation of a new entropy, which gives
global exponential convergence towards the uniform distribution.

In Chapter 5, we use the tools developed for the dipolar potential in the frame-
work of the more studied case of Maier–Saupe potential, giving new insight in
the case of dimension 2, which is very similar to the dipolar potential : we have
convergence to a given equilibrium for any initial condition, with exponential rate
when τ 6= 1

4 . We also use here a special cancellation, which had been observed in [19]
in some special case, but not used to its maximal capacity. We can also classify the
types of equilibria of the limit with respect to the initial condition: when τ < 1

4 ,
the only initial conditions leading in long time to the uniform distribution are those
with vanishing second moment.

4 Presentation of the results

Ch. 1 A continuum model for alignment of self-propelled
particles with anisotropy and density-dependent pa-
rameters

In this chapter, we study the following model, for N particles with positions Xk ∈ Rn

and orientations ωk ∈ S (the unit sphere of Rn), with k ∈ J1, NK, written as a system
of coupled stochastic differential equations in the Stratonovich formulation:

dXk = ωkdt,
dωk = ν(ρ̄k)(Id − ωk ⊗ ωk)ω̄k dt+

√
2d(ρ̄k) (Id − ωk ⊗ ωk) ◦ dBk

t ,
(4.5)

where (Bk
t ) are independent standard Brownian motions on Rn. This system ex-

presses the fact that the particles move at constant speed 1, following their orien-
tation, which relaxes to the target orientation ω̄ with rate ν(ρ̄) and subjected to a
Brownian motion of intensity

√
2d(ρ̄) (the term Id−ωk ⊗ωk is the projection on the

hyperplane orthogonal to ωk).
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The coupling terms are the density ρ̄k and the target orientation ω̄k, given by

ρ̄k = 1
N

N∑
j=1

K̃
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
,

ω̄k = J̄k

|J̄k|
, where J̄k = 1

N

N∑
j=1

K
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
ωj,

where K and K̃ are observation kernels used to compute the local average of a
quantity carried by the neighbors. For example, to take into account only the
neighbors located “in front”, and within a given radius R, of one particle, the kernel
would be K(r, γ) = 1{r6R}1{γ>0}.

The positive functions ν and d are arbitrary. The choice of ν and d constant,
together with the fact that the kernel K depends only on its first variable, correspond
exactly to the time-continuous version of the Vicsek model proposed in [28].

The purpose of this chapter is to derive, from the individual particle system (4.5),
the following macroscopic model:∂tρ+ ∇x · (c1(ρ)ρΩ) = 0,

ρ (∂tΩ + c2(ρ)(Ω · ∇x)Ω) + λ(ρ) (Id − Ω ⊗ Ω)∇xρ = 0,
(4.6)

where the functions c1, c2, and λ will be specified in (4.9) and (4.10)-(4.11).
The first step is to write a mean-field model of the particle system, as in (2.1),

and then to perform a hydrodynamic scaling, which consists in introducing a small
parameter ε and writing f ε(εx, ω, εt) = f(x, ω, t). After some expansions, we get

ε(∂tf
ε + ω · ∇xf

ε + αP (f ε) + α̃ P̃ (f ε)) = Q(f ε) +O(ε2) , (4.7)

where the constants α and α̃ depend only on the observation kernels K and K̃.
These constants are positive if the kernel is directed forward, and the more acute
the “angle of vision”, the bigger the constant related to the kernel. The operators P
and P̃ act on f and its space derivatives, and Q is given by

Q(f) = − ν(ρf )∇ω · ((Id − ω ⊗ ω)Ωff) + d(ρf )∆ωf,

ρf =
∫

ω∈S
f(., ω) dω ,

Ωf = jf

|jf |
, with jf =

∫
ω∈S

ω f(., ω) dω ,

In view of (4.7), when ε → 0, the function f ε becomes an equilibrium, that is to
say a function f 0 such that Q(f 0) = 0. Introducing the Von-Mises distribution of
concentration parameter κ > 0 and orientation Ω ∈ S:

MκΩ(ω) = eκ ω·Ω∫
S e

κ υ·Ω dυ
, (4.8)

and defining the linear operator LκΩ by

LκΩ(f) = −∇ω ·
[
MκΩ∇ω

(
f

MκΩ

)]
,
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we remark that the operator Q(f) can be written as Q(f) = −d(ρf )Lκ(ρf )Ωf
(f),

with κ(ρ) = ν(ρ)
d(ρ) , and hence it is easy to see that if Q(f) = 0, then f is of the

form ρMκ(ρ)Ω.
We have then that jMκΩ = c1(κ)Ω, with

c1(κ) = 〈cos θ〉Mκ , where〈γ(cos θ)〉Mκ =
∫ π

0 γ(cos θ)eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
. (4.9)

If we integrate equation (4.7) on the sphere, we get ∂tρ+∇x · (j) = 0, hence we have
the equation for the evolution of mass:

∂tρ+ ∇x · (c1(κ)ρΩ) = 0.

To get the equation on Ω, we define the generalized collisional invariants CκΩ
(associated to κ > 0 and Ω ∈ S) as the following vector space:

CκΩ =
{
ψ|
∫

ω∈S
LκΩ(f)ψ dω = 0, ∀f s.t. (Id − Ω ⊗ Ω)jf = 0

}
.

We find that a generalized collisional invariant is of the form C + hκ(ω · Ω)A · ω,
with A arbitrary, orthogonal to Ω, and hκ a given smooth positive function (it is the
solution to an elliptic problem). Hence we can multiply (4.7) by hκ(ω · Ω)A · ω and
integrate, we get that A ·X = 0 for a given vector X, and for all the vectors A which
are orthogonal to Ω. So finally X is aligned with Ω, and writing (Id − Ω ⊗ Ω)X = 0
gives exactly the second equation of (4.6), with

c2 = c̃1 − α d (n c̃1 + κ 〈cos2 θ〉
M̃κ

) , with c̃1 = 〈cos θ〉
M̃κ

, (4.10)
λ = 1

κ
+ ρ κ̇

κ
[ c̃1 − c1 + α̃ d (κ 〈sin2 θ〉

M̃κ
− n c̃1) ] + 1

2 α̃ ρ ḋ (n− 1 + κ c̃1) , (4.11)

where the dot denotes the derivative with respect to ρ, and with the notation

〈γ(cos θ)〉
M̃κ

=
∫ π

0 γ(cos θ)hκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

. (4.12)

Finally, in a second part, we develop a method to get an asymptotic expansion,
up to any order, when κ → 0 or κ → ∞, of expressions of the form 〈f(θ)〉Mκ

and 〈f(θ)〉
M̃κ

. This enables us to compute the expansions of the coefficients, and to
prove that the coefficient λ may become negative, and hence the system (4.6) loses
its hyperbolicity.

Ch. 2 Macroscopic limits and phase transition in a system
of self-propelled particles

In this chapter, the modification of the individual model seems, at first glance, to
be a simplification: we replace νω̄k in (4.5), by νJ̄k, that is to say we do not divide
by the norm. The interaction is then a sum of binary interactions, still understood



4 Presentation of the results 29

as a relaxation towards ω̄k, but with rate proportional to |J̄k|. The system readsdXk = ωkdt,
dωk = ν(Id − ωk ⊗ ωk)J̄k dt+

√
2d (Id − ωk ⊗ ωk) ◦ dBk

t ,
(4.13)

J̄k = 1
N

N∑
j=1

K(Xj −Xk)ωj, (4.14)

where (Bk
t ) are independent standard Brownian motions on Rn. The mean-field

limit is then given by∂tf + ω · ∇xf + ν∇ω · ((Id − ω ⊗ ω)J̄f f) = d∆ωf

J̄f (x, t) =
∫
S(K ∗ f)(x, ω, t)ω dω,

(4.15)

where ∗ denotes the convolution with respect to the space variable. With a change
of scale in space, time, and density (relaxing the fact that f is a probability density
function on Rn × S), we can assume without loss of generality that ν = d = 1
and

∫
Rn K(ξ)dξ = 1. Let us notice that this mean-field limit is easy to treat, since

we do not have the singularity at J̄ = 0, and propagation of chaos has been indeed
shown recently in [13].

The hydrodynamic scaling gives, if K(ξ) depends only on |ξ|:

ε(∂tf
ε + ω · ∇xf

ε) = Q(f ε) +O(ε2), (4.16)

with Q(f) = −∇ω · ((Id − ω ⊗ ω)Jff) + ∆ωf

Jf (x, t) =
∫
S f(x, ω, t)ω dω.

(4.17)

Here, the equilibria of Q are still given by ρMκΩ, with arbitrary ρ > 0 and Ω ∈ S,
where MκΩ is defined in (4.8), and where the concentration parameter κ satisfies
the compatibility condition ρκ = c(κ), with c(κ) defined in (4.9). We then have the
following alternative:

Proposition 1. Compatibility condition, equilibria.

• If ρ 6 n, there is only one solution to the compatibility condition: κ = 0. The
only equilibrium is the constant function f = ρ.

• If ρ > n, the compatibility condition has exactly two solutions: κ = 0 and one
unique positive solution, which will be denoted κ(ρ). Apart from the constant
function f = ρ (the case κ = 0), the equilibria form a manifold of dimension n:
the functions of the form f = ρMκ(ρ)Ω, where Ω ∈ S is an arbitrary unit vector.

With arguments of stability and rate of convergence to the equilibrium for the
space-homogeneous version of (4.16) provided by the results of Chapter 4, we shall
consider a macroscopic model composed of two zones: the formal limit, as ε → 0 of
the function f ε is given by a function f(x, ω, t) which satisfies

• f(x, ω, t) = ρ(x, t) with ρ(x, t) < n, in the “disordered” region Rd where we
have n− ρε(x, t) � ε,
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• f(x, ω, t) = ρ(x, t)Mκ(ρ)Ω(x,t) with ρ(x, t) > n, in the “ordered” region Ro where
we have ρε(x, t) − n � ε.

In the disordered region, the formal limit satisfies ∂tρ = 0, therefore we are interested
in a first-order correction in ε of the model. A Chapman-Enskog expansion leads to
a non-linear diffusion:

Proposition 2. Diffusion model in the disordered zone.
When ε goes to zero, the (formal) first order correction of the solution of the

mean-field rescaled system, in the region Rd ⊂ Rn where we have n − ρε(x, t) � ε,
is given by

f ε(x, ω, t) = ρε(x, t) − ε
nω · ∇xρ

ε(x, t)
(n− 1)(n− ρε(x, t))

,

where the density ρε satisfies the following diffusion equation:

∂tρ
ε = ε

n− 1
∇x ·

(
1

n− ρε
∇xρ

ε

)
. (4.18)

In the ordered region, the method of generalized collisional invariants works to
derive the hydrodynamic model (2.2):∂tρ+ ∇x · (ρΩ) = 0,

ρ(∂tΩ + c̃(Ω · ∇x)Ω) + λ(Id − Ω ⊗ Ω) = 0,

where the speed c depending on κ(ρ) is defined in (4.9), the speed c̃ is given
by 〈cos θ〉

M̃κ(ρ)
with the notation (4.12) and

λ = ρ− n− κ(ρ)c̃
(ρ− n− κ(ρ)c)κ(ρ)

.

The method of asymptotic expansion introduced in Chapter 1 allows to get the
following expansions:

Proposition 3. Expansion of the coefficients when the density is large or close to
the critical threshold.

We have the following expansions for the coefficients c, c̃, and λ.

• When the density ρ is close to n:

c =
√

n+2
n

√
ρ− n+O(ρ− n),

c̃ = 2n−1
2n

√
n+2

√
ρ− n+O(ρ− n),

λ = −1
4
√

n+2
1√
ρ− n

+O(1).

• When the density ρ tends to infinity:

c = 1 − n−1
2 ρ−1 + (n−1)(n+1)

8 ρ−2 +O(ρ−3),
c̃ = 1 − n+1

2 ρ−1 − (n+1)(3n+1)
24 ρ−2 +O(ρ−3),

λ = −n+1
6 ρ−2 +O(ρ−3).
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In particular, we see that since λ < 0 in these two limiting cases (numerically,
we can see that this is always the case), then the system is not hyperbolic. If we
constrain the dynamics to take place only along one direction, we get a condition
of hyperbolicity involving the angle between Ω and this direction of propagation,
which must be smaller than a critical angle θc which satisfies:

θc =


π
2 − 2√

n+2
√

n

√
ρ− n+O(ρ− n) as ρ → n,

arctan(
√

n+1
√

6
4 ) +O(ρ−1). as ρ → ∞.

Ch. 3 An individual time-continuous Vicsek model on a
Riemannian manifold

In this chapter, we extend the dynamics of the Vicsek model to a general Riemannian
manifold. Most of the numerical studies on self-organized dynamics have been done
on the same geometrical space: the flat torus, or equivalently a square box with
periodic boundary conditions. But this particular geometry has an influence on the
dynamics. For this reason, we would like to perform analytical and numerical studies
of the Vicsek model on a general Riemannian manifold.

Our first goal is to write the evolution of an oriented particle (x, ω) on a given
Riemannian manifold M with a metric g. To do so, we introduce the unit tangent
bundle UM associated to the manifold M :

UM := {(x, ω) | x ∈ M, ω ∈ TxM and |ω|g = 1},

where TxM is the tangent space of M at point x. The manifold UM is the natural
space to consider for the evolution of an oriented particle with unit speed.

We first propose a model describing the dynamics of a single particle (x, ω)
moving with unit speed, in an orientational force field η and whose orientation is
submitted to a Brownian motion of intensity

√
2d. In local coordinates, it is given

by a Stratonovich stochastic differential equation:dxi = ωi dt,
dωi = ηi dt+

√
2d∑j(σij − ωi∑

k,` ω
` g`k σkj) ◦ dBj

t −∑
j,k Γi

jk ω
j ωk dt,

where Bt is a standard Brownian motion in Rn (or equivalently, Bi
t are n independent

real one-dimensional standard Brownian motions), and (σij) is the inverse symmetric
square root of the matrix (gij) of the metric in local coordinates. We prove that this
system is well defined as a stochastic process with values in UM , and provide the
partial differential equation satisfied by its law.

We then give a global formulation of this system in an extrinsic point of view,
in the case where the manifold M is isometrically embedded in Rm, for m > n:dx = ω dt,

dω = η dt+
√

2d πx,ω ◦ dBt + IIx(ω, ω) dt,

where Bt is a standard Brownian motion in R2m, where πx,ω is the projection onto
the tangent space TωSx

g at ω of Sx
g (the unit sphere of the tangent space TxM),
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and where IIx(ω, ω) is the second fundamental form associated to the embedded
Riemannian manifold.

In a second part, we propose an extension of the local average velocity J̄ at a
point x in M using parallel transport along geodesics. Thus, the Vicsek dynamics
on the manifold are simply given as a relaxation of a particle velocity ωk towards
the orientation of the local average velocity J̄(xk). We prove the existence of a
kinetic mean-field equation associated with this dynamics (proving the so-called
propagation of chaos for the stochastic system), given by

∂tf + gx(ω,∇h
xf) + ∇x

ω · (ν πx,ωJ [f ]f) = d∆x
ωf,

where ∇x
ω· and ∆x

ω are the divergence and Laplace–Beltrami operators on Sx
g , the unit

sphere of the tangent space TxM , where the “horizontal gradient” ∇h
xf corresponds

to the spatial gradient of f , and where

J [f ](x, ω) =
∫

UM
K(x, ω, x′)τx,x′(ω′)f(x′, ω′) dµ(x′, ω′),

where τx,x′(ω′) is the parallel transport of ω′ along the geodesic from x to x′, K
is a kernel of observation, and µ is a natural measure on UM , called Liouville or
kinematic measure.

Finally, we illustrate our model by performing some numerical simulations on
the sphere S2. We observe the formations of groups moving in the same direction.
But in contrast with the Vicsek model on the flat torus, there is no longer emergence
of one global direction for the whole group of particles.

Ch. 4 Dynamics in a kinetic model of oriented particles
with phase transition

In this chapter, we study the dynamics of the Doi equation (2.3) with the dipolar
potential, which takes the following form:∂tf = −∇ω · ((Id − ω ⊗ ω)J [f ]f) + τ∆ωf,

J [f ] =
∫
S ω f(., ω) dω.

(4.19)

We first give results of existence and uniqueness of a weak solution, with an initial
condition in an arbitrary Sobolev space.

Theorem 1. Given an initial probability measure f0 in Hs(S) (which is always the
case for s < −n−1

2 ), there exists a unique weak solution f to (4.19) such that f(0) =
f0. This solution is global in time. Moreover, f ∈ C∞((0,+∞)×S), with f(t, ω) > 0
for all positive t.

We also have the following instantaneous regularity and uniform boundedness
estimates (for m ∈ N, the constant C depending only on τ,m, s), for all t > 0:

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs .



4 Presentation of the results 33

In appendix, we prove furthermore that the solution is analytic in space.
Defining the Onsager free energy F and its dissipation term D by

F(f) = τ
∫
S
f ln f − 1

2 |J [f ]|2,

D(f) =
∫
S
f |∇ω(τ ln f − ω · J [f ])|2,

we have, for a solution f of Doi equation (4.19), the following conservation relation:

d
dt

F + D = 0.

This allows us to give an adaptation of LaSalle’s invariance principle to our PDE
framework.

Proposition 4. LaSalle’s invariance principle
Let f0 be a probability measure on the sphere S. We denote by F∞ the limit

of F(f(t)) as t → ∞, where f is the solution to Doi equation (4.19) with initial
condition f0.

Then the set E∞ = {f ∈ C∞(S) s.t. D(f) = 0 and F(f) = F∞} is not empty.
Furthermore f(t) converges in any Hs norm to this set of equilibria (in the

following sense):
lim
t→∞

inf
g∈E∞

‖f(t) − g‖Hs = 0.

We then characterize the equilibria, of the form MκΩ where κ satisfies the com-
patibility condition c(κ) = τκ.

Proposition 5. Compatibility condition

• If τ > 1
n
, there is only one solution to the compatibility condition: κ = 0. The

only equilibrium is the constant function f = 1.

• If τ < 1
n
, the compatibility condition has exactly two solutions: κ = 0 and one

unique positive solution, that we will denote κ(τ). Apart from the constant
function f = 1 (the case κ = 0), the equilibria form a manifold of dimen-
sion n− 1: the functions of the form f = Mκ(τ)Ω, where Ω ∈ S is an arbitrary
unit vector.

Using fine analysis on spherical harmonics in any dimension, we obtain a special
cancellation, for a function h with mean zero on the sphere:∫

S
∆̃n−1h∇ωh = 0,

where ∆̃n−1 is the so-called conformal Laplacian on the unit sphere, given, for a
spherical harmonic Y ` of degree `, by ∆̃n−1Y

` = `(`+ 1) . . . (`+n− 1)(`+n− 2)Y `.
This is a differential operator when n is odd, and a pseudodifferential operator
when n is even.
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This special cancellation leads to a new conservation relation, for a probability
density f solution to (4.19), of the form

1
2

d
dt

‖f − 1‖2
H̃− n−1

2
= −τ‖f − 1‖2

H̃− n−3
2

+ 1
(n− 2)!

|J [f ]|2,

where ‖·‖
H̃− n−1

2
and ‖·‖

H̃− n−3
2

are special Sobolev norms associated to the conformal
Laplacian, equivalent to the usual H− n−1

2 and H− n−3
2 norms.

In the case where τ > 1
n
, this conservation law can be seen as the dissipation of

a new entropy given by ‖f − 1‖2
H̃− n−1

2
, and we get global exponential convergence

to the uniform equilibrium, with rate (n − 1)(τ − 1
n
) in this weak norm, which can

then be extended to any Hs norm, with s > −n−1
2 .

If J [f0] 6= 0 we prove that J [f(t)] 6= 0 for all t > 0 (if J [f0] = 0, the equation
reduces to the heat equation, so the solution converges exponentially fast to the uni-
form distribution). In the case where τ < 1

n
, we can then define the unit vector Ω(t)

as J [f(t)]
|J [f(t)]| . Using LaSalle’s principle, we get that f −Mκ(τ)Ω(t) converges to zero, so

we can expand D and F around Mκ(τ)Ω(t) in a “moving norm” (a weighted L2, with
the weight Mκ(τ)Ω(t), which depends on time). We then get exponential convergence
to zero of the difference f − Mκ(τ)Ω(t). Finally, deriving the ODE satisfied by Ω(t),
we can control its derivative by ‖f−Mκ(τ)Ω(t)‖, which gives that Ω(t) converges with
exponential rate towards Ω∞ ∈ S. Using interpolation, we get the following result:

Proposition 6. If τ < 1
n
, there is an asymptotic exponential rate r∞(τ) > 0 of

convergence, in any Hp norm, to a given equilibrium.
More precisely, for all r < r∞(τ), there exists t0 > 0 (depending on f0 and p)

such that for all t > t0, we have

‖f(t) −MκΩ∞‖Hp 6 e−rt.

When τ is close to 1
n

we have that r∞(τ) ∼ 2(n− 1)( 1
n

− τ).

In the same spirit, in the critical case τ = 1
n
, we expand D and F around the

uniform distribution, and we get that the rate of convergence is given by C√
t
.

Ch. 5 A note on the dynamics in the Doi equation with
Maier–Saupe potential

In this short chapter, we show that the tools we used in the case of the dipolar
potential can be adapted to get results for the case of the Maier–Saupe potential.

We consider the following non-local partial differential equation on S, for a prob-
ability density function f on the sphere:∂tf = ∇ω · (f∇ωΨf ) + τ∆ωf,

Ψf (ω, t) =
∫
SK(ω, ω̄) f(t, ω̄) dω̄.

(4.20)

The Maier–Saupe potential is given by K(ω, ω̄) = 1
n

− (ω · ω̄)2.



4 Presentation of the results 35

In the general case of a polynomial kernel, we provide the same results of existence
and uniqueness, of positivity and regularity than Theorem 1, and the adaptation of
LaSalle’s invariant principle (Proposition 4) is still valid.

We define the orientational tensor order parameter by

S[f ] =
∫
S
( 1

n
Id − ω ⊗ ω)fdω,

and we give a property of dynamical instability of the uniform distribution when τ
is under the critical value τc = 2

n(n+2) :

Proposition 7. Instability of the uniform distribution below a threshold.
If we have S[f0] = 0, then we have S[f(t)] = 0 for all t > 0, and the Doi

equation (4.20) becomes the heat equation on the sphere. The solution converges
exponentially fast to the uniform distribution.

If we have S[f0] 6= 0, then we have S[f(t)] 6= 0 for all t > 0. Moreover, in the
case where τ < 2

n(n+2) , the solution cannot converge to the uniform distribution.

We finally show that, in dimension 2, we have the same results of convergence
as for the case of the dipolar potential.
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Part I

Variations on time-continuous
Vicsek models





Chapter 1

A continuum model for alignment
of self-propelled particles with
anisotropy and density-dependent
parameters

This chapter has given an article [41] which is about to be submitted in Mathematical
Models and Methods in Applied Sciences.

Abstract

We consider the macroscopic model derived by Degond and Motsch from a
time-continuous version of the Vicsek model, describing the interaction orien-
tation in a large number of self-propelled particles. In this chapter, we study
the influence of a slight modification at the individual level, letting the re-
laxation parameter depend on the local density and taking in account some
anisotropy in the observation kernel (which can model an angle of vision).

The main result is a certain robustness of this macroscopic limit and of
the methodology used to derive it. With some adaptations to the concept
of generalized collisional invariants, we are able to derive the same system of
partial differential equations, the only difference being in the definition of the
coefficients, which depend on the density. This new feature may lead to the
loss of hyperbolicity in some regimes.

We provide then a general method which enables us to get asymptotic
expansions of these coefficients. These expansions shows, in some effective
situations, that the system is not hyperbolic. This asymptotic study is also
useful to measure the influence of the angle of vision in the final macroscopic
model, when the noise is small.

Key words: Vicsek model, orientation interaction, anisotropy, collisional invariants,
non-hyperbolicity, asymptotic study.

AMS Subject classification: 35M30, 35Q70, 35Q80, 82C22, 82C70, 92D50.
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1 Introduction

The study of complex particle systems has given rise to some challenging issues [10],
in a mathematical point of view. One of the interesting problem is to understand
how a collective behavior can emerge with only localized interactions.

The Vicsek model [74] has been proposed as a minimalist model describing the
behavior of individuals inside animal societies such as fish schools or flocks of birds.
It is a minimal version of a more complete and realistic model [3, 67, 49, 23] based on
three zones (of repulsion, alignment, and attraction). The Vicsek model only con-
siders the alignment behavior, getting around the problem of confining the particles
in the same region by imposing spatial periodicity (particles move on the flat torus).
All the particles have constant speed and synchronously update their direction ac-
cording to their neighbors, their new orientation vector being given by the mean
direction (subjected to some angular noise) of all particles at distance less than a
given radius. As the noise decreases (or the density increases), one can observe a
phenomenon of phase transition, from a regime of disordered particles, to an ordered
phase with strong correlations between orientations of particles [74, 2, 46].

Two main difficulties arise when we try to derive a macroscopic limit of this
individual based model. First of all, the system is discrete in time: the time step is
fixed, and the model is not built in the goal of letting it tend to zero. The second
problem is that, except for the total mass, there is no obvious conservation relation,
so a good candidate for a macroscopic model would probably be a non-conservative
system of partial differential equations, but we lack conservation relations to obtain
any equation other than the conservation of mass.

In [28], Degond and Motsch have proposed an approach to handle these two
complications. First, they provide a time-continuous version of the individual based
model, introducing a rate of relaxation towards the local mean direction, under
the form of a new parameter ν, which can be viewed as a frequency of interaction
between a particle and its neighbors. It is therefore possible to derive a kinetic
mean-field limit of this model. Then they develop a method, defining the notion
of generalized collisional invariants, which allows to derive the formal limit of this
kinetic mean-field model, at large scale in space and time. This continuum limit
is a non-conservative system of PDE for the local mass and the local orientation.
Moreover, this system is proved to be hyperbolic.

The goal of the present chapter is to confirm the ability of this type of macroscopic
model to describe the large scale dynamics of systems of self-propelled particles
with orientation alignment, and to show that the notion of generalized collisional
invariants is well adapted to derive this model from the microscopic mechanism
of alignment. This was shown in [30] for a different type of alignment, based on
the curvature control (for a model of displacement introduced in [29], designed to
fit biological experiments [45]): the method which uses the generalized collisional
invariants is successful to derive a macroscopic model which is the same as the
“Vicsek hydrodynamics” of [28], but for the definition of the coefficients in the model.
We will show that this is also the case when we slightly modify the individual model,
in order to be more coherent with some numerical observations, and to model the
influence of an angle of vision.
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One of the properties of the macroscopic model of [28] which fails to represent the
numerical observations is that the local equilibria have a constant order parameter.
This order parameter is indeed only related to the ratio between the frequency ν of
interaction and the intensity d of the noise. In numerical experiments on the Vicsek
model [16], the order parameter depends on the local density of particles: one can
observe, at large time, formation of travelling bands of high density, strongly ordered,
moving through a disordered area of low density.

The first refinement on the model will be to define the local density ρ̄ in the
particular model as the mean number of particles in a neighboring area, and to
make the parameters ν and d depend on ρ̄. In a modelling point of view, this could
be interpreted as the fact that, due to some social pressure, it is more likely to move
and update the direction when there is a large number of particles around (so ν
increases with ρ̄), and that the fluctuation in the estimation of the mean velocity
is smaller when a lot of particles are taken in account in the neighborhood (so d
decreases with ρ̄, see for example the way the vectorial noise is defined in [46, 16]).
This dependence on local parameters for the noise parameter has been introduced
in other models of collective behavior [33, 83].

In [28], the parameter ν does also depend on the angle between one particle di-
rection and its target direction. For convenience, we will not take this in account for
most results, but some computations have been done and will be given in appendix.

Another property of the mean-field model of [28] is that the type of local equi-
librium for the rescaled model is unique. The loss of this uniqueness could play a
role to understand the formation of patterns such as the travelling bands [36], and
in some models of rod-like particles, we have indeed bistability in some regime [55].
This is not the case here, and we will see in Section 3 that we still have a unique
kind of equilibrium associated to a local density ρ and a local orientation Ω.

The second refinement is to take into account some “angle of vision” in the model.
In the original Vicsek model, the target orientation for a given particle is chosen to
be the mean orientation of the neighbors located in a ball centered on this particle.
We will use here a more general kernel of observation which can be non-isotropic.
This refinement has been proposed in various models of swarming [1, 54].

The main result of this chapter is that the formal macroscopic limit of this model
take the same form as the previous “Vicsek Hydrodynamic model” of [28], consisting
in a conservation equation for the local density of particles, and an evolution equation
for the mean orientation, which is not conservative (the velocity is constrained to be
on the unit sphere). This system of PDE is quite similar to the Euler equations for
gas dynamics, but presents some specific issues, for example there are two different
velocities of propagation. The difference between our model and the macroscopic
model of [28] relies on the definition of the coefficients of this model, and on the fact
that they depend on the local density. This last feature allows the model to lose the
property of hyperbolicity.

In Section 2, we present the individual model and the final macroscopic model,
focusing on how the two refinements are taken in account, and what are the conse-
quences at the macroscopic level.

In Section 3, we provide elements of the derivation of this macroscopic model,
following the method of [28], but emphasizing the details which are specific to this
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study. We also give the method in a general n-dimensional framework (previously
the method was only done in three dimensions). The case of the dimension 2 is
special, since we are able to give an explicit expression of the coefficients.

In Section 4, we study the properties of the macroscopic model. We prove that
when one of the coefficients is negative, then the system is not hyperbolic. We
describe the region of hyperbolicity for a system which depends only on one space
variable, and we discuss the influence of “angle of vision”.

Finally, in Section 5, we provide a general method which gives an asymptotic
expansion of the coefficients in any dimension, in the limit of a small or a large
concentration parameter. With these expansions, we are able to study the qualitative
influence of the “angle of vision” in the final macroscopic model, and to give examples
for which the hyperbolicity is indeed lost.

2 Individual and continuum dynamics of a modi-
fied Vicsek model

We start by presenting the individual-based model and the continuum model we
obtain in the limit of a large number of particles, when observed at large scale, in
space and time. Elements of the derivation of this macroscopic model will be given
in section 3.

2.1 Starting point: particle dynamics
Here, we briefly recall the time-continuous version of the Vicsek model, and introduce
how we take into account the anisotropy of observation and the dependence on the
local density for the rate of relaxation and the intensity of the noise.

We consider a system of N particles with positions Xk in Rn (with k ∈ J1, NK)
and orientations ωk in the unit sphere Sn−1, which we will simply write S.

For each particle, we first define a local mean orientation ω̄k (considered as a
target direction) and a local density ρ̄k. In the original model of Vicsek [74], the
mean orientation ω̄k is computed on all the neighbors within a given radius R. Here
we take the mean according to a kernel of observation K, which can be more general
than the indicator function of the ball of radius R, as in the time-continuous version
of [28]. The kernel therein depends only on the distance between the given particle
and a given neighbor, so the refinement here is that it can also depend on (the cosine
of) the angle between the orientation of the first particle and the right line joining
the two particles:

ω̄k = J̄k

|J̄k|
, where J̄k = 1

N

N∑
j=1

K
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
ωj. (2.1)

For example, to take into account only the neighbors located “in front”, and
within a given radius R, of one particle, the kernel would be K(r, γ) = 1{r6R}1{γ>0}.
We proceed in an analogous way to compute the local density ρ̄k, which may use
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another kernel K̃:

ρ̄k = 1
N

N∑
j=1

K̃
(
|Xj −Xk|, Xj−Xk

|Xj−Xk| · ωk

)
. (2.2)

We now turn to the dynamics of the particle system. The kth particle moves at
constant speed 1, following its orientation ωk. This last one relax towards the mean
orientation ω̄k of its neighbors, with rate ν (depending in the local mean density ρ̄k),
under the constraint that ωk is of norm 1. Finally, this orientation ωk is subjected
to a Brownian motion (see [48] for more details on how to define such an object on
a Riemannian manifold, such as the unit sphere here) of intensity d, which will also
depend on the density ρ̄k. The model takes then the form of 2N coupled stochastic
differential equations, which have to be understood in the Stratonovich sense:

dXk = ωkdt, (2.3)

dωk = ν(ρ̄k)(Id − ωk ⊗ ωk)ω̄k dt+
√

2d(ρ̄k) (Id − ωk ⊗ ωk) ◦ dBk
t , (2.4)

where (Bk
t ) are independent standard Brownian motions on Rn.

Here we denote by Id − ωk ⊗ ωk the projection on the plane orthogonal to ωk,
that is to say (Id − ω ⊗ ω)υ = υ − (υ · ω)ω. This projection is necessary to keep ωk

on the unit sphere. The term (Id − ωk ⊗ ωk)ω̄k can also be written ∇ω(ω · ω̄k)|ω=ωk
,

where ∇ω is the tangential gradient on the unit sphere. The deterministic part of
the SDE (2.4) can then be written dωk

dt
= ν(ρ̄k)∇ω(ω · ω̄k)|ω=ωk

, which is indeed a
relaxation towards ω̄k (where the function ω 7→ ω · ω̄k reaches its maximum), with
rate ν(ρ̄k).

Since the local density ρ̄ only appears through the functions ν and d, we can
assume the following normalization for the kernel K̃:∫

ξ∈Rn
K̃(|ξ|, ξ

|ξ| · ω)dξ = 1 . (2.5)

This normalization condition (which does not depend on ω ∈ S) means that the
density is chosen to be 1 in the limit of a uniform distribution of the N particles in
a region of unit volume. This is not necessary to take a similar condition for the
kernel K, since ω̄k, defined at equation (2.1), is independent of such a normalization.

In [28], the relaxation coefficient ν depends on (the cosine of) the angle between
the orientation of one particle and the target direction, in order to take into ac-
count some “ability to turn”. This would amount to replace ν(ρ̄k) by ν(ρ̄k, ωk · ω̄k)
in (2.4). With our new features here, this would involve many more computations,
but, following exactly the same method, this leads to the same conclusion. For sim-
plicity here, we will work without this dependence. We will only present the final
results with this dependence in some special cases, and add remarks to explain the
difference in some steps of the derivation of the macroscopic model.

Some numerical simulations tend to show that this time-continuous individual
based model present the same behavior at large scale as the discrete one (for exam-
ple the formation of bands, as in [16]), in the case where ν and d are constant, and
the observation kernel is isotropic, as in [28]. We can expect to observe the same
behavior, even when ν and d depend on the local density ρ̄. More precise investi-
gations on the numerical comparison between the original discrete and the present
time-continuous dynamical systems are in progress.
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2.2 The continuum model

In this chapter, following the approach of [28], we derive, from the particle dynam-
ics (2.3)-(2.4) introduced in the previous subsection, the following continuum model,
the functions ρ(x, t) > 0 and Ω(x, t) ∈ S describing the average density and particle
direction at a given point x ∈ Rn:

∂tρ+ ∇x · (c1(ρ)ρΩ) = 0, (2.6)
ρ (∂tΩ + c2(ρ)(Ω · ∇x)Ω) + λ(ρ) (Id − Ω ⊗ Ω)∇xρ = 0, (2.7)

where the functions c1, c2, and λ will be specified later on: see (3.24) and (3.26)-
(3.27).

This system of first order partial differential equations shows similarities with the
Euler system of isothermal compressible gases, but also some important differences.

Equation (2.6) is the conservation of mass: the density ρ moves through direc-
tion Ω with velocity c1(ρ). We will see that this velocity, taking values between 0
and 1, plays the role of an order parameter: when the directions of the particles
are strongly correlated (close to Ω), density moves with velocity close to 1. This
order parameter depends only on the ratio between ν(ρ) (the alignment strength)
and d(ρ) (the noise intensity).

Equation (2.7) describes the evolution of the direction Ω, the norm of which is
constrained to be constant (the projection Id−Ω⊗Ω insures that the dynamics take
place on the hyperplane orthogonal to Ω). This constraint implies that the equation
is not conservative which is the counterpart of the fact that, at the microscopic
level, the only conservative quantity is the mass. The perturbations of this vector
travel with velocity c2(ρ), influenced by a term playing the role of pressure due to
the density, of intensity λ(ρ). It is important to see that in general (and contrary to
the classical Euler system), the two convection speeds c1 and c2 are different, which
means that the perturbations on the mean orientation do not travel at the same
velocity as the “fluid”.

This macroscopic model is the same as the “Vicsek hydrodynamics” of [28],
except for the definitions of these speeds c1 and c2, and of the parameter λ. This
confirms the ability of this model to describe the global dynamics of systems of self-
propelled particles with constant speed and alignment interactions (this was also the
result of [30]).

However, the parameters depend here on the density ρ, and their expressions
are slightly different (due to this dependence and to the anisotropy of the kernel of
observation). This leads to strong differences in their behavior, as we will see in
Section 4, devoted to the investigation of the properties of (2.6)-(2.7). For example
the parameter λ can be negative, which implies the loss of hyperbolicity. And
because of the non isotropy of the observation kernel, the convection speed c2 can
take a large range of values, from negative if the kernel is strongly directed forward,
to higher than c1, if particles are more influenced by neighbors behind them than
those in front of them (this has been observed in locust migratory bands [8], where
the individuals have “cannibalistic interactions” and avoid to be eaten by those
approaching from behind).
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3 Elements of the derivation of the continuum
model

This derivation proceeds like in [28] but there are significant differences due to the
additional complexity. In this section, we briefly recall the method of Degond and
Motsch and will focus on the points which are specific to the present study.

The derivation proceeds in several steps. The first one consists in writing a
kinetic version of the particle dynamics.

3.1 Step 1: mean-field model
Let f(x, ω, t) be the probability density of finding one particle at position x ∈ Rn,
orientation ω ∈ S and time t > 0. The mean-field version of (2.3)-(2.4) is given by

∂tf + ω · ∇xf + ∇ω · (Ff) = ∇ω · (
√
d(ρ̄)∇ω

√
d(ρ̄)f), (3.8)

with

F (x, ω, t) = ν(ρ̄) (Id − ω ⊗ ω)ω̄(x, ω, t),

ρ̄(x, ω, t) =
∫

y∈Rn, υ∈S
K̃
(
|y − x|, y−x

|y−x| · ω
)
f(y, υ, t) dy dυ ,

ω̄(x, ω, t) = J(x, ω, t)
|J(x, ω, t)|

,

J(x, ω, t) =
∫

y∈Rn, υ∈S
K
(
|y − x|, y−x

|y−x| · ω
)
υ f(y, υ, t) dy dυ .

The first equation (3.8) is the so called Kolmogorov–Fokker–Planck equation. The
force term F (x, ω, t) corresponds to the orientation interaction.

First of all, if there is no noise (that is d(ρ̄) = 0 in equations (2.3)-(2.4), which
become ordinary differential equations), the formal derivation of this system is easy:
the usual methodology shows that the empirical distribution (see [71]) satisfies the
equation (3.8), with d = 0.

When the noise is added, some difficulties appear. A method consisting in writing
the BBGKY hierarchy (see [47], applied to the Cucker-Smale model of self-propelled
particles) would not in that case reduce to a evolution equation involving only the
one-particle and the two-particles distributions, since the interaction is not a sum
of binary interactions.

We could slightly change our model to make the interaction as a sum of bi-
nary interactions, replacing ω̄k by J̄k (defined in equation (2.1)) in the system of
particles (2.3)-(2.4). In that case the model present an interesting phenomenon of
phase transition and this is the object of Chapter 2 (in collaboration with P. Degond
and J.-G. Liu, the homogeneous version being studied in Chapter 4, which is also
a collaboration with J.-G. Liu). In that case, writing the BBGKY hierarchy and
using exchangeability of particles gives a system of evolution equations, the first
one involving only the one-particle and the two-particles distributions. The classical
assumption of propagation of chaos amounts to consider the two-particles density
as the tensor of the one-particle density f by itself (in the limit of a large number of
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particles, two particles behave as if they were independent), and this gives exactly
the evolution equation (3.8). Actually, it has been recently proved [13] that the
mean-field limit of this model is the partial differential equation (3.8), where ω̄ is re-
placed by J̄ in the definition of the force F (in the case where ν and d are constant).
The main point to derive this limit is to adapt the classical theory of propagation of
chaos [59, 73] in a framework of stochastic analysis in a Riemannian manifold (the
unit sphere in the present case).

In the case of a non-linear diffusion, some results are given in [14] for other sys-
tems of self-propelled particles, under assumptions which would have to be adapted
in our framework. We can expect to have conditions such as to be Lipschitz for
the function

√
d, and to be Lipschitz and bounded for the kernel K̃. Since we

use the Stratonovich formulation in order to work on the unit sphere, we get the
term ∇ω ·(

√
d(ρ̄)∇ω

√
d(ρ̄)f) (instead of ∆v(d(ρ̄)f) when the velocity v ∈ Rd satisfies

the SDE in the usual Itō formulation, see the sections 4.3.5 and 4.3.6 of [44] for the
correspondence).

Finally, when the drift is not under the average form, it is sometimes possible
to get a mean-field limit, under regularity assumptions on the coefficients [63], or
with weaker assumptions, but assuming uniqueness of the solution of the mean-
field model [61]. These results could to be adapted in the framework of stochastic
differential equations on the sphere, but dealing with the singularity of ω̄ (when J
is close to zero) seems to be slightly more complicated.

With these considerations in mind, it is however very reasonable that the limit
of the particle system (2.3)-(2.4), when the number of particles is large, is given by
the mean-field model (3.8). So we start with this model as a base for the derivation
of the continuum model. A rigorous proof of the derivation of such a mean-field
model from the individual dynamics is left to future work.

Remark 3.1. If we want to take into account some “ability to turn”, we just have
to replace ν(ρ̄) by ν(ρ̄, ω · ω̄).

The next step consists in observing this system at large scale, in both space in
time.

3.2 Step 2: hydrodynamic scaling
The hydrodynamic scaling consists in the same rescaling for the time and space
variable. We introduce a small parameter ε and we set x′ = εx, and t′ = εt.
We define f ε(x′, ω, t′) = f(x, ω, t), and we rewrite the equation (3.8) in this new
coordinates.

The kinetic equation has the same form, with a factor ε in front of each of the
terms with space or time derivative:

ε(∂t′f ε + ω · ∇x′f ε) + ∇ω · (F εf ε) = ∇ω · (
√
d(ρ̄ε)∇ω

√
d(ρ̄ε)f ε),

with
F ε(x′, ω, t′) = ν(ρ̄ε) (Id − ω ⊗ ω)ω̄ε(x′, ω, t′),
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where the local rescaled density and orientation are given by

ρ̄ε(x′, ω, t′) =
∫

y∈Rn, υ∈S
K̃
(
|y − x′|, y−x′

|y−x′| · ω
)
f ε(y, υ, t′) dy

εn dυ ,

ω̄ε(x′, ω, t′) = Jε(x′, ω, t′)
|Jε(x′, ω, t′)|

,

Jε(x′, ω, t′) =
∫

y∈Rn, υ∈S
K
(

|y−x′|
ε
, y−x′

|y−x′| · ω
)
υ f ε(y, υ, t′) dy

εn dυ .

The important point is to realize that the average density ρ̄ε and orientation ω̄ε

now depend on ε, and can be easily expanded in terms of ε, the non-locality only
appearing at high order. Omitting the primes for simplicity, we have the following
expansions, the proofs of which are given in Lemma 1.3 of Appendix A.1:

ω̄ε(x, ω, t) = Ωε(x, t) + εα (ω · ∇x) Ωε(x, t) +O(ε2) ,
ρ̄ε(x, ω, t) = ρε(x, t) + εα̃ ω · ∇xρ

ε(x, t) +O(ε2) ,

where ρε = ρfε and Ωε = Ωfε are the local density and mean orientation associated
to the function f ε (these quantities, depending only on the space and time variables,
are related to the first moments with respect to the variable ω) given by

ρf =
∫

ω∈S
f(., ω) dω , (3.9)

Ωf = jf

|jf |
, with jf =

∫
ω∈S

ω f(., ω) dω , (3.10)

and the constants α and α̃ depend only on the observation kernels K and K̃. These
constants are positive if the kernel is directed forward, and the more acute the “angle
of vision”, the bigger the constant related to the kernel.

Now we can introduce these expansions in the mean-field model, and after some
easy algebra, the rescaled model can be written in the form

ε(∂tf
ε + ω · ∇xf

ε + αP (f ε) + α̃ P̃ (f ε)) = Q(f ε) +O(ε2) , (3.11)

where Q, P and P̃ are the operators given by the following equations (where ν̇ and ḋ
are the derivatives of ν and d with respect to ρ):

Q(f) = − ν(ρf )∇ω · ((Id − ω ⊗ ω)Ωff) + d(ρf )∆ωf,

P (f) = ν(ρf )∇ω · ((Id − ω ⊗ ω)((ω · ∇x) Ωf )f),
P̃ (f) = ν̇(ρf )∇ω · ((ω · ∇xρf ) (Id − ω ⊗ ω)Ωff)

− ḋ(ρf )∇ω · (1
2(Id − ω ⊗ ω)∇xρff + (ω · ∇xρf ) ∇ωf).

Notice that the operator Q (giving the only term of order 0 in ε) only acts on the
variable ω, and the study of its properties will be important for the following.

Remark 3.2. If ν also depends on ω ·ω̄, the expression of the operator Q is the same
with ν(ρf , ω · Ωf ) instead of ν(ρf ). But then the expressions of P and P̃ complicate
in a significant way, since there are also terms with the derivative of ν with respect
to this second variable.

Now we are ready to study this system when ε → 0.
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3.3 Step 3: limit as ε → 0
This is the main step, where we give the link between the continuum limit (2.6)-(2.7)
and the rescaled kinetic equation (3.11) of the particle dynamics.

Theorem 1.1. The limit when ε → 0 of f ε is given (formally) by f0 = ρMκ(ρ)Ω
where ρ = ρ(x, t) > 0 is the total mass of f 0 and Ω = Ω(x, t) ∈ S its mean orienta-
tion:

ρ(x, t) =
∫

ω∈S
f0(x, ω, t) dω,

Ω = j

|j|
, j(x, t) =

∫
ω∈S

f 0(x, ω, t)ω dω,

where MκΩ is a given function of ω · Ω and κ = ν
d

which will be specified later on
(see (3.12)). Furthermore, ρ(x, t) and Ω(x, t) satisfy the following system of first
order partial differential equations:

∂tρ+ ∇x · (c1ρΩ) = 0.
ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0,

where the convection speeds c1, c2 and the parameter λ depend on ρ. Their expres-
sions will be given in this section (see (3.24) and (3.26)-(3.27)).

The method to obtain this result follows closely [28], and is only summarized
here. We will focus on the details which are specific to this study.

Equilibria

The first important point is to determine the null space E of Q, since it contains the
limits of (3.11). We find, as in [28], that it is a n-dimensional manifold consisting of
functions analogous to Maxwellian distributions in the classical Boltzmann theory:

E = {ρMκ(ρ)Ω(ω) | ρ > 0, Ω ∈ S} ,

where
κ(ρ) = ν(ρ)

d(ρ)
> 0 and MκΩ(ω) = eκ ω·Ω∫

S e
κ υ·Ω dυ

. (3.12)

The main difference with [28] is the dependence on ρ for this equilibrium in a nonlin-
ear way, coming from the dependence of ν and d on ρ. This will result in additional
terms in the computations, and so in additional terms in the expressions of the
constants in the macroscopic model.

The normalization constant
∫
S e

κ ω·Ω dω depends only on κ (not on Ω) and so
the total mass of MκΩ(ω) is 1 and its mean direction is Ω, that is to say ρMκΩ = 1
and ΩMκΩ = Ω. Indeed we can easily compute the flux jMκΩ of this equilibrium,
defined by (3.10), and we get:

jMκΩ = 〈cos θ〉Mκ Ω, (3.13)
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where for any function γ(cos θ), the notation 〈γ(cos θ)〉Mκ stands for the mean of
the function ω 7→ γ(ω · Ω) against the density MκΩ, i.e.

〈γ(cos θ)〉Mκ =
∫

ω∈S
MκΩ(ω)γ(ω · Ω) dω =

∫
S γ(ω · Ω)eκ ω·Ω dω∫

S e
κ ω·Ω dω

.

Notice that 〈γ(cos θ)〉Mκ depends only on κ, not on Ω:

〈γ(cos θ)〉Mκ =
∫ π

0 γ(cos θ)eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
. (3.14)

Remark 3.3. In the case where ν depends on ρ and ω · Ω, we have to replace in all
this point κω · Ω by κ̂(ρ, ω · Ω), where κ̂(ρ, µ) =

∫ µ
0

ν(ρ,τ)
d(ρ) dτ .

Collisional invariants

The second important point is the determination of generalized collisional invariants.
Indeed, since there is no other conservation relation than the conservation of mass,
the collision invariants reduce to the constants, and the integration of the equation
against these invariants only gives one equation, which is not sufficient to describe
the behavior of the equilibrium (which lives on a n-dimensional manifold). The main
idea in [28] was to overcome this problem with a generalization of the concept of
collisional invariants.

A collision invariant is a function ψ such that for all function f of ω, the inte-
gration of Q(f) against ψ is zero. So we ask for a generalized invariant to satisfy
this definition only for a restricted subset of functions f . In the case where the
dependence on ρ in the equilibria is linear, restricting to all functions with a given
orientation Ω is sufficient to obtain the remaining equation. Here we also have to
restrict to functions with a given density too (actually, we impose a given κ(ρ)). We
will have then a set of generalized coefficients indexed by Ω ∈ S and κ > 0.

More precisely, to have a good definition, we have to work with linear opera-
tors (this point has been mentioned in [30], since the result given in [28], with the
definition therein, was slightly incorrect). We first define the linear operator LκΩ by

LκΩ(f) = −∆ωf + κ∇ω · ((Id − ω ⊗ ω)Ωf) = −∇ω ·
[
MκΩ∇ω

(
f

MκΩ

)]
,

and then the generalized collisional invariants CκΩ (associated to κ ∈ R and Ω ∈ S)
as the following vector space:

CκΩ =
{
ψ|
∫

ω∈S
LκΩ(f)ψ dω = 0, ∀f such that (Id − Ω ⊗ Ω)jf = 0

}
.

We remark that the operator Q(f) can be written as Q(f) = −d(ρf )Lκ(ρf )Ωf
(f).

Hence, for any generalized collisional invariant ψ ∈ CκΩ, we have

∀f such that Ωf = Ω and κ(ρf ) = κ,
∫

ω∈S
Q(f)ψ dω = 0, (3.15)

and this is the only property of generalized collisional invariants we will need in the
following.

The computation of the set of generalized collisional invariants has been done
in [28] in dimension 3. We give here the general result in any dimension.
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Proposition 3.1. Structure of the generalized collisional invariants.
Any generalized collisional invariant ψ associated to κ ∈ R and Ω ∈ S has the

following form:
ψ(ω) = C + hκ(ω · Ω)A · ω,

where C ∈ R is a constant, the vector A ∈ Rn is orthogonal to Ω, and hκ is a given
positive function on (−1, 1), depending on the parameter κ, which will be specified
later on. In particular, the generalized collisional invariants form a vector space of
dimension n.

Proof. We first rewrite the set {f | (Id − Ω ⊗ Ω)jf = 0} as the set of functions f such
that for all A ∈ Rn with A · Ω = 0, we have that

∫
SA · ωfdω = 0. Finally this is

the orthogonal of the set {ω 7→ A · ω for A · Ω = 0}, for the usual inner product
on L2(S). We can then rewrite the set of generalized collisional invariants:

CκΩ =
{
ψ|
∫

ω∈S
f L∗

κΩ ψ dω = 0, ∀f ∈ {ω 7→ A · ω for A · Ω = 0}⊥
}

= {ψ|L∗
κΩ ψ ∈ ({ω 7→ A · ω for A · Ω = 0}⊥)⊥}

= {ψ|L∗
κΩ ψ(ω) = A · ω with A · Ω = 0},

the operator L∗
κΩ being the adjoint of the operator LκΩ, which can be written

L∗
κΩ ψ = −∆ωψ − κΩ · ∇ωψ = − 1

MκΩ
∇ω · (MκΩ∇ωψ). (3.16)

It is then easy to show that the problem L∗
κΩ ψ(ω) = A · ω, for A · Ω = 0 has a

unique solution in the space Ḣ1(S) (functions of H1(S) with mean zero), using Lax-
Milgram theorem and the Poincaré inequality. Hence, if we show that this solution
has the form ψ(ω) = hκ(Ω · ω)A · ω, the solutions in the space H1(S) are equal to
this solution plus a constant C.

We search a solution of this form. We identify Ω with the last element of an
orthogonal basis of Rn, and Sn−2 with the elements on the unit sphere S which
are orthogonal to Ω. We can then write ω = cos θΩ + sin θ v, where v ∈ Sn−2
and θ ∈ [0, π] (this decomposition is unique when ω is different from Ω and −Ω). In
this framework we try to find a solution of the form ψ(ω) = hκ(cos θ) sin θ A · v.

For ψ(ω) = g(θ)Z(v), we have, in dimension n > 3:

∇ωψ(ω) = g′(θ)eθZ(v) + g(θ)
sin θ

∇vZ(v),

where the unit vector eθ is ∇ωθ = − 1
sin θ

(Id − ω ⊗ ω)Ω. A tangent vector field can
always be written a eθ + A where A is a vector field tangent to the sphere Sn−2, and
we have

∇ω · (a eθ + A) = sin2−n θ ∂θ(sinn−2 θ a) + 1
sin θ

∇v · A .

Finally we get, using the second part of (3.16),

L∗
κΩ ψ = − sin2−n θe−κ cos θ d

dθ
(sinn−2 θeκ cos θg′(θ))Z(v) − 1

sin2 θ
g(θ)∆vZ(v).
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In our case we have Z(v) = A · v, so we get ∆vZ = −(n − 2)Z (this is a spherical
harmonic of degree 1 on Sn−2). So L∗

κΩ ψ is also of the form L̃∗
κg(θ)Z(v), where

L̃∗
κg(θ) = − sin2−n θe−κ cos θ d

dθ
(sinn−2 θeκ cos θg′(θ)) + n−2

sin2 θ
g(θ). (3.17)

Finally, solving L∗
κΩ (h(ω · Ω)A · ω) = A · ω comes down to solving

L̃∗
κg = sin θ, with g(θ) = h(cos θ) sin θ. (3.18)

When A 6= 0, it easy to see that the function ω 7→ h(ω·Ω)A·ω belongs to H1(S) if and
only if the function g : θ 7→ h(cos θ) sin θ belongs to the space V (a “weighted H1

0 ”)
defined by

V = {g | (n− 2)(sin θ)
n
2 −2g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0 (0, π)}. (3.19)

Using again Lax-Milgram theorem in this space V , we get that the problem (3.18)
has a unique solution, denoted gκ, which is positive (by the maximum principle).
Writing hκ(µ) = (1 − µ2)− 1

2 gκ(arccos(µ)) gives that ψ(ω) = hκ(ω · Ω)A · ω is a
solution to the partial differential equation L∗

κΩ ψ(ω) = A · ω. We could write the
elliptic equation on (−1, 1) satisfied by hκ to have another definition, but this does
not give a more elegant formulation.

In the case of dimension 2, we write ψ(ω) = g(θ)A · v0, where v0 is one of the
two unit vectors orthogonal to Ω and g is an odd 2π-periodic function in H1

loc(R),
which can be identified with a function g ∈ H1

0 (0, π) = V . We still have that the
elliptic problem L∗

κΩ ψ(ω) = A · ω is equivalent to (3.18) with g ∈ V , with the
same definitions (3.17)-(3.19) of L̃κ and V . But since this elliptic equation reduces
to (eκ cos θg′(θ))′ = − sin θ eκ cos θ, we now have the following explicit expression of gκ:

gκ(θ) = θ

κ
− π

κ

∫ θ
0 e

−κ cos ϕdϕ∫ π
0 e

−κ cos ϕdϕ
. (3.20)

Remark 3.4. If we take into account the “ability to turn”, we just replace κ cos θ
in equation (3.17) by κ̂(cos θ). In dimension 2, we still have an explicit expression:

gκ̂(θ) = g0
κ̂(θ) −

g0
κ̂

(π)

g∞
κ̂

(π)g
∞
κ̂ (θ), (3.21)

where

g0
κ̂(θ) = −

∫ θ

0

∫ π

ϕ
eκ̂(cos φ)−κ̂(cos ϕ) sinφ dφ dϕ, (3.22)

g∞
κ̂ (θ) =

∫ θ

0
e−κ̂(cos ϕ) dϕ . (3.23)

Computation of the limit as ε → 0

The third and final important point is taking the limit ε → 0 in the equation (3.11),
after integrating against the collision invariants. Since we do not have results of
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existence, uniqueness and regularity of the solution, all the limits in this section
have to be understood as formal limits. A rigorous proof of convergence is left to
future work.

When ε → 0, if we fix x and t > 0, we have that Q(f ε), as a function of ω,
tends formally to zero, so f ε tends to an equilibrium of the operator Q, of the
form ρMκ(ρ)Ω, where ρ > 0 and Ω ∈ S are given functions of x and t. This is the first
part of Theorem 1.1. So we have ρε → ρ, and Ωε → Ω. When there is no possible
confusion, we will write κ for κ(ρ).

For the mass equation, we use the constant invariant: we have, since the opera-
tors Q, P and P̃ are given as the divergence (with respect to ω) of a function,∫

ω∈S
Q(f ε) dω =

∫
ω∈S

P (f ε) dω =
∫

ω∈S
P̃ (f ε) dω = 0.

Hence, integrating the equation (3.11) with respect to ω, we get:

∂tρ
ε + ∇x · jε = O(ε).

Actually, we can even replace the O(ε) by zero in this equation since in the original
model (3.8) we have conservation of mass. We get in the ε → 0 limit:

∂tρ+ ∇x · (c1(κ)ρΩ) = 0,

where (see (3.13)):

c1(κ) = |jMκΩ | = 〈cos θ〉Mκ =
∫ π

0 cos θeκ cos θ sinn−2 θ dθ∫ π

0 eκ cos θ sinn−2 θ dθ
. (3.24)

This gives the second part of Theorem 1.1, with the equation on ρ and the definition
of c1.

To get the equation on Ω, we use the non-constant part of the collisional invari-
ants. By Proposition 3.1 and using the result at equation (3.15), we get that for
all A such that A · Ωε = 0, we have∫

ω∈S
Q(f ε)hκ(ρε)(ω · Ωε)A · ω dω = 0.

So we have that the vector Xε =
∫

ω∈SQ(f ε)hκ(ρε)(ω · Ωε)ω dω is orthogonal to A
for all A orthogonal to Ω, that is to say that Xε is in the direction of Ωε, which is
equivalent to (Id − Ωε ⊗ Ωε)Xε = 0. Using (3.11), we get that

Xε = ε
∫

ω∈S
(∂tf

ε + ω · ∇xf
ε + αP (f ε) + α̃P̃ (f ε))hκ(ρε)(ω · Ωε)ω dω +O(ε2).

Dividing by ε and taking the limit ε → 0, we get (Id − Ω ⊗ Ω)X = 0, where

X =
∫

ω∈S
(∂t(ρMκΩ)+ω·∇x(ρMκΩ)+αP (ρMκΩ)+α̃P̃ (ρMκΩ))hκ(ω·Ω)ω dω . (3.25)

The main point is then to compute (Id − Ω ⊗ Ω)X, in terms of ρ, Ω and their
derivatives, using mainly the chain rule. The computation is similar to [28] for
some terms, but some additional work is required for the terms coming from the
nonlinearity of MκΩ in ρ and the operators P and P̃ . We give the result of the
computations under the form of a proposition:
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Proposition 3.2. (Id − Ω ⊗ Ω)X = 0, where X is given in (3.25), is equivalent to

ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0,

where

c2 = c̃1 − α d (n c̃1 + κ 〈cos2 θ〉
M̃κ

) , with c̃1 = 〈cos θ〉
M̃κ

, (3.26)
λ = 1

κ
+ ρ κ̇

κ
[ c̃1 − c1 + α̃ d (κ 〈sin2 θ〉

M̃κ
− n c̃1) ] + 1

2 α̃ ρ ḋ (n− 1 + κ c̃1) , (3.27)

with the notation

〈γ(cos θ)〉
M̃κ

=
∫ π

0 γ(cos θ)hκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

.

This proposition is exactly the last part of Theorem 1.1, with a precise definition
for coefficients c2 and λ, and this ends the derivation of the continuum model (2.6)-
(2.7).

The computations to get this result are given in Appendix A.2, the idea is to
compute (Id − Ω ⊗ Ω)X using the chain rule and the change of variable ω  (θ, v)
where ω = cos θΩ + sin θ v, with v orthogonal to Ω, which simplifies a lot of terms.

Remark 3.5. The computations have also been done in the case where ν depends
on ω · Ω (and not on ρ) and where d is a constant. We get the same results, except
that the constants are given (with analogous definitions) by:

c1 = 〈cos θ〉M
κ̂

(3.28)

c2 =〈cos θ〉
M̃

κ̂

− α〈ν cos2 θ − ν ′ cos θ sin2 θ〉
M̃

κ̂

− αd
〈
n cos θ + ν′

ν
((n+ 2) cos2 θ − 1) − ν′′

ν
cos θ sin2 θ

〉
M̃

κ̂

,
(3.29)

λ =d
〈

1
ν

〉
M̃

κ̂

, (3.30)

where here we use the notation

〈γ(cos θ)〉
M̃

κ̂

=
∫ π

0 γ(cos θ)ν(cos θ)hκ̂(cos θ)eκ̂(cos θ) sinn θ dθ∫ π
0 ν(cos θ)hκ̂(cos θ)eκ̂(cos θ) sinn θ dθ

.

Since ν is supposed to be positive, the constant λ is positive, and we will see in the
next section that its possible change of sign with the dependence on ρ is important.
This is why we focus on the dependence on ρ and not in ω · Ω in this chapter.

4 Properties of the macroscopic model

4.1 Hyperbolicity
We recall here the macroscopic model (2.6)-(2.7):

∂tρ+ ∇x · (c1(ρ)ρΩ) = 0,
ρ (∂tΩ + c2(ρ)(Ω · ∇x)Ω) + λ(ρ) (Id − Ω ⊗ Ω)∇xρ = 0,
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where the functions c1, c2, and λ are given by (3.24) and (3.26)-(3.27). A first remark
is that it is not possible to do another scaling to get rid of c1, like in [28], because c1
depends on ρ.

The main result about this model is that if d or ν depends on ρ, the coefficient λ
can become negative in some regions of the state space, and in that case the system
loses hyperbolicity. Let us first discuss here the interest and the problems due to
the non-hyperbolicity.

The first thing to remark is that the model is not always well-posed. Indeed,
in general, we cannot ensure that a solution will stay in the region of hyperbolicity
for all time, even with smooth initial conditions in the hyperbolic region (actually,
even with hyperbolicity everywhere, dealing with the discontinuities is a challenging
issue, see [60]).

The property of hyperbolicity is linked with the fact that perturbations propagate
with finite speed. Here the presence of a region of non-hyperbolicity means that we
could have propagation with infinite speed across this region. This leads to a second
remark: it may be possible to construct non-classical shocks, using the crossing of a
zone of non-hyperbolicity, see [52], and [50]. The interest is that we may construct
some travelling waves, as observed in [16]. Actually we did not manage to construct
such solutions yet, this is part of our future work.

We should also construct models with formation of coherent structures from
such non-hyperbolic models, if we could use stabilization with diffusion. But here
the expansion at higher order in ε in the rescaled mean-field model (3.11), in order
to obtain diffusion terms in the macroscopic model becomes too much complicated
to perform some study (see [31] for the case of the original model of [28]).

We now turn to the description of the regions of non-hyperbolicity. We consider
a system satisfying (2.6)-(2.7), but evolving only along one space direction ez ∈ S
(the density ρ and the orientation Ω depending only on z = ez · x and t). We
write then Ω = cos θ ez + sin θ v,where v ∈ Sn−2 (identified to the set of unit vectors
orthogonal to ez). In this framework, the system is equivalent to

∂tρ+ ∂z(ρc1(ρ) cos θ) = 0. (4.31)
ρ[∂t(cos θ) + c2(ρ) cos θ ∂z(cos θ)] + λ (1 − cos2 θ) ∂zρ = 0. (4.32)
∂tv + c2(ρ) cos θ ∂zv = 0, with |v| = 1 and ez · v = 0. (4.33)

In the special case of dimension 2, the system reduces to (4.31)-(4.32), with θ ∈
(−π, π) and Ω = cos θ ez +sin θ v0, where v0 is one of the two unit vectors orthogonal
to ez.

The general definition of a quasilinear hyperbolic system [70] gives that the
system (2.6)-(2.7) is hyperbolic if and only if this system (4.31)-(4.33) is hyperbolic
for all unit vector ez ∈ S. We give the result in the following statement:
Theorem 1.2. Hyperbolicity.

• The system (2.6)-(2.7) is hyperbolic if and only if λ(ρ) > 0.

• The system (4.31)-(4.33) is hyperbolic if and only if

λ(ρ) > 0 or

| tan θ| < |c2−c3|
2
√

−λc1
, if λ < 0,

θ 6= π
2 and c2 6= c3, if λ = 0.

(4.34)
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where c3(ρ) = d
dρ

(ρc1(ρ)) = c1(ρ) + ρκ̇
(
〈cos2 θ〉Mκ − 〈cos θ〉2

Mκ

)
.

Proof. The system (4.31)-(4.33) can be written as the following first order quasilinear
system of partial differential equations ∂tρ

∂t cos θ
∂tv

+ A(ρ, cos θ, v)

 ∂zρ
∂z cos θ
∂zv

 = 0,

with

A(ρ, cos θ, v) =



c3(ρ) cos θ c1(ρ)ρ 0 · · · 0
λ
ρ

sin2 θ c2(ρ) cos θ 0 · · · 0
0 0
... ... c2(ρ) cos θ Idn−2
0 0

 ,

and this system is hyperbolic in case λ > 0. The eigenvalues are γ± and γ0 (of
multiplicity n− 2), given by

γ0 = c2 cos θ, γ± = 1
2

[
(c2 + c3) cos θ ±

(
(c2 − c3)2 cos2 θ + 4λc1 sin2 θ

)1/2
]
,

Now if λ < 0, asking γ± to be real and distinct is exactly equivalent to the equa-
tion (4.34). In this case the matrix A is diagonalizable. If γ+ = γ−, then A is
diagonalizable only if its top left corner 2 × 2 submatrix is scalar (only one eigen-
value), which is not the case since c1(ρ)ρ > 0. For the same reason, if λ = 0, we
immediately get that A is diagonalizable if and only if the first two diagonal coef-
ficients c2(ρ) cos θ and c3(ρ) cos θ are different, which ends the proof of the second
statement.

Now we turn to the general case. If λ > 0, the system (4.31)-(4.33) is hyperbolic
for all unit vector ez ∈ S, which gives that the system (2.6)-(2.7) is hyperbolic.
Suppose now that the system (2.6)-(2.7) is hyperbolic in an open region of the
state space, with λ 6 0 at some point (ρ,Ω). Since n > 2 we can find ez such
that ez · Ω = 0. Then we have cos θ = 0, which gives, by the condition (4.34)
that (ρ,Ω) is in the region of non-hyperbolicity of the problem (4.31)-(4.33), and
this is a contradiction.

Actually, the positive functions d and ν being arbitrary, it is possible to have a
lot of qualitatively different shapes for the region of non-hyperbolicity of the reduced
system (4.31)-(4.33). We give here some examples in the case of dimension 2, where
the coefficients are easy to compute numerically (using the explicit formulation (3.20)
for gκ).
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Figure 1.2: Other shapes for the zone of non-hyperbolicity

4.2 Influence of the anisotropy

On the final macroscopic model, the influence of the anisotropy in the observation
kernels is only visible through the values of the speed c2, and the coefficient λ.

We remark that the parameter α, which is related to the kernel K used to define
the local orientation ω̄, only appears in the expression (3.26) of the velocity c2,
making it smaller when α is a large positive constant. The difference between c1
and c2, which is one of the differences between the macroscopic model (2.6)-(2.7) and
the classical Euler system, is then enhanced when α is a large positive constant. This
can be interpreted as follows: if the observation kernel is strongly directed forward,
then the information on the orientation moves rapidly backward. This could be
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compared to results on modelling of traffic flows, where the speed of a congested
phase depends on the distance of anticipation of the drivers (see [4, 12, 25]).

The parameter α̃, related to the kernel K̃ which is used to define the local
density ρ̄, only appears in λ, and obviously has an influence only if the relaxation
frequency ν or the noise intensity d depends on this density (in the expression (3.27),
we must have κ̇ 6= 0 or ḋ 6= 0). So the anisotropy of the kernel K̃ can have an
impact on the region of non-hyperbolicity for the system (2.6)-(2.7). The anisotropy
of the kernel K does not play a role in this global hyperbolicity, but, through the
condition (4.34), it can change the shape of the region of non-hyperbolicity for the
one-dimensional reduction (4.31)-(4.33).

Since the expression (3.27) involves a lot of terms which can take different signs, it
is not easy to directly quantify the influence of the parameter α̃ on the coefficient λ,
as it was the case for α and c2. In the next section, we perform an asymptotic
study of the coefficients of the macroscopic model (2.6)-(2.7), as the concentration
parameter κ tends to infinity (in the case of strong alignment, or low noise) or to
zero (when the noise is high, or the frequency of alignment).

5 Asymptotic study of the coefficients
We want to obtain an asymptotic expansion of c1, c2 and λ given by the expres-
sions (3.24), (3.26), (3.27) as the parameter κ tends to infinity or to zero.

Since we do not know explicitly the dependence on ρ for the coefficients ν
and d, the only quantities we can study in the expressions of this coefficients are
the averages c1 = 〈cos θ〉Mκ , c̃1 = 〈cos θ〉

M̃κ
, and 〈cos2 θ〉

M̃κ
(since the last average

is 〈sin2 θ〉
M̃κ

= 1 − 〈cos2 θ〉
M̃κ

). The purpose of this section is to give a method to
get the Taylor expansion up to any order in κ or 1

κ
of the following averages:

〈f(θ)〉Mκ =
∫ π

0 f(θ)eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
,

〈f(θ)〉
M̃κ

=
∫ π

0 f(θ)hκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

,

where hκ is the function providing the generalized collisional invariants (see Propo-
sition 3.1). We first give the method to obtain the expansion of the first type of
average, and we apply it to get an expansion of c1 in κ and 1

κ
.

5.1 Asymptotics of 〈f(θ)〉Mκ

The first expansion, when κ → 0, is just a basic Taylor expansion. For a function f
such that f sinn−2 θ ∈ L1(0, π), we define

bp = 1
p!

∫ π

0
f(θ) cosp θ sinn−2 θ dθ and ap = 1

p!

∫ π

0
cosp θ sinn−2 θ dθ.

Then we get

〈f(θ)〉Mκ =
∑N

p=0 bpκ
p +O(κN+1)∑N

p=0 apκp +O(κN+1)
. (5.35)
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If we take f(θ) = cos θ, we have bp = (p + 1)ap+1 and integrating by parts, we
get the following induction relation: (p+ 2)(p+ n)ap+2 = ap. Since a1 = 0, the odd
terms vanish and we get

c1 = 〈cos θ〉Mκ =
1
n
κ+ 1

2n(n+2)κ
3 +O(κ5)

1 + 1
2n
κ2 +O(κ4)

= 1
n
κ− 1

n2(n+2)κ
3 +O(κ5). (5.36)

We now turn to the expansion of c1 when κ → ∞. We will use the following
lemma, the proof of which is elementary, see [11] for examples and variants:

Lemma 1.1. (Watson’s Lemma)
Let p be a function in L1(0, T ), with T > 0, and let Iκ(p) =

∫ T
0 p(t)e−κtdt.

Suppose that, in the neighborhood of 0, we have p(t) = tβ
(∑N−1

i=0 ait
i +O(tN)

)
,

with β > −1.
Then Iκ(p) = κ−β−1

(∑N−1
i=0 aiΓ(β + i+ 1)κ−i +O(κ−N)

)
as κ → ∞.

We use this lemma, after the change of variable t = 1 − cos θ, in the integrals of
the form [f(θ)]κ =

∫ π
0 f(θ)eκ cos θ sinn−2 θ dθ. We get

[f(θ)]κ = eκ
∫ 2

0
f(arccos(1 − t))e−κt(2t− t2)

n−3
2 dt.

So if we can expand the function t 7→ (2t−t2)n−3
2 f(arccos(1−t)) in the neighborhood

of 0, we can apply directly Watson’s Lemma to get an expansion of [f(θ)]κ, and then
to [1]κ, which gives finally the expansion of 〈f(θ)〉Mκ .

We take here the example of the function f(θ) = 1−cos θ, so f(arccos(1−t)) = t.
We want an expansion with two terms (since we have c1 = 1 − 〈f(θ)〉Mκ we will
actually get three terms for c1). We have

(2t− t2)
n−3

2 = 2
n−3

2 t
n−3

2 (1 − 1
2t)

n−3
2 = 2

n−3
2 t

n−3
2 (1 − n−3

4 t+O(t2))

Applying directly Watson’s Lemma to this function and to the same function mul-
tiplied by t, we get

[1]κ = 2n−3
2 eκ

κ
n−1

2

(
Γ(n−1

2 ) − n−3
4 Γ(n+1

2 ) 1
κ

+O(κ−2)
)

(5.37)

[f(θ)]κ = 2n−3
2 eκ

κ
n+1

2

(
Γ(n+1

2 ) − n−3
4 Γ(n+3

2 ) 1
κ

+O(κ−2)
)
.

Since Γ(p+ 1) = pΓ(p), we finally get

〈f(θ)〉Mκ = [f(θ)]κ
[1]κ

=
Γ(n+1

2 )
κΓ(n−1

2 )
1 − n−3

4
n+1

2
1
κ

1 − n−3
4

n−1
2

1
κ

+O(κ−3)

= n− 1
2κ

− (n− 1)(n− 3)
8κ2 +O(κ−3).

In particular we get the expansion of c1 as κ → ∞:

c1 = 1 − n− 1
2κ

+ (n− 1)(n− 3)
8κ2 +O(κ−3). (5.38)

Using this method we can easily get the following lemma, which will be useful in
the next subsection.
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Lemma 1.2. Estimation of 〈f(θ)〉Mκ.
Suppose that θ 7→ f(θ) sinn−2 θ belongs to L1(0, π), and that |f(θ)| = O(θ2β) in

the neighborhood of 0, with β > −n−1
2 . Then 〈f(θ)〉Mκ = O(κ−β) as κ → ∞.

We now turn to the method to compute averages of the form 〈f(θ)〉
M̃κ

.

5.2 Asymptotics of 〈f(θ)〉
M̃κ

We first decompose hκ(cos θ) as a polynomial in κ or in κ−1 whose coefficients are
polynomials of cos θ plus a remainder which will be negligible.

Proposition 5.1. Expansion of hκ.
We define the two linear operators L and D on the space of polynomials by

L(P ) = −(1 −X2)P ′′ + (n+ 1)XP ′ + (n− 1)P
D(P ) = −(1 −X2)P ′ +XP.

We have the two following expansions:

hκ(cos θ) =
N∑

p=0
Hp(cos θ)κp +RN

κ,0(cos θ),

hκ(cos θ) =
N∑

p=1
GN

p (cos θ)κ−p +RN
κ,∞(cos θ),

where the Hp (resp. GN
p ) are the polynomials of degree p (resp. at most N −p) given

by the following induction relations (the second one being in the neighborhood of 0):L(H0) = 1
L(Hp+1) = −D(Hp)

and

D(GN
1 )(cos θ) = 1 +O(θ2N)

(D(GN
p+1) + L(GN

p ))(cos θ) = O(θ2(N−p)),
(5.39)

and where the remainders satisfy the following estimations, for any function f such
that θ 7→ f(θ) sin n

2 θ belongs to L2(0, π) and such that |f(θ)| = O(θ2β) in the neigh-
borhood of 0:

〈f(θ)RN
κ,0(cos θ) sin2 θ〉Mκ = O(κN+1) as κ → 0,

〈f(θ)RN
κ,∞(cos θ) sin2 θ〉Mκ = O(κ−β−N−2) as κ → ∞.

The proof of this proposition is given in Appendix B.1. The first thing to do is
to prove that the inductions relations (5.39) make sense to define the sequence of
polynomials (an induction relation is given in Appendix B.1 to compute easily the
polynomials GN

p and Hp). The operators L and D are made so that

L̃∗
κ(P (cos θ) sin θ) = (L(P ) + κD(P ))(cos θ) sin θ,

where the operator L̃∗
κ is defined in (3.17). Since we have L̃∗

κ(hκ(cos θ) sin θ) = sin θ
by definition, we are then able to obtain the estimates on the remainders, using
Poincaré inequalities in adapted spaces.
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With this proposition, it is then easy to get an expansion for 〈f(θ)〉
M̃κ

, using
expressions of the form 〈g(θ)〉Mκ , which can be expanded by the tools of the previous
section:

〈f(θ)〉
M̃κ

=



∑N
p=0〈f(θ)Hp(cos θ) sin2 θ〉Mκκ

p∑N
p=0〈Hp(cos θ) sin2 θ〉Mκκ

p
+O(κN+1) as κ → 0,

∑N
p=1〈f(θ)GN

p (cos θ) sin2 θ〉Mκκ
−p∑N

p=1〈GN
p (cos θ) sin2 θ〉Mκκ

−p
+O(κ−β−N) as κ → ∞.

As an example, we can compute the first polynomials, we get

H0 = 1
n− 1

, H1 = −X
2n(n− 1)

, G2
1 = 4 −X

3
, G2

2 = 2(n− 2)
3

.

Hence,

〈cos θ〉
M̃κ

=
1

n−1〈cos θ sin2 θ〉Mκ − κ
2n(n−1)〈cos2 θ sin2 θ〉Mκ

1
n−1〈sin2 θ〉Mκ − κ

2n(n−1)〈cos θ sin2 θ〉Mκ

+O(κ2),

〈cos θ − 1〉
M̃κ

=
1

3κ
〈cos θ(4 − cos θ) sin2 θ〉Mκ + 2(n−2)

3κ2 〈cos θ sin2 θ〉Mκ

1
3κ

〈(4 − cos θ) sin2 θ〉Mκ + 2(n−2)
3κ2 〈sin2 θ〉Mκ

− 1 +O(κ−3).

As before, in the second equation, we computed 〈cos θ − 1〉
M̃κ

instead of 〈cos θ〉
M̃κ

in order to have a remainder of order 3 instead of 2.
Finally, we have to compute terms of the form 〈cos` θ sin2 θ〉Mκ . Instead of using

the method of the previous subsection, we can actually express all these terms in
function of c1 = 〈cos θ〉Mκ , by integrating by parts. We get

〈sin2 θ〉Mκ = n−1
κ
c1, 〈cos θ sin2 θ〉Mκ = n−1

κ
(1 − n

κ
c1)

〈cos2 θ sin2 θ〉Mκ = 〈sin2 θ〉Mκ − 〈sin4 θ〉Mκ = n−1
κ

(c1 − n+1
κ

(1 − n
κ
c1)).

Using the previous expansions (5.36) and (5.38), we finally get the expansions of c̃1:

c̃1 = 〈cos θ〉
M̃κ

=


2n−1

2n(n+2)κ+O(κ2) as κ → 0,
1 − n+1

2κ
+ (n+1)(3n−7)

24κ2 +O(κ−3) as κ → ∞.
(5.40)

In addition, we can compute an expansion of 〈sin2 θ〉
M̃κ

, in order to get expansions for
the coefficients c2 and λ of the macroscopic model, given in equations (3.26)-(3.27).
Using only H0 and G1

1 = 1, we get that

〈sin2 θ〉
M̃κ

=



〈cos2 θ sin2 θ〉Mκ

〈sin2 θ〉Mκ

+O(κ) = n+1
n+2 +O(κ) as κ → 0,

〈sin4 θ〉Mκ

〈sin2 θ〉Mκ

+O(κ−2) = n+1
κ

+O(κ−2) as κ → ∞.
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So, using the expressions (5.36), (5.38) and (5.40), we get the following expansions:

c1 =


1
n
κ− 1

n2(n+2)κ
3 +O(κ5) as κ → 0,

1 − n−1
2κ

+ (n−1)(n−3)
8κ2 +O(κ−3) as κ → ∞,

c2 =


2n−1

2n(n+2)κ+O(κ2) − α ν ( 2n+1
2(n+2) +O(κ)) as κ → 0,

1 − n+1
2 κ−1 +O(κ−2) − α ν (1 − κ−1 +O(κ−2)) as κ → ∞,

λ =



κ−1 + ρ κ̇
κ

[ − 5
2n(n+2)κ+O(κ2) + α̃ ν ( 3

2(n+2) +O(κ)) ]
+ 1

2 α̃ ρ
ḋ
d
ν ((n− 1)κ−1 + 2n−1

2n(n+2)κ+O(κ2))
as κ → 0,

κ−1 (1 + ρ κ̇
κ

[−1 +O(κ−1) + α̃ ν (1 +O(κ−1)) ])
+ 1

2 α̃ ρ
ḋ
d
ν (1 + n−3

2 κ−1 +O(κ−2))
as κ → ∞.

This shows that in any dimension, there are some simple cases were we actually
have λ < 0 and the system loses hyperbolicity, even if α̃ = 0 (for example if the
kernel of observation K̃ is isotropic). For example if we have κ = ρβ with β > 0, we
have as rho → ∞ that λ(ρ) = (1 − β)ρ−β + O(ρ−2β), which gives that λ(ρ) < 0 if
we take β > 1 and ρ sufficiently large.

These expansions also give a more precise estimation on the difference between c1
and c2 as the noise is small or large: when the kernel of observation is isotropic, we
have c1 > c2 in the two expansions, in any dimension n. That means that the
information on the orientation propagates slower than the “fluid”.

Remark 5.1. We can also do an expansion in the more general case where ν depends
on ρ and ω · Ω. When d → 0, the expansion of the coefficients depends only on the
local behavior of the function x 7→ ν(ρ, x) near 1. In Appendix B.2 we give tips to
perform this expansion. Here we only give the final expansion in the case where ν
and d do not depend on ρ, so the coefficients are given by (3.28)-(3.30). In this case
we can suppose ν(1) = 1 (up to a rescaling), and denote γ = ν ′(1). We finally get,
when n = 2:

c1 = 1 − 1
2d+O(d2),

c2 = 1 − α+ ((1 + 3
2γ)α− 3

2)d+O(d2),
λ = d+ 3

2γ d
2 +O(d3).

6 Conclusion
In this chapter, we have seen that the introduction of a dependence on some local
density for some parameters at the microscopic level implies a significant change in
the macroscopic limit: the possible loss of hyperbolicity in some regimes. The in-
troduction of a non-isotropic kernel of observation, without this dependence on the
local density, is not sufficient to imply a strong difference of behavior for the contin-
uum model. However, it enhances some properties, such as the difference between
the velocity of the fluid and the velocity of the perturbations of the orientation.
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It is important to note that the method introduced in [28] works to derive the
macroscopic model. In particular the concept of generalized collisional invariants is
still valid, with some adaptations, and we get the same macroscopic model, except
for the definition of the coefficients.

Some questions are left open. The limit here is formal, and we are still looking for
an appropriate functional framework to obtain more precise results of convergence.
The rigorous derivation of the mean-field limit of the dynamical system of particles
is also part of our future work.

Finally, the next step to this study consists in some numerical simulations, in
order to see how the difference between c2 and c1 can be observed in simulations
of the discrete dynamical system, or how the particles behave in the regions of
non-hyperbolicity.

A Proof of some statements for section 3

A.1 Expansion of the local density and orientation
We recall the expressions of ω̄ε and ρ̄ε:

ω̄ε(x, ω, t) = J̄ε(x, ω, t)
|J̄ε(x, ω, t)|

, (A.41)

J̄ε(x, ω, t) =
∫

y∈Rn, υ∈S
K
(

|x−y|
ε
, y−x

|x−y| · ω
)
υ f ε(y, υ, t) dy

εn dυ , (A.42)

ρ̄ε(x, ω, t) =
∫

y∈Rn, υ∈S
K̃
(

|x−y|
ε
, y−x

|x−y| · ω
)
f ε(y, υ, t) dy

εn dυ , (A.43)

Lemma 1.3. We have the following expansions:

ω̄ε(x, ω, t) = Ωε(x, t) + εα (ω · ∇x) Ωε(x, t) +O(ε2) ,
ρ̄ε(x, ω, t) = ρε(x, t) + εα̃ ω · ∇xρ

ε(x, t) +O(ε2) .

where the constants α and α̃ depend only on the observation kernels K and K̃, and

Ωε(x, t) = jε(x,t)
|jε(x,t)| , with jε(x, t) =

∫
υ∈S

υ f ε(x, υ, t) dυ ,

ρε(x, t) =
∫

υ∈S
f ε(x, υ, t) dυ .

Proof. After change of variable y = x + εξ, let us expand f at first order in ε
in (A.42). We get

J̄ε(x, ω, t) =
∫

ξ∈Rn, υ∈S
K(|ξ|, ξ

|ξ| · ω) υ (f ε(x, υ, t) + ε ξ · ∇xf
ε(x, υ, t) +O(ε2)) dξ dυ .

We have to compute

K0(ω) =
∫

ξ∈Rn
K(|ξ|, ξ

|ξ| · ω)dξ and K1(ω) =
∫

ξ∈Rn
K(|ξ|, ξ

|ξ| · ω) ξ dξ.
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For any rotation R, the change of variable ξ̃ = R(ξ) gives on one hand

K0(ω) = K0(R(ω)) ,

and so K0 does not depend on ω. On the other hand, we get

R(K1(ω)) = K1(R(ω)) ,

which shows that K1(ω) is a vector invariant by any rotation which let ω invariant,
so it is parallel to ω. Given a vector e of S, we have K1(e) = k1e. Then taking one
rotation mapping ω to e, we get R(K1(ω)) = K1(e) = k1e = R(k1ω), so finally we
get K1(ω) = k1ω for all ω ∈ S. Let then α = k1

K0
, and we have

J̄ε(x, ω, t)
K0

=
∫

υ∈S
υ (f ε(x, υ, t) + ε α ω · ∇xf

ε(x, υ, t)) dυ +O(ε2)

= jε(x, t) + ε α (ω · ∇x)jε(x, t) +O(ε2) .

Putting this expression into (A.41), we get∣∣∣∣∣ J̄ε(x, ω, t)
K0

∣∣∣∣∣
2

= |jε(x, t)|2 + 2 ε α jε(x, t) · (ω · ∇x)jε(x, t) +O(ε2) ,

so ∣∣∣∣∣ J̄ε(x, ω, t)
K0

∣∣∣∣∣
−1

= 1
|jε(x, t)|

(
1 − ε α

|jε(x, t)|2
jε(x, t) · (ω · ∇x)jε(x, t)

)
+O(ε2) ,

and finally

ω̄ε(x, ω, t) = jε(x, t)
|jε(x, t)|

+ ε α

(
(ω · ∇x)jε(x, t)

|jε(x, t)|
− jε(x, t)

|jε(x, t)|
· (ω · ∇x)jε(x, t)

|jε(x, t)|
jε(x, t)
|jε(x, t)|

)
+O(ε2).

But we also have

(ω · ∇x)Ωε(x, t) = (ω · ∇x)jε(x, t)
|jε(x, t)|

+
(
ω · ∇x

(
1

|jε(x, t)|

))
jε(x, t)

= (ω · ∇x)jε(x, t)
|jε(x, t)|

− 1
|jε(x, t)|3

(((ω · ∇x)jε(x, t)) · jε(x, t)) jε(x, t) .

Therefore
ω̄ε(x, ω, t) = Ωε(x, t) + εα (ω · ∇x) Ωε(x, t) +O(ε2) ,

and this is the first part of the lemma.
After the same change of variable y = x+ εξ and expansion in (A.43), and using

the same techniques, and the normalization condition (2.5), we get

ρ̄ε(x, ω, t) =
∫

υ∈S
f ε(x, υ, t) + ε K̃1(ω) · ∇xf

ε(x, υ, t) dυ +O(ε2)

= ρε(x, t) + ε α̃ ω · ∇xρ
ε(x, t) +O(ε2) .

This is the second part of the lemma.
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A.2 Proof of Proposition 3.2
We have to compute (Id − Ω ⊗ Ω)X, where

X =
∫

ω∈S
((∂t + ω · ∇x)(ρMκΩ) + αP (ρMκΩ) + α̃P̃ (ρMκΩ))hκ(ω · Ω)ω dω .

For convenience, we will write ν, d for ν(ρ), d(ρ) in the following. We first give some
useful formulas to work on the unit sphere. For V a constant vector in Rn, we have:

∇ω(ω · V ) = (Id − ω ⊗ ω)V,
∇ω · ((Id − ω ⊗ ω)V ) = −(n− 1)ω · V.

Then we have that for any constant matrix A

∇ω · ((Id − ω ⊗ ω)Aω) = A : (Id − nω ⊗ ω),

where the notation “:” denotes the “contraction” of two operators (if A = (Aij)
and B = (Bij) then A : B = ∑

i,j=1,...,n AijBij, this is the trace of ABT ). This can
be shown when A is of the form V1 ⊗ V2, using the previous formulas, and then
extended by linearity.

We recall the definition of MκΩ, given in equation (3.12):

MκΩ(ω) = eκ ω·Ω∫
S e

κ υ·Ω dυ
.

We get, writing cos θ for ω · Ω, and using the notation 〈·〉Mκ given in (3.14),

∇ωMκΩ = κ(Id − ω ⊗ ω)ΩMκΩ,

∇ΩMκΩ = κ(Id − Ω ⊗ Ω)ωMκΩ,

∂κMκΩ = (cos θ − 〈cos θ〉Mκ)MκΩ.

Using the chain rule, we then get

(∂t + ω · ∇x)(ρMκΩ) = (1 + (cos θ − 〈cos θ〉Mκ)ρκ̇)MκΩ(∂t + ω · ∇x)ρ
+ ρκ(Id − Ω ⊗ Ω)ωMκΩ · (∂t + ω · ∇x)Ω,

where κ̇ is the derivative of κ with respect to ρ. Since Ω is of norm 1, we have
that (∂t + ω · ∇x)Ω is orthogonal to Ω, and the term Ω ⊗ Ω vanishes. We get

(∂t + ω · ∇x)(ρMκΩ) = (1 + (cos θ − 〈cos θ〉Mκ)ρκ̇)MκΩ(∂tρ+ ω · ∇xρ)
+ ρκMκΩ(ω · ∂tΩ + ω ⊗ ω : ∇xΩ),

where ∇xΩ is the gradient tensor of Ω that is to say (∇xΩ)ij = ∂xi
Ωj. We then have

P (ρMκΩ) = ν(ρ)∇ω · ((Id − ω ⊗ ω)((ω · ∇x) Ω)ρMκΩ),
= ρν(ρ)[κΩ · (Id − ω ⊗ ω)((∇xΩ)Tω) + ∇ω · ((Id − ω ⊗ ω)(∇xΩ)Tω)]MκΩ,
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where the notation T denotes the transpose of operators. Hence, using the fact
that (∇xΩ)Tω = (ω·∇x) Ω is orthogonal to Ω, and the formula given in the beginning
of this section, with A = (∇xΩ)T , and we get

P (ρMκΩ) = ρν(ρ)[−κ cos θ ω ⊗ ω : (∇xΩ)T + (∇xΩ)T : (Id − nω ⊗ ω)]MκΩ,

= ρν[∇x · Ω − (n+ κ cos θ)ω ⊗ ω : ∇xΩ]MκΩ.

Similarly, for the operator P̃ , we get

P̃ (ρMκΩ) = ν̇(ρ)∇ω · ((ω · ∇xρ) (Id − ω ⊗ ω)ΩρMκΩ)
− ḋ(ρ)∇ω · (1

2ρMκΩ(Id − ω ⊗ ω)∇xρ+ (ω · ∇xρ) ∇ωρMκΩ),
= ρ(ν̇ − κḋ)∇ω · ((Id − ω ⊗ ω)(Ω ⊗ ∇xρ)ωMκΩ)

− 1
2ρḋ[∇ω · ((Id − ω ⊗ ω)∇xρ) + κΩ · (Id − ω ⊗ ω)∇xρ]MκΩ.

But we have ν = κd, so ν̇ − κḋ = dκ̇. And we have

∇ω · ((Id − ω ⊗ ω)(Ω ⊗ ∇xρ)ωMκΩ)
= ∇ω · ((Id − ω ⊗ ω)(Ω ⊗ ∇xρ)ω)MκΩ + κΩ · (Id − ω ⊗ ω)(Ω ⊗ ∇xρ)ω]
= [(Ω ⊗ ∇xρ) : (Id − nω ⊗ ω) + κ(1 − cos2 θ)ω · ∇xρ]MκΩ

= [Ω · ∇xρ+ (κ sin2 θ − n cos θ)ω · ∇xρ]MκΩ.

Hence

P̃ (ρMκΩ) = ρdκ̇[Ω · ∇xρ+ (κ sin2 θ − n cos θ)ω · ∇xρ]MκΩ

+ 1
2ρḋ[(κ cos θ + n− 1)ω · ∇xρ− κΩ · ∇xρ]MκΩ.

Finally we can write X = X1 +X2 +X3, where

X1 =
∫

ω∈S
hκ(cos θ)γ1(cos θ)ωMκΩdω,

X2 =
∫

ω∈S
hκ(cos θ)ω ⊗ ω(γ2(cos θ) ∇xρ+ ρκ∂tΩ)MκΩdω,

X3 =
∫

ω∈S
hκ(cos θ)γ3(cos θ)ω(ω ⊗ ω : ∇xΩ)MκΩdω,

with (using the notation c1 = 〈cos θ〉Mκ)

γ1(cos θ) = (1 + (cos θ − c1)ρκ̇)∂tρ+ αρν∇x · Ω + α̃ρ(dκ̇− 1
2 ḋκ)Ω · ∇xρ,

γ2(cos θ) = 1 + (cos θ − c1)ρκ̇+ α̃ρ(dκ̇(κ sin2 θ − n cos θ) + 1
2 ḋκ(κ cos θ + n− 1)),

γ3(cos θ) = ρ κ− αρν(n+ κ cos θ).

To do the computation we write ω = cos θΩ + sin θ v, with v ∈ Sn−2 (identified
with the set of unit vectors which are orthogonal to Ω). We take the following
convention:

∫
v∈Sn−2

dv = 1, and we have∫
ω∈Sn−1

a(ω)dω = 1
Vn

∫ π

0

∫
v∈Sn−2

a(θ, v) sinn−2 θ dv dθ,∫
v∈Sn−2

v dv = 0, and
∫

v∈Sn−2
v ⊗ v dv = 1

n− 1
(Id − Ω ⊗ Ω),
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where Vn is a normalization constant (we will not need it in the following). These
results are still valid when n = 2, with

∫
v∈S0

dv = 1
2(a(v0) + a(−v0)), v0 being one of

the two unit vectors orthogonal to Ω. Using these formulas, we get∫
ω∈S

γ(cos θ)MκΩ ω dω = 〈cos θ γ(cos θ)〉Mκ Ω,∫
ω∈S

ω ⊗ ω γ(cos θ)MκΩ dω = 〈cos2 θ γ〉MκΩ ⊗ Ω + 〈sin2 θ γ〉Mκ

n− 1
(Id − Ω ⊗ Ω).

So we have (knowing that ∂tΩ is orthogonal to Ω):

(Id − Ω ⊗ Ω)X1 = 0,

(Id − Ω ⊗ Ω)X2 = 〈sin2 θ γ2hκ〉Mκ

n− 1
(Id − Ω ⊗ Ω)∇xρ+ ρκ〈sin2 θ hκ〉Mκ

n− 1
∂tΩ.

To compute (Id − Ω ⊗ Ω)X3, we first remark that

(Id − Ω ⊗ Ω)ω(ω ⊗ ω : ∇xΩ) = sin θ v(ω · (ω · ∇x)Ω) = sin2 θ v(v · (ω · ∇x)Ω),

since (ω ·∇x)Ω is orthogonal to Ω. But we have
∫

v∈Sn−2
v(v⊗v :∇xΩ) dv = 0, because

the integrand is odd with respect to v, and then we get

(Id − Ω ⊗ Ω)X3 = 〈sin2 θ cos θ γ3 hκ〉Mκ

∫
v∈Sn−2

v ⊗ v dv (Ω · ∇x)Ω

= 〈sin2 θ cos θ γ3 hκ〉Mκ

n− 1
(Ω · ∇x)Ω,

since (Ω · ∇x)Ω is orthogonal to Ω.
So we have that (Id − Ω ⊗ Ω)X = 0 is equivalent to

ρκ〈sin2 θ hκ〉Mκ∂tΩ + 〈sin2 θ cos θ γ3 hκ〉Mκ(Ω · ∇x)Ω + 〈sin2 θ γ2hκ〉Mκ∇xρ = 0.

For any function γ(cos θ), we denote by 〈γ(cos θ)〉
M̃κ

the mean of γ(cos θ) follow-
ing the “weight” sin2 θ hκ(cos θ)MκΩ, that is to say

〈γ(cos θ)〉
M̃κ

=
∫ π

0 γ(cos θ)hκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

.

We have
〈γ(cos θ)〉

M̃κ
= 〈sin2 θ hκ(cos θ)γ(cos θ)〉Mκ

〈sin2 θ hκ(cos θ)〉Mκ

,

and so, dividing by κ〈sin2 θhκ(cos θ)〉Mκ we finally get that (Id − Ω ⊗ Ω)X = 0 is
equivalent to

ρ (∂tΩ + c2(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0,
where the coefficients are given by

c2(ρ) = 1
κρ

〈cos θ γ3(cos θ)〉
M̃κ

and λ(ρ) = 1
κ
〈γ2(cos θ)〉

M̃κ
.

We finally get, writing c̃1 = 〈cos θ〉
M̃κ

,

c2 = c̃1 − α d (n c̃1 + κ 〈cos2 θ〉
M̃κ

) ,
λ = 1

κ
+ ρ κ̇

κ
[ ( c̃1 − c1 + α̃ d (κ〈sin2 θ〉

M̃κ
− n c̃1) ] + 1

2 α̃ ḋ (κ c̃1 + n− 1) ,

which are exactly the expressions given in equations (3.26)-(3.27), and this ends the
proof of Proposition 3.2.
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B Asymptotics of the coefficients

B.1 Proof of Proposition 5.1
We recall that the two linear operators L and D on the space of polynomials are
defined by

L(P ) = −(1 −X2)P ′′ + (n+ 1)XP ′ + (n− 1)P
D(P ) = −(1 −X2)P ′ +XP.

We first give a preliminary lemma which will be helpful to construct the polynomi-
als Hp and GN

p .

Lemma 1.4. Definition of the polynomials.
Let Q be a polynomial and N ∈ N. Then

• There exists one unique polynomial P such that L(P ) = Q.

• There exists one unique polynomial PN of degree at most N such that

D(PN)(cos θ) = Q(cos θ) +O(θ2(N+1)) as θ → θ.

Proof. For the first point, if the leading term in a polynomial P is akX
k, with ak 6= 0,

then the leading term in L(P ) is [k(k−1)+k(n+1)+(n−1)]akX
k, and so L(P ) 6= 0.

So the linear operator L is injective from Rp[X] to Rp[X], and therefore it is bijective.
For the second point, the idea is to remark that

D((1 −X)k) = (2k + 1)(1 −X)k + (k + 1)(1 −X)k+1,

so we write the polynomials in the basis {(1 − X)k, k ∈ N}. We get that a poly-
nomial R is such that R(cos θ) = O(θ2(N+1)) if and only if, in this basis, its first
coefficients up to order (X − 1)N are zero (because 1 − cos θ = 1

2θ
2 + O(θ4) in the

neighborhood of 0). We write Q = ∑∞
k=0 bk(1 − X)k and PN = ∑N

k=0 ak(1 − X)k,
and we get that

D(PN)(cos θ) = Q(cos θ) +O(θ2(N+1)) ⇔

a0 = b0

(2k + 1)ak − kak−1 = bk ∀k ∈ J1, NK.
Since this induction relation defines in an unique way the coefficients ak for k ∈J1, NK, this ends the proof.

With this lemma, we can now define the following sequences of polynomials Hp

and GN
p , this last ones being of degree at most N − p:L(H0) = 1
L(Hp+1) = −D(Hp)

and

D(GN
1 )(cos θ) = 1 +O(θ2N)

(D(GN
p+1) + L(GN

p ))(cos θ) = O(θ2(N−p)).

Since the operator L is odd and D is even, it is easy to show that the polynomials Hp

have the same parity as p. If we express the operator L in the basis {(1−X)k, k ∈ N},
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we are able to get the induction relation for the coefficients of the polynomials in
this basis. We have

L((1 −X)k) = (n+ k − 1)(k + 1)(1 −X)k − k(n+ 2k − 1)(1 −X)k−1,

So we have

Hp =
p∑

k=0
bp

k(1 −X)k, and GN
p =

N−p∑
k=0

ap
k(1 −X)k, (B.44)

where ap
k and bp

k are given by the following induction relations for (with the conven-
tion that bp

p+1 = bp
−1 = ap

−1 = 0):b0
0 = 1

n−1 ,

(n+ k − 1)bp+1
k − (n+ 2k + 1)bp+1

k+1 = 2k+1
k+1 b

p
k − k

k+1b
p
k−1, ∀p ∈ N,∀k = J0, p+ 1K.a

0
k = k!

(2k+1)(2k−1)...3 = 2k(k!)2

(2k+1)! ,
2k+1
k+1 a

p+1
k − k

k+1a
p+1
k−1 = (n+ k − 1)ap

k − (n+ 2k + 1)ap
k+1, ∀p ∈ N, ∀k ∈ N.

We define then the remainders RN
κ,0 and RN

κ,∞ by

RN
κ,0(µ) = hκ(µ) −

N∑
p=0

Hp(µ)κp, RN
κ,∞(µ) = hκ(µ) −

N∑
p=1

GN
p (µ)κ−p.

It is an easy matter to see that, for a given polynomial P , we have

sin θ∂θ(P (cos θ) sin θ) = D(P )(cos θ) sin θ, (B.45)
−∂θ(sinn−2 θ∂θ(P (cos θ) sin θ)) + (n− 2) sinn−3 θP (cos θ) = sinn−1 θL(P )(cos θ),

and then we get

L̃∗
κ(P (cos θ) sin θ) = (L(P ) + κD(P ))(cos θ) sin θ,

where the operator L̃∗
κ is defined in (3.17) by

L̃∗
κg(θ) = − sin2−n θe−κ cos θ d

dθ
(sinn−2 θeκ cos θg′(θ)) + n−2

sin2 θ
g(θ).

Since we have by definition L̃∗
κ(hκ(cos θ) sin θ) = sin θ, we get

L̃∗
κ(RN

κ,0(cos θ) sin θ) = sin θ −
N∑

p=0
(L(Hp) + κD(Hp))(cos θ) sin θκp

= −κN+1D(HN)(cos θ) sin θ,

L̃∗
κ(RN

κ,∞(cos θ) sin θ) = sin θ −
N∑

p=1
(L(GN

p ) + κD(GN
p ))(cos θ) sin θκ−p

= −L(GN
N)(cos θ) sin θκ−N +

N−1∑
p=0

κ−pO(θ2(N−p)) sin θ.
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To get estimations for the averages of the form 〈f(θ)RN
κ,ε(cos θ) sin2 θ〉Mκ (with ε

standing for 0 or ∞) we first remark that, for a function g belonging to the space V
(a “weighted H1

0 ”) defined in (3.19) by

V = {g | (n− 2)(sin θ)
n
2 −2g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0 (0, π)},

we have the following Poincaré inequality:

〈g(θ)L̃∗
κg(θ)〉Mκ = 〈g′(θ)2〉Mκ + (n− 2)〈 1

sin2 θ
g(θ)2〉Mκ > (n− 2)〈(g(θ))2〉Mκ .

Hence, for n > 3 and g ∈ V , using Cauchy-Schwarz inequality, we get that

〈g(θ)2〉Mκ 6
1

n− 2

√
〈g(θ)2〉Mκ〈(L̃∗

κg(θ))2〉Mκ .

Since gκ(θ) = hκ(cos θ) sin θ belongs to V , we get that gN
κ,ε(θ) = RN

κ,ε(cos θ) sin θ also
belongs to V .

We are now ready to do the estimations. For f such that θ 7→ f(θ) sin n
2 θ belongs

to L2(0, π), we get, using Cauchy-Schwarz inequality,

|〈f(θ)RN
κ,0(cos θ) sin2 θ〉Mκ | 6

√
〈(RN

κ,0(cos θ))2 sin2 θ〉Mκ〈f(θ)2 sin2 θ〉Mκ

6 1
n− 2

√
〈(L̃∗

κR
N
κ,0(cos θ))2 sin2 θ〉Mκ

√
〈f(θ)2 sin2 θ〉Mκ

6 1
n− 2

κN+1
√

〈(D(HN)(cos θ))2 sin2 θ〉Mκ

√
〈f(θ)2 sin2 θ〉Mκ .

Hence using the expansion as κ → 0 given in (5.35), we get the final estimation:

〈f(θ)RN
κ,0(cos θ) sin2 θ〉Mκ = O(κN+1) as κ → 0. (B.46)

Similarly, if |f(θ)| = O(θ2β) in the neighborhood of 0, using Lemma 1.2, we get

|〈f(θ)RN
κ,∞(cos θ) sin2 θ〉Mκ|2 6 1

(n− 2)2 〈f(θ)2 sin2 θ〉Mκ

×
〈

[L(GN
N)(cos θ)κ−N +

N−1∑
p=0

κ−pO(θ2(N−p))]2 sin2 θ

〉
Mκ

6 O(κ−2β−1) ×O(κ−2N−1),

which gives

〈f(θ)RN
κ,∞(cos θ) sin2 θ〉Mκ = O(κ−β−N−1) as κ → ∞.

Now, since we have the expression (B.44) of the polynomials GN
p , we get, by

definition of RN
κ,∞,

RN
κ,∞(µ) = RN+1

κ,∞ (µ) +
N∑

p=0
(GN+1

p −GN
p )(µ)κ−p +GN+1

N+1(µ)κ−N−1

= RN+1
κ,∞ (µ) +

N+1∑
p=0

ap
N+1−p(1 − µ)N+1−pκ−p.
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Since (1 − cos θ)k = O(θ2k), we finally get, using Lemma 1.2,

〈f(θ)RN
κ,∞(cos θ) sin2 θ〉Mκ = 〈f(θ)RN+1

κ,∞ (cos θ) sin2 θ〉Mκ +
N+1∑
p=0

κ−pO(κ−β−1−N−1+p)

= O(κ−β−N−2) as κ → ∞.

This ends the proof of Proposition 5.1, in the case n > 3.
We suppose now that n = 2. The case κ → 0 is easy, since we have the following

Poincaré inequality:

〈g(θ)L̃∗
κg(θ)〉Mκ = 〈g′(θ)2〉Mκ >

e−κ
∫ π

0 g
′(θ)2dθ∫ π

0 e
κ cos θdθ

> e−κ
∫ π

0 g(θ)2dθ∫ π
0 e

κ cos θdθ
> e−2κ〈g(θ)2〉Mκ .

We get the same estimations, replacing (n− 2) by e−2κ:

|〈f(θ)RN
κ,0(cos θ) sin2 θ〉Mκ| 6 e2κκN+1

√
〈(D(HN)(cos θ))2 sin2 θ〉Mκ〈f(θ)2 sin2 θ〉Mκ ,

which gives the estimate (B.46) since e2κ = O(1) when κ → 0.
The case κ → ∞ is different, since we are not able to get a better Poincaré con-

stant. But we have an explicit expression for gκ(θ) = h(cos θ) sin θ, given by (3.20):

gκ(θ) = θ

κ
− π

κ

∫ θ
0 e

−κ cos ϕdϕ∫ π
0 e

−κ cos ϕdϕ
.

It is also easy to see that, in this case, the coefficients ap
k appearing in the def-

inition (B.44) of the polynomials GN
p , are zero when p > 1. Therefore we get

that GN
p = 0 for p > 1.

We have D(GN
1 )(cos θ) = 1 +O(θ2N), so with the formula (B.45), we obtain

∂θ(GN
1 (cos θ) sin θ) = 1 +O(θ2N),

so we get that GN
1 (cos θ) sin θ = θ + O(θ2N+1) since θ 7→ GN

1 (cos θ) is continuous
as θ → 0. Actually, this is the Euler formula for arctan: if we write t = tan θ

2
we get 1 − cos θ = 2t2

1+t2 , sin θ = 2t
1+t2 , and then, using the expression (B.44) of the

polynomials GN
1 with ak = 2k(k!)2

(2k+1)! , we obtain

arctan t = t

1 + t2

N∑
k=0

22k(k!)2

(2k + 1)!
t2k

(1 + t2)k
+O(t2N+1).

Now, using the explicit expression of gk, we have

RN
κ,∞(cos θ) sin θ = gκ(θ) −GN

1 (cos θ) sin θ κ−1

= κ−1(θ −GN
1 (cos θ) sin θ) − π

κ

∫ θ
0 e

−κ cos ϕdϕ∫ π
0 e

−κ cos ϕdϕ
= κ−1 O(θ2N+1) − r∞

κ (θ).

We have
r∞

κ (θ) 6 π2

κ

e−κ cos θ∫ π
0 e

−κ cos ϕdϕ
,
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and so, using the estimate (5.37) with n = 2, we get

〈(r∞
κ (θ))2〉Mκ 6

π4

κ2

∫ π
0 e

−2κ cos θeκ cos θdθ
(
∫ π

0 e
−κ cos ϕdϕ)2 ∫ π

0 e
κ cos θdθ

6 π4

κ2(
∫ π

0 e
κ cos θdθ)2 = O(κ−1e−2κ).

Therefore, using Cauchy-Schwarz inequality and Lemma 1.2,

|〈f(θ)r∞
κ (θ) sin θ〉Mκ| 6

√
〈f(θ)2 sin2 θ〉Mκ〈(r∞

κ (θ))2〉Mκ = O(κ−β−1e−2κ),

so we get the final estimate

〈f(θ)RN
κ,∞(cos θ) sin2 θ〉Mκ = O(κ−β−N−2) as κ → ∞,

and this ends the proof of Proposition 5.1.

B.2 Tips for the general case
Here we give some tips to perform an asymptotic study of the coefficients when ν
depends also on ω · Ω.

We will have to take averages against functions of the form θ 7→ eκ̂(ρ,cos θ), where

κ̂(ρ, µ) = 1
d(ρ)

∫ µ

0
ν(ρ, x)dx.

We want to get for example an expansion as the noise d is large or small. So we are
only interested in the dependence on cos θ, and we will drop the dependence on ρ
for clarity. We suppose that the function θ 7→ ν(cos θ) is positive, smooth, bounded
below and above, and we introduce the parameter κ = 1

d
, trying to expand with

respect to κ. We write σ(µ) =
∫ µ

0 ν(x)dx, so we have κ̂(µ) = κσ(µ).
The first step consists in the expansion of 〈f(θ)〉

M̂κ
given by

〈f(θ)〉
M̂κ

=
∫ π

0 f(θ)eκ σ(cos θ) sinn−2 θ dθ∫ π
0 e

κ σ(cos θ) sinn−2 θ dθ
.

As before, we can easily do a Taylor expansion when κ → 0, and we get a result
similar to (5.36) involving quantities of the form

∫ π
0 f(θ)σ(cosθ)pdθ. Unless we know

explicitly σ, we cannot say anything interesting.
When κ → ∞, the strategy is the same: we do the change of variable, setting t =

σ(1) − σ(cos θ)), and a(t) = σ−1(σ(1) − t), where σ−1 is the inverse function of σ
(which is increasing since ν > 0, actually we have a(t) = cos θ). We get:∫ π

0
f(θ)eκ σ(cos θ) sinn−2 θ dθ = eκ σ(1)

∫ T

0

f(arccos a(t))e−κt

ν(a(t))(1 − a(t)2)n−3
2
dt,

where T = σ(1) − σ(−1). Since a(0) = 1, if we know the expansion of f around 0
and ν in the neighborhood of 1, it only remains to get a Taylor expansion of a
around 0 to use Lemma 1.1 (Watson’s Lemma). We can compute the derivatives
of a by induction. We have

a′(t) = − 1
ν(a(t))

,
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and this gives immediately a(n) = Fn(a(t)), with the following induction relation
for Fn

F1(µ) = − 1
ν(µ)

, Fn+1(µ) = − 1
ν(µ)

d
dµ

(Fn(µ)).

This gives us the Taylor expansion of a at t = 0 up to order N :

a(t) = 1 +
N∑

n=1
fn(1) t

n

n!
+O(tN+1).

Since we have a′(0) < 0, it is possible to get the analogous of Lemma 1.2: for a
function f such that f(θ) = O(θ2β), then 〈f(θ)〉

M̂κ
= O(κ−β) as κ → ∞. Finally,

we get an expansion of 〈f(θ)〉
M̂κ

which depend only on the first derivatives of ν at 1
and on the local behavior of f around 0.

The second step consists in expanding 〈f(θ)ĝκ(θ) sin θ〉
M̂κ

, where L̂∗
κĝκ(θ) = sin θ,

the operator L̂∗
κ being defined by

L̂∗
κg(θ) = − sin2−n θe−κ σ(cos θ) d

dθ
(sinn−2 θeκ σ(cos θ)g′(θ)) + n−2

sin2 θ
g(θ).

It is easy to see that we have

L̃∗
κ(P (cos θ) sin θ) = (L(P ) + κν(cos θ)D(P ))(cos θ) sin θ,

so if we set ĝκ(θ) = ĥκ(cos θ) sin θ, we can decompose ĥk in a way similar to Propo-
sition 5.1:

ĥκ(cos θ) =
N∑

p=0
Ĥp(cos θ)κp + R̂N

κ,0(cos θ),

ĥκ(cos θ) =
N∑

p=1
ĜN

p (cos θ)κ−p + R̂N
κ,∞(cos θ),

where Ĥp are the functions (not necessarily polynomials) and ĜN
p the polynomials

of degree at most N − p given by the following induction relations:L(Ĥ0) = 1
L(Ĥp+1)(µ) = −ν(µ)D(Ĥp)(µ)

D(ĜN
1 )(cos θ) = 1 +O(θ2N)

(D(ĜN
p+1) + 1

ν(cos θ)L(ĜN
p ))(cos θ) = O(θ2(N−p)).

Again, the remainders satisfy the following estimations, for any function f such
that θ 7→ f(θ) sinn

2 θ belongs to L2(0, π) and such that |f(θ)| = O(θ2β) in the
neighborhood of 0:

〈f(θ)R̂N
κ,0(cos θ) sin2 θ〉

M̂κ
= O(κN+1) as κ → 0,

〈f(θ)R̂N
κ,∞(cos θ) sin2 θ〉

M̂κ
= O(κ−β−N−2) as κ → ∞,

and this allows to get an expansion of 〈f(θ)ĥκ(cos θ) sin2 θ〉
M̂κ

when κ → 0 and
when κ → ∞.



Chapter 2

Macroscopic limits and phase
transition in a system of
self-propelled particles

This chapter is the fruit of a collaboration with Pierre Degond and Jian-Guo Liu,
and an article [27] is about to be submitted on this subject.

Abstract

We investigate a new time-continuous version of the Vicsek model, which
describe the evolution of self-propelled particles with alignment interaction.
This model takes the form of a system of coupled stochastic differential equa-
tions describing the evolution of the positions and orientations of the particles.

In the limit of a large number of particles, the model is described by a
mean-field kinetic equation, which presents, when observed at large scale in
space and time, a phenomenon of phase transition as the density crosses a
threshold.

In this chapter, we derive the hydrodynamic limit of this mean-field model.
When the density is under the threshold, the limit is given by a local isotropic
distribution, the density of which, in a first order approximation, satisfies a
non-linear diffusion equation. Over this threshold, we get the same “Vicsek
hydrodynamics” as in Chapter 1: a non-conservative system of first-order
partial differential equations describing the evolution of a local density and a
local orientation, which turns out to be non-hyperbolic.

Key words: Vicsek model, phase transition, hydrodynamic limit, Chapman-
Enskog expansion, non-hyperbolicity.
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1 Introduction
In this chapter, following what have been done in Chapter 1, we investigate a new
modification of the time continuous version of Vicsek model. This modification of
the individual model seems, at first glance, to be a simplification: we replace ω̄k in
equation (2.4) of Chapter 1 by J̄k, that is to say we do not divide by the norm: the
particles evaluate only the local total momentum of their neighbors, not their local
orientation. The interaction can then be recast as a sum of binary interactions, still
understood as a relaxation towards the unit vector ω̄k, but with rate proportional to
the absolute value of the local total momentum of their neighbors |J̄k|. That is to say
that the individuals tends to relax more rapidly to the direction of their neighbors
if these last ones are numerous and strongly aligned. This positive feedback on
the alignment strength leads to the apparition of phase transition, recovering the
features of the original discrete model, which gives rise to challenging issues.

So, we have found a way to get a macroscopic phase transition, in agreement with
the numerical simulations of the discrete Vicsek model, and with a time-continuous
model still very close to the original discrete one. Using results of Chapter 4, together
with a fine analysis of a specific Poincaré constant, we are able to provide arguments
which confirm the convergence, at each point, to a local equilibrium. This last one
can be of two different types, either the uniform distribution, isotropic on the sphere,
if the density ρ is less than the critical threshold ρ∗ = n, or a distribution with a
given orientation Ω in the case where ρ > ρ∗.

The mathematical treatment of this phase transition consists in the derivation
of two different models, depending whether the density ρ is above or under the
threshold ρ∗ = n. We finally get a two-phase macroscopic model, with nonlinear
diffusion in the region of low density, and still the “macroscopic Vicsek” model in
the region of high density. The description of the behavior of the boundary between
these two regions is a challenging problem. Once again, as in Chapter 1, the model
is naturally set in a n-dimensional framework, and the results are qualitatively the
same in any dimension.

The last important thing to note is that we can directly use the results of Chap-
ter 1 which concern the asymptotic expansions of the coefficients, and we get, in the
ordered region, that the coefficient λ, playing the role of a pressure in the macroscopic
model, is negative in the two limit cases, when ρ is large or close to the threshold n.
Using numerical computations, we see that we actually have λ < 0 in any case. This
means that the “macroscopic Vicsek” model we obtained is non-hyperbolic in all the
ordered region of high density. However, under the constraint that the dynamics
only take place along one direction, we obtain a reduced model which presents a
less pathological behavior, and we have hyperbolicity in some regions of the states
space.

The outline of this chapter is as follows.
In Section 2, we describe the individual model, and its mean-field limit when the

number of particles is large.
In Section 3, we investigate the properties of the rescaled mean-field model. We

prove that there are two possibilities for a local equilibrium, depending on the value
of its density ρ.
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The Section 4 is devoted to the derivation of a diffusion model in the case where
the density ρ is less than n. This model is a non-linear obtained as a first order
approximation in ε, given by the method of the Chapman-Enskog expansion.

Finally, in Section 5, we derive, with the method of the generalized collisional
invariants, the hydrodynamic model in the region where ρ > n. The “macroscopic
Vicsek” model is obtained, with coefficients which depend on the density ρ, and
its properties are studied, in particular the non-hyperbolicity, with the help of the
asymptotics expansions that have been done in Chapter 1.

2 System of particles and its mean-field limit
We consider N oriented particles in Rn, described by their positions X1, . . . XN and
their orientation vectors ω1, . . . , ωN belonging to S, the unit sphere of Rn. We define
the mean momentum Jk of the neighbors of the particle k by

Jk = 1
N

N∑
j=1

K(Xj −Xk)ωj.

In this chapter, the kernel of observation K will be supposed to be isotropic (depend-
ing only on the distance |Xj −Xk| between the particle and its neighbors), smooth
and with compact support. Introducing a non-isotropic kernel of observation, as
in Chapter 1 would lead to the same conclusion, with a slightly different speed of
convection for the orientation in the macroscopic model, but the computations are
more complicated, this is why we focus on a kernel of observation which is isotropic.

The particles satisfy the following system of coupled stochastic differential equa-
tions (which must be understood in the Stratonovich sense), for k ∈ J1, NK:

dXk = ωk dt (2.1)
dωk = (Id − ωk ⊗ ωk)Jk dt+

√
2d(Id − ωk ⊗ ωk) ◦ dBk

t , (2.2)

The first equation expresses the fact that particles move at constant speed 1, follow-
ing their orientation ωk. The terms Bk

t stand for N independent standard Brownian
motions on Rn, and the projection term (Id−ωk⊗ωk) (projection orthogonally to ωk)
constrains the norm of ωk to be 1. We have that (Id −ωk ⊗ωk)Jk = ∇ω(ω ·Jk)|ω=ωk

,
where ∇ω is the tangential gradient on the sphere. So the second equation can be
understood as a relaxation (with a rate proportional to the norm of Jk) towards a
unit vector in the direction of Jk, subjected to a Brownian motion on the sphere
with intensity

√
2d. We refer to [48] for more details on how to define Brownian

motion on a Riemannian manifold.
We remark that the interaction can be seen as a sum of smooth binary interac-

tions. This model can then be viewed as an intermediate between the Cucker-Smale
model [24] (where there is no constraint on the norm of the velocity and no noise)
and the Vicsek model, where the velocity is constant and noise is added, but the
interaction cannot be recast as a sum of binary interactions. Actually the only dif-
ference with the time-continuous version of the Vicsek model presented in [28] is
that Jk is there replaced by νΩk, where Ωk = Jk

|Jk| is the unit vector in the direction
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of Jk and the frequency of relaxation ν is constant (so the interaction term has a
singularity when Jk is close to 0). The model presented here can then be viewed as a
modification consisting in letting ν depend (linearly) on the norm of the velocity Jk,
which can be compared to the modification introduced in Chapter 1, where this
relaxation parameter ν depend on a local density ρ̄k.

The first step to investigate a macroscopic limit of this model is to get a mean-
field limit of the system, as the number of particles tend to infinity. We define the
empirical distribution of particles fN by

fN(x, ω, t) = 1
N

N∑
i=1

δXi(t),ωi(t)(x, ω),

where the Dirac distribution is defined by duality: 〈δX,Ω, ϕ〉Rn×S = ϕ(X,Ω) for a
smooth function ϕ ∈ C(Rn × S), the duality product 〈·, ·〉Rn×S extending the usual
inner product of L2(Rn ×S). For convenience, we work with the uniform measure of
total mass 1 on the sphere S, so we have 〈fN , 1〉Rn×S = 1. With this notations, we get
that Jk = 〈fN , KXk

ω〉Rn×S, where KXk
(x) = K(Xk − x). Denoting the convolution

with respect to the space variable by ∗, we get Jk = 〈K ∗ fN(Xk), ω〉S. It is then
easy to see, in the case of no noise (when d = 0), that fN satisfies the following
partial differential equation (in the sense of distributions)

∂tf
N + ω · ∇xf

N + ∇ω · ((Id − ω ⊗ ω)J̄fNfN) = 0,

where ∇ω· denotes the divergence operator on the unit sphere, and

J̄fN (x, t) = 〈(K ∗ fN)(x), ω〉S.

When the noise is added, some complications appear. We expect to get that the
empirical distribution fN tends to a probability density function f satisfying the
following partial differential equation:

∂tf + ω · ∇xf + ∇ω · ((Id − ω ⊗ ω)J̄ff) = d∆ωf, (2.3)

with
J̄f (x, t) =

∫
S
(K ∗ f)(x, ω, t)ω dω.

This convergence is linked to the so-called property of “propagation of chaos”, which
amounts to consider that a given finite number k of particles behave as if they were
independent and following the same law, when the total number of particles N
tends to infinity. A classical way to prove this property, called the coupling method,
consists in the introduction of artificial nonlinear processes, the law of which satisfies
the equation (2.3), and which are a good approximation of the original system of
particles. We refer to [73] for more details.

The main point is to adapt this theory in the framework of stochastic differential
equations on a manifold (the sphere S here). This has actually been recently done
for this system by Bolley, Cañizo, and Carrillo in [13]. Under the assumption that
the kernel K is Lipschitz and bounded, they prove existence and uniqueness of the
solution of the system (2.1)-(2.2) and of the artificial process associated to it. They
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provide then estimates which ensure that the empirical distribution converges to a
solution of the equation (2.3), called Kolmogorov–Fokker–Planck equation.

This equation is the starting point of our study. We see that there is a com-
petition between the alignment term and the diffusion term. However, alignment
term is quadratic with respect to f , whereas the diffusion term is linear. So we can
expect that when f is small, the leading behavior is the diffusion in the direction
variable ω, and when f is large, the alignment will be seen at the macroscopic level.

Let us point out that the study of the space-homogeneous version of the equation
is exactly the object of Chapter 4, and the result is that there are indeed two regimes,
one where the equilibrium is isotropic, and another where the equilibrium depend
on an arbitrary direction Ω. This will also be the case here, and we will see that the
macroscopic models we obtain are really different in each regime.

But before deriving these macroscopic models, we can make some remarks and
assumptions on d and K. We suppose that the kernel K is integrable, and that its
total weight K0 =

∫
Rn K(x)dx is positive. Writing

f̃(x, ω, t) = K0f(1
d
x, ω, 1

d
t) and K̃(x) = 1

K0dn
K(1

d
x),

we get that f̃ satisfies the equation (2.3) with d = 1 and K replaced by K̃ in (2), and
we have

∫
Rn K̃(x)dx = 1. So without loss of generality, we can suppose that d = 1

and that K0 = 1.
We are now ready to investigate the behavior at large scale in space and time.

The derivation of the model proceeds as in [28], and follows closely the presentation
of Chapter 1, so we only give a summary, focusing on the points which are specific to
the present model, in particular the distinction between the ordered and disordered
phases.

3 The macroscopic limit

3.1 Hydrodynamic scaling
In order to observe the system at large scale, we perform a hydrodynamic scaling.
We introduce a small parameter ε, and we will work with the new space and time
variables x′ = εx, t′ = εt. We write f ε(x′, ω, t′) = f(x, ω, t), and Kε(x′) = 1

εnK(x).
We can then write the equation satisfied by f ε, if f is a solution of the Kolmogorov–
Fokker–Planck equation (2.3). Omitting the primes for simplicity, we get

ε(∂tf
ε + ω · ∇xf

ε) = −∇ω · ((Id − ω ⊗ ω)J̄ε
fεf ε) + ∆ωf

ε, (3.4)

with
J̄ε

fε(x, t) =
∫
S
(Kε ∗ f ε)(x, ω, t)ωdω. (3.5)

The purpose of this chapter is to derive a formal limit of this rescaled mean-field
model when the parameter ε tends to 0. The first effect of this hydrodynamic scaling
is that, up to order 1 in ε, the equation becomes local. Indeed, supposing that f ε

does not present any pathological behavior as ε → 0, we get the following expansion:

J̄ε
fε(t, x) = Jfε(t, x) +O(ε2),
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where the local flux Jf is defined, for a function f of ω, by

Jf (x, t) =
∫
S
f(x, ω, t)ω dω. (3.6)

The proof of this expansion is elementary and omitted here, we refer to Appendix A.1
of Chapter 1 for a detailed proof with a more general kernel, we use here the fact
that K(x) depends only on |x|, and the normalization K0 = 1.

We also define the density ρf associated to f by

ρf (x, t) =
∫
S
f(x, ω, t) dω. (3.7)

Hence, the equation (3.4) becomes

ε(∂tf
ε + ω · ∇xf

ε) = Q(f ε) +O(ε2), (3.8)

with
Q(f) = −∇ω · ((Id − ω ⊗ ω)Jff) + ∆ωf. (3.9)

Remark 3.1. Another way to get rid of the non-local term (and of the O(ε2)
term in (3.8) in the same occasion) consists in making the scaling at the particular
level, in the observation kernel. The so-called moderate interaction [64] concerns
only O(N1−β) particles, with 0 < β < 1, and leads to the localization of the opera-
tor Q, in the limit of a large number of particles. The study of this scaling is left to
future work.

We remark that the “collision operator” Q only acts on the variable ω. The
derivation of the macroscopic model relies on the properties of this operator. The
first step consists in the characterization of the equilibria, that is to say the func-
tions f such that Q(f) = 0, since when ε → 0, we have Q(f ε) → 0. This is
the purpose of the next subsection, we get that the equilibria are characterized by
observable quantities, such as the density ρ, or a local direction Ω.

3.2 Equilibria
We define, for a unit vector Ω ∈ S, and κ > 0 the so-called Fisher-Von Mises
distribution [82] with concentration parameter κ and orientation Ω by (note that
the denominator depends only on κ):

MκΩ(ω) = eκ ω·Ω∫
S e

κ υ·Ω dυ
. (3.10)

We have that MκΩ is a density probability function on the sphere, and we will denote
by 〈·〉MκΩ the mean against this probability measure. We will often have to compute
such means for functions γ depending only on ω · Ω. In this case we have that the
mean 〈γ(ω · Ω)〉MκΩ does not depend on Ω, so we will denote it 〈γ(cos θ)〉Mκ . Using
spherical coordinates, we can express this mean with simple integrals on (0, π):

〈γ(cos θ)〉Mκ =
∫ π

0 γ(cos θ) eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
.
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We have for example that the flux of the Fisher-Von Mises distribution is

JMκΩ = 〈ω〉MκΩ = c(κ)Ω, (3.11)

where the order parameter c(κ), taking values between 0 and 1, is defined by

c(κ) = 〈cos θ〉Mκ =
∫ π

0 cos θ eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
. (3.12)

This order parameter measures how the distribution MκΩ is concentrated around Ω.
The case c(κ) = 0 corresponds to the uniform distribution, and MκΩ tends to the
Dirac mass located at the point Ω when c(κ) tends to 1.

We remark that the dependence on the two parameters κ and Ω in the definition
of MκΩ is only visible through the vector κΩ, so we can consider MJ for a given
vector J in Rn. We have that ∇ω(MJ) = (Id − ω ⊗ ω)J MJ , so we get that

Q(f) = ∇ω ·
[
MJf

∇ω

(
f

MJf

)]
.

If f is an equilibrium (that is to say Q(f) = 0), multiplying this equation by f
MJf

and integrating by part on the sphere S, we get that f
MJf

is a constant ρ (which is
the density of f). So f is of the form ρMκΩ with κ > 0 and Ω ∈ S (in the case
where |Jf | = 0, then κ = 0 and we can take any Ω ∈ S, this is just the uniform
distribution). Using (3.11), we get κΩ = Jf = ρJMκΩ = ρc(κ)Ω, which gives the
following compatibility condition:

ρc(κ) = κ. (3.13)

The study of this condition and the classification of the equilibria is done in Chap-
ter 4. The key point is to prove that the function κ 7→ c(κ)

κ
is decreasing and tends

to 1
n

as κ → 0. We give the final results in the following proposition.

Proposition 3.1. Compatibility condition, equilibria.

• If ρ 6 n, there is only one solution to the compatibility condition: κ = 0. The
only equilibrium is the constant function f = ρ.

• If ρ > n, the compatibility condition has exactly two solutions: κ = 0 and one
unique positive solution, which will be denoted κ(ρ). Apart from the constant
function f = ρ (the case κ = 0), the equilibria form a manifold of dimension n:
the functions of the form f = ρMκ(ρ)Ω, where Ω ∈ S is an arbitrary unit vector.

In the next subsection, we provide arguments to determine a formal limit of f ε

as ε → 0. They are based on the rates of convergence to equilibrium of the solution
of the spatial homogeneous version studied in Chapter 4, as well as an argument of
instability of the uniform equilibrium when ρ > n.
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3.3 Rates of convergence to equilibrium
Let us first state here the results obtained in Chapter 4 for the convergence to
equilibrium in the spatial homogeneous case.

Theorem 2.1. Convergence to equilibrium in the spatial homogeneous case.
Suppose g0 is a probability measure, belonging to Hs(S) (this is always the case

for some s < −n−1
2 ).

Then there exists a unique weak solution g to the following equation (satisfying
the initial condition g(0) = g0):

∂tg = −∇ω · ((Id − ω ⊗ ω)Jgg) + τ∆ωg. (3.14)

Furthermore, this is a classical solution, positive for all time t > 0, and belonging
to C∞((0,+∞) × S).

If Jg0 6= 0, then we have the three following cases, depending on τ .

• If τ > 1
n
, then g converges exponentially fast to the uniform distribution, with

global rate (n− 1)(τ − 1
n
) in any Hp norm.

• If τ < 1
n
, there exists a unique positive solution to the equation c(κ) = τκ.

Then there exists Ω ∈ S such that g converges exponentially fast to MκΩ, with
asymptotic rate greater than r∞(τ) = (c(κ)2 +nτ−1)Λκ > 0 for any Hp norm,
where Λκ is the best constant for the following Poincaré inequality:

〈|∇g|2〉MκΩ > Λκ〈(g − 〈g〉MκΩ)2〉MκΩ , (3.15)

When τ is close to 1
n

we have that r∞(τ) ∼ 2(n− 1)( 1
n

− τ).

• If τ = 1
n
, then f converges to the uniform distribution in any Hp norm, with

asymptotic rate
√

n(n−1)p−1(n+2)
2t

.

If Jg0 = 0 the equation reduces to the heat equation on the sphere, so g converges
to the uniform distribution, exponentially with global rate 2nτ in any Hp norm.

In the view of getting an idea of what should be the rates of convergence to
equilibrium, we will denote by gε the distribution of velocities corresponding to f ε:
this is the function such that ρε(x, t)gε(x, ω, t) = f ε(x, ω, t), where ρε = ρfε is the
local density, defined in equation (3.7), associated to the rescaled distribution f ε.
Hence gε(x, ·, t) is a probability density function on the sphere. We can then rewrite
the equation (3.8) under the following form:

ε(∂t(ρεgε) + ω · ∇x(ρεgε)) = −(ρε)2∇ω · ((Id − ω ⊗ ω)Jgεgε) + ρε∆ωg
ε +O(ε2).

Skipping the superscripts ε for the sake of clarity, neglecting the O(ε2) terms and
those with a spatial derivative(this means, with the mass conservation (3.16) given
later on that we can also drop the term ∂tρ

ε), and dividing by ρ2, we finally get the
following homogeneous equation

ε

ρ
∂tg = −∇ω · ((Id − ω ⊗ ω)Jgg) + 1

ρ
∆ωg,
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which is nothing else than the equation (3.14), with ρ = 1
τ

and a time scaling factor.
The first result of Theorem 2.1 is that in the supercritical case (when τ < 1

n
,

or equivalently ρ > n), the uniform distribution is an unstable equilibrium: any
perturbation on Jg making it non-zero implies that the density converges to a given
Von-Mises distribution, with a fixed concentration parameter κ(ρ) defined by the
compatibility condition (3.13).

The second result is that we have exponential rates of convergence to the equilib-
rium. Notice that the rate r∞ is an asymptotic rate, meaning that for any r < r∞,
the norm of the difference between the solution and its limit is bounded by a con-
stant C0(κ) times e−rt. The fact that the constant C0 depend on ρ is another
difficulty, but at least we can have a uniform bounded on this constant when ρ is
not too large. A more precise study of the behavior of this constant is left to future
work.

With the time scaling factor, the rates have to be multiplied by ρ
ε

in our problem.
They are given by 1

ε
r(ρ), where

r(ρ) =


n−1

n
(n− ρ) for ρ < n

(n− ρ(1 − c(κ)2))Λκ for ρ > n.

It is then reasonable to expect, when ε is small, that the function f ε converges
rapidly to a given equilibrium, provided that the rate is large, that is to say that r(ρ)
is large compared to ε. In the case where ρ < n, the condition becomes ε = o(n−ρ).

In the case where ρ > n, the asymptotic expansion given in Theorem 2.1 gives
that r(ρ) ∼ 2n−1

n
(ρ−n) in the neighborhood of n. But this does not ensure that the

rate of convergence is bounded below on (n,∞). We can prove that the Poincaré
constant Λκ can be seen as the principal eigenvalue of a linear elliptic operator, but
theoretically we have not been able to provide a sufficiently strong lower bound. Ac-
tually, we are able to reduce the problem, which comes down to finding the principal
eigenvalue of two one-dimensional Sturm-Liouville problem. We provide the details
in Appendix A. This allows to easily compute Λκ and then r(ρ) numerically (see
Appendix B), the results are depicted in Figure 2.1 for dimensions 2, 3, and 4.

We get that for ρ > n, the rate r(ρ) grows linearly with ρ. And therefore, we get
that r(ρ) is large compared to ε if and only if ε = o(n − ρ). It is then reasonable
that the formal limit, as ε → 0 of the function f ε is given by a function f(x, ω, t)
which satisfies

• f(x, ω, t) = ρ(x, t) with ρ(x, t) < n, in the “disordered” region Rd where we
have n− ρε(x, t) � ε,

• f(x, ω, t) = ρ(x, t)Mκ(ρ)Ω(x,t) with ρ(x, t) > n, in the “ordered” region Ro

where we have ρε(x, t) − n � ε.

The goal is now to derive evolution equations for the density ρ(x, t) and the ori-
entation Ω(x, t). This is the object of the following two sections. Supposing that f ε

converges to such an equilibrium, the idea is to integrate the equation (3.8) against
functions ψ such that the term of order zero in ε vanishes, and this gives evolu-
tion equations for the observable quantities. Such functions ψ are called collisional
invariants.
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Figure 2.1: Rates of convergence in dimensions 2, 3, and 4.

For example, integrating the equation (3.8) against the constant function 1 on
the sphere, we get

∂tρ
ε + ∇x · (Jfε) = O(ε). (3.16)

This is the conservation of mass, which reflects that we have conservation of the
number of particles in the individual model (actually we have an exact conservation
of mass if we use the equation (3.4): the O(ε) term vanishes, replacing the term Jfε

by J̄ε
fε). In the limit ε → 0, this gives an evolution equation for ρ. As in [28] and

Chapter 1, the notion of collisional invariants must be generalized in the “ordered”
region, where we lack conservation equations.

4 Diffusion in the “disordered” region
We consider a region Rd ⊂ Rn where we have n − ρε(x, t) � ε, and we suppose
that f ε converges to a function f of the form f(x, ω, t) = ρ(x, t).

With the conservation of mass (3.16), if we suppose that Jfε → Jf = 0, we get
that the mass ρ satisfies

∂tρ = 0.

This means that we cannot see something interesting at this order, in the point of
view of pattern formation. So we want a first order correction in ε of this stationary
model. The derivation is based on the Chapman-Enskog method, similarly to the
case of rarefied gas dynamics (see [26] for a review).

We write f ε = ρε(x, t) + εf ε
1 (x, ω, t), so we have

∫
S f

ε
1 dω = 0 since ρε is the local

density of f ε. We go back to the rescaled mean-field model (3.4), since we can have
a better expansion than (3.5) for J̄ε

fε :

J̄ε
fε = εJ̄ε

fε
1
(t, x) = εJfε

1
(t, x) +O(ε3).
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This means that we have the same localized model as in equation (3.8), but with a
correction of order ε3 instead of ε2. Dividing by ε, with this expansions, the model
becomes:
∂tρ

ε + ω · ∇xρ
ε + ε(∂t + ω · ∇x)f ε

1 = −∇ω((Id − ω ⊗ ω)Jfε
1
ρε) + ∆ωf

ε
1

− ε∇ω((Id − ω ⊗ ω)Jfε
1
ρε) +O(ε2).

(4.17)

First of all, integrating this equation on the sphere, we get a more precise conserva-
tion of mass than (3.16):

∂tρ
ε + ε∇x · (Jfε

1
) = O(ε2), (4.18)

which gives that ∂tρ
ε is of order ε, and so we can look at the terms of order 0 in the

model (4.17). Since ∇ω((Id−ω⊗ω)A) = −(n−1)A ·ω for a constant vector A ∈ Rn,
we get

∆ωf
ε
1 = (∇xρ

ε − (n− 1)ρεJ(f ε
1 )) · ω +O(ε).

We can directly solve this equation, since the term of order zero is a spherical
harmonic of degree 1 (of the form A · ω, satisfying ∆ω(A · ω) = −(n− 1)A · ω):

f ε
1 = − 1

n− 1
(∇xρ

ε − (n− 1)ρεJ(f ε
1 )) · ω +O(ε) + C.

Since we have
∫
S f

ε
1 dω = 0, we get that the constant C is of order ε. Integrating

against the function ω the previous equality on the sphere, we get an equation
for J(f ε

1 ): we have
∫
S ω ⊗ ωdω = 1

n
Id (by invariance by rotation, this must be a

scalar matrix, the trace of which is
∫
S |ω|2dω = 1), therefore we obtain

J(f ε
1 ) = −1

n(n− 1)
(∇xρ

ε − (n− 1)ρεJ(f ε
1 )) +O(ε),

which gives that
J(f ε

1 ) = −1
(n− 1)(n− ρε)

(∇xρ
ε +O(ε)).

We have then f ε
1 = −nω·∇xρε+O(ε)

(n−1)(n−ρε) . We obtain here a confirmation that this ap-
proximation is only valid when n − ρε is large compared to ε. The final diffusion
model given in the following proposition is obtained with the mass conservation
equation (4.18).
Proposition 4.1. Diffusion model in the disordered zone.

When ε tends to zero, the (formal) first order correction of the solution of the
mean-field rescaled system (3.4), in the region Rd ⊂ Rn where we have n−ρε(x, t) �
ε, is given by

f ε(x, ω, t) = ρε(x, t) − ε
nω · ∇xρ

ε(x, t)
(n− 1)(n− ρε(x, t))

,

where the density ρε satisfies the following diffusion equation

∂tρ
ε = ε

n− 1
∇x ·

(
1

n− ρε
∇xρ

ε

)
. (4.19)

In any case, the sign of the diffusion coefficient shows that this model can only
be valid in a region where ρε < n, and moreover, this coefficient blows up as ρε tends
to n, where the Chapman-Enskog expansion is not valid.
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5 Hydrodynamic model in the “ordered” region
We now turn to a region Ro ⊂ Rn where we have ρε(x, t) − n � ε, the purpose of
this section is to derive and study the following model in this region.

Proposition 5.1. Hydrodynamic model in the ordered region.
When ε tends to zero, the (formal) limit of the solution f ε(x, ω, t) of the mean-

field rescaled system (3.4), in the region Ro ⊂ Rn where we have ρε(x, t) − n � ε,
is given by

f 0(x, ω, t) = ρ(x, t)Mκ(ρ(x,t))Ω(x,t)(ω),

where the Von Mises distribution MκΩ is defined in (3.10), and the parameter κ
is the unique positive solution to the compatibility condition (3.13). Moreover, the
density ρ > n and the orientation Ω ∈ S satisfy the following system of first order
partial differential equations:

∂tρ+ ∇x · (ρcΩ) = 0, (5.20)
ρ(∂tΩ + c̃(Ω · ∇x)Ω) + λ(Id − Ω ⊗ Ω) = 0, (5.21)

where the coefficient c is defined in (3.12), the coefficient c̃, depending on κ, will be
defined later on in (5.25), and the parameter λ is given by

λ = ρ− n− κc̃

κ(ρ− n− κc)
. (5.22)

The first part of this section is devoted to the derivation of this model.

5.1 Derivation of the model
With the arguments given at the end of section 3.3, we have formally that the limit
of f ε(x, ω, t) is given by the stable local equilibrium: f = ρ(x, t)Mκ(ρ(x,t))Ω(x,t). We
want to derive the evolution equations for ρ and Ω.

We recall that the concentration parameter κ (we will drop the dependence on ρ
in the notation when no confusion is possible) satisfies the compatibility condi-
tion (3.13): ρc = κ, where the order parameter c is defined by (3.12):

c(κ) = 〈cos θ〉Mκ =
∫ π

0 cos θ eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
.

We have that Jf = ρcΩ.
Integrating with respect to ω gives the conservation of mass (3.16), which, in the

limit ε → 0, reads
∂tρ+ ∇x · (ρcΩ) = 0.

To compute the evolution equation for Ω, the method proposed originally in [28]
consists to introduce a generalized notion of the collisional invariants. This method
has been successful in an other model of alignment of self-propelled particles [30],
as well as in the refinement of the original model studied in Chapter 1.
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The first step is the definition and the determination of the generalized colli-
sional invariants. We define the linear operator LκΩ associated to a concentration
parameter κ and a direction Ω as follows:

LκΩ(f) = ∆ωf − κ∇ω · ((Id − ω ⊗ ω)Ωf) = ∇ω ·
[
MκΩ∇ω

(
f

MκΩ

)]
,

so we have that Q(f) = −LJf
(f). And we define the set of generalized collisional

invariants CκΩ (associated to κ ∈ R and Ω ∈ S) as the following vector space:

CκΩ =
{
ψ|
∫

ω∈S
LκΩ(f)ψ dω = 0, ∀f such that (Id − Ω ⊗ Ω)Jf = 0

}
.

Hence, if ψ is a collisional invariant associated to κ and Ω, we have
∫

ω∈SQ(f)ψ dω =
0 for any function f such that Jf = κΩ.

The determination of CκΩ has been done in Chapter 1. We define the space

V = {g | (n− 2)(sin θ)
n
2 −2g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0 (0, π)}, (5.23)

and we denote by gκ the unique solution in the space V of the elliptic prob-
lem L̃∗

κg(θ) = sin θ, where

L̃∗
κg(θ) = − sin2−n θe−κ cos θ d

dθ
(sinn−2 θeκ cos θg′(θ)) + n−2

sin2 θ
g(θ). (5.24)

Then if we take hκ as the function such that gκ(θ) = hκ(cos θ) sin θ, we get that
the generalized collisional invariants associated to κ and Ω is a vector space of
dimension n consisting in the functions ω 7→ hκ(ω · Ω)A · ω + C, with C ∈ R,
and A ∈ Rn, with A orthogonal to Ω.

The next step consists in multiplying the rescaled kinetic model (3.8) by a colli-
sional invariant associated to κε and Ωε such as Jfε = κεΩε, and to integrate on the
sphere. We get, for any vector A ∈ Rn, with A · Ωε = 0, that∫

ω∈S
Q(f ε)hκε(ω · Ωε)A · ω dω = 0.

So we have that the vector Xε = 1
ε

∫
ω∈SQ(f ε)hκε(ω · Ωε)ω dω is orthogonal to A

for all A orthogonal to Ω, that is to say that Xε is in the direction of Ωε, which is
equivalent to (Id − Ωε ⊗ Ωε)Xε = 0. Using (3.8), we get that

Xε =
∫

ω∈S
(∂tf

ε + ω · ∇xf
ε)hκε(ω · Ωε)ω dω +O(ε).

In the limit ε → 0, we get (Id − Ω ⊗ Ω)X = 0, where

X =
∫

ω∈S
(∂t(ρMκΩ) + ω · ∇x(ρMκΩ))hκ(ω · Ω)ω dω .

Finally it has been proved in Chapter 1 that (Id − Ω ⊗ Ω)X = 0 is equivalent to the
following first order partial differential equation for Ω:

ρ (∂tΩ + c̃(Ω · ∇x)Ω) + λ (Id − Ω ⊗ Ω)∇xρ = 0,



86 Macroscopic limits and phase transition

where

c̃ = 〈cos θ〉
M̃κ

=
∫ π

0 cos θhκ(cos θ)eκ cos θ sinn θ dθ∫ π
0 hκ(cos θ)eκ cos θ sinn θ dθ

, (5.25)

λ = 1
κ

+ ρ

κ

dκ
dρ

(c̃− c) . (5.26)

We can now compute a more simple expression of λ. We differentiate the compati-
bility condition ρc = κ with respect to κ, and we get c dρ

dκ
+ ρ dc

dκ
= 1. We have

dc
dκ

= d
dκ

(∫ π
0 cos θ eκ cos θ sinn−2 θ dθ∫ π

0 e
κ cos θ sinn−2 θ dθ

)

=
∫ π

0 cos2 θ eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
−
(∫ π

0 cos θ eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ

)2

= 1 −
∫ π

0 sin2 θ eκ cos θ sinn−2 θ dθ∫ π
0 e

κ cos θ sinn−2 θ dθ
− c2

= 1 − (n− 1) c
κ

− c2.

Therefore we get

κ

ρ

dρ
dκ

= c
dρ
dκ

= 1 − ρ (1 − (n− 1) c
κ

− c2) = n− ρ+ κc,

and finally

λ = 1
κ

+ c̃− c

n− ρ+ κc
= n− ρ+ κc̃

κ(n− ρ+ κc)
,

which ends the proof of Proposition 5.1.
The next part is devoted to the study of the properties of the model (5.20)-(5.21)

in the ordered region.

5.2 Properties of the model
We first investigate the hyperbolicity of the hydrodynamic model. It has been proved
in Chapter 1 that the system (5.20)-(5.21) is hyperbolic if and only if λ > 0. We see
that, using the compatibility condition ρc = κ, the expression (5.22) depends only
on κ, c, and c̃. With the asymptotic expansion of c and c̃ as κ → 0 and κ → ∞
given in Chapter 1, we can get an expansion for λ. We have

c =


1
n
κ− 1

n2(n+2)κ
3 +O(κ5) as κ → 0,

1 − n−1
2κ

+ (n−1)(n−3)
8κ2 +O(κ−3) as κ → ∞,

c̃ =


2n−1

2n(n+2)κ+O(κ2) as κ → 0,
1 − n+1

2κ
+ (n+1)(3n−7)

24κ2 +O(κ−3) as κ → ∞.
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We first compute an expansion of ρ = κ
c
. We get

ρ =

n+ 1
n+2κ

2 +O(κ4) as κ → 0,
κ+ n−1

2 + (n−1)(n+1)
8κ

+O(κ−2) as κ → ∞.
(5.27)

Using the definition (5.22), we then get

λ =

− 1
4κ

+O(1) as κ → 0
−n+1

6κ2 +O(κ−3) as κ → ∞.

Finally we have that the system is not hyperbolic in these two limits. Numerically,
with the computations done in Appendix B, we see that λ is actually negative for
all values of κ.

We now consider a system satisfying (5.20)-(5.21), but evolving only along one
space direction ez ∈ S (the density ρ and the orientation Ω depending only on t
and z = ez ·x). We write then Ω = cos θ ez +sin θ v,where v ∈ Sn−2 (identified to the
set of unit vectors orthogonal to ez). In this framework, the system is equivalent to

∂tρ+ ∂z(ρc1(ρ) cos θ) = 0. (5.28)
ρ[∂t(cos θ) + c2(ρ) cos θ ∂z(cos θ)] + λ (1 − cos2 θ) ∂zρ = 0. (5.29)
∂tv + c2(ρ) cos θ ∂zv = 0, with |v| = 1 and ez · v = 0. (5.30)

In the special case of dimension 2, the system reduces to (5.28)-(5.29), with θ ∈
(−π, π) and Ω = cos θ ez +sin θ v0, where v0 is one of the two unit vectors orthogonal
to ez.

For this constrained system, we have a weaker condition of hyperbolicity, given
in Chapter 1: in the present case where λ < 0, we get that the system (5.28)-(5.30)
is hyperbolic if and only if

| tan θ| <
|c̃− d

dρ
(ρc)|

2
√

−λc
.

In our case, we have ρc = κ, using the formula c dρ
dκ

= n − ρ + κc obtained in the
previous subsection, and we have that this reduced system is hyperbolic if and only
if θ ∈ [0, θc) ∪ (π − θc, π], where the critical angle θc is defined by

θc = arctan
( |c̃− c

n−ρ+κc
|

2
√

−λc

)
. (5.31)

We can once again do an expansion in terms of κ. We get

θc =


π
2 − 2

(n+2)
√

n
κ+O(κ2) as κ → 0,

arctan(
√

n+1
√

6
4 ) +O(κ−1) as κ → ∞.

We can now reverse the expansion (5.27) to get an expansion of κ (and then of
the other coefficients) in terms of the density ρ, which is more suitable to understand
the behavior of the system as ρ is large or close to the critical threshold n. We get

κ =


√
n+ 2

√
ρ− n+O(ρ− n) as ρ → n,

ρ− n−1
2 − (n−1)(n+1)

8ρ
+O(ρ−2) as ρ → ∞.

Therefore, we can state the results under the form of a proposition.
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Proposition 5.2. Expansion of the coefficients when the density is large or close to
the critical threshold.

We have the following expansions for the coefficients c, c̃, λ and θc.

• When the density ρ is close to n, we have:

c =
√

n+2
n

√
ρ− n+O(ρ− n),

c̃ = 2n−1
2n

√
n+2

√
ρ− n+O(ρ− n),

λ = −1
4
√

n+2
1√
ρ− n

+O(1),

θc = π
2 − 2√

n+2
√

n

√
ρ− n+O(ρ− n).

• When the density ρ tends to infinity, we have:

c = 1 − n−1
2 ρ−1 + (n−1)(n+1)

8 ρ−2 +O(ρ−3),
c̃ = 1 − n+1

2 ρ−1 − (n+1)(3n+1)
24 ρ−2 +O(ρ−3),

λ = −n+1
6 ρ−2 +O(ρ−3),

θc = arctan(
√

n+1
√

6
4 ) +O(ρ−1).

This proposition allows us to investigate the features of this hydrodynamic model
in the limit cases.

In the case where ρ is close to n, since |λ| = −λ is large compared to ρ, which
is large compared to ρc̃, the behavior of the orientation equation (5.21) can be
compared to the behavior of

∂tΩ = |λ|
ρ

(Id − Ω ⊗ Ω)∇xρ,

which is exactly a strong relaxation to the unit vector in the same direction as ∇xρ,
with rate

λ

ρ
|∇xρ| ∼ 1

4n
√

n+2
√

ρ−n
|∇xρ|.

This actually makes sense only in the case where the rate of convergence to the
equilibrium 1

ε
r(ρ) ∼ 2n−1

nε
(ρ− n) in the neighborhood of n is large compared to this

rate of relaxation, that is to say ε � (ρ−n) 3
2 |∇xρ|. In this case the leading behavior

of the system is given by

∂tρ+ ∇x ·
(

ρc

|∇xρ|
∇xρ

)
= 0,

which is an ill-posed problem. A better understanding of the behavior of the macro-
scopic model in the case where ρ is close to n may be possible if we derive a first
order correction in ε of the model (3.4). Such a correction has been established
in [31] for the model of [28], but results in complicated terms. More investigations
are in progress to see if we can get a simple first order correction in our case, which
may also help to connect the two regions of order and disorder, since we already
have the diffusion (4.19) in the disordered region.
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When the density ρ large, the two speeds c and c̃ are close to 1, and the param-
eter λ is small. But in the intermediate regime, the numerical computation of the
coefficients (see Appendix B) gives that there is a significant difference between the
two velocities c and c̃. This means that the information on the orientation travels
slower than the fluid. The figure 5.2 depicts this difference, in dimension 2 and 3.
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Figure 2.2: The velocities c and c̃ in dimension 2 (left) and 3 (right).

Finally, we see that the critical angle θc tends to a positive value arctan(
√

n+1
√

6
4 ).

Numerically, we get that it is always greater than this limit value. Then, the re-
duced system (5.28)-(5.30) is hyperbolic in the region where the angle θ between Ω
and the direction of propagation is less than this limit value, independently of the
density ρ. The problem of crossing this zone of non-hyperbolicity appears in some
other problems such as the motion a an elastic string on a plane [66].

In summary, in Figure 5.2, we depict the types of macroscopic limits of the
system in dimension 2, described by a density ρ, and an angle θ in the case where ρ
and θ depend only on one space dimension.

6 Conclusion
We have derived, from this time-continuous version of the Vicsek model, a macro-
scopic limit with two regimes.

In the disordered regime, the model is given by a nonlinear diffusion equation
depending on a small parameter ε.

In the ordered regime, the model is given by the macroscopic Vicsek model, which
confirms the ability of this model to describe the large scale behavior of general sys-
tems of self-propelled particles with alignment interaction. The interesting feature
here is that this system of first-order partial differential equations is non-hyperbolic.

A lot of challenging issues arise from this study. The first one is to understand
the evolution in the boundary region Rb where ρε(x, t) = n + O(ε), as well as the
study of the evolution of the regions Ro and Rd in time. The second one is to have
a better understanding of the implications of the non-hyperbolicity, in the ordered
region.
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Figure 2.3: Types of macroscopic limits in dimension 2.

Numerical simulations of the particular model are in progress to understand the
behavior of the model in the two regimes.

A Poincaré constant
Proposition A.1. Study of the Poincaré constant Λκ.

We have the following Poincaré inequality, for ψ ∈ H1(S):

〈|∇ωψ|2〉MκΩ > Λκ〈(ψ − 〈ψ〉MκΩ)2〉MκΩ . (A.32)

The best constant Λκ in this inequality is is the smallest positive eigenvalue of the
operator L∗

κΩ = − 1
MκΩ

∇ω ·MκΩ∇ω.
We define the linear operator L∗

κ by

L∗
κ(g)(θ) = − sin2−n θe−κ cos θ(sinn−2 θeκ cos θg′(θ))′. (A.33)

Then we have one of these three possibilities:

• Λκ is the smallest eigenvalue of the Sturm-Liouville problem

L∗
κ(g) = λg,

for g ∈ C2([0, π]) with Neumann boundary conditions (g′(0) = g′(π) = 0) and
such that

∫ π
0 sinn−2 θeκ cos θg(θ)dθ = 0, and the eigenspace of L∗

κΩ associated
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to the eigenvalue Λκ is of dimension 1, spanned by ω 7→ h0
κ(ω · Ω), where

the function θ 7→ h0(cos θ) is smooth, positive for 0 6 θ < θ0 and negative
for θ0 < θ 6 π.

• Λκ is the smallest eigenvalue of the Sturm-Liouville problem

L̃∗
κ(g) = L∗

κ(g) + n−2
sin2 θ

g(θ) = λg,

for g ∈ C2([0, π]) with Dirichlet boundary conditions (g(0) = g(π) = 0), and
the eigenspace of L∗

κΩ associated to Λκ is of dimension n − 1, consisting in
the functions of the form ψA(ω) = h1

κ(ω · Ω)A · ω for any vector A ∈ Rn such
that Ω · A = 0, with θ 7→ h1

κ(cos θ) a smooth positive function for 0 < θ < π.

• The two above Sturm-Liouville problems have the same smallest eigenvalue Λκ,
and the eigenspace of L∗

κΩ associated to Λκ is of dimension n, spanned by the
two types of function of the above cases.

Proof. First of all, we have

〈|∇ωψ|2〉MκΩ minMκΩ

∫
S

|∇ωψ|2 > minMκΩ(n− 1)
∫
S
(ψ −

∫
S ψ)2,

and
〈(ψ − 〈ψ〉MκΩ)2〉MκΩ 6 〈(ψ −

∫
S ψ)2〉MκΩ 6 maxMκΩ

∫
S(ψ −

∫
S ψ)2,

which gives the Poincaré inequality (A.32) with Λκ > (n− 1) min MκΩ
max MκΩ

= (n− 1)e2κ.
We work with the inner product (ϕ, ψ) 7→ 〈ϕψ〉MκΩ , adapted to MκΩ. We

denote by L̇2
κ(S) (resp. Ḣ1

κ(S)) the functions ψ ∈ L2(S) (resp. in H1(S)) such
that 〈ϕψ〉MκΩ = 0.

We can remark that the operator L∗
κΩ : ψ 7→ − 1

MκΩ
∇ω ·(MκΩ∇ωψ) is self-adjoint:

we have 〈∇ωψ · ∇ωϕ〉MκΩ = 〈ψL∗
κΩϕ〉MκΩ . It is then easy to see, using Lax-Milgram

theorem, that if ϕ belongs to L̇2
κ(S) then there is a unique solution ψ ∈ Ḣ1

κ(S) to the
equation L∗

κΩψ = ϕ. The inverse operator obtained is then compact and self-adjoint.
By the spectral theorem, we get a basis of eigenfunctions, in the Hilbert space L̇2

κ(S),
which are also eigenfunctions of L∗

κΩ. If we denote Λ−1
κ the largest eigenvalue of the

inverse of L∗
κΩ, then it is easy to see that Λκ is the best constant for the following

Poincaré inequality, in the space Ḣ1
κ(S):

〈|∇ωψ|2〉MκΩ > Λκ〈ψ2〉MκΩ .

This gives, adding the constants, that Λκ is the best constant for the following
Poincaré inequality (A.32) in H1(S).

The goal is now to reduce the computation of the eigenvalues to more simple
problems, using separation of variables: we write ω = cos θΩ + sin θ v, where v is
on the unit sphere, orthogonal to Ω. We identify Ω with the last element of an
orthogonal basis of Rn, and we write v ∈ Sn−2.

By spherical harmonic decomposition in an adapted basis (see for example the
appendix A of Chapter 4), we have a unique decomposition of the form

ψ(ω) =
∑
k,m

gk
m(θ)Zk

m(v), (A.34)
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where (Zk
m(v))k∈J1,kmK is a given orthonormal basis of the spherical harmonics of

degree m on Sn−2, for m ∈ N. In the case where the function ψ is continuous, the
coefficient function gk

m is just given by

gk
m(θ) =

∫
Sn−2

ψ(cos θΩ + sin θv)Zk
m(v)dv. (A.35)

We will see that the operator LκΩ stabilizes this decomposition, so we can do its
spectral decomposition in these spaces.

In dimension n > 3, for ψ(ω) = g(θ)Z(v), we have

∇ωψ(ω) = g′(θ)eθZ(v) + g(θ)
sin θ

∇vZ(v),

where the unit vector eθ is ∇ωθ = − 1
sin θ

(Id − ω ⊗ ω)Ω.
We take a function ψ(ω) = gk

m(θ)Zk
m(v) and ϕ(ω) = ∑

k,m f
k
m(θ)Zk

m(v). We get,
since the spherical harmonics are orthonormal, and are eigenfunctions of ∆v for the
eigenvalues −m(m+ n− 3):

〈∇ωψ · ∇ωϕ〉MκΩ =
∫ π

0
[fk

m

′(θ)gk
m

′(θ) + m(m+n−3)
sin2 θ

fk
m(θ)gk

m(θ)] sinn−2 θeκ cos θdθ.

When m > 1, it is easy to see that the function ψ belongs to Ḣ1
κ(S) if and only

if sinn
2 −1 θg′ ∈ L2(0, π) and sinn

2 −2 θg′ ∈ L2(0, π). This condition is equivalent to the
fact that g ∈ V , where the space V is defined by (5.23), and we will denote it V m

κ

for convenience:

V m
κ = {g | (sin θ)

n
2 −2g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0 (0, π)}.

When m = 0, Zk
m is constant, and ψ ∈ Ḣ1

κ(S) is equivalent to the first condition
only: sin n

2 −1 θg′ ∈ L2(0, π), under the constraint that
∫ π

0 sinn−2 θeκ cos θg(θ)dθ = 0.
We will denote this space by V 0

κ :

V 0
κ = {g | (sin θ)

n
2 −1g′ ∈ L2(0, π),

∫ π
0 sinn−2 θeκ cos θg(θ)dθ = 0}.

We then define the operator L∗
κ,m : V m

κ → (V m
κ )∗ by∫ π

0
f(θ)L∗

κ,mg(θ) sinn−2 θeκ cos θdθ =
∫ π

0
[f ′g′ + m(m+n−3)

sin2 θ
fg] sinn−2 θeκ cos θdθ. (A.36)

In this framework, if we have ψ(ω) = ∑
k,m g

k
m(θ)Zk

m(v), then we get

L∗
κΩψ(ω) =

∑
k,m

L∗
κ,mg

k
m(θ)Zk

m(v).

So we can do the spectral decomposition for L∗
κΩ in this decomposition: it is indeed

easy to prove using Lax-Milgram theorem, that the operators L∗
κ,m have self-adjoint

compact inverses for the dot product (f, g) =
∫ π

0 fg sinn−2 θeκ cos θdθ. And therefore
the eigenfunctions and eigenvalues of L∗

κΩ correspond to those of the operators L∗
κ,m,

for m ∈ N. If we denote λκ,m the smallest eigenvalue of L∗
κ,m, we finally get

Λκ = min{λk,m,m ∈ N}.
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It is then easy to see that

λκ,m = inf
f∈V m

κ∫ π

0 f2(θ) sinn−2 θeκ cos θdθ=1

{
∫ π

0 f(θ)L∗
κ,mf(θ) sinn−2 θeκ cos θdθ},

but since all the V m
κ are the same for m > 1, and since∫ π

0
1

sin2 θ
f2 sinn−2 θeκ cos θdθ >

∫ π

0
f 2 sinn−2 θeκ cos θdθ,

we get

λκ,m+1 > λκ,m + (m+ 1)(m+ n− 2) −m(m+ n− 3) = λκ,m + 2m+ n− 2.

Finally, Λκ is the minimum between λκ,0 and λκ,1. The eigenfunctions for the opera-
tor L∗

κΩ being smooth, this is also true for the operators L∗
κ,m, by the formula (A.35).

So we can transform the definitions (A.36) by integration by parts.
Indeed, if g0 is an eigenfunction (in V 0

κ ) associated to L∗
κ,0 and an eigenvalue λ,

we get that g0 is smooth and satisfies the Sturm-Liouville eigenvalue problem

L∗
κg0(θ) = − sin2−n θe−κ cos θ(sinn−2 θeκ cos θg′(θ))′ = λg0(θ).

Conversely, a smooth function with the condition
∫ π

0 sinn−2 θeκ cos θg(θ)dθ = 0 belongs
to V 0

κ . Actually, in dimension n > 3, we do not need to impose the Neumann
boundary conditions: they appear naturally, since we have

L∗
κg0 = −e−κ cos θ(eκ cos θg′

0)′ − n−2
tan θ

g′
0 = λg0,

therefore by continuity at θ = 0 and π, we get that g′
0(0) = g′

0(π) = 0. The classical
Sturm-Liouville oscillation theory gives then that the first eigenspace of L∗

κ is of
dimension 1, spanned by a function gκ,0(θ), which is positive for 0 6 θ < θ0 and
negative for θ0 < θ 6 π.

Similarly, if g1 is an eigenfunction (in V 1
κ ) associated to L∗

κ,1 and an eigenvalue λ,
we get that g1 is smooth, with g1(0) = g1(π) = 0 and satisfies the Sturm-Liouville
eigenvalue problem

L̃∗
κ,1g1(θ) = L∗

κg1(θ) + n−2
sin2 θ

g1(θ) = λg1(θ).

And conversely, if a function with Dirichlet boundary conditions is in C2([0, π]) it
is easy to show that it belongs to V 1

κ . Once again, we do not need to impose the
Dirichlet boundary conditions if we work in C2([0, π]), since we have

L∗
κg1 = −e−κ cos θ(eκ cos θg′

1)′ − n−2
tan θ

g′
1 + n−2

sin2 θ
g1 = λg1,

so by continuity at θ = 0 and π, we get that g1(0) = g1(π) = 0, and then a first
order expansion shows that we have continuity, whatever the values of g′

0(θ) at the
endpoints. The classical Sturm-Liouville theory gives then that the first eigenspace
of L∗

κ is of dimension 1, spanned by a function gκ,1(θ), which keeps the same sign
on (0, π).
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If λκ,0 < λκ,1, we are in the first case of the proposition, and since a spherical
harmonic of degree 0 on the sphere Sn−2 is a constant, writing h0

k(cos θ) = gκ,0(θ)
gives that the first eigenspace of L∗

κΩ is spanned by ω 7→ h0
κ(ω · Ω). If λκ,0 >

λκ,1, we are in the second case of the proposition. The spherical harmonics of
degree 1 on the sphere Sn−2 are the functions of the form v 7→ A · v, with A ·
Ω = 0. Writing h0

k(cos θ) sin θ = gκ,0(θ) gives that the first eigenspace of L∗
κΩ is of

dimension n− 1, consisting in the functions of the form ω 7→ h1
κ(ω · Ω)A · Ω, with A

any vector in Rn which is orthogonal to Ω. Finally, when λκ,0 = λκ,1, we are in the
third case of the proposition, and this ends the proof in the case where n > 3.

When n = 2, we identify H1(S) with the 2π-periodic functions in H1
loc(R), so Λκ

is the smallest eigenvalue of the periodic Sturm-Liouville problem

L∗
κ(g) = L̃∗

κ(g) = −e−κ cos θ(eκ cos θg′)′ = λg,

for a function g such that
∫ π

−π e
κ cos θg(θ)dθ = 0. Here the decomposition correspond-

ing to (A.34) is the even-odd decomposition (there are only two spherical harmonics
on S0: the constant function of degree 0 and the odd function of degree 1). The odd
part go of g can be identified with a function of H1

0 (0, π), and it is easy to see that
the odd part of L∗

κ(g) is L∗
κ(go), and similarly for the even part ge. So we can do the

spectral decomposition of L∗
κ separately on the even and odd functions.

Actually, if we have a solution g of the Sturm-Liouville periodic problem, we
get that g̃(θ) = e−κ cos θ∂θg(π − θ) is another solution with the same eigenvalue.
Furthermore, if g is odd, then g̃ is even and conversely. So the eigenvalues are the
same for the two distinct problems.

We are in the third case: the eigenspace of L∗
κΩ associated to Λκ is of dimension 2,

spanned by an odd function go
κ, positive on (0, π), and an even function ge

κ = g̃o
κ,

positive for 0 < θ < θ0 and negative for θ0 < θ < π.
Conjecture 2.1. Behavior of Λκ

• When κ > 0 and n > 3, we only have the second case of the Proposition A.1.

• The function κ 7→ Λκ is increasing.

We have seen in the end of the proof of Proposition A.1 that when n = 2 we are
in the third case, using a transformation of a solution of an eigenvalue problem to a
solution to another eigenvalue problem.

We can try to do the same in the case n > 3: if we have Lκ,0f = λf (with
Neumann boundary conditions) then the function f̃ = e−κ cos θ∂θf(π − θ) (with
Dirichlet boundary conditions) satisfies∫ π

0
f̃L1f̃ sinn−2 θeκ cos θg(θ)dθ = λ

∫ π

0
f̃ 2 sinn−2 θeκ cos θg(θ)dθ

− κ(n− 2)
∫ π

0
cos θf̃2 sinn−2 θeκ cos θg(θ)dθ,

so if we can prove that
∫ π

0 cos θf̃ 2 sinn−2 θeκ cos θg(θ)dθ > 0, we get that λ0 > λ1.
Actually, this is what we get numerically (see Appendix B) for the case n > 3, and
we also get that λ1 ∼ κ when κ is large.

Some investigations are in progress to prove the monotonicity of the eigenvalue
with κ, based on formal expansions similar to those used in Section 5.1 of Chapter 1.
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B Numerical computations of the coefficients
We adopt a finite difference approach to compute gk. We consider the function fκ

such that fk(θ) = sinn
2 −1 θgκ(θ). In particular since gκ ∈ V defined in (5.23), we get

that fκ ∈ H1
0 (0, π). We have L̃∗

κ(gk) = sin θ with the definition of L̃∗
κ given in (5.24),

and it is easy to see that this is equivalent to

−e−κ cos θ(eκ cos θf ′
k)′ + ( n−2

2 sin2 θ
(1 + n−2

2 cos2 θ) − κ cos θ)f = sin
n
2 θ.

We discretize the interval (0, π) with N + 1 points θi = 1
N
iπ, and write f i

κ an
approximation of fκ at these points. Since fκ ∈ H1

0 (0, π), we get f0
κ = fN

κ = 0. We
write ei

κ = eκ cos θi . A second order approximation of (eκ cos θf ′
κ)′ at the point θi is

then given by
N2

π2 (ei+ 1
2

κ (f i+1
κ − f i

κ) − e
i− 1

2
κ (f i

κ − f i−1
κ )).

Writing

di
κ = n− 2

2 sin2 θi

(1 + n−2
2 cos2 θi) − κ cos θi + N2

π2
e

i− 1
2

κ + e
i+ 1

2
κ

ei
k

,

bi
κ = −N2

π2
e

i+ 1
2

κ

ei
k

, and b̃i
κ = −N2

π2
e

i− 1
2

κ

ei
k

,

we get that the vector F = (f i
κ)i∈J1,N−1K is the solution of the linear system AF = S,

where the vector S is (sinn
2 θi)i∈J1,N−1K, and the tridiagonal matrix A is defined by

A =



d1
κ b1

κ 0 . . . . . . 0
b̃2

κ d2
κ b2

κ
. . . ...

0 b̃3
κ d3

κ
. . . . . . ...

... . . . . . . . . . bN−3
κ 0

... . . . b̃N−2
κ dN−2

κ bN−2
κ

0 . . . . . . 0 b̃N−1
κ dN−1

κ


. (B.37)

We use then the trapezoidal method to perform the integrations in the defini-
tion (3.12)-(5.25) of c and c̃. The other coefficients ρ, λ and θc are then directly
computed from c and c̃. The numerical results provided in Figures 5.2-5.2 have been
obtained for N = 3000.

We now detail a little bit how we obtain the Poincaré constant Λκ. By Ap-
pendix A, we have that Λκ is the minimum between λκ,1 and λκ,0, which are the
smallest eigenvalue of two Sturm-Liouville problems. Several algorithms exist to
compute with a good precision this eigenvalues even for a singular Sturm-Liouville
problem [5], which is the case here whenever n > 3, but we use here a simple method
based on finite differences.

Actually we have that λκ,1 is the smallest eigenvalue associated to the prob-
lem L̃∗

κg = λg, with g ∈ V . So considering once again the function f such
that f(θ) = sin n

2 −1 θg(θ), we have that the vector AF , with A defined by (B.37)
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give a second order approximation of sinn
2 −1 θL̃∗

κg(θ) = λf(θ) at the points θi. So
we can take the smallest eigenvalue of A as an an approximation of λκ,1.

We want an approximation of λκ,0. If g is an eigenfunction associated to λ for
the problem L∗

κg = λg with Neumann boundary conditions, then we write G =
(gi+ 1

2
)i∈J0,N−1K an approximation of g at the points θi+ 1

2
= 1

N
(i + 1

2)π. If we
write mi

κ = sinn−2 eκ cos θi . A second order approximation of L∗
κg at the point θi+ 1

2
is

then given by, when i ∈ J1, N − 2K, by

N2

π2m
i+ 1

2
κ

(−mi+1
κ (f i+ 3

2
κ − f

i+ 1
2

κ ) +mi
κ(f i+ 1

2
κ − f

i− 1
2

κ )).

The Neumann boundary conditions give that the approximations at the points θ 1
2

and θN− 1
2

are given by

N2

π2m
1
2
κ

m1
κ(f

3
2

κ − f
1
2

κ ) and − N2

π2m
N− 1

2
κ

mN−1
κ (fN− 1

2
κ − f

N− 3
2

κ ).

Writing

d
i+ 1

2
κ = N2

π2
mi+1

κ +mi
κ

m
i+ 1

2
k

,

b
i+ 1

2
κ = −N2

π2
mi+1

κ

m
i+ 1

2
k

, and b̃
i+ 1

2
κ = −N2

π2
mi

κ

m
i− 1

2
k

,

we get that a second order approximation of L∗
κg is given by BG, where the tridi-

agonal matrix B is defined by

B =



−b
1
2
κ b

1
2
κ 0 . . . . . . 0

b̃
3
2
κ d

3
2
κ b

3
2
κ

. . . ...
0 b̃

5
2
κ d

5
2
κ

. . . . . . ...
... . . . . . . . . . b

N− 5
2

κ 0
... . . . b̃

N− 3
2

κ d
N− 3

2
κ b

N− 3
2

κ

0 . . . . . . 0 b̃
N− 1

2
κ −b̃N− 1

2
κ


, (B.38)

So we can take the smallest positive eigenvalue of B as an approximation of λκ,0
(so we exclude the constant functions). The computations for the rates of conver-
gence (Figure 2.1) have been done with N = 300.



Chapter 3

An individual time-continuous
Vicsek model on a Riemannian
manifold

This chapter is an ongoing collaboration with Sébastien Motsch.

Abstract

We consider a generalization of the time-continuous version of the Vicsek
model introduced by Degond and Motsch to the case where the particles are
constrained to move on a general complete Riemannian manifold (the original
model corresponding to the case of the Euclidean space or of the flat torus),
the dynamics taking then place on its unit tangent bundle.

Using parallel transport to define a local average orientation, we are able
to give a consistent model, under the form of coupled stochastic differential
equations on the manifold. We prove the propagation of chaos property for
this system, and derive a mean-field model in the limit of a large number of
particles.

Finally, we perform some numerical simulations of this model in the case
where the manifold is the two-dimensional unit sphere.

Key words: Unit tangent bundle, Vicsek model, stochastic process on a mani-
fold, propagation of chaos.
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1 Introduction

Self-organization in nature provides many astonishing phenomenon. “One out of
many” is the gigantic flocks produced by birds. To understand this phenomenon,
many models have been studied and in particular the so-called Vicsek model. One
can observe that the Vicsek model leads to the formation of a large band of particles
similar to a flock observed in nature. However, despite the abundance of numerical
studies on the Vicsek model, all the simulations have been made on the same geo-
metric space: a flat torus, in another words a square box with periodic boundary
conditions. Since the geometry of the domain influences the global dynamics of the
particles, we would like to study in this work in progress an extension of the Vicsek
model on a general Riemannian manifold. Could we observe similar band formation
when the geometric domain is a sphere and not a flat torus?

The Vicsek model is a simple model which describes how particles interact to
align with their neighbors. Due to the simplicity of the model, this dynamics has
drawn lot of attention [74, 16, 46, 28]. One of the main features of the Vicsek model is
the emergence of large flocks through its dynamics. Although particles only interact
locally in the model, they manage to align globally and produce a large “band”
moving in one single direction [16, 62]. However, the emergence of such a band
may not be entirely due to the dynamics of the Vicsek model, the geometry of the
domain may play an important role. In the simulations of the Vicsek model in two
dimensions, when a band appears, particles are more likely to move in one of the
cardinal direction (East, West, North or South). In other words, the direction of
the “band” is not uniform. This phenomenon can be explained by the geometry of
the domain: the simulations are done on a flat torus (a square box with periodic
boundary condition), therefore the two axis (East-West and North-South) are the
two periodic geodesic with shortest length. Thus, the band formation minimizes the
distance on the flat torus. But is this geometry essential for the formation of band?
Does the Vicsek model lead to band formation in other geometry? Can we observe
band formation when the domain is for example a sphere, or even the standard torus
in R3 and not the flat one?

To answer these questions, the first task is to build a framework to describe the
evolution of oriented particles on a manifold. To do so, we extend the notion of
random perturbation in this context and we determine the dynamics of a particle on
a manifold subjected to an external orientational force. As a result, the dynamics of
a single particle on a manifold is written as a stochastic differential equation. We also
prove that the law of such a particle satisfied a so-called Kolmogorov–Fokker–Planck
equation.

Once the framework is settled, we have to extend the Vicsek model in this set-up.
In other words, we would like to implement an alignment rule for particles moving on
a manifold. To do so, we first define what is the local average velocity around the kth

particle (we cannot sum the velocities anymore since they do not belong to the same
tangent space). Then, the model that we propose simply reads as the relaxation of
the velocity of this particle towards the orientation of this local average. As for the
Vicsek model in a “flat” domain, we can prove the existence of a kinetic equation
associated with this dynamics (proving the so-called propagation of chaos for the
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dynamics, in the spirit of what have been done in [13] for the model of Chapter 2).
To illustrate our theory, we run several numerical simulations of the model on

the sphere S2. We observe that particles quickly align with their neighbors as for the
Vicsek model on the flat torus. However, no global preferred direction emerges from
the dynamics. Every direction seems to be equally chosen. A more intensive study
has to be done to confirm this observation. Works are in progress in this direction.

Another line of work consists in finding explicit equilibrium of the Vicsek model
on compact manifold such as the sphere S2. In [60], it has been observed that
a “vortex” configuration was an equilibrium for macroscopic limit of the Vicsek
model on the whole plane R2. However, this vertex configuration is no longer an
equilibrium on the flat torus due to the periodic boundary conditions. Therefore, we
cannot check numerically the emergence of a vertex configuration. In contrast, if we
are able to find an explicit stationary state for the Vicsek dynamics on a compact
manifold with axial symmetry, such as the unit sphere, it may be possible to predict
the emergence of equilibria in the numerical simulations.

2 The individual-based model

2.1 Dynamics of a single particle on a manifold
We consider a complete Riemannian manifold M of dimension n > 2 with a metric g
(we impose that M is complete in order for the particles to never reach a bound-
ary). We would like to describe the evolution in time of an oriented particle on the
manifold M . An oriented particle is described by a couple (x, ω), where x is the
position of the particle (x ∈ M) and ω is the velocity of the particle belonging to the
tangent space TxM . Moreover, we assume that the particle is moving at a constant
speed: |ω|g = 1 with | · |g the induced norm on TxM (see figure 3.1).

M
TxM

ω

TωS
x
g

x

Figure 3.1: An oriented particle (x, ω) on a manifold M . The velocity ω belongs to
the tangent space TxM and we also impose that ω has a unit length (e.g. |ω|g = 1).

To simplify the notations, we introduce the unit tangent bundle UM :

UM := {(x, ω) | x ∈ M, ω ∈ TxM and |ω|g = 1}. (2.1)
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The manifold UM has a natural metric, called Sasaki metric, allowing to decom-
pose the tangent space of UM at a point (x, ω) as a direct orthogonal sum of the
horizontal space TxM and the tangent space of the unit sphere Sx

g at the point ω
denoted by TωSx

g (with TωSx
g ⊂ TxM). In other words, we can identify T(x,ω)UM

with TxM
⊕
TωSx

g .
Hence, to define the dynamics of a particle, it is sufficient to give the variation

of x in TxM , and the variation of ω in TωSx
g . We refer to [43] for an introduction to

Riemannian geometry, and to [68, 69] for the natural Riemannian structure of the
tangent and unit tangent bundles.

To illustrate the idea, we introduce a local coordinate neighborhood, that is to
say an open subset UM of M , diffeomorphic to U ⊂ Rn. We write the coordinates
of x ∈ M with this identification by (xi)i∈J1,nK ∈ U . If the components of a tangent
vector ω ∈ TxM with respect to the natural frame ( ∂

∂xi ) are written vi, then we get
local coordinates of TM , written ((xi)i∈J1,nK, (vi)i∈J1,nK) ∈ U × Rn.

Let us consider (x(t), ω(t)) a curve in UM , given in the local coordinate neigh-
borhood of TM by ((xi)i∈J1,nK, (ωi)i∈J1,nK) ∈ U × Rn. Since ω belongs to the unit
sphere Sx

g , we first have:

|ω|g =
∑
j,k

gjk(x)ωj ωk = 1. (2.2)

Moreover, the particle (x(t), ω(t)) has to stay on the manifold UM , therefore its
derivative in time has to satisfy:

dxi

dt
= vi,

dωi

dt
= ηi −

∑
j,k

Γi
jk ω

j vk, (2.3)

where Γi
jk are the Christoffel symbols of g in the coordinates xi. The sum in equa-

tion (2.3) expresses that ω has to stay in the tangent space of x. The vector η is
the “internal” modification of the velocity ω, it will encode the interactions between
the particles later on (see section 2.2). The vector η has to belong to the tangent
space TxM and it also has to be orthogonal to the velocity to preserve the unit
length of ω (see figure 3.2):

〈η, ω〉g =
∑
j,k

gjk(x) ηj ωk = 0. (2.4)

Remark 2.1. In our model, ω is the velocity of the particle (e.g. dx
dt

= ω). Therefore,
one can replace v by ω in equations (2.3) and (2.5).

Remark 2.2. If the vector η is zero, then the particle has a free movement, it follows
the geodesic flow. Thus, the equation (2.3), when vi = ωi and ηi = 0, is exactly the
equation of a geodesic.

We would like to introduce “noise” in the motion of the particle. More precisely,
we want to add a Brownian motion of intensity

√
2d to the dynamics of the orien-

tation ω. We refer to [48] for an introduction to Brownian motion on Riemannian
manifolds. We can first determine the stochastic differential equation satisfied by a
Brownian motion on Sx

g , the unit sphere of TxM for the metric g at the point x, in
the local coordinates.
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ω
x

η

η

ωx
T
x
M

R
n

Figure 3.2: In local coordinates, the particles (x, ω) moves in the Euclidean space Rn.
Its tangential acceleration η has to be orthogonal to ω (2.4).

Lemma 3.1. Brownian motion on Sx
g , in local coordinates of TxM .

The stochastic differential equation for a Brownian motion Wt on Sx
g , in the local

coordinates of TxM , is given (in the Stratonovich sense) by

dWt = πx,Wt σ ◦ dBt,

where σ is the positive definite symmetric square root of g in the local coordi-
nates, πx,ω is the projection at ω on the tangent space TωSx

g of the unit sphere Sx
g ,

and Bt is a standard Brownian motion in Rn.

Proof. The main point is to remark that, in the local coordinates of TxM the (linear)
map σ from Sn−1 (the unit sphere of Rn, with the canonical metric) to Sx

g (with the
metric g) which maps (ωi) to (∑j σij ω

j) an isometry between Riemannian manifolds.
The Brownian motion W̃t on Sn−1 satisfies the following differential equation (in

the Stratonovich sense):

dW̃t = (Id − W̃t ⊗ W̃t) ◦ dBt,

with Bt a standard Brownian motion on Rn. Hence we get that Wt = σ W̃t is a
Brownian motion on Sx

g , which satisfies the equation

dWt = σ (Id − σ−1Wt ⊗ σ−1Wt) ◦ dBt.

Since σ−1 = gσ, we easily get that (Id − σ−1Wt ⊗ σ−1Wt)v = πx,Wtσv (we recall
that πx,ωv for a vector v ∈ TxM is given by v−gx(ω, v)ω), which ends the proof.

Thus, we can finally write the dynamics as a stochastic differential equations.
We suppose that η(t) is a given function UM → TM satisfying (2.4) in the local
coordinates1. The particle (x(t), ω(t)) driven by η and subject to random noise of
intensity

√
2d on its velocity satisfies:dxi = ωi dt,

dωi = ηi dt+
√

2d∑j(σij − ωi∑
k,` ω

` g`k σkj) ◦ dBj
t −∑

j,k Γi
jk ω

j ωk dt,
(2.5)

1More precisely, for all x in M , ηx(t) is given as a vector field on Sx
g , the unit sphere for the

inner product g in the tangent space TxM .
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where Bt is a standard Brownian motion in Rn (or equivalently, Bi
t are n independent

real one-dimensional Brownian motions). We give a result on the law of one particle
satisfying this system.

Theorem 3.1. Law of one particle
There is local existence up to time T , and pathwise uniqueness for the sys-

tem (2.5) with initial condition x0, ω0 in UM , if the geodesic ball of radius T centered
at x0 is included in UM .

Moreover, if we denote by ft : UM → R the law of the process (xt, ωt), that is
to say the density probability function with respect to the natural measure of UM ,
defined in (2.7), we get that ft satisfies the following Kolmogorov–Fokker–Planck
equation:

∂tft + gx(ω,∇h
xft) + ∇x

ω · (η(x, ω)ft) = d∆x
ωft, (2.6)

where ∇x
ω· and ∆x

ω are the divergence and Laplace–Beltrami operators on the unit
sphere Sx

g of TxM , and ∇h
x is the projection on TxM of the horizontal component

of the gradient of f (on UM).More precisely, if we denote Ξ the (horizontal) vector
field in UM given by the geodesic flow at the point (x, ω), and gs is the Sasaki metric
on Tx,ωUM , we have gx(ω,∇h

xft) = gs(Ξ,∇x,ωf).

The proof of this theorem is given in Appendix A. We recall that the unit tangent
bundle UM has a natural measure µ (called Liouville or kinematic measure) defined,
for a continuous function h : UM → R with compact support, by

∫
UM

h dµ =
∫

M

(∫
Sx

g

h(x, ω)dxω

)
dm(x), (2.7)

where m is the Riemannian volume measure on M , given in local coordinates
by

√
det gdx1 . . . dxn, and the measure dxω on Sx

g is the unique probability measure
which is invariant under rotations, this is the volume measure of Sx

g with respect to
the metric gx (in the local coordinates, we can use as in Lemma 3.1 the isometry
between Sx

g and Sn−1 given by the multiplication by σ). This measure µ is invariant
under the geodesic flow.

Let us do two remarks here: first of all we get that the system (2.5) is independent
of the chart, in the sense that the law of the particle (x, ω) ∈ UM is independent of
the choice of the Brownian motion and the local chart. So if the manifold does not
present a pathological behavior, for example if we can find T > 0 such that around
any point there is a local chart including the ball of radius T (the manifold is then
said to have a positive radius of injectivity, which is the case when the manifold is
compact), then we can define step by step the global dynamics for the particle.

Secondly, this expression of the dynamics can be very convenient in some cases,
for example when the manifold is flat, and the Christoffel symbols are simple. More-
over, it involves only 2n variables, and a Brownian motion of dimension n, for dy-
namics taking place in a manifold UM of dimension 2n−1. But for other cases, such
as the unit sphere for example, the computations can be hard, even if the manifold
has a “simple” expression, as an embedding for example.

With these remarks in mind, one can try to define the dynamics in an extrinsic
point of view, at the cost of working in a higher-dimensional ambient space. This will
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define global dynamics in time, without the need to change the chart. Indeed, by the
celebrated embedding theorem of Nash, we can always consider the manifold M as a
submanifold of Rm, equipped with the canonical induced metric. In this framework,
the equation for a geodesic is given by

dx
dt

= ω,
dω
dt

= IIx(ω, ω),

where IIx(ω, ω) is the second fundamental form associated to the embedded Rieman-
nian manifold.

So we can get the stochastic differential equation (in the Stratonovich sense) for
the dynamics of (x, ω) ∈ R2m, corresponding to (2.5):dx = ω dt,

dω = η dt+
√

2d πx,ω ◦ dBt + IIx(ω, ω) dt,
(2.8)

where Bt is a standard Brownian motion in R2m. Finally, at the cost of working in
higher dimensions, we get a simple formulation of the dynamics. A lot of informa-
tion on the Brownian motion is lost by the projection πx,ω on the orthogonal of ω (a
space of dimension n− 1) in the tangent space Tx(M). Although the original Brow-
nian motion has 2m components, we only get a diffusion of dimension n − 1. The
equation (2.5) is well-defined even if ηx,ω(t) is not a vertical component, and has a
meaning for any initial condition on R2m, not necessarily in UM . Using Itō’s formula,
it is possible to show, following for example what have been done in the proof of
Proposition 3.1, that the solution of the stochastic differential equation lives almost
surely on UM if the initial condition is in UM and if for any (x, ω) ∈ UM , ηx,ω(t) is
in the tangent space Tx(M), and orthogonal to ω.

Now we have all the tools to define a model of interacting particles on a manifold.

2.2 System of interacting particles
We consider a system of N particles (xk, ωk) belonging to UM , and satisfying the
equation (2.8) (or (2.5) equivalently), where the Brownian motions used to define
the dynamics of the particles are independent, and where η will be a coupling term
depending on all the particles.

To specify the interaction, we first have to define a local mean velocity J̄(x) of
the particles at a given point x ∈ M . This velocity will be taken as the target
orientation for the particle located at x. Let suppose that the particle (xj, ωj) has
to be taken in account in this local velocity, we must evaluate the “contribution”
of ωj in the tangent space TxM . So we want to transport ωj from xj to x. We use
for that the geodesic joining xj and x (see figure 3.3).

Definition 2.1. Let K an observation kernel, K : M×M → R. We suppose that for
all y in the support of the function K(x, ·), there exists a unique geodesic joining x
and y. Then the average velocity around the particle x is defined as:

J̄(x) = 1
N

N∑
j=1

K(x, xj)τx(ωj),
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where τx(ωj) is the parallel transport of ωj along the geodesic from xj to x, with
respect to the Levi-Civita connection of M .

τx(ωj)
x

T
x
M ωj

xj

Figure 3.3: To compute the average velocity J̄ , each velocity ωj is transported along
a geodesic to x.

For example, to get the generalization of the model [28], we can consider a
kernel K depending only on the geodesic distance between its two arguments. That
is to say K(x, y) = f(d(x, y)), where d is the geodesic distance and f has compact
support in [0, r0], with r0 such that d(x, y) 6 r0 implies that there is one unique
geodesic joining x and y. When M is a compact Riemannian manifold, one can
always find such a radius of injectivity r0 > 0 (we also have relations between this
radius and bounds on the curvature of the manifold, see [7] and Chapter 5 of [17]
for some examples).

Remark 2.3. We could also generalize this definition, in the spirit of Chapter 1,
in order to model an angle of vision. That would imply to define a kernel K :
UM ×M → R depending also on an orientation ω at the point x:

J̄(x, ω) = 1
N

N∑
j=1

K(x, ω, xj)τx(ωj),

where, for example, K(x, ω, y) depends only on the geodesic distance d(x, y) and
on gx(vx,y, ω), where vx,y ∈ TxM is the direction at x of the unique geodesic joining x
and y.

We want the orientation to be relaxed to the unit vector with the same direction
as J̄k = J̄(xk), with rate ν(|J̄k|). We can take, as in the original time-continuous
model [28], the case ν(r) = ν0

r
, or ν = 1, as in the modification of Chapter 2. The

idea is to see that the function ω 7→ gx(ω, J) from Sx
g is maximal when ω is aligned

in the same direction as J (by the equality case in the Cauchy-Schwarz inequality).
The gradient (on Sx

g) of this function at a point ω is given by πx,ωJ = J − gx(ω, J)ω
(this is exactly the projection on the orthogonal of ω for the inner product gx, or
equivalently πx,ω is the orthogonal projection on TωSx

g). So the dynamical system
(in Sx

g) d
dt
ω = α(J − gx(ω, J)ω) is a relaxation towards the unit vector in the same
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direction as J with rate α|J |. So we choose the vertical component η in (2.3) to be
equal to ν(|J̄(x, ω)|)πx,ωJ̄(x, ω) (expressed in the local coordinates).

In summary, the dynamics of the particles are given by the following system of
coupled stochastic differential equations (in R2mN), which have to be understood in
the Stratonovich sense.

Definition 2.2. (Continuous Vicsek model on a manifold)
Let M be a complete manifold. The continuous Vicsek model for a system of N
particles (xk, ωk)k∈J1,NK on the unit tangent bundle UM (2.1) is written as:

dxk = ωkdt
dωk = ν(|J̄k|) πxk,ωk

J̄kdt+
√

2d πxk,ωk
◦ dBk

t + IIxk
(ωk, ωk)dt,

(2.9)

J̄k = J̄(xk, ωk) = 1
N

N∑
j=1

K(xk, ωk, xj)τxk
(ωj), (2.10)

where Bk
t are N independent Brownian motions in Rm.

We illustrate the model (2.9),(2.10) in the figure 3.4.

Remark 2.4. In the context of an embedded manifold, we can also propose an-
other definition for the mean velocity J̄ , since we can now do a sum in the ambient
space Rm: we can replace Γx(ωk) by ωk, and consider any kernel K : Rm ×Rm → R,
for example we can suppose that K(x, y) depends only on the ambient metric dis-
tance. In this case, the vector J̄(x) may not stay on the tangent space TxM , but
this is not a problem since the vertical component η = ν(|J̄(x, ω)|)πx,ωJ̄(x, ω) lies
in TωSx

g , if the orthogonal projection πx,ω is extended from all the ambient tangent
space of Rn to TωSx

g ⊂ TxM . The advantage of this system is that it is more conve-
nient to perform numerical simulations, since we do not have to compute the parallel
transport. The drawback is that this definition depends then on the embedding, and
not only on the manifold M . However, one can expect that in a given scaling limit
(when the radius of observation tends to 0 for example), we get that the two systems
coincide, the two metrics being locally close, and the parallel transport being close
to a translation in Rm.

When M = Rn and m = n, we get exactly the dynamics of [28] if ν(r) = ν0
r

(or those of Chapter 1 when the kernel is non isotropic, but with no dependence on
the local density), and the dynamics of Chapter 2 if ν = 1. When M = Tn is the
flat torus (which is the framework of the original Vicsek model [74], and of all the
numerical simulations based on it [16, 46, 60]) we get a formulation with m = 2n,
considering the identification (S1)n ⊂ R2n. However, in that case, it is more conve-
nient (and equivalent) to work in the local coordinates neighborhood system (2.5),
since the metric is always the canonical metric of the local coordinates, and the
Christoffel symbols vanish.

The next section is devoted to the derivation of a mean-field limit for this system
of particles, as the number N tends to infinity.
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TxM

J̄

πx,ωJ̄

x

ω

r0

Figure 3.4: In the dynamics (2.9),(2.10), the particle tries to align with the local
average velocity J̄ .

3 Propagation of chaos and mean-field limit
We define the empirical distribution fN of the particles by

fN(x, ω) = 1
N

N∑
k=1

δxk,ωk
(x, ω),

where the Dirac mass δx,ω at the point (x, ω) is defined by duality against smooth
functions h : UM → R with compact support:

∫
UM δx,ωh dµ = h(x, ω), where µ is

the natural measure on UM , called Liouville or kinematic measure, defined in (2.7).
We can then reformulate J̄ as a function of the empirical distribution J [fN ],

where
J [f ](x, ω) =

∫
UM

K(x, ω, x′)τx(ω′)f(x′, ω′) dµ(x′, ω′),

and we write H[f ] = ν(|J [f ]|)J [f ].
The equation of the dynamics, in the framework where M is embedded isomet-

rically in Rm, is then given by the stochastic differential system:dxk = ωk dt
dωk = πxk,ωk

H[fN ](xk, ωk) dt+
√

2d πxk,ωk
◦ dBk

t + IIxk
(ωk, ωk) dt,

(3.11)

The adaptation of what have been done in [13] for the model of Chapter 2 (which
is itself an adaptation of the classical coupling argument of [73] in the case where
the velocity belongs to the unit sphere) is then straightforward, in the special case
where ν = 1.

We introduce the artificial coupling processes (x̄k, ω̄k), solutions of a nonlinear
stochastic differential equation, which are built in order to behave like the pro-
cesses (x̄k, ω̄k) as N → ∞:

dx̄k = ω̄kdt
dω̄k = πx̄k,ω̄k

H[f̄t](x̄k, ω̄k)dt+
√

2d πx̄k,ω̄k
◦ dBk

t + IIx̄k
(ω̄k, ω̄k)dt

f̄t = law(x̄k, ω̄k).
(3.12)
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We remark the essential additional nonlinearity, through the condition that the
law f̄t at any time t must be the law of the process (xk, ωk). Actually we can see
that there is no coupling here between the particles, so we can drop the subscript k
and we get a nonlinear stochastic differential equation for a process with values
in UM , of dimension 2n− 1 contrary to the system (3.11), which is a process living
in (UM)N , of dimension N(2n− 1).

Let us express what partial differential equation the law of such a process would
satisfy, in view of Proposition 3.1:

∂tft + gx(ω,∇h
xft) + ∇x

ω · (πx,ωH[ft]ft) = d∆x
ωft. (3.13)

This non-linear (and non-local) Kolmogorov–Fokker–Planck equation is our mean-
field model.

We have the following results, in the case where ν = 1.

Theorem 3.2. Existence and uniqueness for the stochastic and mean-field models.
Let f0 be a probability measure on UM such that it has a finite second mo-

ment in x ∈ Rm (when viewed, with the embedding of M , as a measure on Rm).
Let (x0

k, ω
0
k) be N independent random variables in UM , with law f0. Suppose more-

over that the function K is bounded and sufficiently smooth, with the function τx

sufficiently smooth on the support of K(x, ω, ·). Then

• We have global existence and pathwise uniqueness for the particle system (3.11)
with initial conditions (x0

k, ω
0
k)k∈J1,NK, which takes values in (UM)N .

• For a given k ∈ J1, NK, we have global existence and pathwise uniqueness for
the artificial process (3.12) with initial condition (x0

k, ω
0
k), which takes values

in UM .

• There exists a unique weak solution to the nonlinear mean-field model (3.13)
(which is global), with initial condition f0. Moreover, it is the law of each of
the processes (x̄k, ω̄k), solutions to (3.12) with initial condition (x0

k, ω
0
k).

The proof follows exactly [13], and will be omitted here. Let us remark that
to deal with the case of a non-constant ν, we would need to have estimates on the
regularity of f 7→ H[f ] with respect to an appropriate Wasserstein distance. This
point is the object of ongoing work. In the case where we do not have enough
regularity, some recent results [53, 86] show that it is sometimes possible to give a
sense to such a system of stochastic differential equations.

Once we have this results, the idea is then to take two solutions of (3.11)-(3.12),
starting from the same initial conditions and driven by the same family of Brownian
motions, and estimate the difference of behavior between them.

Theorem 3.3. Estimates on the stochastic processes.
Under the conditions of Theorem 3.2, we denote by (xt

k, ω
t
k), and (x̄t

k, ω̄
t
k) the

solutions of (3.11) and (3.12) with the same initial conditions and driven by the
same Brownian motions. Then for all T > 0, there exists a constant C > 0, such
that for all t ∈ [0, T ], for all N > 1 and k ∈ J1, NK, we have

E[|xt
k − x̄t

k|2 + |ωt
k − ω̄t

k|] 6 C

N
.



108 Time-continuous Vicsek model on a manifold

Once again, the proof is omitted and proceeds as in [13], we get then that these
estimates allows to show (see [73, 14], fore more details on this topic) that:

• Any of the processes (xt
k, ω

t
k) converge in law, when k is fixed and N → ∞,

to ft, satisfying (3.13).

• The system (3.11) has the propagation of chaos property : the law of k particles
converges to the law of k independent particles of same law ft (when k = o(N)
as N → ∞).

• The empirical distribution fN converges towards ft at time t, when N → ∞.

The study of a hydrodynamic limit of this mean-field model, in the spirit of [28]
and Chapters 1-2 is left to future work. The first thing to do would be to define a
proper scaling, since here the manifold is not invariant under dilatation (as it was
the case for Rn). Another approach (see Remark 3.1 of Chapter 2) would consist
in doing the scaling at the microscopic individual level, the radius of the kernel
of observation being dependent on N (this is called “moderate interaction”). This
allows to have, when the number of particles tends to infinity, a limit which satisfies
a localized version of (3.13). We refer to [64] for an introduction to this approach.

In the following section, we provide simulations of the stochastic process 3.11, in
the case where M is the 2-dimensional sphere.

4 Simulations in the case of the sphere S2

We consider the special case of the 2-dimensional unit sphere S2, embedded in R3,
so we have n = 2 and m = 3. The unit tangent bundle US2 is composed of the
elements (x, ω) ∈ S2 × S2 such that x ·ω = 0 (we refer to [51] for a detailed study of
this unit tangent bundle, isomorphic to SO(3)). In that case the geodesics are the
great circles. The equation of such a geodesic is given by:

dx
dt

= ω,
dω
dt

= −x,

so the second fundamental form is given by IIx(ω, ω) = −x. The projection Πx on
the tangent plane at the point x is the projection on the orthogonal of x, and on
this plane the projection on the tangent line at the point ω is also the projection on
the orthogonal of ω, so finally the projection πx,ω is the orthogonal projection along
the vector x× ω, that we will denote Πx×ω. The system of particles (3.11) reads

dxk = ωk dt (4.14)
dωk = Πx×ωH̄k dt+ πx×ω ◦ dBk

t − x dt. (4.15)

We adopt a finite-difference approach to compute numerical simulations of this
system, with a given time interval ∆t > 0.

The first thing to remark is that it is easy to simulate the Brownian motion on the
circle. Indeed, if Bt is a Brownian motion of the line, then eiBt is a Brownian motion
on the unit circle, seen as a subset of C. Hence if θ is a random variable with normal
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distribution, then the Brownian motion on the line has the same law at time ∆t
than θ

√
∆t. and then the Brownian motion on the unit circle starting at 1 ∈ C

has the same law as eiθ
√

∆t. Then, we will see that all the elementary movements
of the particles can be done with small rotations. If v is a vector belonging to S2
and α ∈ R, we denote by R[v, α] the rotation of angle α around the axis v, with the
orientation given by the direction of v.

We first explain how we compute the mean velocity J̄k. First of all, we have
that the parallel transport along the geodesic (that is to say a great circle) from y
to x is given (whenever x and y are different and not antipodal) by the rotation of
axis aligned with the vector y × x and of angle α ∈ (0, π), where cosα = x · y, the
orientation being given by the orientation of y × x. So we get

τx(ωk) = R[ xk×x
|xk×x| , arccos(x · xk)]ωk.

We will not use an angle of vision here, as in (2.10), so we chose that the func-
tion K(x, y) depends only on the geodesic distance between x and y, which is given
by arccos(x · y). We finally get, writing rik = arccos(xi · xk),

J̄k = 1
N

∑
i

κ(rik)R[ xi×xk

|xi×xk| , rik]ωi.

In the simulations, we have taken κ(r) = 1{r6r0}, with r0 = .2. That is to say that
the sum is only computed for particles in the geodesic ball of radius r0. When r0 is
small, all the rotation are close to the identity, and we can take an approximation
of J̄k by

J̃k = 1
N

∑
i such that

xi·xk>cos(r0)

ωi,

and then taking as a definition J̄k = (Id−xk ⊗xk)J̃k, the projection ensuring that J̄k

belongs to the tangent plane at the point xk.
Finally we compute H̄k = ν(|J̄k|)J̄k. In the present case, we have taken, as

in [28], ν(r) = ν0
r

, with ν0 = 2.
We now turn to the simulation of the dynamics. Since the interaction on the

orientation is done in the plane orthogonal to xk, this is a rotation around xk, so
we update ωk first since we have J̄k in this plane. The contribution of the Brownian
motion corresponds to a rotation of angle θ

√
2d∆t, where θ is a random variable

with normal distribution, and the angular speed of the local rotation corresponding
to the relaxation is given by (xk × ωk) · H̄k. For the update of the position, the
transport of x along the great circle directed by ω with velocity 1 can be viewed as
a rotation around the vector x× ω, with angular speed 1.

We denote by xn
k , ω

n
k the positions and orientations of the particles at time n∆t.

Our discrete simulation is then given by:ω
n+1
k = R[xn

k , (xn
k × ωn

k ) · H̄n
k ∆t+ θn,k

√
2d∆t]ωn

k

xn+1
k = R[xn

k × ωn+1
k ,∆t] xn

k ,

where θn,κ are independent random variables with normal distribution. The following
figures depict the numerical simulation for d = .1 and ∆t = .01.
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N = 500 ,   t = 0.00

Figure 3.5: Initial position and orientation of particles.

N = 500 ,   t = 66.00

Figure 3.6: Position and orientation of particles at time t = 66.
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A Law of one particle
This appendix is devoted to the proof of Theorem 3.1, which gives the consistence
of the one particle model (2.5) and the evolution of its law. We recall the theorem
here:

Theorem 3.1. Law of one particle
There is local existence up to time T , and pathwise uniqueness for the sys-

tem (2.5) with initial condition x0, ω0 in UM , if the geodesic ball of radius T centered
at x0 is included in UM .

Moreover, if we denote by ft : UM → R the law of the process (xt, ωt), that is
to say the density probability function with respect to the natural measure of UM ,
defined in (2.7), we get that ft satisfies the following Kolmogorov–Fokker–Planck
equation:

∂tft + gx(ω,∇h
xft) + ∇x

ω · (η(x, ω)ft) = d∆x
ωft, (A.16)

where ∇x
ω· and ∆x

ω are the divergence and Laplace–Beltrami operators on the unit
sphere Sx

g of TxM , and ∇h
x is the projection on TxM of the horizontal component

of the gradient of f (on UM).More precisely, if we denote Ξ the (horizontal) vector
field in UM given by the geodesic flow at the point (x, ω), and gs is the Sasaki metric
on Tx,ωUM , we have gx(ω,∇h

xft) = gs(Ξ,∇x,ωf).

Proof. We first consider the more general system
dxi = vi dt,

dvi = η̃i(x, ω̃) dt+
√

2d π̃x,ω̃ σ ◦ dBt −∑
j,k Γi

jk v
j vk dt,

(A.17)

without the normalization condition (2.2) on v. The function ω̃ is chosen to be, for
each x, a smooth function of v ∈ TxM such that, for 1

2 6 |v|g 6 2, we have ω̃ = v
|v|g .

We then take the function η̃ as a sufficiently smooth extension of η given in TM and
not only on UM , and we define π̃x,ω̃u = u− gx(ω̃, u)ω̃.

We have local existence and pathwise uniqueness for this equation, and using Itō
formula for a Stratonovich formulation, (see for example [48], Proposition 1.1.16),
we get, for a function f ∈ C2(U × Rn) and up to explosion time

dh(xt, vt) =
∑

i

[vi∂xih+ (η̃i −
∑
j,k

Γi
jk v

j vk)∂vih]dt

+
√

2d
∑
i,j

(σij − ω̃i
∑
k,`

ω̃` g`k σkj)∂vih ◦ dBj
t .

Let us take h = ∑
j,k gjk(x) vj vk = |v|2g, therefore we have ∂xih = ∑

j,k ∂xigjk v
j vk

and ∂vih = 2∑` gi` v
`. Hence, using the definition of the Christoffel symbols:

Γi
jk = 1

2
∑
m

gim(∂xjgkm + ∂xkgjm − ∂xmgjk),
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where (gij) is the inverse matrix of (gij) (which is symmetric), we get that∑
i,j,k

Γi
jk v

j vk∂vih =
∑

i,j,k,`,m

gi`g
im(∂xjgkm + ∂xkgjm − ∂xmgjk) vj vk v`

=
∑

j,k,m

(∂xjgkm + ∂xkgjm − ∂xmgjk) vj vk vm

=
∑
i,j,k

∂xigjk v
j vk vm =

∑
i

vi∂xih,

which is nothing else than the fact that the geodesic flow preserves the metric.
Whenever 1

2 6 |v|g 6 2, we have on one hand∑
i

η̃i(x, ω̃)∂vih =
∑
i,`

ηi(x, 1
|v|g v)gi` v

` = 0,

in virtue of (2.4), and on the other hand

∑
i

ω̃i
∑
k,`

ω̃` g`k σkj∂vih = 2 1
|v|2g

∑
i,k,`,m

g`k σkjgim v
i vm vk v`

= 2
∑
k,`

g`k σkj v
k v` =

∑
i

σij∂vih.

So we get dh(xt, vt) = 0, that is to say |v|2g is a constant. So we have that if the
initial condition is such that |v0|g = 1, then, up to explosion time, we have |v|g = 1,
and then this is a solution of (2.5). The pathwise uniqueness is then obvious, since
a solution of (2.5) is also solution of (A.17). Since dxi = vi dt, the explosion time is
greater than T if the geodesic ball of radius T and centered at x0 is included in the
local chart.

For the second part of the proposition, we use the correspondence with Itō for-
mula, see for example [44], section 4.3.6. The Fokker–Planck equation for the law f̃
of a system satisfying (A.17) is given by

∂tf̃ +
∑

i

∂xi(vif̃) + ∂vi((η̃i(x, ω̃) −
∑
j,k

Γi
jk v

j vk)f̃) = d
∑
i,j,k

∂vi [bik∂vj (bjkf̃)],

where bij = σij − ω̃i∑
k,` ω̃

` g`k σkj.
Actually, this equation must be understood in the weak sense for f̃ as a measure

on U ×Rn, that is to say that for any function h̃ : U ×Rn → R, smooth with compact
support, we have

d
dt

∫
U×Rn

h̃ df̃ =
∫

U×Rn

∑
i

vi∂xih̃+ (η̃i(x, ω̃) −
∑
j,k

Γi
jk v

j vk)∂vih̃

 df̃

+
∫

U×Rn
d
∑
i,j,k

bjk∂vj (bik∂vih̃) df̃ .
(A.18)

Now the previous point shows that if the initial condition is a random vari-
able taking values on UM , then the measure f̃ is supported on UM . We denote
by f its density probability function with respect to the natural measure of UM ,
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so for any function h such that h(x, ω) = h̃(x, ω) for all ω such that |ω|g = 1, we
have

∫
U×Rn h̃ df̃ =

∫
UM h f dµ =

∫
M(
∫
Sx

g
h(x, ω)f(x, ω)dxω)dm(x).

If we take a smooth function h : UM → R, we define h̃(x, v) to be h(x, ω̃).
By definition since η is orthogonal to ω (with respect to the metric g(x)), then it
can be viewed as a vector field on Sx

g , written ∑
i η

i∂vi in local coordinates, and
then gx(∇ωh, η) is written ∑i η

i∂vih. So we get, by Stokes’ theorem, that
∫

U×Rn

∑
i η̃

i(x, ω̃) ∂vih̃ df̃ =
∫

M(
∫
Sx

g
gx(∇ωh, η)f(x, ω)dxω)dm(x)

=
∫

M(
∫
Sx

g
gx(∇ωh, ηf)dxω)dm(x)

= −
∫

M(
∫
Sx

g
h∇ω · (ηf) dxω)dm(x) = −

∫
UM h∇ω · (ηf) dµ.

Similarly, the horizontal vector field Ξ (the geodesic flow) is given, in local coordi-
nates, by ∑i ω

i∂xi
−∑

j,k Γi
jk v

j vk∂vi , hence we have (with gs the Sasaki metric):

∫
U×Rn(∑i ω

i∂xi
h̃−

∑
j,k

Γi
jk v

j vk∂vih̃) df̃ =
∫

UM gs(∇UMh,Ξf) dµ

= −
∫

UM h∇UM · (Ξf) dµ
= −

∫
UM h f ∇UM · Ξ dµ−

∫
UM h gs(∇UMf,Ξ) dµ

= −
∫

UM h gx(∇h
xf, ω) dµ

by the definition of the Sasaki metric on horizontal vector fields, where ∇h
xf is

the projection on TxM of the horizontal part of ∇UMf . In the last line of the
previous computation, we have used the fact that the geodesic flow is incompressible,
hence ∇UM · Ξ = 0 (see [69] for more details).

It remains to show that ∑i,j,k bjk∂vj (bik∂viϕ) = ∆g
ωϕ on Sx

g for a function ϕ(ω̃),
in order to get, by a double integration by parts,∫

U×Rn

∑
i,j,k

bjk∂vj (bik∂vih̃) df̃ =
∫

UM
h∆g

ωf dµ.

The above claim is very similar to Theorem 3.1.4 of [48]. We will use the isometry
defined in the proof of Lemma (3.1). We work in the tangent space TxM identified
to Rn with local coordinates (vi). For ϕ a function of ω̃ (being itself a function
of v), with ω̃ = v

|v|g for 1
2 6 |v|g 6 2, we write ϕ̄ the function such that ϕ(v) = ϕ̄(v̄),

with σv̄ = v, and σω̄ = ω̃, where σ is the positive symmetric square root of g.
We write 〈·, ·〉 for the canonical inner product, 〈·, ·〉g for the inner product induced
by g. We have 〈u, v〉 = 〈σu, σv〉g so the linear map ω 7→ σω is an isometry from
the manifold Sn−1 to Sg. Therefore we have ∆g

ωϕ(ω̃) = (∆ω̄ϕ̄)(ω̄)). If we denote
by βij = (Id − ω̄ ⊗ ω̄)ij = δij − ω̄iω̄j, and we define P̄k = ∑

i βik∂vi (this is the
orthogonal projection of the vector ek on the standard unit sphere at the point ω,
seen as a vector field on the unit sphere), we have that ∆ω̄ = ∑

k P̄
2
k by Theorem 3.1.4

of [48]. So since

(P̄kϕ̄)(ω̄) =
∑

i

βik∂vi(ϕ(σω̄)) =
∑
i,j

βikσij(∂vjϕ)(ω̃) = (Pkϕ)(ω̃),
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which gives then that ∆g
ω = ∑

k P
2
k , with

Pk =
∑
i,j

βikσij∂vj = σkj∂vj −
∑
i,j

ω̄iω̄kσij

= σkj∂vj −
∑

i,j,`,m

ω̃`σi`ω̃mσkmσij∂vj = σkj∂vj −
∑
j,m

ω̃jω̃mσkm∂vj

where (σij) is the inverse matrix of σ. We get σkm = ∑
` gk`σ`m, and the terms bjk

appear. We have Pk = ∑
i bjk∂vj , and this gives the claim.

So we finally have, using (A.18):

d
dt

∫
UM

h f +
∫

UM
h [∇ω · (ηf) + gx(∇h

xf, ω) − d∆g
ωf ] dµ = 0,

which gives that the law f is a weak solution of the partial differential equa-
tion (A.16), and this ends the proof.
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Chapter 4

Dynamics in a kinetic model of
oriented particles with phase
transition

This chapter has been done in collaboration with Jian-Guo Liu, when visiting him
in Duke University, and later on at the Mathematical Sciences Center of Tsinghua
University, Beijing. It has given an article [42] submitted in SIAM Journal on
Mathematical Analysis.

Abstract

Motivated by a phenomenon of phase transition in a model of alignment
of self-propelled particles, we obtain a kinetic mean-field equation which is
nothing else than the Doi equation (also called Smoluchowski equation) with
dipolar potential.

In a self-contained presentation, using only basic tools, we analyze the dy-
namics of this equation in any dimension. We first prove global well-posedness
of this equation, starting with an initial condition in any Sobolev space. We
then compute all possible steady-states. There is a threshold for the noise pa-
rameter: over this threshold, the only equilibrium is the uniform distribution,
and under this threshold, there is also a family of non-isotropic equilibria.

We give a rigorous prove of convergence of the solution to a steady-state
as time goes to infinity. In particular we show that in the supercritical case,
the only initial conditions leading to the uniform distribution in large time
are those with vanishing momentum. For any positive value of the noise
parameter, and any initial condition, we give rates of convergence towards
equilibrium, exponentially for both supercritical and subcritical cases and al-
gebraically for the critical case.

Key words: Doi–Onsager equation, Smoluchowski equation, nonlinear Fokker–
Planck equation, dipolar potential, phase transition, LaSalle invariance principle,
convergence to steady-states.

AMS subject classification: 35K55, 35Q84, 35R01, 82B26, 82C26.
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1 Introduction
Phase transition and large time behavior of large interacting oriented/rod-like parti-
cle systems and their mean field limits have shown to be interesting in many physical
and biological complex systems. Examples are: paramagnetism to ferromagnetism
phase transition near Curie temperature, nematic phase transition in liquid crys-
tal or rod-shaped polymers, emerging of flocking dynamics near critical mass of
self-propelled particles, etc.

The dynamics on orientation for self-propelled particles proposed by Vicsek et
al [74] to describe, for instance, fish schooling or bird flocking, present such a behav-
ior in numerical simulations. As the density increases (or as the noise decreases) and
reaches a threshold one can observe strong correlations between the orientations of
particles. The model is discrete in time and particles move at constant speed follow-
ing their orientation. At each time step, the orientation of each particle is updated,
replaced by the mean orientation of its neighbors, plus a noise term.

A way to provide a time-continuous version of this dynamical system, which
allows to take a mean-field limit (and even a macroscopic limit), has been proposed
by Degond and Motsch [28]. Instead of replacing the orientation at the next time
step, they introduce a parameter playing the role of a rate of relaxation towards this
mean orientation. Unfortunately the mean-field limit of this model does not present
phase transition. In Chapter 1, we proved the robustness of the behavior of this
model when this rate of relaxation depends on a local density. In particular, phase
transition is still absent. However, when this parameter is set to be proportional to
the local momentum of the neighboring particles, we will see that the model present
a phenomenon of phase transition. This phenomenon occurs on the orientation
dynamics, so we will only consider here the spatial homogeneous dynamics. The
study of this model when we take in account the space variable is the object of
Chapter 2, in collaboration with J.-G. Liu and P. Degond.

The particular model is described as follows: we have N oriented particles, de-
scribed by vectors ω1, . . . , ωN belonging to S, the unit sphere of Rn, and satisfying
the following system of coupled stochastic differential equations (which must be
understood in the Stratonovich sense), for k ∈ J1, NK:

dωk = (Id − ωk ⊗ ωk)Jk dt+
√

2τ (Id − ωk ⊗ ωk) ◦ dBk
t , (1.1)

Jk = 1
N

N∑
j=1

ωj. (1.2)

The term (Id −ωk ⊗ωk) denotes the projection on the hyperplane orthogonal to ωk,
and constrains the norm of ωk to be constant. The terms Bk

t stand forN independent
standard Brownian motions on Rn, and then the stochastic term (Id−ωk ⊗ωk)◦dBk

t

represents the contribution of a Brownian motion on the sphere S to the model. For
more details on how to define Brownian motion on a Riemannian manifold, see [48].

Without this stochastic term, equation (1.1) can be written

ω̇k = ∇ω(ω · Jk)|ω=ωk
,

where ∇ω is the tangential gradient on the sphere (see the beginning of Section 2.1
for some useful formulas on the unit sphere). So the model can be understood as
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a relaxation towards a unit vector in the direction of Jk, subjected to a Brownian
motion on the sphere with intensity

√
2τ . The only difference with the model pro-

posed in [28] (in the spatial homogeneous case) is that Jk is there replaced by νΩk,
where Ωk is the unit vector in the direction of Jk and the frequency of relaxation ν is
constant (or dependent on the local density in Chapter 1). One point to emphasize
is that, in that model, the interaction cannot be seen as a sum of binary interac-
tions, contrary to the model presented here. Here the mean momentum Jk does not
depend on the index k (but this is not true in the inhomogeneous case, where the
mean is taken among the neighboring particles).

To simplify notations, we work with the uniform measure of total mass 1 on the
sphere S. We denote by fN : R+ × S → R+ the probability density function (de-
pending on time) associated to the position of one particle. Then, as the number N
of particles tends to infinity, fN tends to a probability density function f satisfying

∂tf = Q(f), (1.3)

with

Q(f) = −∇ω · ((Id − ω ⊗ ω)J [f ]f) + τ∆ωf, (1.4)

J [f ] =
∫
S
ω f(., ω) dω. (1.5)

In the model of [28], J [f ] is just replaced in (1.4) by ν Ω[f ], where Ω[f ] is the unit
vector in the direction of J [f ].

The first term of Q(f) can be formally derived using a direct computation with
the empirical distribution of particles. And the diffusion part comes from Itō’s
formula. In a recent work [13], a rigorous derivation of this mean-field limit has
been provided, even in the inhomogeneous case. This derivation is linked with the
so-called “propagation of chaos” property. We refer to [73] for an introduction to
this notion. The laboratory example given in this reference is the original model of
McKean [59] which is a more general version of our system in Rn instead of S (in
that case, equation (1.3) is called McKean-Vlasov equation). The main point is to
adapt the theory in the framework of stochastic analysis on Riemannian manifolds.

Notice that equation (1.3) can be written in the form

∂tf = ∇ · (f∇Ψ) + τ∆f,

with
Ψ(ω, t) = −ω · J(t) =

∫
S
K(ω, ω̄) f(t, ω̄) dω̄.

This equation is known as Doi equation (or Doi–Onsager, Smoluchowski, or even
nonlinear Fokker–Planck equation) and was introduced by Doi [32] as a gradient
flow equation for the Onsager free energy functional:

F(f) = τ
∫
S
f(., ω) ln f(., ω)dω + 1

2

∫
S×S

K(ω, ω̄)f(., ω) f(., ω̄) dωdω̄. (1.6)

This functional was proposed by Onsager [65] to describe the equilibrium states
of suspensions of rod-like polymers. They are given by the critical points of this
functional.
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Defining the chemical potential µ as the first order variation of F(f) under the
constraint

∫
S f = 1, we get µ = τ ln f + Ψ, and the Doi equation becomes

∂tf = ∇ · (f∇µ).

In the original work of Onsager, the kernel has the form K(ω, ω̄) = |ω × ω̄|,
but there is another form, introduced later by Maier and Saupe [58], which leads to
similar quantitative results: K(ω, ω̄) = −(ω · ω̄)2. In our case, the potential given
by K(ω, ω̄) = −ω · ω̄ is called the dipolar potential. This is a case where the arrow
of the orientational direction has to be taken in account.

One of the interesting behavior of the Doi–Onsager equation is the phase tran-
sition bifurcation. This is indeed easy to see (here with the dipolar potential) from
the following linearization around the uniform distribution: if f is a probability
density function, solution of (1.3), we write f = 1 + g, so

∫
S g dω = 0 and we can

get the equation for g. We multiply the equation by ω and integrate, using the
formula

∫
S ω ⊗ ω dω = 1

n
Id (this is a matrix with trace one and commuting with

any rotation) and the tools in the beginning of Section 2.1. We get the linearized
equation for g and J [g]:

∂tg = τ∆ωg + (n− 1)ω · J [g] +O(g2),
d
dt
J [g] = (n− 1)( 1

n
− τ)J [g] +O(g2).

Therefore if we take the linear part of this system, we can solve the second
equation directly, and the first one becomes the heat equation with a known source
term. Finally, around the constant state, the linearized Doi equation is stable if τ >
1
n
, and unstable if τ < 1

n
. We expect to find another kind of equilibrium in this

regime. The work has been done in [37] for the dimension n = 3, the distribution
obtained is called Fisher-Von Mises distribution [82]. As far as we know, this is the
only work dealing with the dipolar potential alone.

A lot of work has been done to study the equilibrium states for the Maier–Saupe
potential, and in particular to show the axial symmetry of these steady states. A
complete classification has been achieved for the two and three-dimensional cases
in [55] (see also [85], including the analysis of stability under a weak external shear
flow). The interesting behavior, besides the phase transition, is the hysteresis phe-
nomenon: before a first threshold, only the anisotropic equilibrium is stable, then
both anisotropic and uniform equilibria are stable, and after a second threshold, the
only equilibrium is the uniform distribution. In the case of a coupling between the
Maier–Saupe and the dipolar, it is shown in [89] that the only stable equilibrium
states are axially symmetric. To our knowledge, less work has been done to study the
dynamics of the Doi–Onsager equation, in particular the rate at which the solution
converges to a steady-state.

The purpose of this chapter is to give a rigorous proof of the phase transition in
any dimension for the dipolar potential, and study the large time dynamics and the
convergence rates towards equilibrium states.

In Section 2, we give some general results concerning equation (1.3). We provide
a self-contained proof for existence and uniqueness of a solution with initial nonneg-
ative condition in any Sobolev space. We show that the solution is instantaneously
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positive and in any Sobolev space (and actually analytic in the space variable), and
we obtain uniform bounds in time for each Sobolev norm.

In Section 3, we use the Onsager free energy (decreasing in time) to analyze the
general behavior of the solution as time goes to infinity. We prove a kind of LaSalle
principle, implying that the solution converges, in the ω-limit sense, to a given set
of equilibria. We determine all the steady states, and see that the value 1

n
is indeed

a threshold for the noise parameter τ . Over this threshold, the only equilibrium is
the uniform distribution. When τ < 1

n
, two kinds of equilibria exist: the uniform

distribution, and a family of non-isotropic distributions (called Fischer-Von Mises
distributions), with a concentration parameter κ depending on τ .

Finally, in Section 4, we show that the solution converges strongly to a given
equilibrium. We first obtain a new conservation relation, which plays the role of an
entropy when τ > 1

n
, and shows a global convergence to the uniform distribution

with rate proportional to τ − 1
n
. Then we prove that, in the supercritical case τ < 1

n
,

the solution converges to a non-isotropic equilibrium if and only if the initial drift
velocity |J [f0]| is non-zero (if it is zero, the equation reduces to the heat equation,
and the solution converges exponentially fast to the uniform distribution). We prove
in that case that the convergence to this steady-state is exponential in time, and
we give the asymptotic rate of convergence. Finally, in the critical case τ = 1

n
, we

show that the speed of convergence to the uniform distribution is algebraic (more
precisely the decay in any Sobolev norm is at least C√

t
).

2 General results

2.1 Preliminaries: some results on the unit sphere
This subsection consists essentially in a main lemma, allowing to perform some
estimates on the norm of integrals of the form

∫
S g∇ωh, where h and g are real

functions with mean zero.
But let us start by some useful formulas.
For V a constant vector in Rn, we have:

∇ω(ω · V ) = (Id − ω ⊗ ω)V
∇ω · ((Id − ω ⊗ ω)V ) = −(n− 1)ω · V,

where ∇ω (resp. ∇ω·) stands for the tangential gradient (resp. the divergence) on
the unit sphere. When no confusion is possible, we will just use the notation ∇.

Then, taking the dot product with a given tangent vector field A or multiplying
by a regular function f and integrating by parts, we get∫

S
ω∇ω · A(ω)dω = −

∫
S
A(ω)dω∫

S
∇ωfdω = (n− 1)

∫
S
ωfdω.

We then introduce some notations. We denote by Ḣs(S) the subspace composed
of mean zero functions of the Sobolev space Hs(S). This is a Hilbert space, associ-
ated to the inner product 〈g, h〉2

Ḣs = 〈(−∆)sg, h〉, where ∆ is the Laplace–Beltrami
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operator on the sphere. This has also a sense for any s ∈ R by spectral decomposition
of this operator. We will denote by ‖ · ‖Ḣs the norm on this Hilbert space.

We then define the so-called conformal Laplacian ∆̃n−1 on the sphere (see [9])
which plays a role in some Sobolev inequalities. This is a positive definite op-
erator (pseudodifferential operator of degree n − 1, mapping continuously Ḣs(S)
into Ḣs−n+1(S), which is a differential operator when n is odd) given by

∆̃n−1 =



∏
06j6n−3

2

(−∆ + j(n− j − 2)) for n odd,

(
−∆ + (n

2 − 1)2
) 1

2
∏

06j6n
2 −2

(−∆ + j(n− j − 2)) for n even.
(2.7)

Equivalently, it can be also defined by

∆̃n−1 Y` = `(`+ 1) . . . (`+n− 2)Y` for any spherical harmonic Y` of degree `. (2.8)

Here is the main lemma.

Lemma 4.1. Estimates on the sphere.

1. If h in Ḣ−s+1(S) and g in Ḣs(S), the following integral is well defined and we
have ∣∣∣∣∫

S
g∇h

∣∣∣∣ 6 C‖g‖Ḣs‖h‖Ḣ−s+1 (2.9)

where the constant C depends only on s and n.

2. We have the following estimation, for any g ∈ Ḣs+1(S):∣∣∣∣∫
S
g∇(−∆)sg

∣∣∣∣ 6 C‖g‖2
Ḣs , (2.10)

where the constant C depends only on s and n.

3. We have the following identity, for any g ∈ Ḣ− n−3
2 :∫

S
g∇∆̃−1

n−1g = 0 (2.11)

Let us make some remarks on these statements. The first one is just expressing
the fact that the gradient operator (or more precisely any of its component e · ∇ for
a given unit vector e) is well defined as an operator sending Ḣ−s+1(S) continuously
into Ḣ−s(S) for any s.

The second one is actually a commutator estimate. It is equivalent to the fact
that for any given unit vector e, and for any g, h ∈ Ḣs+1 we have∣∣∣∣∫

S
ge · ∇(−∆)sh+ he · ∇(−∆)sg

∣∣∣∣ 6 C̃‖g‖Ḣs‖h‖Ḣs .

Defining the operator F by

Fg = e · ∇(−∆)sg − (−∆)s∇ · ((Id − ω ⊗ ω)eg)
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and integrating by parts, this inequality becomes |
∫
S hFg| 6 C̃‖g‖Ḣs‖h‖Ḣs . In other

words, F sends Ḣs(S) continuously into Ḣ−s(S) for any s.
So since F = [e · ∇, (−∆)s] + (n − 1)(−∆)se · ω, this second statement (2.10)

expresses that the commutator [∇, (−∆)s] is an operator of degree 2s.
With the same point of view, the last equality (2.11) gives an exact computation

of the commutator of the gradient and the inverse of conformal Laplacian.
This is just saying that [∇, ∆̃−1

n−1] = −(n − 1)∆̃−1
n−1ω, or, multiplying left and

right by ∆̃n−1, that [∇, ∆̃n−1] = (n− 1)ω∆̃n−1.
The proof of this lemma relies on some computations on spherical harmonics,

and is given in Appendix A.

2.2 Existence, uniqueness, positivity, regularity.
We present here a self-contained proof of well-posedness of the problem (1.3), work-
ing in any Sobolev space for the initial condition. Some analogous claims are given
in [21], without proof, starting for a continuous nonnegative function. They are
based on arguments of [15], stating that the Galerkin method based on spherical
harmonics converges (exponentially fast) to the unique solution. They are weaker
with respect to the initial conditions and the positivity, but stronger for the regular-
ity of the solution (analytic in space). As a remark we will give the same regularity
results, and prove it in Appendix A.2.

Definition 2.1. Weak solution.
For T > 0, the function f ∈ L2((0, T ), Hs+1(S)) ∩H1((0, T ), Hs−1(S)) is said to

be a weak solution of (1.3) if for almost all t ∈ [0, T ], we have for all h ∈ H−s+1(S)

〈∂tf, h〉 = −τ〈∇ωf,∇ωh〉 + 〈f, J [f ] · ∇ωh〉, (2.12)

where 〈·, ·〉 is the usual duality product for distributions on the sphere S.

Since it is sometimes more convenient to work with mean zero functions (in order
to use the main lemma of the previous subsection), we reformulate this problem in
another framework. We set f = 1 + g so that f is a weak solution if and only
if g ∈ L2((0, T ), Ḣs+1(S)) ∩ H1((0, T ), Ḣs−1(S)) with, for almost all t ∈ [0, T ], and
for all h ∈ Ḣ−s+1(S),

〈∂tg, h〉 = −τ〈∇ωg,∇ωh〉 + (n− 1)J [g] · J [h] + 〈g, J [g] · ∇ωh〉. (2.13)

That makes sense to look for a weak solution with prescribed initial condition
in Hs, since it always belongs to C([0, T ], Hs(S)), as stated by the following propo-
sition.

Proposition 2.1. If g ∈ L2((0, T ), Ḣs+1(S)) ∩ H1((0, T ), Ḣs−1(S)), then, up to
redefining it on a set of measure zero, it belongs to C([0, T ], Ḣs(S)), and we have

max
[0,T ]

‖u(t)‖2
Ḣs 6 C

∫ T

0
‖u‖2

Ḣs+1 + ‖∂tu‖2
Ḣs−1 ,

where the constant C depends only on T .
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The proof in the case s = 0 is the same as in [35], Thm 3, §5.9.2. To do the
general case, we apply the result to (−∆) s

2 g.

Theorem 4.1. Given an initial probability measure f0 in Hs(S), there exists a
unique weak solution f of (1.3) such that f(0) = f0. This solution is global in time
(the definition above is valid for any time T > 0). Moreover, f ∈ C∞((0,+∞) ×S),
with f(t, ω) > 0 for all positive t.

We also have the following instantaneous regularity and uniform boundedness
estimates (for m ∈ N, the constant C depending only on τ,m, s), for all t > 0:

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs .

The proof consists in several steps, which we will treat as propositions. We first
use a Galerkin method to prove existence on a small interval. We then show the
continuity with respect to initial conditions on this interval (and so the uniqueness).
Next, we prove the positivity of 1 + g for regular solutions. This gives us a better
estimate of J [g]. Repeating the procedure on the following small interval, and so
on, we can show that this extends to any t > 0. Regularizing the initial condition
give then global existence in any case.

We finally obtain the instantaneous regularity and boundary estimates by de-
composing the solution between low and high modes.

For the proof of all propositions, we will denote by C0, C1, . . . some positive
constants which depends only on s and τ . We will also fix one parameter K > 0
(which will be a bound on the norm of initial condition), and denote by M0,M1, . . .
some positive constants which depends only on s and τ , and K.

Proposition 2.2. Existence: Galerkin method.
We set

T = 1
C1

ln
(

1 + 1
1 + 2C2K

)
, (2.14)

where the constant C1 and C2 will be defined later.
If ‖g0‖Ḣs 6 K, then we have existence of a weak solution on [0, T ] satisfy-

ing (2.13), uniformly bounded in L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)) by a con-
stant M1.

Proof. We denote by PN the space spanned by the first N (non-constant) eigenvec-
tors of the Laplace–Beltrami operator. This is a finite dimensional vector space,
included in Ḣp(S) for all p, and containing the functions of the form ω 7→ V · ω (see
Appendix A for more details).

Let gN ∈ C1(I, PN) be the unique solution of the following Cauchy problem,
defined on a maximal interval I ⊂ R+ (“non-linear” ODE on a finite dimensional
space): 

d
dt
gN = ΠN(τ∆ωg

N + (n− 1)(1 + gN)ω · J [gN ] − J [gN ] · ∇ωg
N),

gN(0) = ΠN(g0),
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where ΠN is the orthogonal projection on PN . The first equation is equivalent to
the fact that for any h ∈ PN , we have

d
dt

〈gN , h〉 = −τ〈∇ωg
N ,∇ωh〉 + (n− 1)J [gN ] · J [h] + 〈gN , J [gN ] · ∇ωh〉. (2.15)

The goal is to prove that [0, T ] ⊂ I and that there exists an extracted sequence Nk

such that, as k → ∞,

• gNk converges weakly in L2((0, T ), Ḣs+1(S)) to a function g,

• ∂tg
Nk converges weakly to ∂tg in L2((0, T ), Ḣs(S)),

• J [gNk ] → J [g] uniformly.

We have that (−∆)sgN ∈ PN , so we can take it for h, put it in (2.15) and use the
second part of Lemma 4.1 to get:

1
2

d
dt

‖gN‖2
Ḣs + τ‖gN‖2

Ḣs+1 6 C0|J [gN ]|‖gN‖2
Ḣs + (n− 1)s|J [gN ]|2 (2.16)

6 C1‖gN‖2
Ḣs(1 + C2‖gN‖Ḣs). (2.17)

Indeed, any component of ω belongs to any Ḣ−s, then J [gN ] = 〈ω, gN〉 is controlled
by any Ḣs norm of gN .

Solving this inequality, we obtain for 0 6 t < C−1
1 ln(1 + (C2‖ΠN(g0)‖Ḣs)−1),

‖gN‖Ḣs 6
‖ΠN(g0)‖Ḣs

e−C1t − C2‖ΠN(g0)‖Ḣs(1 − e−C1t)
. (2.18)

Then we have ‖gN(t)‖Ḣs 6 2‖g0‖Ḣs for all t in [0, T ]. There is no finite-time blow
up in [0, T ], then the ODE (2.15) has a solution on [0, T ], for any N ∈ N.

Now we denote by M0 a bound for |J [gN ]| on [0, T ]. The inequality (2.16) gives

1
2

d
dt

‖gN‖2
Ḣs + τ‖gN‖2

Ḣs+1 6 (1 +M0)C3‖g‖2
Ḣs .

Solving this inequality, we get for t ∈ [0, T ]

‖gN‖2
Ḣs + τ

∫ T

0
‖gN‖2

Ḣs+1 6 ‖g0‖2
Ḣse

(1+M0)C3T .

We then use the ODE (2.15) and this estimate to control the derivative of g.
Taking h ∈ L2((0, T ), Ḣ−s+1(S)), and integrating the equation in time, we get

∫ T

0
‖∂tg

N‖2
Ḣs−1 6 (C4 +M0)‖g0‖2

Ḣse
(1+M0)C3T

Then we can take M2
1 = K2e(1+M0)C3T max(τ−1, C4 + M0), and we get that gN is

bounded by M1 in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)).
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Now, we just need estimates for d
dt
J [gN ]. We can take h = ω·V in the ODE (2.15)

and use the tools given in the beginning of this section. We get∣∣∣∣∣ d
dt
J [gN ]

∣∣∣∣∣ =
∣∣∣∣n− 1
n

(1 − τn)J [gN ] −
∫
S
(Id − ω ⊗ ω)J [gN ]gN dω,

∣∣∣∣
6 (C5 +M0C6)‖g0‖Ḣse

1
2 (1+M0)C3T .

Indeed, again, since any component of Id − ω ⊗ ω is in Ḣ−s, we can control the
term

∫
S(Id − ω ⊗ ω)gN dω by any Ḣs norm of gN , uniformly in N and in t ∈ [0, T ].

In summary if we suppose that g0 is in Ḣs(S), for some s ∈ R, we have that gN

is bounded in L2((0, T ), Ḣs+1(S))∩H1((0, T ), Ḣs−1(S)), and that J [gN ] and d
dt
J [gN ]

are uniformly bounded in N and t ∈ [0, T ].
Then, using weak compactness and the Ascoli-Arzela theorem, we can find an

increasing sequence Nk, a function g ∈ L2((0, T ), Ḣs+1(S)) ∩ H1((0, T ), Ḣs−1(S)),
and a continuous function J : [0, T ] → Rn such that, as k → ∞,

• J [gNk ] converges uniformly to J on [0, T ],

• gNk converges weakly to g in L2((0, T ), Ḣs+1(S)) and in H1((0, T ), Ḣs−1(S)).

The limit g is also bounded by M1 in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)).
Then, since we have

∫ T
0
∫
S ϕ(t)ω(gNk − g) dω dt → 0 for any smooth function ϕ,

we get
∫ T

0 ϕ(t)(J [g] − J) dt = 0 and so J = J [g].
For a fixed h ∈ PM passing the weak limit in (2.15) (for Nk > M), we get for

almost every t ∈ [0, T ] that

∀h ∈ PM , 〈∂tg, h〉 = −τ〈∇ωg,∇ωh〉 + (n− 1)J [g] · J [h] + 〈g, J [g] · ∇ωh〉.

And this is valid for any M (except on a countable union of subsets of [0, T ] of
zero measure). By density (and using the first part of Lemma 4.1), we have that g
is a weak solution of our problem.

Now for any h ∈ Ḣ−s+1(S), we have that 〈gN(t) − ΠN(g0), h〉 =
∫ t

0〈∂tg
N , h〉

is controlled by M1
√
t‖h‖Ḣ−s+1 , uniformly in N . So, passing the limit, we get

that g(t) → g0 in Ḣ−s+1(S) as t → 0. But since we know that g ∈ C([0, T ], Hs(S)),
by uniqueness, we get g(0) = g0.

Proposition 2.3. Continuity with respect to the initial condition.
Set T = 1

C1
ln(1 + 1

1+2C2K
), as in (2.14). Suppose we have two solutions g and g̃,

with ‖g(0)‖Ḣs 6 K and ‖g̃(0)‖Ḣs 6 K.
Then there exists a constant M3 such that g− g̃ is bounded in L2((0, T ), Ḣs+1(S))

and in H1((0, T ), Ḣs−1(S)) by M3‖g(0) − g̃(0)‖Ḣs.

This automatically gives uniqueness of a weak solution on (0, T ) with initial
condition g0.

Proof. Putting h = (−∆)sg ∈ Ḣ−s+1 in (2.13), we do the same estimations as in the
previous proposition. We have the same estimate as (2.16)-(2.17):

1
2

d
dt

‖g‖2
Ḣs + τ‖g‖2

Ḣs+1 6 C0|J [g]|‖g‖2
Ḣs + (n− 1)s|J [g]|2 (2.19)

6 C1‖g‖2
Ḣs(1 + C2‖g‖Ḣs). (2.20)
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So if we set T = C−1
1 ln(1+(1+2C2K)−1), we can solve this inequality on [0, T ], ex-

actly as in (2.18). These solutions are then uniformly bounded in L2((0, T ), Ḣs+1(S))
and in H1((0, T ), Ḣs−1(S)) (by the constant M1).

Taking u = g−g̃, and using (2.13) gives an equation for u: for almost all t ∈ [0, T ],
for all h ∈ Ḣ−s(S),

〈∂tu, h〉 = −τ〈∇ωu,∇ωh〉+(n−1)J [u]·J [h]+〈u, J [g]·∇ωh〉+〈g̃, J [u]·∇ωh〉. (2.21)

Now we take h = (−∆)su and use the first and second parts of Lemma 4.1 to get

1
2

d
dt

‖u‖2
Ḣs + τ‖u‖2

Ḣs+1 6 (1 +M1)C3‖u‖2
Ḣs + C7‖u‖Ḣs‖g̃‖Ḣs+1‖(−∆)su‖Ḣ−s

6M2(1 + ‖g̃‖Ḣs+1)‖u‖2
Ḣs . (2.22)

Grönwall’s lemma gives then the following estimate:

‖u‖2
Ḣs + τ

∫ T

0
‖u‖2

Ḣs+1 6 ‖u0‖2
Ḣs exp

(
M2

∫ T

0
(1 + ‖g̃‖Ḣs+1)

)
6 ‖u0‖2

Ḣse
M2(T +M2

1 ).

Using (2.21), we get that u is bounded in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S))
by a constant M3 times ‖u(0)‖Ḣs .

Proposition 2.4. Positivity for regular solutions (maximum principle). Suppose
that g0 is in Ḣs(S), with s sufficiently large (according to the Sobolev embeddings,
so s > n+3

2 is enough) so that the (unique) solution belongs to C0([0, T ], C2(S)).
Here T is defined as in (2.14), with K = ‖g0‖Ḣs. We go back to the original formu-
lation f = 1 + g. Then f is a classical solution of (1.3).

If f0 is nonnegative, then f is positive for any positive time, and more precisely
we have the following estimates, for all t ∈ (0, T ] and ω ∈ S (if f0 is not equal to
the constant function 1):

e−(n−1)
∫ t

0 |J [f ]| min
S
f0 < f(t, ω) < e(n−1)

∫ t

0 |J [f ]| max
S
f0. (2.23)

Proof. Since the solution is in C0([0, T ], C2(S)), we can do the reverse integration
by parts in the weak formulation (2.12). We get that the function ∂tf , as an ele-
ment of L2((0, T ), Hs−1(S)), is equal to τ∆ωf − ∇ω · ((Id − ω ⊗ ω)J [f ]f) (almost
everywhere), which is an element of C0([0, T ] × S). So up to redefining it on a set
of measure zero, the function f belongs to C1([0, T ], C(S)) ∩ C0([0, T ], C2(S)), and
satisfies the partial differential equation.

Applying the chain rule and using the tools given in the beginning of this section,
we get another formulation of the PDE (1.3):

∂tf = τ∆ωf − J [f ] · ∇ωf + (n− 1)J [f ] · ω f. (2.24)

The next part of the proposition is just a classical strong maximum principle.
We only prove here the left part of the inequality, the other part is very similar,
once we have that f is positive.
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Suppose first that f0 is positive. We denote by T̃ > 0 the first time such that
the minimum on the unit sphere of f is zero (or T̃ = T if f is always positive).

Then we have for t ∈ [0, T̃ ], that ∂tf > τ∆ωf − J [f ] · ∇ωf − (n − 1)|J [f ]|f . If
we write f̃ = f e−(n−1)

∫ t

0 |J [f ]|, we get

∂tf̃ > τ∆ωf̃ − J [f ] · ∇ωf̃ . (2.25)

Then the weak maximum principle (see [35], Thm 8, §7.1.4, which is also valid on
the sphere) gives us that the minimum of f̃ on [0, T̃ ]×S is reached on {0}×S. That
means that we have a non-strict version of the left part of the inequality (2.23):

∀t ∈ [0, T̃ ], ∀ω ∈ S, f(ω, t) > e−(n−1)
∫ t

0 |J [f ]| min
S
f0. (2.26)

Consequently, we have that minS f(T̃ ) > 0 and so T̃ = T . If now f0 is only
nonnegative, take f ε

0 = f+ε
1+ε

, and by continuity with respect to initial condition,
inequality (2.26) is still valid. That gives that f is nonnegative on [0, T ], and con-
sequently we have that inequality (2.25) is valid on [0, T̃ ].

Now we can use the strong maximum principle (see [35], Thm 11, §7.1.4), which
gives that if the inequality (2.26) is an equality for some t > 0 and ω ∈ S, then f̃ is
constant on [0, t] × S. So f0 is the constant function 1.

Proposition 2.5. Global existence, positivity. Suppose f0 is a probability measure
belonging to Hs(S) (this is always the case for s < −n−1

2 , according to Sobolev
embeddings). Then there exists a global weak solution of (1.3), which remains a
probability measure for any time.

We remark that the uniqueness of the solution on any time interval remains by
Proposition 2.3.

Proof. We first prove this proposition in the case s > n+3
2 .

We define a solution by constructing it on a sequence of intervals.
We set T1 = 1

C1
ln(1+ 1

1+2C2‖g0‖Ḣs
), as in (2.14). This gives existence to a solution g

in C([0, T1], Ḣs(S)). By induction we define Tk+1 = Tk + 1
C1

ln(1 + 1
1+2C2‖g(Tk)‖Ḣs

),
which gives existence to a solution g ∈ C([Tk, Tk+1], Ḣs(S)).

So we have a solution on [0, T ], provided that T 6 Tk for some integer k.
Now by the previous proposition, this solution f = 1 + g is nonnegative. We

obviously have |J [g]| = |J [f ]| 6 ∫
S |ω|f = 1. Then we can do better estimates,

starting from (2.19):

1
2

d
dt

‖g‖2
Ḣs + τ‖g‖2

Ḣs+1 6 C0|J [g]|‖g‖2
Ḣs + (n− 1)s|J [g]|2

6 C8‖g‖2
Ḣs . (2.27)

Then, Grönwall’s lemma gives us that ‖g(Tk)‖Ḣs 6 ‖g0‖ḢseC8Tk . Suppose now that
the sequence (Tk) is bounded, then ‖g(Tk)‖Ḣs is also bounded. By the definition
of Tk+1, the difference Tk+1 − Tk does not tend to zero, which implies that the
increasing sequence (Tk) is unbounded, and this is a contradiction. So we have
that Tk

k→∞→ ∞, and the solution is global in time.
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Now we do the general case for any s. Take gk
0 a sequence of elements of Ḣ n

2 +2

converging to g0 in Ḣs, and such that fk
0 = 1 + gk

0 are positive functions. Let gk be
the solutions associated to these initial conditions.

Then we have the same estimates as before, since we still have |J [g]| 6 1, solv-
ing (2.27) gives

‖gk(t)‖2
Ḣs + τ

∫ t

0
‖gk(t)‖2

Ḣs+1 6 ‖gk
0‖ḢseC8t.

So we can now study the difference u = gk − gj, as in (2.21),(2.22), which satisfies,
for any h ∈ Ḣ−s(S),

〈∂tu, h〉 = −τ〈∇ωu,∇ωh〉+(n−1)J [u]·J [h]+〈u, J [gk]·∇ωh〉+〈gj, J [u]·∇ωh〉. (2.28)

We take h = (−∆)su and use the first and second part of Lemma 4.1 to get

1
2

d
dt

‖u‖2
Ḣs + τ‖u‖2

Ḣs+1 6 C9‖u‖2
Ḣs + C7‖u‖Ḣs‖gk‖Ḣs+1‖(−∆)su‖Ḣ−s

6 C10(1 + ‖g̃‖Ḣs+1)‖u‖2
Ḣs . (2.29)

If we fix T > 0, Grönwall’s lemma gives then the following estimate:

‖u‖2
Ḣs + τ

∫ T

0
‖u‖2

Ḣs+1 6 ‖u0‖2
Ḣs exp

(
C10

∫ T

0
(1 + ‖gj‖Ḣs+1)

)
6 ‖u0‖2

Ḣs exp
(
C10(T + τ−1

√
T‖gk

0‖ḢseC8T )
)
.

Since ‖gk
0‖Ḣs is bounded (because gk

0 converges in Ḣs), together with (2.21), we
finally get that u is bounded in L2((0, T ), Ḣs+1(S)) ∩H1((0, T ), Ḣs−1(S)) by a con-
stant CT times ‖u(0)‖Ḣs . This gives that gk is a Cauchy sequence in that space,
and then it converges to a function g, which is a weak solution of our problem (by
Proposition 2.1, we have that g(0) = g0). This is valid for any T > 0, so this solution
is global.

If we take ϕ in C∞(S), since fk(t) = 1+gk(t) is a positive function with mean 1,
we have that

−‖ϕ‖∞ = 〈fk(t),−‖ϕ‖∞〉 6 〈fk(t), ϕ〉 6 〈fk(t), ‖ϕ‖∞〉 = ‖ϕ‖∞.

Then passing the limit gives |〈g(t), ϕ〉| 6 ‖ϕ‖∞. Furthermore we have 〈fk(t), 1〉 = 1
so 〈f(t), 1〉 = 1, and if ϕ is a nonnegative function, then 〈fk(t), ϕ〉 > 0 and we
get 〈f(t), ϕ〉 > 0. This gives that f(t) is a positive radon measure with mass 1,
which is a probability measure.

Proposition 2.6. Instantaneous regularity and boundedness estimates. If f0 is a
probability measure, then the solution f belongs to C∞((0,+∞) × S), is positive for
any time t > 0, and we have the following estimates, for all s ∈ R and m > 0:

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs ,

where the constant C depends only on τ , s, and m.
In particular we have that for t0 > 0, f is uniformly bounded on [t0,+∞) in

any Hs norm.
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Proof. Suppose f0 ∈ Hs(S), and fix t > 0. The solution f is in C([0,+∞), Hs(S)),
and in L2((0, t), Hs+1(S)). Then there exists s < t such that f(s) ∈ Hs+1(S). So
we can construct a solution belonging to C([s,+∞), Hs+1(S)). But this solution
is also a weak solution in L2((s, T ), Hs+1(S)) ∩ H−1((s, T ), Hs−1(S)), for all T > s
so by uniqueness it is equal to f . Then f belongs to C([t,+∞), Hs+1(S)). Since
this is true for all t > 0, then f belongs to C((0,+∞), Hs+1(S)). We can repeat
this argument and have that f belongs to C((0,+∞), Hp(S)) for any p, and is a
positive classical solution, by Proposition 2.4. Using the equation, differentiating in
time gives that it is also in Ck((0,+∞), Hp(S)) for any p and any k, so, by Sobolev
embeddings, it is a C∞ function of (0,+∞) × S.

Since we have positivity, we can have estimates for any of the modes of f = 1+g.
Let us denote fN the orthogonal projection of f on the N first eigenspaces of the
Laplacian, and gN = f − fN the projection on the other ones (high modes).

We have a Poincaré inequality on this space: ‖gN‖2
Ḣs 6 1

(N+1)(N+n−1)‖g
N‖2

Ḣs+1

(we recall that the eigenvalues of −∆ are given by `(` + n − 2) for ` ∈ N). We use
the estimate (2.19):

1
2

d
dt

‖g‖2
Ḣs + τ‖g‖2

Ḣs+1 6 C0|J [g]|‖g‖2
Ḣs + (n− 1)s|J [g]|2

6 C0
(N+1)(N+n−1)‖g‖

2
Ḣs+1 + (n− 1)s|J [g]|2 + C0‖fN − 1‖2

Ḣs . (2.30)

Now we have, since f is a probability measure, that

‖fN − 1‖2
Ḣs =

∫
S
(−∆)sfNfdω 6 ‖(−∆)sfN‖L∞ 6 KN‖fN − 1‖Ḣs ,

the last inequality being the equivalence between norms in finite dimension. Dividing
by this last norm, this gives that the low modes of f are uniformly bounded in time
by a constant KN . Then we have, taking N sufficiently large,

1
2

d
dt

‖g‖2
Ḣs + τ

2
‖g‖2

Ḣs+1 6 C11,

Now multiplying by t this formula at order s+ 1, we get
1
2

d
dt

(t‖g‖2
Ḣs+1) + τ

2
t‖g‖2

Ḣs+2 6 C12t+ 1
2

‖g‖2
Ḣs+1 ,

and finally
1
2

d
dt

(‖g‖2
Ḣs + τ

2 t‖g‖
2
Ḣs+1) + τ

4 (‖g‖2
Ḣs+1 + τ

2 t‖g‖
2
Ḣs+2) 6 C11 + C12

τ
2 t.

Together with Poincaré inequality, solving this inequality gives us

‖g‖2
Ḣs + τ

2
t‖g‖2

Ḣs+1 6 ‖g0‖2
Ḣse

−(n−1) τ
4 t + C13(1 + t).

So we have the result for ‖f‖2
Hs = 1 + ‖g‖2

Ḣs , and m = 1:

‖f(t)‖2
Hs+1 6 C

(
1 + 1

t

)
‖f0‖2

Hs .

Then we apply this inequality between 0 and t
2 , and the inequality at order m

between t
2 and t to get the result at order m+1. The case where m is any nonnegative

real also works, by interpolation.
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This last proposition ends the proof of Theorem 4.1. Let us do here two small
comments concerning the analyticity of the solution and the limit case with no
noise: τ = 0.

Remark 2.1. Analyticity of the solution. We can show, as claimed in [19], [21]
that at any time t > 0 the solution is analytic in the space variable. The idea is to
show, following [21] (based on [15], [40]), that the solution is in some Gevrey class of
functions, defined by a parameter depending on time. This class is a subset of the set
of real analytic functions on the sphere. More details and a complete proof are given
in Appendix A.2. We could have directly dealt with this classes of functions instead
of working in the Sobolev spaces, but we will not need these properties of analyticity
in the following. In any case, to prove analyticity we need the initial condition to be
in H− n−1

2 (S), so this study of instantaneous regularization was necessary.

Remark 2.2. Case where τ = 0: no noise. The proof is also valid, except that the
solution belongs to L∞((0, T ), Hs(S)) ∩ H1((0, T ), Hs−1(S)) if the initial condition
is in Hs(S). By an optimal regularity argument, we can get that a solution is in
fact in C([0, T ], Hs(S)). The non-negativity argument is then also valid, and so
the solution is global. Obviously, we do not have the instantaneous regularity and
boundedness estimates.

3 Using the free energy
In this section, we derive the Onsager free energy (1.6) for Doi equation (1.3), and
use it to get general results on the steady states.

3.1 Free energy and steady states
We rewrite the equation (1.3):

∂tf = Q(f) = ∇ω · (τ∇ωf − ∇ω(ω · J [f ])f) = ∇ω · (f∇ω(τ ln f − ω · J [f ])).

Since any solution is in C∞((0,+∞) × S), and positive for any t > 0, there is
no problem with using ln f , and doing any integration by parts. We multiply the
equation by τ ln f − ω · J [f ] and integrate by parts, we get∫

S
∂tf(τ ln f − ω · J [f ]) dω = −

∫
S
f |∇ω(τ ln f − ω · J [f ])|2 dω.

Since the left part can be recast as a time derivative, this is a conservation relation.
We define the free energy F(f) and the dissipation term D(f) by

F(f) = τ
∫
S
f ln f − 1

2 |J [f ]|2, (3.31)

D(f) =
∫
S
f |∇ω(τ ln f − ω · J [f ])|2, (3.32)

and we have the following conservation relation:
d
dt

F + D = 0. (3.33)
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We define a steady state as a (weak) solution which does not depend on time.
Here are some characterizations of the steady states.

Proposition 3.1. Steady states.
The steady states of Doi equation (1.3) are the probability measures f on S which

satisfy one of the following equivalent conditions.

1. Equilibrium: f ∈ C2(S) and Q(f) = 0

2. No dissipation: f ∈ C1(S) and D(f) = 0

3. The probability density f ∈ C0(S) is positive and a critical point of F (under
the constraint of mean 1).

4. There exists C ∈ R such that τ ln f − J [f ] · ω = C.

Proof. By definition, a steady state f is a solution independent of t. Since it is a
solution, it is positive and C∞, and we get that Q(f) = 0 . By the conservation
relation (3.33), we get that d

dt
F = 0, so D(f) = 0. Since it is positive, we get

that ∇ω(τ ln f − ω · J [f ]) = 0, so there exists C ∈ R such that τ ln f − J [f ] · ω = C.
Now we do a variational study of F around f . We take a small perturbation f+h

of f which remains a probability density function (which means that
∫
S h = 0).

We can expand the function x 7→ x ln x around f , since f > ε > 0, and we have

F(f + h) = τ
∫
S
(f ln f + h ln f + h) − 1

2
|J [f ]|2 − J [f ] ·

∫
S
ωh+O(‖h‖2

∞)

= F(f) +
∫
S
h(τ ln f − J [f ] · ω) +O(‖h‖2

∞),

= F(f) +O(‖h‖2
∞),

which means that f is a critical point of F . So f satisfies the four conditions.
Conversely if f ∈ C2(S) and Q(f) = 0, then f is obviously a steady-state.
If τ ln f − J [f ] · ω = C, then f ∈ C2(S) and Q(f) = 0. We will show that the

second and third conditions reduce to this fourth condition.
Doing the above computation around a positive f ∈ C0(S) gives that if f is a

critical point for the free energy, then
∫
S h(τ ln f − J [f ] · ω) is zero for any h with

mean zero. This is exactly saying that τ ln f − J [f ] · ω is constant.
Finally if we suppose f ∈ C1(S) and D(f) = 0, at any point ω0 ∈ S such

that f(ω0) > 0 we have that ∇(τ ln f − J [f ] · ω) = 0 on a neighborhood of ω0.
The function ϕ defined by ϕ(ω) = τ ln f −J [f ] ·ω is then locally constant at any

point where it is finite, so ϕ−1({C}) is open in S for any C ∈ R.
Now if ϕ(ωk) = C, with ωk converging to ω∞, then f(ωk) = exp(C+J [f ]·ωk

τ
).

Passing to the limit, we get that f(ω∞) = exp(C+J [f ]·ω∞
τ

), which gives ϕ(ω∞) = C.
So ϕ−1({C}) is closed.

Since f is not identically zero, there exists C ∈ R such that ϕ−1({C}) 6= ∅, and
by connectedness of the sphere, we get ϕ−1({C}) = S, so τ ln f − J [f ] · ω = C.
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3.2 LaSalle principle
We give here an adaptation of LaSalle’s invariance principle to our PDE framework.

Proposition 3.2. LaSalle’s invariance principle.
Let f0 be a probability measure on the sphere S. We denote by F∞ the limit

of F(f(t)) as t → ∞, where f is the solution to Doi equation (1.3) with initial
condition f0.

Then the set E∞ = {f ∈ C∞(S) s.t. D(f) = 0 and F(f) = F∞} is not empty.
Furthermore f(t) converges in any Hs norm to this set of equilibria (in the

following sense):
lim
t→∞

inf
g∈E∞

‖f(t) − g‖Hs = 0.

Proof. First of all F(f(t)) is decreasing in time, and bounded below by −1
2 , so F∞

is well defined.
Let (tn) be an unbounded increasing sequence, and suppose that f(tn) converges

in Hs(S) to f∞ for some s ∈ R. We first remark that f(tn) is uniformly bounded
in Hs+2p(S) (using Theorem 4.1), and then by a simple interpolation estimate we
get that ‖f(tn) − f(tm)‖2

Ḣs+p 6 ‖f(tn) − f(tm)‖Ḣs‖f(tn) − f(tm)‖Ḣs+2p , and f(tn)
also converges in Hs+p(S). So f∞ is in any Hs(S).

We want to prove that D(f∞) = 0. Supposing this is not the case, we write

D(f) = τ 2
∫
S

|∇ωf |2

f
+ J [f ] ·

∫
S
(Id − ω ⊗ ω)f J [f ] − 2τJ [f ] ·

∫
S

∇ωf

= τ 2
∫
S

|∇ωf |2

f
+ (1 − 2(n− 1)τ)|J [f ]|2 −

∫
S
(ω · J [f ])2f. (3.34)

Now we take s sufficiently large such that Hs(S) ⊂ L∞(S)∩H1(S). If f∞ is positive,
then D, as a function from the nonnegative elements of Hs(S) to [0,+∞], is contin-
uous at the point f∞. In particular since D(f∞) > 0, there exist δ > 0 and M > 0
such that if ‖f − f∞‖Hs 6 δ, then we have D(f) > M . We want to show the same
result in the case where f∞ is only nonnegative. We define

Dε(f) = τ 2
∫
S

|∇ωf |2

f + ε
+ (1 − 2(n− 1)τ)|J [f ]|2 −

∫
S
(ω · J [f ])2f.

We have that by monotone convergence that Dε(f∞) converges to D(f∞) as ε → 0.
So there exists ε > 0 such that Dε(f∞) > 0. Now by continuity of Dε at the
point f∞, we get that there exists δ > 0 and M > 0 such that if ‖f − f∞‖Hs 6 δ,
then Dε(f) >M . And the fact that D(f) > Dε(f) gives the same result as before.

Now since ∂tf is uniformly bounded in Hs (for t > t1 > 0), there exists η > 0
such that if |t− t′| 6 η, then ‖f(t) −f(t′)‖Hs 6 δ

2 . We take then N sufficiently large
such that ‖f(tn) − f∞‖Hs 6 δ

2 for all n > N .
Then we have that for n > N , D(f) > M on [tn, tn + η]. Up to extracting, we

can assume that tn+1 > tn + η, so we have

F(f(tN)) − F(f(tN+p)) =
∫ tN+p

tN

D(f) > pηM.
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Since the left term is bounded by F(f(tN)) − F∞, taking p sufficiently large gives
the contradiction.

Now if we suppose that for a given s the distance (in Hs norm) between f(t)
and E∞ does not tend to 0, we get ε > 0 and a sequence tn such that for all g ∈ E∞,
we have ‖f(tn) − g‖Hs > ε. Since f(tn) is bounded in Hs+1(S), by a compact
Sobolev embedding, up to extracting we can assume that f(tn) is converging inHs(S)
to f∞. By the previous argument f ∈ C∞(S) and we have D(f∞) = 0. Obviously
since F(f) is decreasing in time we have that F(f∞) = F∞. So f∞ belongs to E∞,
and then ‖f(tn) − f∞‖Hs > ε for all n. This is a contradiction.

Since the distance between f(t) and E∞ tends to 0, obviously this set is not
empty.

3.3 Computation of equilibria
Define, for a unit vector Ω ∈ S, and κ > 0 the Fisher-Von Mises distribution with
concentration parameter κ and orientation Ω by

MκΩ(ω) = exp(κω · Ω)∫
S exp(κ υ · Ω)dυ

.

Note that the denominator depends only on κ. We have that the density of MκΩ
is 1, and the flux is

J [MκΩ] =
∫
S ω exp(κω · Ω)dω∫
S exp(κω · Ω)dω

= c(κ)Ω, (3.35)

where
c(κ) =

∫ π
0 cos θ eκ cos θ sinn−2 θ dθ∫ π

0 e
κ cos θ sinn−2 θ dθ

.

If f is an equilibrium, τ ln f − J [f ] · ω is constant, and then f = C exp(τ−1J [f ] · ω).
Since f is a probability density function, we get f = MκΩ with κΩ = τ−1J [f ] (in the
case where |J [f ]| = 0, then κ = 0 and we can take any Ω, this is just the uniform
distribution). Finally with (3.35) we get J [f ] = c(κ)Ω, which gives the following
compatibility condition

c(κ) = τκ.

We give the solutions of this equation in a proposition.

Proposition 3.3. Compatibility condition

• If τ > 1
n
, there is only one solution to the compatibility condition: κ = 0. The

only equilibrium is the constant function f = 1.

• If τ < 1
n
, the compatibility condition has exactly two solutions: κ = 0 and one

unique positive solution, that we will denote κ(τ). Apart from the constant
function f = 1 (the case κ = 0), the equilibria form a manifold of dimen-
sion n− 1: the functions of the form f = Mκ(τ)Ω, where Ω ∈ S is an arbitrary
unit vector.
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Proof. Let us denote τ̃(κ) = c(κ)
κ

. A simple Taylor expansion gives τ̃(κ) →
κ→0

1
n
. Since

the function τ̃ tends to 0 as κ → +∞ (because c(κ) 6 1), it is sufficient to prove that
it is decreasing. Indeed the function is then a one-to-one correspondence from R∗

+
to (0, 1

n
), and the compatibility condition for κ > 0 is exactly solving τ = τ̃(κ).

But we have (after one integration by parts) that τ̃ ′(κ) = 1
κ
(1 − nτ̃(κ) − c(κ)2),

which, by the following lemma is negative for κ > 0.

Lemma 4.2. Define β = c(κ)2 + nτ̃(κ) − 1. Then for any κ > 0, we have β > 0.

Proof. Define [γ(cos θ)]κ =
∫ π

0 γ(cos θ) eκ cos θ sinn−2 θ dθ.
Then we have by definition κ[1]2κβ = κ[cos θ]2κ + n[cos θ]κ[1]κ − κ[1]2κ. So we

only have to show that this term is positive. We will prove in fact that the Taylor
expansion of this term in κ has only positive terms.

We have, if we denote ap = 1
(2p)!

∫ π
0 cos2p θ sinn−2 θ dθ > 0,

[1]κ =
∞∑

p=0
apκ

2p and [cos θ]κ =
∞∑

p=0
(2p+ 2) ap+1κ

2p+1.

Now doing an integration by part in the definition of ap+1, we get

ap+1 = 2p+1
n−1 ( 1

(2p+1)(2p+2)ap − ap+1), which gives (2p+ 2) ap+1 = ap

2p+ n
. (3.36)

We have, for κ > 0,

βκ[1]2κ =
∞∑

k=0

∑
p+q=k−1

(2p+ 2) ap+1(2q + 2) aq+1 +
∑
p+q=k

n(2p+ 2) ap+1aq − apaq

κ2k+1

=
∞∑

k=0

 ∑
p+q=k,p>1

2p ap
1

2q+n
aq +

∑
p+q=k

( n
2p+n

− 1) apaq

κ2k+1

=
∞∑

k=0

 ∑
p+q=k

2p
(

1
2q+n

− 1
2p+n

)
apaq

κ2k+1

=
∞∑

k=0

 ∑
p+q=k

(
p( 1

2q+n
− 1

2p+n
) + q( 1

2p+n
− 1

2q+n
)
)
apaq

κ2k+1

=
∞∑

k=0

 ∑
p+q=k

2(p−q)2

(2p+n)(2q+n) apaq

κ2k+1

So we finally get

β =

 ∞∑
p=0

apκ
2p

−1 ∞∑
k=0

 ∑
p+q=k

2(p−q)2

(2p+n)(2q+n) apaq

κ2k,

which gives that β > 0 when κ > 0.

Remark 3.1. We can do another proof, following an argument of [88], which does
not need to compute explicitly β.
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The idea is that we compute τ̃ ′′ = (n− 1) β
κ2 − 2τ̃(τ̃ −β), so we see (except in the

case κ = 0) that if τ̃ ′ = −β
κ

= 0, then τ̃ ′′ < 0 (indeed, we will easily see in (4.42)
that τ̃ − β is positive). For the case κ = 0, we can compute the Taylor expansion
of τ̃ up to order 2: τ̃(κ) = 1

n
− 1

n2(n+2)κ
2 +O(κ4). So we have that any critical point

of τ̃ is a maximum. Since there is a local maximum at κ = 0 then the function is
decreasing.

We can have an asymptotic expansion of the order parameter c(κ(τ)) as τ reaches
the critical value 1

n
. Indeed we have that τ − 1

n
∼ − 1

n2(n+2)κ(τ)2 by the expansion
of τ̃ in the previous remark. So

c(κ(τ)) ∼ 1
n
κ(τ) ∼

√
(n+ 2)( 1

n
− τ) as τ → 1

n
. (3.37)

Proposition 3.4. Minimum of the free energy

• If τ > 1
n
, the minimum of the free energy is 0, only reached by the uniform

distribution. Any solution converges to the uniform distribution in any Hs

norm.

• If τ < 1
n
, the minimum of the free energy is negative, only reached by any

non-isotropic equilibrium Mκ(τ)Ω.

Proof. By LaSalle principle (Proposition 3.2), we have that

min
f∈C∞(S), f>0

F(f) = min
f∈C∞(S), f>0, D(f)=0

F(f).

Indeed for any positive initial condition f in C∞(S), there exists an equilibrium f∞
such that F(f∞) = F∞ 6 F(f). This gives

inf
f∈C∞(S), f>0

F(f) = inf
f∈C∞(S), f>0, D(f)=0

F(f).

Since the set of equilibria is compact (either a single point or one point and a
manifold homeomorphic to S), this infimum is a minimum.

Furthermore, if f0 is not an equilibrium, then D(f0) > 0, and then F(f(t)) is
decreasing in the neighborhood of t = 0. So the minimum of F cannot be reached
for f0.

In the case τ > 1
n
, this gives the result since the only equilibrium is the constant

function 1. By LaSalle principle, we also get that the solution is converging to in
any Hs norm.

In the case τ < 1
n
, we have that F(1 + εω · Ω) ∼ 1

n
(τ − 1

n
)ε2 for a fixed unit

vector Ω ∈ S, so there exists f0 such that F(f0) < 0. Then the uniform distribution
cannot be a global minimizer. Since F(Mκ(τ)Ω) is independent of Ω, we get that this
value is the minimum.

4 Convergence to equilibrium
In this section, we establish and study the convergence of the solution to an equilib-
rium for any initial condition, in the three different regimes, depending whether τ
is greater, less, or equal to 1

n
.
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4.1 A new entropy, application to the subcritical case τ > 1
n

In this section we derive a convex entropy, which shows global decay to the uniform
distribution in the case τ > 1

n
.

We define on Ḣ− n−1
2 (S) the norm ‖·‖

H̃− n−1
2

by ‖g‖2
H̃− n−1

2
=
∫
S g∆̃−1

n−1g, where the
conformal Laplacian ∆̃n−1 is defined by (2.7). This norm is equivalent to ‖ · ‖

Ḣ− n−1
2

.
We also define ‖ · ‖

H̃− n−3
2

by ‖g‖2
H̃− n−3

2
=
∫
S ∆g∆̃−1

n−1g, and this norm is equivalent
to the ‖ · ‖

Ḣ− n−3
2

norm .
Taking h = ∆̃−1

n−1g in the weak formulation (2.13), and using the last part of
Lemma 4.1, we obtain a conservation relation:

1
2

d
dt

‖g‖2
H̃− n−1

2
= −τ‖g‖2

H̃− n−3
2

+ 1
(n− 2)!

|J [g]|2. (4.38)

We remark that this is a conservation law between quadratic quantities, as it would
be the case for a linear equation.

Since the component of g on the space of spherical harmonics of degree 1 is
given by nω · J [g], a simple computation shows that the contribution to ‖g‖2

H̃− n−1
2

of this component is equal to n
(n−1)! |J [g]|2. Then the last term of the conservation

relation (4.38) is bounded by n−1
n

‖g‖2
H̃− n−1

2
. Together with the Poincaré inequal-

ity ‖g‖2
H̃− n−3

2
> (n− 1)‖g‖2

H̃− n−3
2

, we get the following estimate:

1
2

d
dt

‖g‖2
H̃− n−1

2
6 (n− 1)( 1

n
− τ)‖g‖2

H̃− n−1
2
.

This gives in the case τ > 1
n

an exponential decay of rate (n − 1)(τ − 1
n
) for the

norm ‖ · ‖
H̃− n−1

2
:

‖g‖
H̃− n−1

2
6 ‖g0‖

H̃− n−1
2

exp(−(n− 1)(τ − 1
n
)t).

In the general case, if f0 ∈ Hs(S) with s > −n−1
2 , we use the estimate (2.30):

1
2

d
dt

‖g‖2
Ḣs + τ‖g‖2

Ḣs+1 6 C0
(N+1)(N+n−1)‖g‖

2
Ḣs+1 + (n− 1)s|J [g]|2 + C0‖fN − 1‖2

Ḣs .

Now we have, since f is a probability measure,

(n− 1)s|J [g]|2 + ‖fN − 1‖2
Ḣs 6 KN‖fN − 1‖2

H̃− n−1
2
6 KN‖g0‖2

H̃− n−1
2
e−2(n−1)(τ− 1

n
)t,

the first inequality being the equivalence between norms in finite dimension. For
any ε < 1

n
, taking N sufficiently large, together with Poincaré inequality we get

1
2

d
dt

‖g‖2
Ḣs + (n− 1)(τ − ε)‖g‖2

Ḣs 6 C‖g0‖2
H̃− n−1

2
e−2(n−1)(τ− 1

n
)t,

where the constant C depends only on s.
Solving this equation, we get

‖g‖2
Ḣs 6 ‖g0‖2

Ḣse
−2(n−1)(τ−ε)t + C

(n−1)( 1
n

−ε)‖g0‖2
H̃− n−1

2
e−2(n−1)(τ− 1

n
)t.
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Taking for example ε = 1
2n

, since s > −n−1
2 , we get

‖g‖2
Ḣs 6 (1 + 2C̃ n

n−1)‖g0‖2
Ḣse

−2(n−1)(τ− 1
n

)t.

In summary, we have the following theorem:

Theorem 4.2. New entropy. For a given probability density function f , we define
the quantities H(f) = ‖f − 1‖2

H̃− n−1
2

and D̃(f) = 2τ‖f − 1‖2
H̃− n−3

2
− 2

(n−2)! |J [f ]|2.
We have a conservation relation, for any solution f of Doi equation (1.3):

d
dt

H(f) + D̃(f) = 0. (4.39)

When τ > 1
n
, the term D̃(f) is nonnegative, so the new entropy H(f) is decreasing

in time.
Furthermore, if τ > 1

n
, then in any Sobolev space Hs(S) with s > −n−1

2 , we have
global exponential decay of the solution to the uniform distribution, with rate given
by (n− 1)(τ − 1

n
).

More precisely there is a constant C depending only on s such that for all initial
condition f0 ∈ Hs(S), we have

‖f − 1‖Hs 6 C‖f0 − 1‖Hse−(n−1)(τ− 1
n

)t.

Let us do a small remark here. Actually this conservation relation is true for
any solution, without any positivity condition. We only need the mean of f to be 1.
And since we have existence and uniqueness in small time for any initial condition,
with the same instantaneous regularity results (only valid for a short time existence),
we get that the solution belongs to H− n−1

2 (S) at some time. But the conservation
relation gives then that we have a global solution. So we can state a stronger theorem
of existence and uniqueness:

Theorem 4.3. Given an initial condition f0 in Hs(S) (not necessarily nonnegative),
there exists a unique weak solution f of (1.3) such that f(0) = f0. This solution
is global in time (the definition 2.1 is valid for any time T > 0). Moreover, f is
a classical solution, belonging to C∞((0,+∞) × S) (and even analytic in space, see
Appendix A.2).

Remark 4.1. In this case, we do not have any uniform bound on Hs(S), and we
can derive the same existence theorem for the case τ = 0 (see Remark 2.2), but only
for the case s > −n−1

2 (which does not include all Radon signed-measures).
Another remark is that if we change the sign in front of the alignment term in Doi

equation (1.3) (taking K(ω, ω̄) = ω ·ω̄, every particle tends to go away from the mean
direction), then we can derive a conservation relation in the same way. But here
the “dissipation term” is D̃(f) = 2τ‖f − 1‖2

H̃− n−3
2

+ 2
(n−2)! |J [f ]|2 > 2τ(n − 1)H(f),

without any condition on τ > 0. So in any Sobolev space Hs(S), with s > −n−1
2

we have global exponential decay of the solution to the uniform distribution, with
rate (n− 1)τ .
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4.2 Study of the supercritical case τ < 1
n

In this section, we fix τ < 1
n

and we study the behavior of a solution as t → +∞.
We will write κ for κ(τ) and c for c(κ(τ)). We first establish that the limit set of
equilibria E∞ given by LaSalle principle (Proposition 3.2) depends only on the fact
that J [f0] is zero or not.

Proposition 4.1. If J [f0] = 0 then E∞ is reduced to the uniform distribution.
Equation (1.3) becomes the heat equation. We have exponential decay to the uniform
distribution with rate 2nτ in any Hs(S).

If J [f0] 6= 0 then J [f(t)] 6= 0 for all t > 0. The limit set E∞ = {MκΩ,Ω ∈ S}
consists in all the non-isotropic equilibria. Furthermore, we have for any s ∈ R,

lim
t→∞

‖f(t) −MκΩ(t)‖Hs = 0, (4.40)

where Ω(t) = J [f(t)]
|J [f(t)]| is the mean direction of f(t).

Proof. First of all, we write the equation for J [f ], multiplying equation (1.3) and
integrating on the sphere. We get

d
dt
J [f ] = −τ(n− 1)J [f ] +

(∫
S
(Id − ω ⊗ ω) f dω

)
J [f ]

=
(

(1 − (n− 1)τ)Id −
∫
S
ω ⊗ ω f

)
J [f ], (4.41)

which can be viewed as a first order linear ODE of the form d
dt
J [f ] = M(t)J [f ].

The matrix M is a smooth function of time, so we have a global unique solution.
Consequently, if J [f(t0)] = 0 for t0 > 0, then we have J [f(t)] = 0, for all t > 0, and
equation (1.3) reduces to the heat equation. The distribution f has no component
on the first eigenspace of the Laplace–Beltrami operator, and the second eigenvalue
is 2n, so we have exponential decay with rate 2nτ in any Hs norm.

Now we suppose that J [f0] 6= 0, so by the previous argument we have J [f(t)] 6= 0
for all t > 0. There are two possibilities for the limiting set, either the uniform
distribution, or the set {MκΩ,Ω ∈ S} (by Proposition 3.4, they do not have the
same level of free energy).

In the first case, by LaSalle principle, f(t) converges to the uniform distribution.
Then the matrix M(t) = (1 − (n− 1)τ)Id −

∫
S ω⊗ω f converges to (n− 1)( 1

n
− τ)Id.

Using the ODE for J [f ], we get
1
2

d
dt

|J [f ]|2 = J [f ] ·M(t)J [f ] > ((n− 1)( 1
n

− τ) − ε)|J [f ]|2,

for t sufficiently large. Taking ε sufficiently small, we get that |J [f ]| tends to infinity,
which is a contradiction.

So we have that E∞ = {MκΩ,Ω ∈ S}. Now suppose that ‖f(t) −MκΩ(t)‖Hs does
not tend to 0. We take tn tending to infinity such that ‖f(tn) −MκΩ(tn)‖Hs > ε > 0.
By our LaSalle principle, there exists Ωn ∈ S such that ‖f(tn) −MκΩn‖Hs → 0. Up
to extracting, we can suppose that Ωn → Ω∞ ∈ S, so f(tn) → MκΩ∞ in Hs(S). In
particular we have that J [f(tn)] → c(κ)Ω∞, and then Ω(tn) → Ω∞. Then MκΩ(tn)
converges to MκΩ∞ , giving that ‖f(tn) −MκΩ(tn)‖Hs → 0, which is a contradiction.
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Now we focus on the case J [f0] 6= 0. We define Ω(t) as in the previous proposition,
and we will expand the solution around MκΩ(t). We first show the convergence
in L2(S) to a given equilibrium, with exponential rate, assuming conditions on the
initial data.

Proposition 4.2. There exists an “asymptotic rate” r∞(τ) > 0 satisfying the fol-
lowing property.

Suppose that ‖f(t)−MκΩ(t)‖Hs is uniformly bounded on [t0,+∞) by a constant K,
with s > 3(n−1)

2 . Then for all r < r∞(τ), there exists Ω∞ ∈ S and δ, C > 0, such
that if ‖f(t0) −MκΩ(t0)‖L2 6 δ, we have

‖f(t) −MκΩ∞‖L2 6 C‖f(t0) −MκΩ(t0)‖L2e−r(t−t0).

The constants δ and C depend only on τ , s, K, and r. Moreover, as τ → 1
n
, we

have that r∞(τ) > 2(n− 1)( 1
n

− τ) +O(( 1
n

− τ) 3
2 ).

Proof. We first introduce some notations. When there is no confusion, we just
write Ω for Ω(t), and we will always assume t > t0. We write cos θ = ω · Ω. We
denote by 〈·〉MκΩ the mean of a function against the probability measure MκΩ.

We have the following identities (we recall, by Lemma 4.2, that β = c2 + nτ − 1
is positive):

〈ω〉MκΩ = 〈cos θ〉MκΩΩ = cΩ,
〈cos2 θ〉MκΩ = 1 − (n− 1)τ,

〈(cos θ − c)2〉MκΩ = 1 − (n− 1)τ − c2 = τ − β > 0. (4.42)

We can write f = (1 + h)MκΩ, then we have 〈h〉MκΩ = 0. Since Ω is the direction
of J [f ] = 〈(1 + h)ω〉MκΩ , we get that 〈hω〉MκΩ = 〈h cos θ〉MκΩΩ.

So we can do an expansion of the free energy and its dissipation in terms of h.
Since we know that MκΩ(t) is a critical point of F , we already know that the expan-
sion of F((1 + h)MκΩ) − F(MκΩ) will contain no term of order 0 and 1 in h. We
get, using (3.31),

F((1 + h)MκΩ) − F(MκΩ) = τ 1
2〈h2〉MκΩ − 1

2 |〈hω〉MκΩ |2 +O(‖h‖3
∞).

Using Sobolev embedding and interpolation, we have (writing C for a generic con-
stant, depending only on τ , s, and K)

‖f −MκΩ‖∞ 6 C‖f −MκΩ‖
H

n−1
2
6 C‖f −MκΩ‖1− n−1

2s

L2 K
n−1

2s .

So since 1 − n−1
2s

> 2
3 and f − MκΩ = hMκΩ, with MκΩ uniformly bounded below

and above, we get that ‖h‖3
∞ = o(〈h2〉MκΩ) (and more precisely, for any ε > 0 there

exists η > 0 depending only on ε, τ , s, and K such that ‖h‖3
∞ 6 ε〈h2〉MκΩ as soon

as 〈h2〉MκΩ 6 η). We get

F(f) − F(MκΩ) = 1
2 [τ〈h2〉MκΩ − 〈h cos θ〉2

MκΩ
] + o(〈h2〉MκΩ). (4.43)
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We use the definition (3.32) of D(f):

D(f) = 〈(1 + h)|∇(τ ln(MκΩ(1 + h)) − 〈(1 + h)ω〉MκΩ · ω)|2〉MκΩ

= 〈(1 + h)|∇(τ ln(1 + h) − 〈h cos θ〉MκΩ cos θ)|2〉MκΩ

> (1 − ‖h‖∞)〈|∇(τ ln(1 + h) − 〈h cos θ〉MκΩ cos θ)|2〉MκΩ .

Now we can derive a Poincaré inequality of the form

〈|∇g|2〉MκΩ > Λκ〈(g − 〈g〉MκΩ)2〉MκΩ .

Indeed, we use the fact that MκΩ is positive and bounded:

〈|∇g|2〉MκΩ > minMκΩ

∫
S

|∇g|2

> minMκΩ(n− 1)
∫
S
(g −

∫
S g)2

> min MκΩ
max MκΩ

(n− 1)〈(g −
∫
S g)2〉MκΩ

> (n− 1)e−2κ〈(g − 〈g〉MκΩ)2〉MκΩ . (4.44)

Actually this is a rough estimate, we have here Λκ > (n − 1)e−2κ, a more precise
study of Λκ can be done using separation of variable, and is given in the appendix
of Chapter 2. The problem then reduces to finding the smallest eigenvalue of a
one-dimensional Sturm-Liouville problem, but even in that case, we did not manage
to find a better estimate for now.

So we finally get

D(f) > (1 − ‖h‖∞)Λκ〈[τ ln(1 + h) − τ〈ln(1 + h)〉MκΩ− 〈h cos θ〉MκΩ(cos θ − c)]2〉MκΩ

> (1 − ‖h‖∞)Λκ〈[τh− 〈h cos θ〉MκΩ(cos θ − c) +O(‖h‖2
∞)]2〉MκΩ

> (1 − ‖h‖∞)Λκ(τ 2〈h2〉MκΩ − (β + τ)〈h cos θ〉2
MκΩ

) +O(‖h‖3
∞).

With the same argument as before, we get that

D(f) > Λκ(τ 2〈h2〉MκΩ − (β + τ)〈h cos θ〉2
MκΩ

) + o(〈h2〉MκΩ). (4.45)

The goal is now to express the bounds in (4.45) and (4.43) as the sum of positive
terms. Indeed, we expect to have a Grönwall’s inequality which will give a rate of
convergence.

We set α = 1
τ−β

〈h cos θ〉MκΩ , and we write h = α(cos θ − c) + g. Using (4.42) we
have that α is well defined since τ − β > 0 and we get 〈g〉MκΩ = 0 and 〈gω〉MκΩ = 0.

Plugging 〈h2〉MκΩ = (τ − β)α2 + 〈g2〉MκΩ into (4.43) and (4.45) gives

F(f) − F(MκΩ) = 1
2 [β(τ − β)α2 + τ〈g2〉MκΩ ] + o(〈h2〉MκΩ), (4.46)

D(f) > Λκ(β2(τ − β)α2 + τ 2〈g2〉MκΩ) + o(〈h2〉MκΩ)
> Λκβ(β(τ − β)α2 + τ〈g2〉MκΩ) + o(〈h2〉MκΩ).

So for all r < Λκβ, if 〈h2〉MκΩ is sufficiently small, we have D(f) > r(F(f)−F(MκΩ)).
Using the conservation relation (4.39), there exists δ0 > 0 (depending only on τ , s, K
and r) such that if ‖f(t) −MκΩ(t)‖L2 6 δ0, we have

d
dt

[F(f) − F(MκΩ)] = −D(f) 6 −2r[F(f) − F(MκΩ)].
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Then we obtain, for all T , such that ‖f −MκΩ‖L2 6 δ0 on [t0, T ],

F(f(T )) − F(MκΩ(T )) 6 [F(f(t0)) − F(MκΩ(t0))]e−2r(T −t0),

and then, using the estimate (4.46), we get that for t ∈ [t0, T ],

‖f −MκΩ‖L2 6 C0‖f(t0) −MκΩ(t0)‖L2e−r(t−t0). (4.47)

So if we take δ < δ0
C0
6 δ0, and we start with ‖f(t0) − MκΩ(t0)‖L2 6 δ, we get

that ‖f − MκΩ‖L2 6 δ0 on [t0, T ] for all T > t0. Otherwise, the largest of such a T
would satisfy δ0 = ‖f(T ) − MκΩ(T )‖L2 6 Cδe−r(T −t0) < δ0. So the inequality (4.47)
holds for all t ∈ [t0,+∞).

It remains to prove that Ω(t) converges to some Ω∞, if we want to have strong
convergence to a given steady state. This is possible using the ODE satisfied by Ω.

Indeed, we have J [f ] = cΩ + 〈hω〉MκΩ = (c+ α(τ − β))Ω, and then

d
dt
J [f ] = (c+ α(τ − β)) d

dt
Ω + (τ − β)Ω d

dt
α.

So applying Id − Ω ⊗ Ω to the ODE (4.41) gives an ODE for Ω, in terms of α and g.
We get

(Id − Ω ⊗ Ω) d
dt
J [f ] = −(Id − Ω ⊗ Ω)

(∫
S
ω ⊗ ω f dω

)
J [f ]

= −(c+ α(τ − β))(Id − Ω ⊗ Ω)[〈h cos θ ω〉MκΩ + 〈cos θ ω〉MκΩ ].

Since 〈(cos θ − c) cos θ ω〉MκΩ and 〈cos θ ω〉MκΩ are parallel to Ω, we get that

(c+ α(τ − β))dΩ
dt

= −(c+ α(τ − β))(Id − Ω ⊗ Ω)〈g cos θ ω〉MκΩ .

Since (c+α(τ −β)) is the norm of J [f ], it is never zero, and we get (the notation C
standing for a generic constant depending only on r, s, τ and K)∣∣∣∣∣dΩ

dt

∣∣∣∣∣ 6 C
√

〈g2〉MκΩ 6 C‖f −MκΩ‖L2 .

So we have exponential decay of dΩ
dt

with rate r, in particular Ω is converging to
some Ω∞ ∈ S. More precisely,

|Ω(t) − Ω∞| 6
∫ ∞

t
|dΩ

dt
|dt 6 C‖f(t0) −MκΩ(t0)‖L2e−r(t−t0).

Now we have that ‖MκΩ(t) − MκΩ∞‖L2 6 C|Ω(t) − Ω∞| (the function Ω 7→ eκω·Ω

from S to R is globally Lipschitz with a constant independent of ω ∈ S). So we get
the final estimation:

‖f−MκΩ∞‖L2 6 ‖f−MκΩ‖L2 +‖MκΩ(t) −MκΩ∞‖L2 6 C‖f(t0)−MκΩ(t0)‖L2e−r(t−t0).

So the proposition is true with r∞(τ) = Λκβ > 0. By the estimate (4.44), we know
that Λκ > (n− 1)e−2κ. And by the expansions of c and κ as τ → 1

n
given in (3.37),

we get that r∞(τ) > 2(n− 1)( 1
n

− τ) +O(( 1
n

− τ) 3
2 ).
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By Proposition 4.1, we have that f(t) − MκΩ(t) tends to zero in any Hs(S). So
the hypotheses of Proposition 4.2, for any r < r∞(τ), are satisfied for some t0 > 0.

Once more, by interpolation and uniform boundedness on [t0,+∞) of the Hp

norm, we have

‖f −MκΩ∞‖Hs 6 C‖f −MκΩ∞‖
1− s

p

L2 ‖f −MκΩ∞‖
s
p

Hp

6 C̃‖f(t0) −MκΩ(t0)‖
1− s

p

L2 e−r(1− s
p

)(t−t0),

so taking p sufficiently large, we also get exponential convergence for the Hs norm,
with rate r(1 − δ) for any δ > 0.

Finally we have that for all r < r∞(τ) and s, there exists some time t0 and C > 0
such that ‖f −MκΩ∞‖Hs 6 Ce−rt for t > t0. We can even get rid of the constant C
since for any r̃ < r and t sufficiently large Ce−rt 6 e−r̃t.

4.3 Study of the critical case τ = 1
n

For any τ ∈ (0,+∞) \ { 1
n
}, we have exponential convergence to some equilib-

rium. However the rate of convergence tends to 0 when τ is close to 1
n

(in the
case where J [f0] 6= 0). So we do not expect to have a similar rate of convergence in
the critical case.

First of all, we know by Proposition 3.4 that the solution converges (in anyHs(S))
to the uniform distribution as time goes to infinity. The goal of this section is to
estimate the speed of convergence to this equilibrium.

Proposition 4.3. Suppose that ‖f(t) − 1‖Hs is uniformly bounded on [t0,+∞) by
a constant K, with s > 7(n−1)

2 .
Then for all C > 1, there exists δ > 0, such that if ‖f(t0) − 1‖L2 6 δ, we have,

for t > t0,
‖f(t) − 1‖L2 6 C√

1√
2(n+2)‖f(t0)−1‖L2

+ 2(n−1)
n(n+2)(t− t0)

.

The constant δ depends only on τ , s, K, and C.

Proof. As in the previous section, we work on [t0,+∞). We write f = 1 + h and
as in the previous case, we suppose that J [f0] 6= 0. By the same argument used in
Proposition 4.1, we have that J [f(t)] 6= 0 for all t > 0, so we define Ω(t) as the unit
vector J [f(t)]

|J [f(t)]| . Similarly we denote 〈·〉 for the mean of a function on the unit sphere
and cos θ for ω · Ω.

We have 〈h〉 = 0. Since Ω is the direction of J [f ] = 〈(1 + h)ω〉 = 〈hω〉, we get
that 〈hω〉 = 〈h cos θ〉Ω.

We perform an expansion of the free energy and its dissipation in terms of h. We
get, using (3.31) and taking τ = 1

n
,

F(1 + h) = 1
n
(1

2〈h2〉 − 1
6〈h3〉 + 1

12〈h4〉) − 1
2〈h cos θ〉2 +O(‖h‖5

∞).

Now we write α = n〈h cos θ〉 and we define

g = h− α cos θ − 1
2α

2(cos2 θ − 1
n
) − 1

6α
3(cos3 θ − 3

n+2 cos θ). (4.48)
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We have 〈cos4 θ〉 = 3
n(n+2) (we have used the formula (3.36) to compute 4!a2

a0
=

〈cos4 θ〉). Since we have 〈cos3 θ〉 = 〈cos θ〉 = 0, and 〈cos2 θ〉 = 1
n
, we get 〈g〉 =

〈g cos θ〉 = 0. We will see that the terms of order 2 in g will not vanish in the
expansion of the free energy and the dissipation term. But we will need to expand
the free energy in α up to order 4, and the dissipation term up to order 6 in α. We
have

1
2〈h2〉 = 1

2〈g2〉 + 1
2n
α2 + n−1

4n2(n+2)α
4 + 1

2α
2〈g cos2 θ〉 +O(α3‖g‖∞ + α5), (4.49)

−1
6〈h3〉 = − n−1

2n2(n+2)α
4 − 1

2α
2〈g cos2 θ〉 +O(‖g‖3

∞ + α‖g‖2
∞ + α3‖g‖∞ + α5),

1
12〈h4〉 = 1

4n(n+2)α
4 +O(‖g‖4

∞ + α‖g‖3
∞ + α2‖g‖2

∞ + α3‖g‖∞ + α5).

We finally get

F(1 + h) = 1
2n

〈g2〉 + 1
4n3(n+2)α

4 +O(‖g‖3
∞ + α‖g‖2

∞ + α3‖g‖∞ + α5). (4.50)

Using the inequality apbq 6 sa
p
s +(1−s)b

q
1−s for s ∈ (0, 1), with a = α and b = ‖g‖∞,

we get that α‖g‖2
∞ 6 1

5α
5 + 4

5‖g‖2+ 1
2∞ and α3‖g‖∞ 6 3

5α
5 + 2

5‖g‖2+ 1
2∞ .

By Sobolev embedding and interpolation, as in the previous section, we have

‖g‖∞ 6 C‖g‖1− n−1
2s

L2 ‖g‖
n−1

2s
Hs , (4.51)

with 1 − n−1
2s

> 6
7 .

Since α is controlled by ‖h‖Hs , using the definition (4.48) of g, we have a bound
for ‖g‖Hs on [t0,+∞), depending only on s and K. We finally get ‖g‖2+ 1

2∞ 6 C〈g2〉µ,
with µ > 1

2(2 + 1
2)6

7 > 1.
So using (4.49) and (4.50), we get that for any ε > 0, there exists δ > 0 such

if ‖h‖L2 6 δ, we have

(1 − ε)(〈g2〉 + 1
n
α2) 6 〈h2〉 6 (1 + ε)(〈g2〉 + 1

n
α2)

(1 − ε)( 1
2n

〈g2〉 + 1
4n3(n+2)α

4) 6 F(1 + h) 6 1+ε
4n3(n+2)(2n

2(n+ 2)〈g2〉 + α4). (4.52)

From that, up to take a smaller δ, we obtain

1−ε
1+ε

2nF(1 + h) 6 〈h2〉 6 1+ε√
1−ε

2
√
n(n+ 2)F(1 + h). (4.53)

We now estimate the dissipation term. We use the definition (3.32) of D(f) and the
Poincaré inequality to get:

D(f) = 〈(1 + h)|∇( 1
n

ln(1 + h) − 〈(1 + h)ω〉 · ω)|2〉
= 〈(1 + h)|∇( 1

n
ln(1 + h) − 〈h cos θ〉 cos θ)|2〉

> n−1
n2 (1 − ‖h‖∞)〈[ln(1 + h) − 〈ln(1 + h)〉 − n〈h cos θ〉 cos θ︸ ︷︷ ︸

S(h)

]2〉. (4.54)

We have

S(h) = ln(1 + h) − 〈ln(1 + h)〉 − n〈h cos θ〉 cos θ
= h− 〈h〉 − α cos θ − 1

2(h2 − 〈h2〉) + 1
3(h3 − 〈h3〉) +O(‖h‖4).
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We compute,

h− 〈h〉 − α cos θ = g + 1
2
α2(cos2 θ − 1

n
) + 1

6α
3(cos3 θ − 3

n+2 cos θ)

−1
2(h2 − 〈h2〉) = −1

2(α2 + α3 cos θ)(cos2 θ − 1
n
) +O(‖g‖2 + α‖g‖∞ + α4)

1
3(h3 − 〈h3〉) = 1

3α
3 cos3 θ +O(‖g‖3

∞ + α‖g‖2
∞ + α2‖g‖∞ + α4).

So

〈S(h)2〉 = 〈[g + 1
6α

3( 3
n

− 3
n+2) cos θ)]2〉 +O(‖g‖3 + α‖g‖2 + α4‖g‖∞ + α7)

= 〈g2〉 + 1
n3(n+2)2α

6 +O(‖g‖3
∞ + α‖g‖2

∞ + α4‖g‖∞ + α7). (4.55)

As before, we get that α‖g‖2
∞ 6 1

7α
7 + 6

7‖g‖2+ 1
3∞ and α4‖g‖∞ 6 4

7α
7 + 3

7‖g‖2+ 1
3∞ .

Using (4.51), we get ‖g‖2+ 1
3∞ 6 C〈g2〉µ, with µ > 1

2(2 + 1
3)6

7 = 1. So using (4.54)
and (4.55), up to take a smaller δ, we have, for ‖h‖L2 6 δ,

D(f) > (1 − ε)n−1
n2 (〈g2〉 + 1

n3(n+2)2α
6).

Now for any C,C ′ > 0, if we take α and g sufficiently small (so again up to take a
smaller δ), we have that C〈g2〉 + α6 > (C ′〈g2〉 + α4) 3

2 . So we get

D(f) > (1 − ε) n−1
n5(n+2)2 (2n2(n+ 2)〈g2〉 + α4)

3
2 .

Putting this together with (4.52) and the conservation relation (4.39), we get that
for any 0 < ε < 1, there exists δ0 > 0 such, as soon as ‖h‖L2 6 δ0, we have

d
dt

F(f) = −D(f) 6 − 8(n− 1)(1 − ε)
(1 + ε) 3

2

√
n(n+ 2)

[F(f)]
3
2 .

Then we obtain, for all T such that ‖h‖L2 6 δ0 on [t0, T ],

F(f(T ))− 1
2 > F(f(t0))− 1

2 + 4(n−1)(1−ε)
(1+ε)

3
2
√

n(n+2)
(t− t0). (4.56)

Then, using (4.53), we get that for t ∈ [t0, T ],

‖h‖−2
L2 >

√
1−ε

(1+ε) 2
√

n(n+2)
[
√

2n(1−ε)
1+ε

‖h(t0)‖−1
L2 + 4(n−1)(1−ε)

(1+ε)
3
2
√

n(n+2)
(t− t0)].

We write C = (1+ε)
5
4

(1−ε)
3
4

(a one-to-one correspondence between 0 < ε < 1 and C > 1)
and we get

‖h‖L2 6 C
[

1√
2(n+2)‖h(t0)‖L2

+ 2(n−1)
n(n+2)(t− t0)

]− 1
2
. (4.57)

So if we take δ < min(δ0,
1

C2
√

2(n+2)
δ2

0), and ‖h(t0)‖L2 6 δ, we get that ‖h‖L2 6 δ0

on [t0, T ] for all T > t0. Otherwise, the largest of such a T would satisfy

δ0 = ‖h(T )‖L2 6 C
[

1√
2(n+2)δ

]− 1
2
< δ0.

So the inequality (4.57) holds for all t ∈ [t0,+∞), which ends the proof.
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With this proposition, since f tends to the uniform distribution in any Hs(S), we
get that for any r < 2(n−1)

n(n+2) , there exists t0 such that we have ‖f(t)−1‖L2 6 1√
r(t−t0)

,

for t > t0. We can even get rid of the t0 in this inequality since for any r < r̃ < 2(n−1)
n(n+2) ,

for t sufficiently large, we have 1√
r̃(t−t0)

6 1√
rt

.
As in the previous section, using interpolation to deal with the other Sobolev

norms of the solution would lead, for any η > 0 and t sufficiently large, to an
inequality of the form ‖f(t) − 1‖Hp 6 Cηt

− 1
2 +η. But we can actually do slightly

better. Indeed we have, following the notations of the proof and using (4.48),

‖h‖Hs 6 |α|‖ cos θ‖Hp + C2α
2 + C3|α|3 + ‖g‖Hp .

We have ‖ cos θ‖Hp = (n − 1)
p
2 . We take t0 > 0 satisfying the conditions of the

proposition and such that ‖h‖L2 6 δ. We have that g is uniformly bounded in
any Hp(S), and so by interpolation, we have ‖g‖Hs 6 Cη‖g‖1−η

L2 for any η > 0. Now
using (4.56) and (4.52), we get

( 1
2n

〈g2〉 + 1
4n3(n+2)α

4)− 1
2 > 4(n−1)(1−ε)

3
2

(1+ε)
3
2
√

n(n+2)
(t− t0),

which gives ‖g‖L2 = O(t−1) and α2 6 (1+ε)
3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

. So finally, for any η > 0, we

have that ‖h‖Hp 6 (n− 1) p
2

√
(1+ε)

3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

+O(t−1+η). This gives that there ex-

ists t1 > t0 such that for all t > t1, we have ‖h‖Hp 6 (1+ε)(n−1) p
2

√
(1+ε)

3
2 n(n+2)

2(n−1)(1−ε)
3
2 (t−t0)

.

This is true for any ε > 0. In conclusion, we have that for any r < 2
n(n−1)p−1(n+2) ,

there exists t1 such that for t > t1, we have ‖f(t) − 1‖Hp 6 1√
rt

.

4.4 Summary
In summary we can state the following theorem:

Theorem 4.4. Convergence to equilibrium.
Suppose f0 is a probability measure, belonging to Hs(S) (this is always the case

for some s < −n−1
2 ).

Then there exists a unique weak solution f to Doi equation (1.3), satisfying the
initial condition f(0) = f0.

Furthermore, this is a classical solution, positive for all time t > 0, and belonging
to C∞((0,+∞) × S).

If J [f0] 6= 0, then we have the three following cases, depending on τ .

• If τ > 1
n
, then f converges exponentially fast to the uniform distribution, with

global rate (n− 1)(τ − 1
n
) in any Hp norm.

More precisely, for all t0 > 0, there exists a constant C > 0 depending only
on t0, s, p, n, and τ , such that for all t > t0, we have

‖f(t) − 1‖Hp 6 C‖f0‖Hse−(n−1)(τ− 1
n

)t.
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• If τ < 1
n
, then there exists Ω ∈ S such that f converges exponentially fast

to MκΩ, with asymptotic rate r∞(τ) > 0 in any Hp norm.
More precisely, for all r < r∞(τ), there exists t0 > 0 (depending on f0) such
that for all t > t0, we have

‖f(t) −MκΩ‖Hp 6 e−rt.

When τ is close to 1
n

we have that r∞(τ) ∼ 2(n− 1)( 1
n

− τ).

• If τ = 1
n
, then f converges to the uniform distribution in any Hp norm, with

asymptotic rate
√

n(n−1)p−1(n+2)
2t

.
More precisely, for all r < 2

n(n−1)p−1(n+2) , there exists t0 > 0 (depending on f0)
such that for all t > t0, we have

‖f(t) − 1‖Hp 6 1√
rt
.

If J [f0] = 0 the equation reduces to the heat equation on the sphere, so f converges
to the uniform distribution, exponentially with global rate 2nτ in any Hp norm.

For the subcritical case τ > 1
n
, we used Theorem 4.2. In the case where p < −n−1

2 ,
a simple embedding gives ‖f(t) − 1‖Hp 6 ‖f(t) − 1‖

H− n−1
2

so we only have to show
the result for p > −n−1

2 . We get

‖f − 1‖2
Hp 6 C‖f(t0) − 1‖Hpe−(n−1)(τ− 1

n
)(t−t0) 6 C‖f(t0)‖Hpe−(n−1)(τ− 1

n
)(t−t0).

The last inequality comes from the fact that f(t0) is a probability density function,
so f(t0)−1 is the orthogonal projection of f(t0) on the space of mean-zero functions.
Using Proposition 2.6, we get ‖f(t0)‖Hp 6 Ct0‖f0‖Hs in the case p > s. Otherwise
we just use a simple embedding to get first ‖f(t0)‖Hp 6 ‖f(t0)‖Hs and then by the
same proposition ‖f(t0)‖Hp 6 C‖f0‖Hs .

Then the results in the case τ < 1
n

and τ = 1
n

are a summary of the conclusions
of the two previous subsections. However, although it gives a clear understanding of
how fast the solution converges to the equilibrium, in some sense, this summary is
not as accurate as Propositions 4.2 and 4.3, which give a kind of stability: starting
close to an equilibrium, the solution stays close.

5 Conclusion
In this chapter, we have investigated all the possible dynamics in large time for
the Doi–Onsager equation (1.3) with dipolar potential. We have obtained a rate
of convergence towards the equilibrium given any initial condition and any noise
parameter τ > 0, for all dimension n > 2.

The rate of convergence to the anisotropic steady state, in the case τ < 1
n
,

depends on a Poincaré constant which does not seem easy to estimate. A better
knowledge of the behavior of this constant, for example as the noise parameter τ
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tends to zero, would be useful to understand the limiting case τ = 0, where we have
existence and uniqueness of the solution. In this limit, the steady states are given by
the sum of two antipodal Dirac masses (1 −α)δΩ +αδ−Ω with Ω ∈ S and 0 6 α 6 1

2 .
We conjecture that if the initial condition is continuous (and with non zero initial
momentum), then the solution converges to one of these steady states, with α = 0.

It should also be possible to get the same kind of rates for the Maier–Saupe
potential, but there the classification of the initial conditions leading to a given type
of equilibria is much more difficult, in particular in the case where two types of
equilibria are stable.

A Using the spherical harmonics
For the following we will use the spherical harmonics, so we recall some preliminaries
results. We fix n > 2 and work on Rn and its unit sphere Sn−1.

Definition A.1. A spherical harmonic of degree ` on Sn−1 is the restriction to Sn−1
of a homogeneous polynomial of degree ` in n variables (seen as a function Rn → R)
which is an harmonic function (a function P such that ∆P = 0, where ∆ is the
usual Laplace operator in Rn). We denote H(n)

` the set of spherical harmonics of
degree ` on Sn−1 (including 0 so they are vector spaces).

We know that the space of homogeneous polynomials of degree ` in n variables
has dimension

(
n+`−1

n−1

)
(the number of n-tuples (i1, . . . in) of sum `). Writing an

arbitrary homogeneous polynomial P of degree ` under the form P = ∑`
i=0 Q`−iX

i
n,

with the polynomials Qi being homogeneous of degree i in the first n− 1 variables,
and imposing that P is an harmonic function gives the following conditions (taking
the term in X i−2

n ), for i ∈ J0, ` − 2K: ∆Q`−i + (i + 1)(i + 2)Q`−i−2 = 0. Finally the
polynomial P is only determined by the polynomials Q` and Q`−1 in n−1 variables,
of respective degrees ` and `− 1. This gives the dimension of the space of spherical
harmonics.

Proposition A.1. The dimension of H(n)
` is given by

k
(n)
` =

(
n+`−2

n−2

)
+
(

n+`−3
n−2

)
=
(

n+`−1
n−1

)
−
(

n+`−3
n−1

)
.

The second expression comes from two successive applications of Pascal’s trian-
gle rule, and will be useful in the following. It can also be seen by the following
property1: every homogeneous polynomial P of degree ` can be decomposed in a

1This can be shown using the appropriate inner product (P, Q) 7→ P (D)Q on the space of
homogeneous polynomials P of degree `, where P (D) is defined as ∂`

∂
α1
X1

...∂αn
Xn

if P = Xα1
1 . . . Xαn

n ,

and extended by linearity (so for example, we have that |X|2(D) = ∆). If we denote by E the space
of polynomials of the form P = |X|2Q, with Q of degree ` − 2, then the orthogonal of E consists
in all the polynomials P such that for all Q of degree ` − 2, we have (|X|2Q)(D)P = Q(D)∆P = 0,
that is to say in all the polynomials P such that ∆P = 0. So the claimed decomposition is just
the orthogonal decomposition, on E and E⊥.
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unique way as H + |X|2Q, where H is harmonic of degree ` and Q is homogeneous
of degree `− 2. Iterating this decomposition, we get

P = H` + |X|2H`−2 + |X|4H`−4 + · · · +

|X|`H0 ` even
|X|`−1H1 ` odd

,

where the polynomialsHi are harmonic of degree i. This shows that any restriction of
a polynomial on the sphere is equal to a sum of spherical harmonics (the terms |X|2i

are constant when restricted to the sphere). This gives, with the Stone-Weierstrass
theorem, that the sum of spherical harmonics are dense in L2(Sn−1) (since they are
dense in the continuous functions). Together with the radial decomposition of the
Laplacian ∆ = 1

rn−1∂r(rn−1∂r) + 1
r2 ∆ω (where ∆ω is the Laplace Beltrami operator

on the sphere Sn−1, which is self-adjoint in L2(Sn−1)), we get the following result:

Proposition A.2. The spaces H(n)
` , for ` ∈ N, are the eigenspaces of the Laplace

Beltrami operator ∆ω on the sphere Sn−1 for the eigenvalues −`(` + n − 2). They
are pairwise orthogonal and complete in L2(Sn−1).

We can construct a basis of H(n)
` by induction on the dimension, using the sep-

aration of variables. We describe this construction and will use it in the following.
For a given unit vector en ∈ Rn, we take an orthonormal basis (e1, . . . , en) of Rn.

Any ω ∈ Sn−1 \ {en,−en} can be written ω = cos θen + sin θv, with θ ∈ (0, π)
and v ∈ Sn−2. We identify Rn−1 with the vector space spanned by (e1, . . . , en−1).
The special case n = 2 works if we consider S0 = {e1,−e1}.

By convention, the only spherical harmonics on S0 are the constant functions (of
degree 0) and the functions e1 7→ c, −e1 7→ −c (of degree 1).

Now, for n > 1, we choose an orthonormal basis (Z1
m, . . . Z

k
(n−1)
m

m ) of H(n−1)
m for

any m ∈ N and we have the following result:

Proposition A.3. There exists polynomials Q`,m of degree `−m such that if we de-
note Y k

`,m(ω) = Q`,m(cos θ) sinm θZk
m(v), then the Y k

`,m for m ∈ J0, `K, k ∈ J1, k(n−1)
m K

form an orthonormal basis of H(n)
` .

Proof. Writing Y k
`,m(ω) = Q`,m(cos θ) sinm θZk

m(v) and asking it to be a spherical
harmonic is equivalent to the following linear ODE for Q`,m (we recall that the
Laplace–Beltrami operator is given by sin2−n θ∂θ(sinn−2 θ∂θ) + 1

sin2 θ
∆v in this coor-

dinates):

sin2−n ∂θ( − sinn+m−1 θQ′
`,m(cos θ) +m cos θ sinn+m−3 θQ`,m(cos θ))

−m(m+ n− 3)Q`,m(cos θ) sinm−2 θ = −`(`+ n− 2)Q`,m(cos θ) sinm θ.

We write x = cos θ and this equation transforms into

(1 − x2)Q′′
`,m − (n+ 2m− 1)xQ′

`,m + (`−m)(`+ n+m− 2)Q`,m = 0.

This equation is a particular form of the Jacobi differential equation, where the two
parameters α and β are equal (also called Gegenbauer differential equation). One
solution of this differential equation is a polynomial, called ultraspherical polynomial
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(a particular case of the Jacobi Polynomials, also called Gegenbauer polynomials),
and denoted P

(λ)
i following the notation of Szegö in [72]. Precisely, it satisfies the

differential equation

(1 − x2)y′′ − (2λ+ 1)xy′ + i(i+ 2λ)y = 0.

Taking λ = m − 1 + n
2 and i = ` − m, we get a solution Q`,m = α`,mP

(m−1+ n
2 )

`−m ,
where α`,m is a positive constant of normalization, such that Y k

`,m is of norm 1
in L2(Sn−1). We have to be careful here because P (λ)

i is not defined for λ = 0, and
so the only special case is n = 2, m = 0, for which we have a solution Q`,0 =

√
2T`,

where T`(cos θ) = cos `θ (the Chebyshev polynomial of first order of degree `).
So for a fixed `, we have constructed a family of spherical harmonics Y k

`,m of
degree ` for m ∈ J0, `K, k ∈ J1, k(n−1)

m K. They are pairwise orthogonal in L2(Sn−1)
since the Zk

m are pairwise orthogonal in L2(Sn−2). The size of this family is exactly

∑̀
m=0

k(n−1)
m =

∑̀
m=0

(
n+m−2

n−2

)
−
(

n+m−4
n−2

)
=
(

n+`−2
n−2

)
+
(

n+`−3
n−2

)
= k

(n)
` , (A.58)

which is the dimension of H(n)
` , so we get that the Y k

`,m for m ∈ J0, `K, k ∈ J1, k(n−1)
m K

form an orthonormal basis of H(n)
` .

From now on, we will use the construction done in the proof. We have that, for a
fixed m > 0, the polynomials Q`,m for ` > m are a family of orthogonal polynomials
for the inner product (P,Q) 7→

∫ 1
−1 P (x)Q(x)(1 − x2)m−1+ n−1

2 dx.
We will use three properties on the Gegenbauer polynomials (see [72]) for the

following, for i > 0, λ 6= 0, and λ > −1
2 (with the convention P

(λ)
−1 = 0):

∫ 1

−1
(P (λ)

i (x))2(1 − x2)λ− 1
2 dx = 21−2λπΓ(i+ 2λ)

(i+ λ)Γ2(λ)Γ(i+ 1)
(A.59)

(i+ 1)P (λ)
i+1 = 2(i+ λ)XP (λ)

i − (i+ 2λ− 1)P (λ)
i−1 (A.60)

(1 −X2)(P (λ)
i )′ = 1

2(i+ λ)
(
(i+ 2λ− 1)(i+ 2λ)P (λ)

i−1 − i(i+ 1)P (λ)
i+1

)
(A.61)

We have the following normalization for the Q`,m:

∫ 1

−1
Q2

`,m(x)(1 − x2)m−1+ n−1
2 dx =

∫ 1

−1
(1 − x2)

n−1
2 −1dx.

This gives the following relation, together with (A.59):

α2
`+1,m = (`+ n

2 )(`+1−m)

(`+ n
2 −1)(`+m+n−2)

α2
`,m. (A.62)
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A.1 Estimates on the unit sphere
By the previous construction, we can do the decomposition g = ∑

k,`,mc
k
`,mY

k
`,m and

we have
∫
Sn−1

g2 = ∑
k,`,m |ck

`,m|2. Since g is of mean zero, we have c1
0,0 = 0 (the

only spherical harmonic of degree 0 is the constant function 1). So from now, the
indices k, `,m of the sum will mean ` > 0,m ∈ J0, `K, k ∈ J1, k(n−1)

m K.
We decompose in the same way h = ∑

k,`,md
k
`,mY

k
`,m. We give a first formula, in

the form of a lemma.

Lemma 4.3. We have

en ·
∫
Sn−1

g∇h = 1
2
∑

k,`,m

b`,m[(`+ n− 1)ck
`,md

k
`+1,m − `ck

`+1,md
k
`,m], (A.63)

where b`,m =
√

`−m+1
√

`+m+n−2√
`+ n

2 −1
√

`+ n
2
6 1.

Proof. We have

en · ∇Y k
`,m = − sin θ∂θY

k
`,m =

[
(1 −X2)Q′

`,m −mXQ`,m

]
(cos θ) sinm θZk

m(v),

and using the inductions formulas (A.60), (A.61) and (A.62), we get

(1 −X2)Q′
`,m −mXQ`,m = 1

2
[b`−1,m(`+ n− 2)Q`−1,m − b`,m`Q`+1,m], (A.64)

where b`,m is given in the statement of the lemma. In the special case n = 2, m = 0,
using the formula Q`,0(cos θ) = cos `θ gives the same formula as (A.64), with b`,0 = 1.

So we have that
∫
Sn−1

en · ∇Y k
`,mY

k′
`′,m′ can be non-zero only if m = m′, k = k′,

and ` = `′ ± 1. By bilinearity, together with the fact that Y k
`,m form an orthonormal

basis, this gives the claimed formula.

Now we have all the tools to prove Lemma 4.1 (we recall it here).

Lemma 4.1. Estimates on the sphere.

1. If h in Ḣ−s+1(S) and g in Ḣs(S), the following integral is well defined and we
have ∣∣∣∣∫

S
g∇h

∣∣∣∣ 6 C‖g‖Ḣs‖h‖Ḣ−s+1 ,

where the constant depends only on s and n.

2. We have the following estimation, for any g ∈ Ḣs+1(S):∣∣∣∣∫
S
g∇(−∆)sg

∣∣∣∣ 6 C‖g‖2
Ḣs ,

where the constant depends only on s and n.

3. We have the following identity, for any g ∈ Ḣ− n−3
2 :∫

S
g∇∆̃−1

n−1g = 0.
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Proof. Using Lemma 4.3, we get

en ·
∫
Sn−1

g∇h 61
2
∑

k,`,m

√
`+n−1

`+1

(
λ`+1

λ`

) s
2 |λ

s
2
` c

k
`,m||λ

−s+1
2

`+1 dk
`+1,m|

+ 1
2
∑

k,`,m

√
`

`+n−2

(
λ`

λ`+1

) s
2 |λ

s
2
`+1c

k
`+1,m||λ

−s+1
2

` dk
`,m|

6C‖g‖Ḣs‖h‖Ḣ−s+1

where λ` = `(` + n − 2) (the eigenvalue of −∆ for the spherical harmonics of
degree `). The last line comes from the fact that the sequences

√
`+n−1

`+1

(
λ`+1

λ`

) s
2

and
√

`
`+n−2

(
λ`

λ`+1

) s
2 are bounded (they tend to 1), together with a Cauchy-Schwarz

inequality. This gives the first part of the lemma, since this is true for any unit
vector en.

Now we take h = (−∆)sg, which is replacing dk
`,m by λs

`c
k
`,m in Lemma 4.3. We

get

en ·
∫
Sn−1

g∇(−∆)sg =
∑

k,`,m

1
2
b`,mc

k
`+1,mc

k
`,m[(`+ n− 1)λs

`+1 − `λs
`]

6
∑

k,`,m

|λ
s
2
`+1c

k
`+1,m||λ

s
2
` c

k
`,m||(`+ n− 1)

(
λ`+1

λ`

) s
2 − `

(
λ`

λ`+1

) s
2 |

6 C‖g‖2
Ḣs .

Indeed we have that λ`+1
λ`

= 1 − 2
`

+ O(`−2), so |(` + n − 1)
(

λ`+1
λ`

) s
2 − `

(
λ`

λ`+1

) s
2 | is

bounded (it tends to (n− 1) + 2s). Since this computation is now valid for any unit
vector en, this gives the second part of the lemma.

The last part is straightforward by taking h = ∆̃−1
n−1g with Lemma 4.3. According

to the definition given in (2.8), we have dk
`,m = 1

`(`+1)...(`+n−2) c
k
`,m. We get

en ·
∫
Sn−1

g∇∆̃−1g =
∑

k,`,m

1
2
b`,mc

k
`+1,mc

k
`,m[ `+n−1

(`+1)...(`+n−1) − `
`(`+1)...(`+n−2) ] = 0,

which is true for any unit vector en.

A.2 Analyticity of the solution
Following [21], we will show that the solution belongs to a special Gevrey class. We
define the space Gr as the set of functions g (with mean zero) such that ∆̃− 1

2
n−1e

r(−∆)
1
2 g

is in L2(S). Using the notations of the previous proof, this is an Hilbert space
associated to the inner product

〈g, h〉Ġs
r

=
∑

k,`,m

e2r
√

`(`+n−2)

`(`+ 1) . . . (`+ n− 2)
ck

`,md
k
`,m.

The norm on this Hilbert space will be written ‖ · ‖Gr .
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Theorem 4.5. We define r(t) = δmin{1, t}.
If δ > 0 is sufficiently small, then for any solution of Doi equation (1.3) of

the form f = 1 + g, with g(0) ∈ Ḣ− n−1
2 (S), we have that g(t) is bounded in Gr(t),

uniformly for t > 0.

Before giving a proof, we remark that the condition g(0) ∈ Ḣ− n−1
2 (S) is not very

strong, since, by instantaneous regularization (Proposition 2.6) we have it for any
time t > 0. The shape of r(t) is not optimal, and we will provide a more precise
condition in the proof. Now since Gr, for r > 0, is a subset of the set of analytical
functions on the sphere, we get that any solution becomes instantaneously analytic
in space.

Proof. We take r an arbitrary function of t, we will denote its time derivative by ṙ.
For a given solution f = 1 + g, we put h = ∆̃−1

n−1e
2r(−∆)

1
2 g in (2.13).

The left-hand side is

〈∂tg, ∆̃−1
n−1e

2r(−∆)
1
2 g〉 =

∑
k,`,m

e2r
√

`(`+n−2)

`(`+ 1) . . . (`+ n− 2)
ck

`,m

d
dt
ck

`,m

=
∑

k,`,m

1
2

d
dt

( e2r
√

`(`+n−2)

`(`+1)...(`+n−2) |c
k
`,m|2) − ṙ e2r

√
`(`+n−2)

√
`(`+1)...(`+n−1)

√
`+n−2 |ck

`,m|2

=1
2

d
dt

‖g‖2
Gr

− ṙ‖(−∆)
1
4 g‖2

Gr
.

Using Lemma 4.3, we get

en · 〈g,∇∆̃−1
n−1e

2r(−∆)
1
2 g〉 = 1

2
∑

k,`,m

b`,mc
k
`+1,mc

k
`,m

e2r
√

(`+1)(`+n−1) − e2r
√

`(`+n−2)

(`+ 1) . . . (`+ n− 2)

61
2
∑

k,`,m

4
√

(`+1)(`+n−1)er
√

(`+1)(`+n−1)
√

(`+1)...(`+n−2)(`+n−1)
|ck

`+1,m|
4
√

`(`+n−2)er
√

`(`+n−2)
√

`(`+1)...(`+n−2)
|ck

`,m|

× 4

√
`(`+n−1)

(`+1)(`+n−2)

(
e

r

(√
(`+1)(`+n−1)−

√
`(`+n−2)

)
− e

−r

(√
(`+1)(`+n−1)−

√
`(`+n−2)

))
6 sinh(r(

√
2n−

√
n− 1))‖(−∆)

1
4 g‖2

Gr
.

Indeed the expression
√

(`+ 1)(`+ n− 1) −
√
`(`+ n− 2) is a decreasing function

of ` > 0. Since this is valid for any unit vector en, we get∣∣∣∣J [g] · 〈g,∇∆̃−1
n−1e

2r(−∆)
1
2 g〉

∣∣∣∣ 6 sinh(r(
√

2n−
√
n− 1))‖(−∆)

1
4 g‖2

Gr
.

Now since ‖(−∆) 1
4 g‖2

Gr
6 1√

n−1‖(−∆) 1
2 g‖2

Gr
, and |J [h]| 6 e2r

√
n−1

(n−1)! |J [g]|, we finally
get

1
2

d
dt

‖g‖2
Gr

+ [τ − 1√
n−1(ṙ + sinh(r(

√
2n−

√
n− 1)))] ‖(−∆)

1
2 g‖2

Gr
6 e2r

√
n−1

(n− 2)!
.

As soon as ṙ+sinh(r(
√

2n−
√
n− 1)) < (τ −ε)

√
n− 1 and r is bounded in time

(for example the shape given in the statement of the theorem, r(t) = δmin(1, t),
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for δ sufficiently small), using Poincaré inequality, we have that ‖g‖2
Gr

satisfies an
inequality of the form ẏ + ay 6 b with some positive constants a and b. Therefore
this quantity is uniformly bounded, provided g(0) is in Gr(0). So if we have r(0) = 0,
we only need g(0) to be in Ḣ− n−1

2 (S).



Chapter 5

A note on the dynamics in the Doi
equation with Maier–Saupe
potential

This chapter is an ongoing collaboration with Jian-Guo Liu, started when visiting
him in Tsinghua University.

Abstract

Following the work of Chapter 4 on the dipolar potential, we study the
dynamics of the Doi equation with Maier–Saupe potential.

In the special case of dimension 2, we prove convergence to a an equilibrium
for any initial condition, with exponential rate except in the critical case where
the rate is algebraic.

Key words: Doi–Onsager equation, Smoluchowski equation, Maier–Saupe po-
tential, LaSalle invariance principle, convergence to steady-states.
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1 Introduction
We denote by S the unit sphere of Rn, and we consider the following non-local partial
differential equation on S, for a probability density function f on the sphere:∂tf = ∇ · (f∇Ψf ) + τ∆f,

Ψf (ω, t) =
∫
SK(ω, ω̄) f(t, ω̄) dω̄.

(1.1)

This equation is known as Doi equation (or Doi–Onsager, Smoluchowski, or even
nonlinear Fokker–Planck equation) and was introduced by Doi [32] as a gradient
flow equation for the Onsager free energy functional:

F(f) = τ
∫
S
f(., ω) ln f(., ω)dω + 1

2

∫
S×S

K(ω, ω̄)f(., ω) f(., ω̄) dωdω̄.

This functional was proposed by Onsager [65] to describe the equilibrium states
of suspensions of rod-like polymers. They are given by the critical points of this
functional.

Defining the chemical potential µ as the first order variation of F(f) under the
constraint

∫
S f = 1, we get µ = τ ln f + Ψ, and the Doi equation becomes

∂tf = ∇ · (f∇µ),

and we have, for a smooth positive solution f of (1.1),

d
dt

F + D = 0, (1.2)

where the (positive) dissipation term D(f) is given by

D(f) =
∫
S
f |∇ω(τ ln f + Ψf )|2 =

∫
S
f |∇ωµ|2.

In the original work of Onsager, the kernel has the form K(ω, ω̄) = |ω × ω̄|, but
there is another form, introduced later by Maier and Saupe [58], which leads to
similar quantitative results: K(ω, ω̄) = 1

n
− (ω · ω̄)2. In particular, one observes a

phenomenon of hysteresis when the parameter τ , which represents a temperature,
goes from large to small values, and back to large values.

The study of the case K = −ω · ω̄, called the dipolar potential, has been done in
Chapter 4. Motivated by the results obtained in there with respect to the analysis
of the dynamics of convergence towards a given equilibria, we will show that we can
apply the method in the case of the Maier–Saupe potential.

Let us briefly review what have been done previously with respect to the math-
ematical study of this equation. A review is available on this topic [84], but it does
not take into accounts some recent developments.

The characterization of equilibria started in 2004 in dimension n = 2 for the
Maier–Saupe potential with the paper [20], with a partial result, which was then
completed by three independent groups in [22, 38, 57] (moreover, a whole family
of different kernels is treated in [38] including the dipolar potential, still in dimen-
sion n = 2). In the case where the temperature τ is greater than or equal to 1

4 ,
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the uniform distribution is the unique steady-state, and when τ < 1
4 , there is also

another family of equilibria, which are non-isotropic, symmetric, and differ from one
to another by a simple rotation (called nematic equilibria).

The case of the dimension 3 is a little bit more elaborated, since we need first
to show that any steady-state is axisymmetric. After the partial result [20], the
complete characterization was provided in 2005, independently in [37, 55, 88]. One
can observe a fascinating hysteresis phenomena with two thresholds for the temper-
atures: τc = 2

15 and τ ∗ > τc. When τ > τ ∗, the uniform distribution is the unique
steady-state, when 2

15 < τ < τ ∗, two other families of prolate (concentrated around
two antipodal points) nematic equilibria appear, and when τ < 2

15 , one of this fam-
ily transforms into oblate equilibria (concentrated around a great circle). Analyzing
stability as local minimization of Onsager free energy, this last family is proved to
be unstable for τ < τ ∗, as well as the uniform distribution for τ < 2

15 . The other are
stable in this sense. Hence, starting from a large τ , the only stable equilibrium (the
uniform distribution) stays stable until τ reaches 2

15 , and starting from a small τ , the
only family of stable equilibria (the prolate nematic equilibria) stays stable until τ
reaches τ ∗ > 2

15 , which gives the hysteresis phenomenon.
In [89], a coupling between the Maier–Saupe and the dipolar potential is pro-

posed, and the only stable equilibria are proved to be symmetric. And finally,
recently, a unified characterization of these equilibria in many cases has been pro-
vided [78], including the case of the Maier–Saupe potential in any dimension. The
main idea is to prove that the so-called orientational tensor order parameter is a ma-
trix with at most two distinct eigenvalues, which allows to reduce the compatibility
condition (a Euler-Lagrange equation for the potential) to a more simple equation.

Regarding the dynamics in time, a few results were given, for the Maier–Saupe
potential only, in dimension 2 and 3. Existence, uniqueness, non-negativity, and
spatial-analyticity of a solution are claimed for a continuous nonnegative initial
condition in [19, 21]. The system is proved to be dissipative in a certain Gevrey class
of functions. Recently, the existence of inertial manifolds has been established [76,
77]. But this does not provide convergence in time to a given equilibrium.

A lot of variants were proposed and studied [80, 85, 87, 90, 75, 39] including
external forces such as elongational force or shear flow, or modelling more complex
phenomena with space dependence. And finally, very recently, some results were
provided in dimension 2 which provide a better understanding of the case of the
original Onsager kernel [18, 56, 79, 81], based on the analysis of the steady states.

Our main contributions to this field concerns the dynamical description of the
system as time goes to infinity, which has not been treated a lot, as far as we know.

2 General results
If the kernel K is polynomial of degree less than p in ω̄, we get that Ψf depends
linearly on the (orthogonal) projection of f on the space spanned by the spheri-
cal harmonics of degree less than p. Therefore, all the machinery introduced in
Chapter 4 works, and we get the following result:

Theorem 5.1. Existence, uniqueness, positivity and regularity.
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We suppose that the kernel K is polynomial with respect to ω̄. Given an initial
probability measure f0 in Hs(S), there exists a unique global weak solution f of Doi
equation (1.1) such that f(0) = f0. Moreover, f ∈ C∞((0,+∞)×S), with f(t, ω) > 0
for all positive t.

We also have the following instantaneous regularity and uniform boundedness
estimates (for m ∈ N, the constant C depending only on τ,m, s), for all t > 0:

‖f(t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖f0‖2

Hs .

The proof follows closely the one of Theorem 4.1 of Chapter 4, and will be
omitted here. The first step consists in proving local existence, uniqueness and
regularity, then, using regular solution, we prove positivity by a maximum principle.
This implies that, up to explosion time, we have uniform bounds on Ψf which do not
depend on f , using the fact that f is a positive function of mean 1. From this bounds
we then get the global existence and the estimates for instantaneous regularity and
uniform boundedness.

Let us note that this result is stronger, in some sense, than what have been
claimed in [19, 21] in the sense that one can start in any Sobolev space, instead of
only continuous, but in another sense, it is weaker, since we do not have analyticity
in space. One can expect to get this analyticity in a way similar to what we have
done in Appendix A.2 of Chapter 4, showing that the solution belongs to a certain
Gevrey class (the result of [21] is that this is the case for the Maier–Saupe potential
in dimension 2 and 3). In [20], a similar claim is given, for a general smooth kernel,
with continuous initial condition.

Once we have this results, we can then study the steady states of (1.1). The proof
of the following proposition is the same as the one of Proposition 3.1 of Chapter 4.

Proposition 2.1. Steady states.
The steady states of Doi equation (1.1) are the probability measures f on S which

satisfy one of the following equivalent conditions.

1. Equilibrium: f ∈ C2(S) and Q(f) = 0

2. No dissipation: f ∈ C1(S) and D(f) = 0

3. The probability density f ∈ C0(S) is positive and a critical point of F (under
the constraint of mean 1).

4. There exists C ∈ R such that τ ln f + Ψf = C.

We then get exactly the same properties of convergence to a given set of equilib-
ria, as in Proposition 3.2 of Chapter 4:

Proposition 2.2. LaSalle’s invariance principle.
Let f0 be a probability measure on the sphere S. We denote by F∞ the limit

of F(f(t)) as t → ∞, where f is the solution to Doi equation (1.1) with initial
condition f0.

Then the set E∞ = {f ∈ C∞(S) s.t. D(f) = 0 and F(f) = F∞} is not empty.
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Furthermore f(t) converges in any Hs norm to this set of equilibria (in the
following sense):

lim
t→∞

inf
g∈E∞

‖f(t) − g‖Hs = 0.

This principle is crucial and allows to show convergence to a given equilibrium,
if we know the structure of the equilibria. In the case of the Maier–Saupe potential,
recent results have provided, little by little, the complete classification of the equi-
libria in dimension 2 [22, 38, 57], then in dimension 3 [37, 55, 88], and finally in any
dimension in [78].

3 The Maier–Saupe potential
When the kernel K is of the form K(ω, ω̄) = 1

n
− (ω · ω̄)2 = ( 1

n
Id − ω ⊗ ω) : ω̄ ⊗ ω̄,

we introduce the operator S with values in trace-free symmetric matrices by:

S[f ] =
∫
S
( 1

n
Id − ω ⊗ ω)fdω. (3.3)

It is then easy to see that Ψf is given by Ψf (ω) = ω ⊗ ω : S[f ] = ω · S[f ]ω and
is a spherical harmonic of degree 2. Indeed we have, for any trace-free symmetric
matrix A, ∇ω(ω ⊗ ω : A) = 2(Id − ω ⊗ ω)Aω

∇ω · ((Id − ω ⊗ ω)Aω) = −nω ⊗ ω : A
, (3.4)

so we get ∆ωΨf = −2nΨf .
Let us first state the existence of a threshold of dynamic instability for the

uniform distribution, by deriving the ordinary differential equation satisfied by S[f ].

Proposition 3.1. Instability of the uniform distribution below a threshold.
If we have S[f0] = 0, then we have S[f(t)] = 0 for all t > 0, and the Doi

equation (1.1) becomes the heat equation on the sphere. The solution converges
exponentially fast to the uniform distribution.

If we have S[f0] 6= 0, then we have S[f(t)] 6= 0 for all t > 0. Moreover, in the
case where τ < 2

n(n+2) , the solution cannot converge to the uniform distribution.

Proof. For a trace-free symmetric matrix A, we have ( 1
n
Id−ω⊗ω) : A = −ω⊗ω : A,

and then, for a solution f of Doi equation (1.1), we get

d
dt
S[f ] : A =

∫
S

−ω ⊗ ω : A∇ω · (f∇ω(ω ⊗ ω : S[f ]))dω − τ
∫
S
(ω ⊗ ω : A)∆ωfdω

=
∫
S

∇ω(ω ⊗ ω : A) · ∇ω(ω ⊗ ω : S[f ]) fdω − τ
∫
S

∆ω(ω ⊗ ω : A) f dω

= 4
∫
S
Aω · (Id − ω ⊗ ω)S[f ]ω fdω + 2nτ

∫
S
ω ⊗ ω : Af dω

= 4A :
∫
S
ω ⊗ [(Id − ω ⊗ ω)S[f ]ω] fdω − 2nτ

∫
S
( 1

n
Id − ω ⊗ ω) : Af dω

= A : Lf (S[f ]) − 2nτA : S[f ].
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The operator Lf is a linear operator on matrices, hence, considering it as a smooth
time-depending linear operator Lt we get that S[f ] satisfies the linear ordinary
differential equation with variable coefficients:

d
dt
S[f ] = Lt(S[f ]) − 2nτS[f ]. (3.5)

Therefore, we have by uniqueness that if S[f ](t1) = 0 for some t1 ∈ R+, then S[f ] is
identically zero for all non-negative time (the ODE is linear, we can go backwards
and forwards in time), and the equation (1.1) reduces to the heat equation on the
sphere, with temperature τ .

Now we suppose that S[f0] 6= 0, and then we have S[f(t)] 6= 0 for all t > 0. If
we introduce the function g = f − 1, we have S[f ] = S[g]. A direct computation
shows that for a trace-free symmetric matrix A, we have∫

S
(ω ⊗ ω : A) (ω ⊗ ω : ei ⊗ ej)dω = 2

n(n+2)aij = 2
n(n+2)A : ei ⊗ ej. (3.6)

Hence, using the fact that
∫
S ω ⊗ ω = 1

n
Id, the ODE (3.5) becomes

d
dt
S[g] = 2n( 2

n(n+2) − τ)S[g] + 4
∫
S
ω ⊗ [(Id − ω ⊗ ω)S[g]ω] gdω.

Writing |S[g]|2 for S[g] : S[g], we get

1
2

d
dt

|S[g]|2 = 2n( 2
n(n+2) − τ)|S[g]|2 + 4

∫
S
(|S[g]ω|2 − (S[g] : ω ⊗ ω)2) gdω.

Now, if we suppose that τ < 2
n(n+2) and that g tends to 0 in a given Sobolev norm,

then we get by the uniform bounds of Theorem 5.1 and by interpolation that g
converges uniformly to 0. So for t > t1 we get that the last term in the previous
equation is bounded by ε|S[g]|2, for ε < 2

n(n+2) − τ . Therefore we have

1
2

d
dt

|S[g]|2 > 2n( 2
n(n+2) − τ − ε)|S[g]|2,

with a non-zero initial condition, so this yields that |S[g]|2 increases exponentially,
which is a contradiction.

We now define, in the spirit of Chapter 4, the distribution MA associated to a
given trace-free symmetric matrix A by

MA(ω) = eω⊗ω:A∫
S e

υ⊗υ:Adυ
(3.7)

By Proposition 2.1, a density probability function f on the sphere is a steady-state
if and only if τ ln f + ω ⊗ ω : S[f ] is constant, which is equivalent to say that f is
of the form MA, with A = −τ−1S[f ]. Hence, we have the following compatibility
condition for A:

τA+ S[MA] = 0, (3.8)
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and conversely any solution A to this compatibility equation give rise to a steady
state of the form MA. The first thing to remark is that since all the equilibria are
even with respect to ω, that is to say MA(ω) = MA(−ω), then we can use LaSalle
principle to show that the odd part of f , given by fo(ω) = 1

2 [f(ω) − f(−ω)] will
converge to zero in any Hs norm. Indeed, since fo is orthogonal to any even function,
we get, using the notations of Proposition 2.2, and writing fe = f −fo the even part
of f , that

inf
g∈E∞

‖f(t) − g‖2
Hs = ‖fo(t)‖2

Hs + inf
g∈E∞

‖fe(t) − g‖2
Hs → 0 as t → ∞.

It is an easy matter to see that the even part of f also satisfies the same Doi
equation (1.1), since Ψf = Ψfe , therefore we can restrict the study to the case where
the function f is even.

With the complete classification of [78], we now have the structure of the equi-
libria in any dimension. We can then study the dynamics of convergence, using the
same tools as in Chapter 4. We know that a matrix satisfying the compatibility con-
dition (3.8) has only two distinct eigenvalues, so the classification is done according
to the smallest dimension of the two eigenspaces. For example if this dimension
is 1 (this is always the case when n = 2 or 3), the matrix A can be put under the
form κ(n−1

n
Ω ⊗ Ω − 1

n
(Id − Ω ⊗ Ω)) with κ ∈ R and Ω ∈ S, we can rewrite the

function MA as

Mκ,Ω = eκ(ω·Ω)2− κ
n∫

S e
κ(υ·Ω)2− κ

n dυ
= eκ(ω·Ω)2∫

S e
κ(υ·Ω)2dυ

, (3.9)

and we finally get that compatibility condition (3.8) becomes

n−1
n
τκ+ 〈 1

n
− (ω · Ω)2〉Mκ,Ω = 0, (3.10)

where 〈·〉Mκ,Ω denotes the mean against the probability density Mκ,Ω.
We present the results in the two-dimensional case, in which we have a complete

understanding of the long-time dynamics, since it is very similar to the dipolar
potential. We have also other results in higher dimensions, but not enough complete
to be put in this report.

3.1 The two-dimensional case
In a two-dimensional framework the characterization of the equilibria is easy. We
can compute these equilibria in the same manner as in Chapter 4, but we will use a
transformation which reduces the case of Maier–Saupe potential for an even function,
to the case of the dipolar potential.

We use the special conservation relation derived in Proposition A.1 (in appendix):
if we denote g = f − 1, we have

1
2

d
dt

‖g‖2
H− 1

2 (S1)
= 4S[(−∆)− 1

2 g] : S[g] − τ‖g‖2
H

1
2 (S1)

, (3.11)

where the Hs norm is given by ‖g‖2
Hs(S1) =

∫
Sn−1

g(−∆)sg dω for a function g with
mean zero. This conservation relation was derived in [19] for a solution which is
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symmetric and even. Here the result is general. This is important to note that
this type of special cancellation of the non-linear component is very special to the
dimension 2. We can use Lemma 5.1 in higher dimensions, to get precise estimates,
but we have not managed to get an exact cancellation, as in this case of dimension 2,
and in the general case for the dipolar potential.

We first show that we can restrict ourselves to the case where f is even. Indeed,
if we write go and ge the odd and even parts of g we get that they are orthogonal
in any Hs norm: go (resp. ge) is the component of g composed only by spherical
harmonics of odd (resp. even) degree. Therefore, we have, since S[g] = S[ge],

1
2

d
dt

(‖go‖2
H− 1

2
+ ‖ge‖2

H− 1
2
) = 4S[(−∆)− 1

2 ge] : S[ge] − τ(‖go‖2
H

1
2

+ ‖ge‖2
H

1
2
).

But we know that the even part of f is also a solution to Doi equation (1.1), and
then ge satisfies the same conservation relation as in (3.11), and we get by taking
the difference:

1
2

d
dt

‖go‖2
H− 1

2
= −τ‖go‖2

H
1
2
,

which gives, by a Poincaré inequality, exponential decay of go to zero in H− 1
2 (S), and

then in any Hs norm by interpolation, using the uniform bounds of Theorem 5.1.
Let us remark that this argument is valid without conditions on τ , so we always
have exponential convergence of the odd part of f to zero in any Hs.

We can now focus on the case where g is even. Since we are on the circle S1, we
can identify g with a 2π-periodic function of θ ∈ R, considering ω as the vector

(
cos θ
sin θ

)
.

An even function in the previous framework is a function with the same value on two
antipodal points, so with this identification, that means that g is actually π-periodic.

We can write Doi equation (1.1) with this identification:∂tf = ∂θ(f∂θΨf ) + τ∂θθf,

Ψf (θ, t) = 1
2π

∫ 2π
0 K(θ, θ̄) f(t, θ̄) dθ̄.

(3.12)

We have that

Ψf (θ) = 1
2π

∫ 2π

0
[1

2 − (cos θ cos θ̄ + sin θ sin θ̄)2]f(θ̄)dθ̄

= 1
2π

∫ 2π

0
[1

2 − cos2(θ − θ̄)]f(θ̄)dθ̄

= − 1
2π

∫ 2π

0
1
2 cos(2θ − 2θ̄)f(θ̄)dθ̄.

So if we consider the dipolar potential K̃(θ, θ̄) = − cos θ cos θ̄−sin θ sin θ̄ = − cos(θ−
θ̄), and the function f̃ such that f̃(2θ) = f(θ) (which is then a 2π-periodic function),
we get that

Ψf (θ) = 1
2π

∫ π

0
K̃(2θ, 2θ̄) cos(2θ − 2θ̄)f̃(2θ̄)dθ̄

= 1
2π

∫ 2π

0
1
2K̃(2θ, θ′) cos(2θ − θ′)f̃(θ′)dθ′

= 1
2Ψ̃

f̃
(2θ).
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Therefore we easily get that f̃ satisfies the following equation:
1
2∂tf̃ = ∂θ(f̃∂θΨ̃f̃

) + 2τ∂θθf̃ ,

Ψ̃
f̃
(θ, t) = 1

2π

∫ 2π
0 K̃(θ, θ̄) f̃(t, θ̄) dθ̄.

This is nothing else than the Doi equation with dipolar potential, up to a time
scaling factor of 1

2 , and a temperature τ̃ = 2τ . It is also easy to get that S[f ] = 0 if
and only if J [f̃ ] = 0.

We can directly apply Theorem 4.4 of Chapter 4 to get the results of convergence
for the even part of f (the rates have to be multiplied by a factor 2, and the critical
threshold is τ̃ = 1

2 , that is to say τ = 1
4). Including the rate of convergence τ of the

odd part of f , we get, in summary, the following theorem:

Theorem 5.2. Convergence to equilibrium.
Suppose f0 is a probability measure, belonging to Hs(S1) (this is always the case

for some s < −1
2).

Then there exists a unique weak solution f to Doi equation (3.12), satisfying the
initial condition f(0) = f0.

Furthermore, this is a classical solution, positive for all time t > 0, and belonging
to C∞((0,+∞) × S).

If S[f0] 6= 0, then we have the three following cases, depending on τ .

• If τ > 1
4 , then f converges exponentially fast to the uniform distribution, with

global rate min{τ, 4τ − 1} in any Hp norm.
More precisely, for all t0 > 0, there exists a constant C > 0 depending only
on t0, s, p, and τ , such that for all t > t0, we have

‖f(t) − 1‖Hp 6 C‖f0‖Hse− min{τ,4τ−1}t.

• If τ < 1
4 , then there exists Ω ∈ S1 such that f converges exponentially fast

to MκΩ, with asymptotic rate r∞(τ) > 0 in any Hp norm, where κ is the
unique positive solution of the compatibility condition 3.10.
More precisely, for all r < r∞(τ), there exists t0 > 0 (depending on f0) such
that for all t > t0, we have

‖f(t) −MκΩ‖Hp 6 e−rt.

When τ is close to 1
4 we have that r∞(τ) ∼ 2 − 8τ .

• If τ = 1
4 , there exists rc > 0 such that f converges to the uniform distribution

in any Hp norm, with asymptotic rate
√

1
rct

.

More precisely, for all r < rc, there exists t0 > 0 (depending on f0) such that
for all t > t0, we have

‖f(t) − 1‖Hp 6 1√
rt
.

If S[f0] = 0 the equation reduces to the heat equation on the sphere, so f converges
to the uniform distribution, exponentially with global rate τ in any Hp norm.
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4 Conclusion
In this chapter, we have proved that the method previously used to study the case
of the dipolar potential still works in the Maier–Saupe potential, with complications
due to the more complex structure of the equilibria. In particular, the theoretical
results of existence for an initial condition in any Sobolev space still hold, and we
can derive a LaSalle’s invariance principle adapted to our problem.

In the case of dimension 2, were the structure of the equation is very similar
to the case of the dipolar potential, we have been able to get the same results of
convergence to an equilibrium for any initial condition.

In higher dimensions, the method for the nematic phase applies locally for the
stable nematic equilibrium, and also for the case where the uniform distribution is
stable. Some investigations are in progress on this topic. An interesting issue is the
behavior of the odd part of a solution (with LaSalle principle, we already know that
it is converging to zero, but we do not have a rate of convergence).

A Special cancellation in dimension 2
We first rewrite the equation in a weak formulation, and using g = f−1. We multiply
by a function h with mean zero on the sphere, and we get the weak formulation for
Doi equation (1.1) by integrating by parts on the unit sphere:∫

S
∂tghdω = 2nS[h] : S[g] + τ

∫
S

∇ωh · ∇ωg dω − 2S[g] :
∫
S
ω ⊗ ∇ωh g dω. (A.13)

In order to have a quadratic conservation law, as in the case of the dipolar potential,
we want to cancel the last term. So we compute it in the basis of spherical harmonics.

We can decompose g = ∑
k,`,mc

k
`,mY

k
`,m with the notations of Appendix A of

Chapter 4. Since g is of mean zero, we have c1
0,0 = 0 and the indices k, `,m of the

sum will always mean ` > 0,m ∈ J0, `K, k ∈ J1, k(n−1)
m K. We decompose in the same

way h = ∑
k,`,md

k
`,mY

k
`,m.

We give a first formula, in the form of a lemma.

Lemma 5.1. We have

en ⊗ en :
∫
Sn−1

g ω ⊗ ∇h = 1
2
∑

k,`,m

γ`,mc
k
`,md

k
`,m

+ 1
2
∑

k,`,m

β`,m[(`+ n− 1)ck
`−1,md

k
`+1,m − (`− 1)ck

`+1,md
k
`−1,m],

(A.14)

where the coefficients β`,m and γ`,m will be defined later on in (A.16).

Proof. We have

en · ω en · ∇Y k
`,m = − cos θ sin θ∂θY

k
`,m

=
[
X(1 −X2)Q′

`,m −mX2Q`,m

]
(cos θ) sinm θZk

m(v),
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and using the inductions formulas (A.60), (A.61) and (A.62) of Appendix A of
Chapter 4, we get (except for n = 2, m = 0)XQ`,m = 1

2 [b`−1,mQ`−1,m + b`,mQ`+1,m]
(1 −X2)Q′

`,m −mXQ`,m = 1
2 [b`−1,m(`+ n− 2)Q`−1,m − b`,m`Q`+1,m],

(A.15)

where b`,m =
√

`−m+1
√

`+m+n−2√
`+ n

2 −1
√

`+ n
2
6 1.

In the special case n = 2,m = 0, using the formula Q`,0(cos θ) = cos `θ gives the
same formulas as (A.15), with b`,0 = 1 (note that when n = 2 the only possibilities
for m are 0 and 1, and we also have b`,1 = 1).

Hence we get

X(1 −X2)Q′
`,m −mXQ`,m = 1

2 [b`−1,mb`−2,m(`+ n− 2)Q`−2,m − b`,mb`+1,m`Q`+2,m]
+ 1

2(b2
`−1,m(`+ n− 2) − b2

`,m`)Q`,m

= 1
2 [β`−1,m(`+ n− 2)Q`−2,m − β`+1,m`Q`+2,m + γ`,mQ`,m],

with, using the expression for b`,m, when n > 2,
β`,m =

√
`−m+1

√
`+m+n−2

√
`−m

√
`+m+n−3

(`+ n
2 −1)

√
`+ n

2 −2
√

`+ n
2

γ`,m = (n−2)`(`+n−2)
(`+ n

2 −2)(`+ n
2 ) − 2(n−1)m

`+ n
2 −1 + nm(m(`+ n

2 −1)−1)
(`+ n

2 −2)(`+ n
2 −1)(`+ n

2 ) ,
(A.16)

When n = 2 we get β`,m = 1 and γ`,m = 0. Finally, we have

en · ω en · ∇Y k
`,m = 1

2 [β`−1,m(`+ n− 2)Y k
`−2,m − β`+1,m`Y

k
`+2,m + γ`,mY

k
`,m],

so we have that
∫
Sn−1

en · ω en · ∇Y k
`,mY

k′
`′,m′ can be non-zero only if m = m′, k = k′,

and ` = `′ or `′ ± 2. By bilinearity, together with the fact that Y k
`,m form an

orthonormal basis, this gives the claimed formula.

Now, if we are in dimension 2, we chose h = (−∆)− 1
2 g, that is to say dk

`,m = 1
`
ck

`,m,
and we get, with Lemma 5.1, since β`,m = 1 and γ`,m = 0

en ⊗ en :
∫
Sn−1

g ω ⊗ ∇((−∆)− 1
2 g)) = 0.

Since this is true for all unit vector en, if A is a symmetric matrix, we can decom-
pose it in an orthonormal basis: A = ∑

i λiei ⊗ ei, and we get that A :
∫
Sn−1

g ω ⊗
∇((−∆)− 1

2 g)) vanishes. Hence, going back to the weak formulation (A.13), we get
immediately the following result:

Proposition A.1. Special conservation relation in dimension 2.
If f is a solution of Doi equation (1.1) with the Maier–Saupe potential in dimen-

sion n = 2, then we have the following conservation relation, for g = f − 1:

1
2

d
dt

‖g‖2
H− 1

2 (S1)
= 4S[(−∆)− 1

2 g] : S[g] − τ‖g‖2
H

1
2 (S1)

, (A.17)

where the Hs norm is given by ‖g‖2
Hs(S1) =

∫
Sn−1

g(−∆)sg dω for a function g with
mean zero.
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