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Preface 
This study concerns an investigation of the surface damage of hot work tool steels. The experimental 

procedures, damage criteria, calculations etc. necessary for surface damage characterisation have been 

developed. It is a continuation of other works carried out at the Institute Clément Ader – Albi (ICAA), 

formerly known as Centre for Research on Tools, Materials and Processes (CROMeP). Hot work tool 

steels used in forging and high pressure die casting have been extensively studied in the laboratory. 

Most of the work has been carried out on X38CrMoV5 or AISI H11 steel. The previous PhD theses related 

to fatigue have been focussed on isothermal fatigue life by Delagnes 1998, Velay 2003, Daffos 2004, 

Ahmer (in progress) Souki (in progress), thermo mechanical fatigue by Oudin 2001 and thermal fatigue 

by Jean 1999, Medjedoub 2004 and Salem 2009. Interaction between fatigue, oxidation is addressed by 

Oudin 2001 and Daffos 2004. Jean 1999 and in particular Salem 2009 have worked on the rate of 

oxidation and corrosion (steam) in thermal fatigue whereas Bruckel 2003 has studied the stress free 

isothermal oxidation mechanisms. Wear and friction was studied by Barrau 2004.  

Besides fatigue, microstructure stability and the relationship between composition, microstructure, 

precipitation, dislocations their effects on the behaviour were studied by Mebarki 2001, Michaud 2004, 

Mauriès 2008, and Bellot(in progress). Thermomechanical constitutive laws were studied by Velay 2003, 

and Ahmer (in progress). 

In this study, mainly fatigue crack propagation is investigated on thin specimens. These specimens are 

machined directly from the bulk material. It is expected that the thin specimens will have damage 

properties similar to that of the surface of the tools. It is also expected that the thin specimens may 

show more clearly the effect of oxidation and its interaction with the crack tip due to greater effect of 

oxidation from the lateral surface instead of only the crack faces as in plane strain specimens.  

Some mechanical modelling has been carried out to use the J integral and CTOD as a damage criterion. 

The numerical simulations and experimental measurements are compared. The validity of the J integral 

and the CTOD criteria has been explored to gain better understanding of the material behaviour. Image 

correlation has been extensively used to determine CTOD and crack closure in the fatigue crack 

propagation experiments. 

This manuscript can be broken down into five major sections. Chapter I presents the industrial context 

of the study as well as the interest in developing the experimental capacity to test low thickness 

materials. Chapter II gives a breakdown of the experimental procedures used and developed for the 

testing of thin specimens. Chapter III relates to the numerical simulations carried out to determine the 

damage criterion to be used in characterising fatigue crack propagation. Chapter IV presents all the 

experimental results of the crack propagation experiments at ambient temperature (RT) as well as 

elevated temperature (600°C). Some fractography pertinent to the effects on the propagation 

experiments is also presented. Chapter V deals with modelling carried out to improve the 

characterisation of fatigue crack propagation and the exploitation of the fatigue crack propagation 

results. The crack opening displacement and its use as a fatigue crack propagation criterion is also 
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discussed in this chapter. The chapter VI presents the summary, some conclusions and suggestions for 

future works.  

Although it may seem paradoxical, until now the fatigue crack propagation was studied basically under 

thermal fatigue and thermomechanical fatigue. A systematic investigation of the isothermal fatigue 

crack propagation was missing not only in the laboratory but even in the literature.  
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RESUME EN FRANÇAIS 

Les outillages de mise en forme à chaud notamment en forgeage et fonderie sous pression sont 

soumis à des chargements thermiques et thermomécaniques très sévères. Ils sont 

généralement fabriqués avec des aciers à outils pour travailler à chaud qui se caractérisent par 

leur résistance et leur tenue mécanique à des températures élevées. Dans ce chapitre, le 

contexte industriel de cette étude en terme d’endommagement des outillages de fonderie est 

présenté. L’approche scientifique développée pour étudier l’endommagement de ces outillages 

est ensuite discutée.  

A. CONTEXTE INDUSTRIEL  

Forgeage : Le forgeage est un processus de fabrication de pièces métalliques par déformation. 

En effet, le métal situé entre les deux parties du moule est comprimé par la matrice sous l’effet 

de la pression. Dans le cas du forgeage à chaud, une partie du matériau est chauffée. L’interface 

entre l’outil et la pièce est alors le siège d’importants transferts thermiques et de chargements 

thermomécaniques. Des phénomènes thermiquement activés comme l’oxydation et l’évolution 

de la microstructure (précipitation des carbures dans les aciers à outil) sont provoqués par 

l’élévation de la température du moule. L’écoulement du métal lors de la déformation peut par 

ailleurs, entraîner l’usure de la surface du moule.  

Fonderie Sous Pression : La fonderie sous pression est  souvent utilisée dans la fabrication des 

pièces en alliages légers comme l’aluminium ou le magnésium. Elle consiste à refouler le métal 

liquide (en fusion) sous une forte pression dans l’empreinte d’un moule permanent. La chaleur 

est extraite de la pièce vers le moule qui est refroidi en permanence. La pièce est éjectée du 

moule après sa solidification. La surface du moule en fonderie sous pression est comme dans le 

cas du forgeage à chaud, soumise à des  chargements thermiques et thermomécaniques très 

sévères. Elle est également exposée à la corrosion (ex. l’aluminisation) et l’oxydation lorsqu’elle 

n’est plus protégée (défaillance du poteyage ou du revêtement et contact direct avec le métal 

liquide et l’air). Le métal injecté à de grandes vitesses peut éventuellement entraîner l’érosion 

de l’outil lors du choc. Ce phénomène est connu sous le nom de lavage et se produit 

particulièrement dans les zones d’attaque. 

En général les mécanismes d’endommagement des outillages sont [1, 2] : 

1) Rupture brutale, 

2) Endommagement par fatigue, 

3) Fatigue thermique, 

4) Choc thermique, 
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5) Usure à chaud due aux oxydes abrasifs,

6) Déformation par fluage, 

7) Collage (étamage), 

8) Oxydation et corrosion 

Les six premiers mécanismes sont liés aux contraintes et déformations d’origines thermiques 

qui sont exercées sur la surface du moule. Les trois derniers sont liés à la déformation 

thermiquement activée ou à des réactions chimiques. Voici quelques microgra

les mécanismes d’endommagement des outillages de production. La figure 1 met en évidence 

la grande déformation de microstructure au niveau de la surface d’un outil de forgeage usé. 

Figure 1. Usure par plasticité dans un moule de forgeage 

La figure 2 présente l’aspect de la fissuration par fatigue thermique dans le congé d’une broche 

d’un moule de fonderie sous pression d’aluminium. 

Une vue en coupe réalisée au MEB à partir de la même broche est représentée en figure 3. 

Cette dernière met en évidence le mécanisme d’amorçage de fissure et la présence d’une fine 

couche d’oxyde.  

 

5) Usure à chaud due aux oxydes abrasifs, 

Les six premiers mécanismes sont liés aux contraintes et déformations d’origines thermiques 

qui sont exercées sur la surface du moule. Les trois derniers sont liés à la déformation 

thermiquement activée ou à des réactions chimiques. Voici quelques microgra

les mécanismes d’endommagement des outillages de production. La figure 1 met en évidence 

la grande déformation de microstructure au niveau de la surface d’un outil de forgeage usé. 

Figure 1. Usure par plasticité dans un moule de forgeage 

La figure 2 présente l’aspect de la fissuration par fatigue thermique dans le congé d’une broche 

d’un moule de fonderie sous pression d’aluminium.  

coupe réalisée au MEB à partir de la même broche est représentée en figure 3. 

Cette dernière met en évidence le mécanisme d’amorçage de fissure et la présence d’une fine 
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Les six premiers mécanismes sont liés aux contraintes et déformations d’origines thermiques 

qui sont exercées sur la surface du moule. Les trois derniers sont liés à la déformation 

thermiquement activée ou à des réactions chimiques. Voici quelques micrographies illustrant 

les mécanismes d’endommagement des outillages de production. La figure 1 met en évidence 

la grande déformation de microstructure au niveau de la surface d’un outil de forgeage usé.  

 

Figure 1. Usure par plasticité dans un moule de forgeage [3] 

La figure 2 présente l’aspect de la fissuration par fatigue thermique dans le congé d’une broche 

coupe réalisée au MEB à partir de la même broche est représentée en figure 3. 

Cette dernière met en évidence le mécanisme d’amorçage de fissure et la présence d’une fine 
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Figure 2. Fissuration uni-axiale dans une zone de concentration de contrainte (micrographie 

réalisée à partir d’une broche d’un moule de fonderie sous pression d’aluminium) [4] 

 

Figure 3. Fissuration par couplage entre la fatigue thermique et l’oxydation (vue en coupe à 

partir d’une broche d’un moule de fonderie sous pression d’aluminium) [4] 

B. STRATEGIE DE LA MODELISATION DE L ’ENDOMMAGEMENT DES SURFACES 

L’endommagement des surfaces est une problématique majeure  dans de  nombreux procédés 

industriels comme le laminage, extrusion, usinage etc. L’endommagement se fait d’abord dans 

une fine couche superficielle qui est sollicitée dans des conditions complexes. 

L’endommagement du matériau de base qui n’est pas en contact direct avec l’environnement 
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externe diffère de celui de la couche superficielle. La stratégie de l’étude menée pour 

caractériser l’endommagement au niveau de cette zone critique (sub-surface) est schématisée 

en figure 4. L’idée consiste à réaliser des essais de fatigue thermomécanique à partir 

d’échantillons prélevés de la couche externe du matériau étudié. Les modèles 

d’endommagement ainsi déterminés sont complétés par l’étude de l’endommagement du 

matériau de base afin de décrire une durée de vie global de l’outillage.. Cette approche peut 

être extrapolée pour l’étude des dépôts indépendamment du matériau de base comme les 

revêtements par nitruration. 

L’objet de cette étude est de caractériser la durée de vie en fatigue de l’acier à outils pour 

travailler à chaud « X38CrMoV5 ». Les éprouvettes ont été prélevées par usinage à partir des 

blocs en acier vierge (non-endommagé) fournis par « Aubert & Duval ». Des essais de 

propagation de fissure en fatigue ont été réalisés dans différentes conditions. L’effet de 

l’épaisseur de l’éprouvette sur la propagation de fissure a été étudié en utilisant des 

éprouvettes de 0.12 à 2.5 mm d’épaisseur. L’effet des conditions de chargement a été 

également étudié en réalisant des essais avec différents rapports de charge (R = 0.1, 0.2 et 0.7). 

Des essais de propagation de fissures en fatigue isotherme ont été conduits à 600 °C ce qui 

correspond à la température maximale que peut atteindre les outillages de fonderie sous 

pression d’aluminium. 

 

Figure 4. Stratégie d’étude de l’endommagement de surface des outillages 
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C. OBJECTIFS SCIENTIFIQUES  

Les critères d’endommagement sont nécessaires pour caractériser le comportement en 

endommagement des matériaux. Dans le cas des essais de propagation de fissure en fatigue, les 

critères d’endommagement doivent prendre en compte : 

1) la dépendance de KI vis à vis du rapport entre la longueur et la largeur des éprouvettes ; 

2) les effets de la plasticité et de l’état de contrainte en pointe de fissure ; 

3) la forte plasticité en pointe de fissure à chaud ; 

4) la possibilité d’avoir un paramètre d’endommagement mesurable directement sur la surface 

d’une éprouvette. 

Les deux premières considérations peuvent êtres résolues  en calculant les valeurs de KI (ou 

facteur d’intensité de contrainte) par la simulation numérique . L’ouverture en pointe de fissure 

(CTOD) adaptée pour des matériaux de faible épaisseur a été utilisée comme paramètre pour 

décrire la propagation de fissure  Les valeurs d’ouverture de fissure ont été déterminées par 

mesure in situ à l’aide d’un microscope optique en utilisant la méthode de corrélation d’images. 
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Forging and high pressure die casting processes impose heavy thermal and mechanical loads on 

die materials and tools. The dies are most often made of a class of tool steels called Hot Work 

Tool Steels. These steels retain their mechanical properties at elevated temperatures. In this 

chapter the industrial context of this study based on hot work tool steels damage is presented. 

It is followed by the discussion on the scientific approach necessary for adequately describing 

the damage behaviour of the tool material. 

I.  INDUSTRIAL CONTEXT  

Forging: It is a process of shaping metals into a required shape by deformation. In hot forging 

process the work piece is heated and placed between two faces of a die having the negative 

impression of the required shape (die cavity), and a mechanical load is applied on the work 

piece which transfers heat and load to the dies. The heated work piece thus takes the shape of 

the die cavity. This process exposes the die faces to high mechanical and thermal stresses due 

to contact with the work piece. Sliding and flowing of the work piece material in the die cavity 

causes friction and wear of the die material as well. The high temperature on the die face may 

cause increased oxidation and microstructure evolution (e.g. precipitation of carbides in tool 

steels). 

High Pressure Die Casting: The High Pressure Die Casting process HPDC is extensively used in 

creating net shape aluminium or magnesium (light alloys) parts. In the process, molten 

aluminium alloy is introduced in the die cavity. The molten aluminium cools and solidifies in the 

die. The solid part is later removed. As in forging, this process imposes high thermo mechanical 

stresses and strains on the die surface. The flow of the molten aluminium alloy also causes 

erosion of the die surface called washing out. Heat of the molten metal is conducted through 

the dies faces at their contact interface. This may cause oxidation and corrosion as well as 

microstructure evolution in the die material. In addition to this, a phenomenon called 

aluminisation may be caused, which is in fact a chemical reaction between the aluminium and 

the die steel. 

In general the mechanisms involved in the damage of die materials are [1, 2]: 

1) Sudden rupture  

2) Fatigue damage 

3) Thermal fatigue 

4) Thermal shock breakage 

5) Hot wear with the abrasive action of oxides 

6) Creep deformation 
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7) Chemical adhesion 

8) Oxidation and corrosion 

The first six mechanisms are related to the exposure of the die surface to cyclic stresses and 

strains or temperature variations. The last three are basically due to effects of thermally 

activated deformation or chemical reactions or processes. Some case studies with their 

corresponding micrographs are presented here. Figure 1 shows the effect of wear on the 

microstructure of a forging die. 

 

Figure 1: Wear plasticity in forging dies [3] 

A high amount of plasticity deformation of the microstructure can be seen at the work surface. 

Figure 2 shows a surface crack in an HPDC die. This crack is found on a corner inside the die 

cavity. 
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Figure 2: Surface cracking in an HPDC die [4] 

In certain manufacturing processes, there may be surface alloying or adhesion between the 

material being formed and the die cavity. One such example of aluminisation is shown in figure 

3. Here, an inter-metallic compound is formed between the steel die and the aluminium casting 

alloy. One can observe the initiation of cracks at the inter metallic / oxide layer, which extend 

into the main die body.  

 

Figure 3: Aluminisation and surface cracking in an HPDC die [4] 
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II.  SURFACE DAMAGE MODELLING STRATEGY  

Many other examples of surface damage may be found in the industry, like in rolling, extrusion, 

machining, bearing surfaces etc. One thing to note in all the above examples is that a very thin 

layer of material near the surface is exposed to high cyclic pressure, wear, oxidation or chemical 

attack under transient temperature. The damage behaviour of this thin layer of exposed 

material may be different from that of the bulk. To study the behaviour of this layer a strategy 

is proposed as shown in figure 4. The material near the tool surface; very prone to damage, will 

henceforth be referred to as “surface”. The idea is to machine this thin layer of modified / 

damaged material (surface) off the bulk material of real dies. In fact the heat treatment of dies; 

in particular large dies result in a gradient in properties. Discrepancies may be found in material 

behaviour if one studied the real condition material (with specimens extracted from a real die) 

as opposed to the well controlled laboratory heat treated specimens.  

This “surface” will then be studied and characterised with the help of thermal and mechanical 

testing. In light of the experimental data obtained, a surface damage model might be obtained. 

This surface damage model may then be coupled to the original bulk material damage models 

to get the complete tool life.  

The decoupling of the surface from the bulk material may also provide the means to study the 

damage of coated surfaces of the tools (nitriding or other coatings etc) separate from the bulk 

material. However, in this study thin specimens were machined from the bulk material for 

testing. No processes that may cause microstructural modification prior to testing were 

performed. The experiments are designed in such a way that in addition to the above 

requirements, the fatigue behaviour and life of the specimens should be addressed. 
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Figure 4. Tool surface damage characterisation and modelling strategy. 

In this study the difference of damage properties between the bulk material and a thin material 

is studied. Fatigue crack propagation experiments are carried out on specimens of different 

thicknesses ranging from 2.5mm down to 120µm.  

Tool steels are generally tested in tension compression LCF testing [5-7] or thermal fatigue [8, 

9]. In this study fatigue crack propagation was chosen for three reasons. The first is the 

technical difficulty of applying compressive loads on thin specimens due to the problem of 

buckling. The second interest is that there exists no coherent study of fatigue crack propagation 

under different conditions of loading and temperature for the X38CrMoV5 steel. The data 

generated as a result of this study combined with the other theses carried out in the centre 

(ICAA) would provide complete data on the damage properties of this steel.  

The third reason is the development of a capacity (and characterisation techniques) of testing 

very thin materials. The applications of such testing may be extended beyond tools to, for 

example, microelectronic components, thin foils etc. MEMS devices suffer from cyclic thermal 

and mechanical fatigue causing failure. The techniques developed in this work may be used to 

characterise their damage properties as well.  
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III.  SCIENTIFIC OBJECTIVES 

As described in the preface, this study is carried out in continuation to the other research 

carried out in the ICAA. The fatigue life of a mechanical component can be divided into two 

distinct stages [10]. 

Initiation: This involves the substructural and microstructural changes which cause nucleation 

of permanent damage. This is followed by the creation of microscopic cracks. The coalescence 

of these microscopic cracks forms a dominant macrocrack. The environmental conditions may 

strongly influence this part of the total life. 

Propagation: The stable propagation of the dominant macrocrack which could be followed by 

structural instability or complete failure. 

The relative importance of the initiation and propagation stage depends on the material being 

tested and the testing conditions. For example tests carried out on this material for Thermal 

Fatigue resistance (Salem 2009 [9]) show that for 650°C maximum temperature the crack 

initiation stage is at 10,000 cycles while the propagation stage is at 20,000 cycles for 5mm crack 

length propagation. Thus the initiation life is 1/3 and the propagation life 2/3 of the total 

fatigue life. However, with a reduction of 50°C in the maximum test temperature (600°C) in the 

same specimen, the crack initiation occurs at 90,000 cycles. The propagation for 5mm crack 

length is only 10,000 cycles. In this case the initiation stage becomes much more important 

than the propagation stage. The results are summarized in the table 1. 

Table 1: Fraction of initiation and propagation stage in thermal fatigue tests [9] 

Test 
Max Temp 

°C 

Min Temp 

°C 

Initiation 

cycle Ni 

Propagation 

cycles Np 

Fraction of fatigue life 

Initiation Propagation 

1 650 100 10,000 20,000 1/3 2/3 

2 600 100 90,000 10,000 2.7/3 0.3/3 

       

In general for lower stresses and strains the dominant fatigue life is the initiation stage. An 

increase in the stresses causes the ratio of the initiation stage to propagation stage to diminish 

i.e. initiation life becomes less important while propagation life becomes dominant. 

Die steels are most often tested using the total-life approach. The material fatigue life is 

characterised in terms of cyclic stress range (S-N curves) or the cyclic strain range (total or 
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plastic strain). The total-life approach assumes the material to be initially flawless. The flaw is 

then created by cyclic plasti

microstructural flaws or preferential crystallographic directions. 

Generally this type of crack initiation and early growth is characterised by 

(LCF), where the stresses can be hi

are subjected to cyclic plastic deformations. The cycles may be symmetric (traction

compression) or asymmetric (traction

initiation of a macrocrack in this grade of steel in an LCF experiment taken from the work of 

Oudin 2001 [5] is presented in figure 5. 

Figure 5. Different stages and the variation of the st

an LCF test on X38CrMoV5

As soon as the macrocrack appears the compliance of the test specimen drops. Since 

strain controlled test (1% mechanical strain), the drop in compliance is seen as a sharp drop in 

the stress range. One should however be careful while interpreting the LCF tests as a measure 

of initiation. The first accommodation stage and the ps

softening of the material as well as the creation of microcracks or damage in the material. 

Oudin 2001 [5] has worked on the L

650°C. The thermo-mechanical tests consisted mostly of out of

strain cycles. Delagnes 1998 

life approach assumes the material to be initially flawless. The flaw is 

then created by cyclic plastic strain at a geometric stress concentration, inclusions, 

microstructural flaws or preferential crystallographic directions.  

Generally this type of crack initiation and early growth is characterised by 

(LCF), where the stresses can be higher than the yield stress of the material. Smooth specimens 

are subjected to cyclic plastic deformations. The cycles may be symmetric (traction

compression) or asymmetric (traction-traction or compression-compression). An example of 

rack in this grade of steel in an LCF experiment taken from the work of 

is presented in figure 5.  

Different stages and the variation of the stress as a function of the number of cycles in 

an LCF test on X38CrMoV5-47HRC steel [5] 

As soon as the macrocrack appears the compliance of the test specimen drops. Since 

strain controlled test (1% mechanical strain), the drop in compliance is seen as a sharp drop in 

the stress range. One should however be careful while interpreting the LCF tests as a measure 

of initiation. The first accommodation stage and the pseudo stabilised stage consist of the cyclic 

softening of the material as well as the creation of microcracks or damage in the material. 

has worked on the LCF and thermo-mechanical tests on this material up to 

mechanical tests consisted mostly of out of-phase heating with the applied 

strain cycles. Delagnes 1998 [6] had studied the isothermal LCF testing of this material up to 
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c strain at a geometric stress concentration, inclusions, 

Generally this type of crack initiation and early growth is characterised by Low Cycle Fatigue 

gher than the yield stress of the material. Smooth specimens 

are subjected to cyclic plastic deformations. The cycles may be symmetric (traction-

compression). An example of 

rack in this grade of steel in an LCF experiment taken from the work of 

 

ress as a function of the number of cycles in 

As soon as the macrocrack appears the compliance of the test specimen drops. Since this is a 

strain controlled test (1% mechanical strain), the drop in compliance is seen as a sharp drop in 

the stress range. One should however be careful while interpreting the LCF tests as a measure 

eudo stabilised stage consist of the cyclic 

softening of the material as well as the creation of microcracks or damage in the material. 

mechanical tests on this material up to 

phase heating with the applied 

had studied the isothermal LCF testing of this material up to 
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600°C. Daffos 2004 [7] has carried out LCF tests on nitrided and virgin X38CrMoV5-47HRC tool 

steel. This study has tried to establish the advantage of nitriding, if any, on increasing the total 

fatigue life of the steel. It was found that the effect of nitriding is mainly to increase the 

stabilised zone (figure 5) in the LCF test. It was shown that if the applied plastic strain Δεp is 

smaller than a critical plastic strain Δεp
crit, then the total fatigue life Nf is increased. However if 

Δεp > Δεp
crit the nitride steel has lower Nf than the virgin steel. 

Thermal fatigue crack propagation was investigated by Jean [11] and Medjedoub [8, 12]. The 

work of Medjedoub was very systematic concerning the thermal fatigue crack propagation 

under different Tmax and heating periods. However, these experiments were carried out in 

tubular specimens leading naturally to multi-axial loading. This also caused difficulties in 

following the evolution of “one” specific crack. Many specimens had to be used to establish any 

crack propagation curves. In addition to this the numerical modelling of such a multi-axial 

system was complicated and time consuming. 

The only work done on the fatigue crack propagation under uniaxial conditions was by Salem 

2009 [9]. Here the propagation was a result of a thermal gradient in a disc specimen of 1 mm 

thickness. The unequal expansion and contraction due to thermal gradient creates stresses and 

strains, that consequently causes crack propagation. The researchers have no access to the 

actual applied force and the stress intensity factors were calculated using numerical simulations 

via different methods. At the beginning a characteristic hardening due to damage accumulation 

was absent in this material and a continuous cyclic softening was observed. 

III.1 Isothermal fatigue crack propagation 

In this work isothermal fatigue crack propagation experiments are carried out in a systematic 

manner. This as explained above provides a continuity to the preceding work carried out in the 

laboratory. Generally the FCGR tests are carried out on C(T) specimens of 10 to 25 mm 

thickness on this material. However, here base thicknesses of 2.5mm, 1.0mm and 0.6mm were 

chosen with tests carried out on side edge notched (SENT) specimens (Also called SE(T)c = Side 

edge cracked, clamped specimens). The thicknesses follow other studies; Salem 2009 [9] 

(Thermal Fatigue on 1mm thickness discs), Oudin 2001 [5] (Thermomechanical Fatigue on 1mm 

wall thickness hollow cylindrical specimens). The second idea of using thin specimens is 

developing the capacity to do thermomechanical fatigue testing which requires rapid heating or 

cooling with induction heating systems with no drastic through thickness thermal gradients as 

in TMF specimens.  

The next logical step in the study of this material is isothermal fatigue crack propagation. The 

FCGR experiments are carried out on SENT specimens having thickness between 2.5mm and 
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0.12mm. A group of experiments is also carried out to determine the critical stress intensity 

factor for rupture of these specimens at room temperature. 

III.2 Thin specimen testing 

One of the goals of this study was to develop the experimental capacity to be able to test

specimens. Other researchers have developed methods for testing of thin specimens. A 

summary of some of the works is presented below.

 

� Copper Traction-Compression
1. Thickness 25µm. 

2. Fatigue LCF traction-compression.

3. Grain size between 1.1 

� Silver Microbeam [14] 
1. Thickness 0.3-1.5µm. 

2. Fatigue LCF traction-traction.

3. Grain size between 0.5 and

 

� Copper on Polyimide Substrate
1. Thickness 3.0µm. 

2. Fatigue LCF traction-compression.

3. Grain size approximately 

 

 

All of these research works are basically designed for endurance testing of the thin films. The 

idea of using a substrate to accomplish compression testing of the films works only at lower 

temperatures. Also in FCGR experiments the crack opening should be 

properly characterise the material behaviour. Metal supported by a substrate will act as a 

composite material. Most of the thin films are fabricated by vapour deposition or by successive 

rolling and annealing.  

of experiments is also carried out to determine the critical stress intensity 

factor for rupture of these specimens at room temperature.  

 

One of the goals of this study was to develop the experimental capacity to be able to test

specimens. Other researchers have developed methods for testing of thin specimens. A 

summary of some of the works is presented below. 

Compression [13] 

compression. 

 and 15µm 

 

traction. 

0.5 and 2.0µm. 

Copper on Polyimide Substrate [15] 

compression. 

Grain size approximately 0.8µm. 

All of these research works are basically designed for endurance testing of the thin films. The 

idea of using a substrate to accomplish compression testing of the films works only at lower 

temperatures. Also in FCGR experiments the crack opening should be unrestricted to be able to 

properly characterise the material behaviour. Metal supported by a substrate will act as a 

composite material. Most of the thin films are fabricated by vapour deposition or by successive 
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A systematic study of fatigue crack propagation on thin wires has been done Petit et al. [16]. 

They have carried out tests on a wire of 1.0mm thickness. Two sides of the wire are machined 

to make a micro SENT specimen with a nominal thickness between 0.3 – 0.35mm. A notch of 

0.15 mm radius semicircle is machined. Fatigue crack propagation experiments at ambient 

temperatures with a load ratio between 0.4 and 0.9 have been performed, mainly to determine 

the fatigue threshold of the wire material. ΔCTOD is also used as a fatigue crack propagation 

criterion. 

In this study the main idea is to test the unmodified material near the tool surface. The 

specimens thus have to be machined from the bulk material without causing excessive 

microstructural deformation. The details of the specimen fabrication are presented in chapter 2 

of this manuscript. 

III.3 Crack driving force  

Classically fatigue crack growth experiments are carried out on thick C(T) specimens that 

present plane strain conditions at the crack tip. In such a case the mode I stress intensity factor 

KI is used as a crack driving force. However, due to technical constraints in testing thin 

specimens, clamped SENT specimens (SE(T)c) were used. To determine the crack driving force 

parameters the following considerations must be taken into account. 

1) Height to width ratio dependence of KI in clamped SENT specimens. 

2) Effects of large plastic zone, and plane stress conditions. 

3) Large scale plasticity in front of crack tip during elevated temperature testing. 

4) Exploring the possibility of using a parameter measured directly on the specimen. 

J-Integral and KI: To take into account the first two considerations, numerical simulations were 

carried out in ABAQUS to determine the J-Integral. In Linear Elastic Fracture Mechanics (LEFM) 

conditions this can be used to interpret the KI values as well. The advantage of J-Integral testing 

is that it can be used as an Elastic Plastic Fracture Mechanics (EPFM) parameter as well, 

especially when the plastic deformation model is used in the numerical solution. This was used 

as an EPFM parameter at high temperature testing. 

Crack Tip Opening Displacement (CTOD): To be able to test thin specimens of tool steel, as well 

as other materials or composites it was decided to consider the Crack Tip Opening 

Displacement or CTOD as another criterion for crack driving force. The CTOD parameter is 

interesting in the manner that it also allows us to experimentally establish the J-Integral values. 

This is necessary for establishing coherent and comparable FCGR curves. The crack tip opening 
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displacement measurements were carried out using image correlation techniques on images 

obtained using a long distance optical microscope. 

IV.  ORGANISATION OF THE MANUSCRIPT 

This manuscript is organised in 6 chapters, each covering a specific part of the thesis.  

Chapter II describes the experimental methods. It describes the material tested, its 

microstructure, heat treatment, chemical composition and applications etc. The methods of 

specimen fabrication are detailed. The procedure and the FCGR testing strategies are discussed. 

Details of the equipment used and developed during the thesis work are shown. High 

temperature grips were designed and manufactured out of high temperature nickel alloys. The 

heating system is based on induction heating. Optical observation and the image correlation 

procedure is also described in this chapter. 

Chapter III discusses the numerical simulations carried out on SENT specimens to determine the 

crack driving force parameters. The numerical modelling and methodology is described. The 

material models used and the experimental conditions and their effects on the results have 

been detailed. Some insight is also provided into different methods of numerical simulation 

used in this field as well as justifications for the use of the J-Integral based crack driving force 

parameter calculation. 

Chapter IV relates to the experimental results. All the raw data results are presented. The effect 

of R (load ratio) and the effect of thickness on fatigue crack propagation is discussed. 

Experiments are carried out at ambient as well as at elevated temperatures. Extensive testing is 

done to determine the threshold values of FCG at 600°C. Monotonic crack propagation 

experiments have been carried out as well to determine the effects of thickness and crack 

length on the critical stress intensity factor KC. 

Chapter V is dedicated to modelling of the crack propagation X38CrMoV5. The main 

consideration in modelling is the data consolidation or rationalisation of FCGR curves obtained 

at different experimental conditions. FCGR experiments at different conditions of geometry, R, 

loading, temperature etc, give different crack propagation curves. To achieve data 

consolidation different approaches are considered. The first is based on crack closure 

correction to remove the difference between crack propagation curves of specimens tested at 

different R values. The second approach is purely mathematical and is based on the 

rationalisation of FCGR curve by using a “two parameter crack driving force” criterion (FCGR 

dependent on ΔK and Kmax) coupled with a weight function calculated with the help of FCGR 

curves. The third approach, which makes the dominant part of the modelling study, is based on 
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ΔCTOD measurements. ΔCTOD measurements are then interpreted into the J-Integral which is 

subsequently used to establish consolidated FCGR curves for material tested at different 

temperatures. For practical use in an FCG law, a mathematical derivation is provided for its use 

in conjunction with R ratio. 

Chapter VI gives the conclusions and some suggestions for future work in continuation to this 

thesis. Suggestions are made for further developing experimental procedures, improvements in 

the numerical simulation and modelling procedures.   
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RESUME EN FRANÇAIS 

L’environnement expérimental et le matériau étudié sont présentés dans ce chapitre. Le banc 

d’essais qui se compose de la machine d’essais mécanique, du système de chauffage et des 

moyens d’observations optiques sont exposés. Les méthodes de préparation des éprouvettes  

ainsi que les techniques d’analyses et les moyens d’observations sont aussi décrits. 

A. MATERIAU  

Le matériau choisi pour cette étude est l’acier à outils pour travailler à chaud « X38CrMoV5 », 

désigné aussi par « AISI H11 ». Les familles des aciers AISI H11 et H13 ont fait l’objet de 

nombreuses études dans le laboratoire (ICAA), notamment dans le cadre du forgeage et de la 

fonderie sous pression d’aluminium [1-12]. La nuance utilisée est fournie en bloc par l’aciériste 

Aubert et Duval – France et contient 5% de Chrome et 0,36% de carbone. Elle présente une 

teneur très faible en particules non métalliques. Le traitement typique de cet acier pour 

l’obtention d’une dureté égale à 47 HRC comprend un recuit à 750°C suivi par une 

austénitisation à 990°C pendant 1h, une trempe à l’air et un double revenu. Le premier et le 

deuxième revenu sont effectués pendant 2h, respectivement à 550°C et 603°C. Ce traitement 

thermique confère à l’acier une microstructure martensitique revenu. 

B. MOYENS EXPERIMENTAUX     

 Un banc d’essais de fatigue a été développé spécialement pour tester des éprouvettes très 

minces. Le système permet de réaliser des essais de fatigue LCF et HCF à différentes 

températures. Le système de chauffage a été conçu de manière à rendre accessible 

l’observation de la surface de l’éprouvette pendant le test permettant ainsi de suivre la 

propagation des fissures. Un microscope à longue portée a été utilisé à cet effet. La machine 

d’essais de fatigue, Walter et Bai (Suisse), travaille à une charge maximale de 40 kN avec une 

fréquence d’essai allant jusqu’à 20 Hz. Elle a été réadaptée pour réaliser des essais avec un 

signal de force stable à faible charge. Une cellule de charge de 2 kN et une servo-vanne de 4 

l/min (au lieu de 40 l/min) ont été installées. Le système est actuellement capable d’effectuer 

des essais de fatigue à des fréquences allant de 0,2 Hz à 20 Hz avec une charge de 0,05 kN de 

façon stable.  

Le système de chauffage choisi utilise l’induction électromagnétique. L’induction est un moyen 

de chauffage rapide et sans contact. La surface de l’éprouvette demeure visible pendant le test. 

La température maximale du système est de 750 °C. Les mors de la machine d’essai ont été 

pour cette étude. Ils ont été fabriqués avec les superalliages IN 718 et IN 100 pour pouvoir 

résister à haute température.  
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Les éprouvettes sont de type SENT conçues conformément aux normes ASTM E647-00, E606 et 

E399-90 ; avec quelques modifications (rapport entre la largeur et la longueur et le rayon 

d’épaulement) afin de les réadapter à nos contraintes d’essais (échantillons minces).  

Un microscope à longue portée QUESTAR de 1,1 µm de résolution optique maximale a été 

utilisé pour observer la propagation de fissure. Il est équipé d’une caméra analogique reliée à 

un système d’enregistrement (magnétoscope) permettant l’enregistrement de l’évolution de la 

longueur de fissure. L’ouverture de fissure est déterminée par corrélation d’images issues des 

séquences enregistrées par un magnétoscope. Les films enregistrés sont en effet convertis en 

images avec le logiciel iMovie HD®. Ces images sont ensuite traitées avec un logiciel de 

corrélation d’images VIC 2D®. On utilise généralement cinq extensomètres virtuels de 200 µm 

qui sont placés sur l’image de base utilisée pour la corrélation. 

C. PROCEDURE EXPERIMENTALE  

Les essais ont été réalisés dans différentes conditions, afin d’étudier la propagation de fissure 

et les phénomènes suivants : 

1) effet du rapport de charge (R), 

2) effet de l’épaisseur de l’éprouvette, 

3) effet de la température (20 °C et 600°C),  

4) facteur d’intensité de contrainte de seuil de propagation à différents R,  

5) effet de l’oxydation à chaud sur la propagation de fissure. 

Les essais conduits à 20 et 600 °C sont réalisés respectivement à 10 et 2 Hz. Afin de mesurer 

l’ouverture de la fissure in situ, des essais à 0,2 Hz ont été réalisés.  

Une analyse fractographique des faciès de rupture a été menée sur toutes les éprouvettes post 

mortem, à l’aide d’un microscope électronique à balayage (MEB). Cela a permis de mettre en 

évidence la présence de bandes de glissements au voisinage des zones de plasticité élevée. La 

microstructure des éprouvettes testées à chaud a également été caractérisée.  

A chaud, une couche d’oxyde se forme sur les faciès de rupture. Cette couche a été décapée 

avec un mélange de HCl (agent décapant) et de HMTA « Héxaméthylene-Tetramine » qui 

permet de protéger la surface de métal ainsi mise à nue. 
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This chapter concerns the properties of the material chosen as well as the experimental 

techniques for this study. The fatigue testing equipment, heating system and the observation 

techniques are discussed in detail. All the design parameters and preparation techniques for 

the specimens are also discussed. A description for the post mortem observation techniques is 

also provided which includes chemical or electrochemical etching, deoxidation, recrystallisation 

etc.  

I.  X38CRMOV5 / AISI  H11 HOT WORK TOOL STEEL  

The alloy chosen for this study is an X38CrMoV5 or AISI H11 hot work tool steel. The material 

for the study has been provided by Aubert & Duval – France free of charge. The family of AISI 

H11 and H13 material has been studied extensively in the laboratory especially in the 

application of forging and HPDC [1-12]. The principal area of application for this class of steels is 

high temperature tooling. The material has been provided in the form of forged blocks as 

shown in fig 9. The commercial designation of the steel used in the study is ADC3. The 

predecessor to this steel was given the designation SMV3, which had higher silicon content. The 

microstructure of this steel may be best described as a tempered martensite microstructure. 

I.1 Applications 

The X38CrMoV5 steel is extensively used in making dies for the high pressure aluminium die 

casting and as well as for forging dies. The material has a high resistance to loading even at 

elevated temperatures. It exhibits a high tensile strength at elevated temperatures, good 

fracture toughness (40 - 57 MPa.m1/2 [13] for 47 HRC Hardness) and presents a good thermal 

conductivity (≈ 26 – 29 W m-1 K-1 at 200 – 600°C [8, 11]). Other uses for this material include 

extrusion of light alloys, stamping dies, moulds and tools of the plastics processing industry. 

I.2 Chemical Composition 

The X38CrMoV5 steel is a 5% Chrome, low non metallic particle content tempered-martensitic 

steel. The chemical composition is given in table 1. The hot work tool steels generally have a 

medium carbon content associated with the alloying elements like nickel, chromium, 

molybdenum and vanadium. A brief discussion of the effects of these elements is presented 

below. 

Table 1: Chemical composition Wt % of X38CrMoV5 / AISI H11 (Grade ADC3) Steel 

Elements C Cr Mo V Ni Si Mn Fe 

Wt % 0.35 5.11 1.21 0.47 0.06 0.28 0.35 bal 
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Chromium is an alphagen and a carbide forming element which has an essential role in 

improving the quench hardenability of the steel. Chrome combines with carbon to give carbides 

of the type M23C6 and M7C3 [4, 11, 12] which increase its resistance to abrasion and resistance 

to grain growth during austenisation. It is also responsible for the retardation of softening 

during tempering of the steel which in fact increases the resistance of the steel at high 

temperature. Another advantage of chromium is that it increases resistance to oxidation.  

Molybdenum is a strong carbide former. It contributes in the solid solution strengthening of the 

steel and stabilizes the microstructure. During the tempering of the steel, molybdenum 

produces carbides of the type M2C [3, 11].  

Vanadium is important for the hot hardness and resistance to abrasion. It forms very hard, 

small carbide particles in the steel. Since it has very low solubility in the matrix, it easily forms 

carbides of the type MC [11, 12].  

I.3 Heat Treatment and Microstructure 

The material was received in “as heat treated condition” by Aubert & Duval. The typical heat 

treatment of this steel involves four steps; annealing, austenisation followed by double 

tempering. Each of these is explained in some detail as follows. 

Annealing is done at a temperature of 750°C with a corresponding hardness range of 200 – 250 

HV [3]. The aim of annealing is to relax the residual stresses created during manufacture and to 

obtain a uniform microstructure. Annealing is typically done below the AC3 temperature to 

avoid the γ – phase and subsequent grain growth. The time depends on the thickness and 

temperature of the work piece and it may vary between 1 and 4 h [3]. The as annealed 

microstructure is made up of fine globular carbides embedded in a ferrite matrix fig 1.  

Austenisation is done at 980°C (above the AC3 temperature in the γ – phase) for 30 minutes 

followed by air quenching. It is done in order to dissolve most of the carbides into the matrix. 

The dissolved carbon (from carbide dissolution at 980°C) and the well distributed alloying 

elements can form secondary carbides during the tempering process later on. During the 

austenisation, grain growth is blocked by carbides of the type MC [12]. Austenisation is 

followed by air quenching, which gives a hard martensite structure. Since martensite formation 

is diffusion less, most the carbon dissolved during austenisation remains dissolved in the ferrite 

matrix which is available for carbide formation during tempering. 

Tempering is done immediately after the austenisation. It is a two step process. The first 

tempering is done at 550°C for 2h and the second tempering at 603°C for 2h [1] to achieve a 
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hardness of 47 HRC. The tempering is done in order to remove the retained austenite 

(conversion to secondary martensite) after quenching, and the second tempering to precipitate 

the desired type of fine carbides. During tempering a secondary hardness peak can be seen in 

figure 2 which is due to the transformation of retained austenite into hard secondary 

martensite. During the second tempering, secondary carbides of the type MC (principally 

vanadium carbides) are created (2 nm [12]) which are instrumental in giving the alloy its hot 

hard properties. These carbides are extremely resistant to dissolution and coalescence at high 

temperatures. The whole heat treatment process is schematically presented in the figure 3. The 

quenched and tempered microstructure is shown in figure 4. Typically the martensite lathes are 

in the form of needles of 1 μm diameter and 10 μm length. 

 

 

 

 

Fig 1. Microstructure of X38CrMoV5 in as annealed state. Revealed by Nital 3% for 15s electron 

microscope. : a) Globular carbides, b) et c) Polyhedric carbides, d) Ferrite grain [11] 

 a) 

 b) 
 c) 

 d) 
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Fig 2. Evolution of hardness with respect to the increase in tempering temperature [3] 

 

Fig 3. Schematic of the heat treatment for X38CrMoV5 steel with corresponding carbides formed 

at each stage of heat treatment [12] 
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Fig 4. Microstructure of X38CrMoV5 quenched and tempered 

a) Martensite lathe structure (Nital at 3% for 20s), b) Elongated inter-lathe carbides (Villela’s 

reagent) and c) Morphology of a globular carbide [11] 

 

I.4 Mechanical Properties 

The X38CrMoV5 steel belongs to the class of hot work tool steels and is thus characterised by 

high mechanical, oxidation and corrosion resistance.  

The steel is available in different grades based upon hardness. The 42 HRC and 47 HRC hardness 

grades are the most commonly used grades. The 42 HRC steel has a higher toughness value (60 

~ 90 MPa.m1/2) as compared to the 47 HRC steel (40 ~ 60 MPa.m1/2). In our work we have used 

only the 47 HRC grade. The mechanical properties derived from monotonic tensile tests have 

been presented in the figure 5 [11]. 

(c) 

(b) 

(a) 
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Fig 5. Mechanical properties of X38CrMoV5 steel from monotonic tensile tests at different 

temperatures: ultimate strength (σUTS), elastic limit (σy) and young’s modulus (E) [11] 

According to its application in the high pressure die casting and the forging industry, the 

material is expected to resist mechanical loading at the working temperatures imposed by its 

application. The reduction in the elastic limit and yield strength is not excessive until 400°C 

after which the drop in these properties becomes higher. However the safe temperature of use 

is considered to be up to 550°C (first tempering temperature) because the effects of thermal 

aging are not pronounced. However, beyond 550°C we can see a marked reduction in the 

mechanical resistance of the material [11].  
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II.  EXPERIMENTAL SETUP 

For the fatigue testing of very thin materials, a test facility was specifically designed and 

developed. The system is capable of carrying out HCF and LCF tests at different temperatures 

while giving visual access to the crack propagation through a high power long distance 

microscope. 

II.1 Universal testing machine 

All the HCF experiments are carried out on a 40 kN servo hydraulic universal testing machine 

manufactured by Walter + Bai of Switzerland. The hydraulic system has a working pressure of 

250 bar, which feeds a linear 100mm stroke piston cylinder actuator. This is a very versatile 

machine which can be used in the classic vertical configuration or a horizontal configuration. 

In its initial configuration the machine comes with a 40 l/min servo valve and a load cell of 

40kN. The controller, EDC 120 is used to interface all the commands from the PC with the 

machine as shown in figure 6. There are three measurable inputs on the controller; 

deformation, force and piston displacement. The PC interface, DionProTM, is based on the 

DELPHI programming platform. All data transfer between the controller and the PC is done 

through serial cable. It is capable of working reliably at a minimum load of 1kN at a frequency 

range of 0.2Hz to 20Hz in the standard configuration.  

II.1.1 Modifications to the machine 

Control: Although in its standard configuration, the machine has high control and stability, the 

experiments on thin specimens demand higher precision and control. For this purpose, a new 

servo valve with a smaller flow rate 4 l/min was installed. Load cells of 2kN and 0.1kN were also 

installed to gain higher precision in force controlled experiments of thin specimens. In the 

modified configuration the machine can work reliably at 0.05kN at a frequency range between 

0.2Hz to 20Hz. 

Elevated temperature:  Testing hot work tool steels requires the experiments to be carried out 

at elevated temperatures. It was decided that the specimen grips should be able to work for 

long durations at up to 750°C. For this purpose special grips were designed and fabricated, 

figure 7. They are internally cooled through the upper fixture or piston figure 7, which is made 

of stainless steel. The external collar is made of IN 718 super alloy which is cooled externally by 

a brass cooling jacket. The jaws of the grips are made of IN 100 which has a very high 

temperature resistance. This was necessary because the jaws cannot be cooled directly and are 

exposed to induction heating as well. The whole grips fixture is presented in figure 7.   
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 Fig 6. Schematic of the high cycle fatigue testing facility 

II.2 Induction Heating  

High temperature isothermal HCF experiments use a high frequency induction heating system 

AXIO 5kW manufactured by HÜTTINGER Elektronic. The induction heating system is chosen 

because it provides the capability of variable temperature thermo mechanical fatigue testing in 

addition to isothermal tests.  

The heating is done at a slow ramp speed of 20°C/min up to 600°C in isothermal tests. The 

speed and temperature is maintained by the Eurotherm 2704 temperature controller. To avoid 

any accidents due to overheating a security temperature controller is also installed which cuts 

off all signal to the inductor generator in case of out of range values or thermocouple failure. 

Three thermocouples are installed on each specimen, figure 8. They are placed in order to be 

able to effectively monitor the thermal gradient and the temperature for the whole length of 

the crack propagation. 
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Fig 7. High temperature grip: (a) disassembled (b) assembled

Fig 8. Detailed view of experimental setup: (a)microscope, (b)inductor generator, (c)grips, 

(d)inductor connection to generator, (e)load cell 2kN, (f)specimen, (g)cooling water, 

(h)speci

Inductor: The inductor, figure 8 is of rectangular form designed in order to heat a strip 

specimen in a uniform manner and to provide adequate opening for optical observation of the 

crack propagation. 

 

(a) 

 

High temperature grip: (a) disassembled (b) assembled

Detailed view of experimental setup: (a)microscope, (b)inductor generator, (c)grips, 

(d)inductor connection to generator, (e)load cell 2kN, (f)specimen, (g)cooling water, 

(h)specimen, (i)inductor and (j)thermocouples 

The inductor, figure 8 is of rectangular form designed in order to heat a strip 

specimen in a uniform manner and to provide adequate opening for optical observation of the 

(b) 
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High temperature grip: (a) disassembled (b) assembled. 

Detailed view of experimental setup: (a)microscope, (b)inductor generator, (c)grips, 

(d)inductor connection to generator, (e)load cell 2kN, (f)specimen, (g)cooling water, 

The inductor, figure 8 is of rectangular form designed in order to heat a strip 

specimen in a uniform manner and to provide adequate opening for optical observation of the 
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II.3 Specimens 

The specimens are of unique form designed specifically to be used in the experiments of this 

study. Most design parameters were taken from the guidelines given in the ASTM E647-00, 

E606, E399-90 standards. However the experimentation imposes specific constraints on the 

specimen design thus some modifications were made which are not according to the ASTM 

guidelines. The main limitation comes from the design for the prevention of buckling during 

compression. The free length of the specimen (outside grips) has to be as short as possible. For 

this purpose the shoulders of the specimens have a radius smaller than the ASTM standard. 

This gives the specimen more rigidity but creates a slight stress concentration at the shoulders. 

This stress concentration has no real effect on crack propagation experiments since the charge 

never exceeds 25% of the elastic limit of the material. 

All the specimens are of the SE(T) [side edge cracked tension] type, dog bone profile, traction 

specimens, figure 9(a). They were conceived from forged blocks provided by the manufacturer 

with the preparation procedure as follows (figure 9(c)): 

1) Profile machining by wire cut electroerosion including the notch of 200μm radius. 

2) Slicing into required thickness by wire cut electroerosion. 

3) Parallel grinding of opposing surfaces to exact dimensions (2.5mm, 1.0mm and 0.6mm) 

4) Reducing thickness of specimens by SiC paper of 80 grit size (down to 0.1mm; some 

specimens only). 

5) Polishing of the flat surfaces successively by SiC paper of 180, 320, 600, 1200 grit size. 

6) Polishing to mirror finish with 6, 3 and 1µm diamond paste on a metallographic polisher. 

7) Engraving of grid on the flat surface (some specimens only), figure 9(b). 

  

Fig 9. Specimen: (a) dimensions (b) engraved grid details and (c)different steps of manufacturing 

(a) 

(b) 

(c) 
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All the specimens have been machined from the block in the same direction (longitudinal) for 

consistency in the properties of the material. 

II.4 Observations and Measurements 

II.4.1 Long distance travelling microscope 

The crack propagation length is observed optically, in situ with a long distance microscope, 

without interruptions to the experiment. The microscope is a Questar Step Zoom 100 (SZM 

100), figure 10(b), made in the USA. It has a maximum optical resolution of 1.1µm. The field of 

view, depending on zoom, is between 0.375 and 8.0mm. Long distance microscope gives an 

advantage of observation from a distance of between 152 and 381mm. It should however be 

noted that the highest resolution is obtained when the distance between the specimen and the 

microscope is as low as possible. The microscope is installed directly in front of the specimen as 

shown in figure 8 and 10(a). 

 

 

 

Fig 10. (a) Configuration of the experiment observation microscope, (b) Questar SMZ 100 and (c) 

CCD camera 

II.4.2 Camera and recording 

A CCD camera is connected to the microscope for recording the images. The camera is a Sony 

EXWAVE HAD® with a CCD sensor figure 10(c). The sensor is of ½ inch size with a resolution of 

470 * 300 lines (horizontal * vertical). Theoretically, the microscope-camera combination 

(a) 

(b) 

(c) 
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having 0.4mm field of view (max microscope zoom) and 400 horizontal lines on the CCD sensor 

we can have an image resolution of 1µm. Practically, the resolution does not exceed about 4µm 

for the crack length. This is due to the errors induced by machine vibrations, camera sensor 

noise and video compression by the tape recorder that records the images from the camera. 

All the images of the camera are recorded onto a tape recorder at 25fps (frames per second). 

This video can later be used for post experiment treatment of images. 

II.4.3 Post treatment of video 

The video recorded by the camera – recorder apparatus can be used for various analyses after 

the experiment has terminated. The most useful information that was gained by the post 

treatment was the crack opening displacement.  

Traditionally crack opening is measured at the mouth of the crack. The optical system used in 

this work gave us the possibility of measuring crack opening behind the crack tip for different 

crack lengths. At the maximum resolution it has been observed that crack opening may be 

measured as close as 50μm behind the crack tip with increments of 100μm. The figure 11 

shows an example with 5 extensometers; the first extensometer is placed 200μm behind the 

crack tip while the others are placed at equal intervals of 200μm. The different crack opening 

displacement (COD) values thus obtained may be extrapolated to get the crack tip opening 

(CTOD). For this purpose all the videos are downloaded to the software iMovie HD®. This 

software converts the video into images that can be used with image analyses softwares. The 

crack opening was calculated using image correlation software VIC 2D®.  

Fig 11. Image correlation for crack opening displacement (a) placement of virtual extensometers 

behind crack tip, (b) reference image (Pmin) and (c) deformed image (Pmax) for correlation 

(a) 
(b) 

(c) 
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III.  EXPERIMENTAL PROCEDURE 

This study has been carried out to characterise the surface damage of hot work tool steel 

X38CrMoV5. For this purpose it was decided that crack propagation experiments will be carried 

out under different conditions to be able to get an insight of the metal damage process.  

All experiments are traction-traction crack propagation experiments under load control. Crack 

opening data is recorded onto tape via the microscope and camera. Special consideration is 

given to the stability and smoothness of the load curve applied by the machine. The PID is 

carefully adjusted and continuously monitored during the experimentation. 

Different testing conditions are applied on specimens. Some of the tests are quantitative while 

others are more qualitative to get an indication of the physical processes under loading 

especially at high temperatures. 

III.1 Effect of load ratio (R) on crack propagation at ambient temperature 

R ratio is defined as the ratio of the minimum load to the maximum load in fatigue experiment.  

� �  ���� ����� �  ���� �����  

The effect of load ratio is important to be able to determine correctly the effects of crack 

closure and/or the mean load on the damage of the material. Three groups of experiments are 

carried out which are summarized in table 2. 

Table 2: Tests for the effects of load ratios on fatigue crack propagation 

Group of Tests 
Thickness (mm) 

of specimens 

Applied max stress 
Yield stress 

(%) 

Load ratio  
R 

Test Frequencies 
(Hz) 

1 
2.5 8.3  0.1 

10 

2.5 
25 

0.1 
2.5 0.7 

2 
0.60 

25 
0.1 

0.60 0.7 

3 
0.12 

25 
0.1 

0.12 0.6 

To determine the effect of maximum stress on FCGR, a test was carried out while keeping very 

low σmax value: 8.3% of the yield stress. This would ensure good LEFM conditions by reducing 

the possibility of plastic yielding ahead of the crack tip. 
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For all the group 1 and 2 specimens two tests are carried out for each R whereas for the group 

3 specimens only 1 experiment per condition has been carried out. 

Each specimen has a 200µm notch. The crack initiation is started at 80% of the material σY. The 

initiated crack is almost always of about 300µm length including the notch. The load is gradually 

reduced to 25% of the σY to allow for the crack to exit the residual plastic zone at the crack 

front as for long crack propagation under LEFM conditions. This procedure brings the crack 

length to between 0.6mm and 1mm. The crack propagation experiment is then accounted from 

this crack length. The monotonic plastic zone maybe calculated using the following 

relationships of Irwin (1960) [14]. 

�� �  ��� � !"#$%
, for plane strain 

�� �  �� � !"#$%
,  for plane stress 

Having a low thickness with respect to what is required by the LEFM analyses, the formula for 

plane stress is used to calculate the plastic zone. 

There were two main goals of each experiment: find out the difference in crack propagation 

rate curves (Paris curves) and the threshold values of crack propagation at different R if any. 

The crack propagation or Paris regime experiments are carried out with a constant load and 

ascending K. The load signal is schematically presented in figure 12. 

The determination of the threshold values requires descending K values strategy or the so 

called load shedding technique. 

To test the thinner specimens a smaller load cell has to be installed. This load cell has a 

maximum capacity of 2kN and is suitable for testing specimens of 0.12mm thickness. 
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Fig 12. Force applied on the specimen during different stages of the fatigue crack propagation 

experiment 

III.2 Effect of specimen thickness on crack propagation at ambient temperature 

As described before the thickness of interest in tool surface damage is of the order of several 

micrometers. Tests thus have to be carried out on specimens which may have thicknesses as 

low as 50 µm. This thickness is outside the values recommended by ASTM standard (E399 and 

E647). We thus have to first establish if there exists any fundamental difference between the 

crack propagation behaviour of thick and thin materials. For this purpose fatigue crack 

propagation tests are carried out on specimens of different thicknesses, with same specimen 

profile. The tests are summarized in the table 3. 

Table 3: Tests for the effects of specimen thickness on fatigue crack propagation 

Group of 
Tests 

Thickness (mm) 
Applied max stress 

Yield stress 
(%) 

Stress ratio 
R=σmin/σmax 

Test Frequencies 
(Hz) 

4 

2.50 

25  0.1 10 
1.00 
0.60 
0.25 
0.12 
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A constant R ratio of 0.1 is maintained for all the experiments.

For the specimens of 1mm and 0.6mm thickness the crack opening displacement (COD) was 

measured as well. Since the camera has a refresh rate of only 25 fps, not enough information is 

obtained at 10Hz test frequency. The test frequency is reduced to 0.2 Hz f

propagation and the microscope images are recorded. The load signal form is changed as well 

from sine wave to triangular form. The advantage is that the load applied by the machine and 

COD measurements by video are easily and readily sync

The recorded video is then passed through the image analysis software to get the COD values. 

The signal and COD by image analysis is shown in the figure 13.

Fig 13. Illustration of applied force signal mo

III.3 Crack propagation at elevated temperatures

The real conditions of utilisation of the hot work tool steels are at elevated temperatures. The 

X38CrMoV5 is commonly used at 550°C for long periods 

damage to material may be 

fatigue damage, increase in plasticity, creep, oxidation etc. Thus to correctly characterise the 

surface damage of hot work tools the tests on the material have to be carried out at elevated 

temperatures.  

It should be emphasized here that the fatigue 

for this steel is not available in the literature to our knowledge.

A constant R ratio of 0.1 is maintained for all the experiments. 

For the specimens of 1mm and 0.6mm thickness the crack opening displacement (COD) was 

measured as well. Since the camera has a refresh rate of only 25 fps, not enough information is 

obtained at 10Hz test frequency. The test frequency is reduced to 0.2 Hz f

propagation and the microscope images are recorded. The load signal form is changed as well 

from sine wave to triangular form. The advantage is that the load applied by the machine and 

COD measurements by video are easily and readily synchronised by calibrating the time base. 

video is then passed through the image analysis software to get the COD values. 

The signal and COD by image analysis is shown in the figure 13. 

Illustration of applied force signal modification for COD measurements

Crack propagation at elevated temperatures 

The real conditions of utilisation of the hot work tool steels are at elevated temperatures. The 

sed at 550°C for long periods [1-12]. At elevated temperature the 

be due to many mechanisms working simultaneously

fatigue damage, increase in plasticity, creep, oxidation etc. Thus to correctly characterise the 

surface damage of hot work tools the tests on the material have to be carried out at elevated 

It should be emphasized here that the fatigue crack propagation data at elevated temperatures 

for this steel is not available in the literature to our knowledge. 

III. Experimental procedure 
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For the specimens of 1mm and 0.6mm thickness the crack opening displacement (COD) was 

measured as well. Since the camera has a refresh rate of only 25 fps, not enough information is 

obtained at 10Hz test frequency. The test frequency is reduced to 0.2 Hz for every 0.5mm of 

propagation and the microscope images are recorded. The load signal form is changed as well 

from sine wave to triangular form. The advantage is that the load applied by the machine and 

hronised by calibrating the time base. 

video is then passed through the image analysis software to get the COD values. 

 

for COD measurements 

The real conditions of utilisation of the hot work tool steels are at elevated temperatures. The 

. At elevated temperature the 

neously. These include 

fatigue damage, increase in plasticity, creep, oxidation etc. Thus to correctly characterise the 

surface damage of hot work tools the tests on the material have to be carried out at elevated 

crack propagation data at elevated temperatures 
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The experiment consists of pre cracking the specimen at 20°C at a high frequency (10Hz). The 

interest in pre cracking at low temperature is to keep the plastic zone beyond the crack front to 

a limited size. The specimen is then heated at 20°C/min to a maximum temperature of 600°C in 

laboratory air. The specimens are held at this temperature for 30 minutes to stabilise the 

temperature of the grips thus controlling the temperature gradient in the specimen. This 

stabilisation technique presents certain problems. This 30 minute duration at elevated 

temperature may cause microstructural changes in the material. However, if the experiment is 

started without stabilisation, the young’s modulus of the specimen will evolve with time as the 

specimen temperature gradient stabilises. Thus a material or mechanics choice has to be made; 

we have chosen to give priority to the mechanical conditions, thus introduction of the high 

temperature stabilisation step. The control of temperature gradient is discussed in appendix A. 

At 600°C the tests are carried out for different specimen thicknesses, to see the effect of 

thickness on crack propagation, figure 14. The same strategy of reducing the testing speed for 

observation of crack opening displacement is also used for the specimens at elevated 

temperatures. The summary of all the tests performed is provided in the table 4. Experiments 

are carried out to establish the effect of R and specimen thickness on the fatigue crack 

propagation and the threshold values. 

The effect of R and specimen thickness on the threshold propagation is studied in detail at 

elevated temperatures. A test is also carried out to determine the effect of transient 

temperature on the fatigue crack growth threshold, the details of which are presented in 

chapter 4. 

Table 4: Tests for the effects of temperature on fatigue crack propagation 

Group 
of Tests 

Thickness 
(mm) 

Applied max stress 
Yield stress 25°C 

Stress ratio 
R=σmin/σmax 

Test Frequencies 
(Hz) 

Temperature 
°C 

5 

2.5 

25 %  

0.5 

2 600 

2.5 
0.1 1.0 

0.6 
0.6 0.7 
0.6 0.3 
0.4 0.1 

6 0.6 25 % 0.7  

20°C – 300°C – 
500°C – 600°C 

Temperature increased 
in steps during testing 
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Fig 14. Illustration of the fatigue crack propagation at eleva

For the specimens of 1mm thickness 

under a monotonic traction load

presence, or absence of creep deformation at this temperature and load at the crack tip

III.4 Effect of oxidation on crack propagation

Much research has been done on the effect of environment on the fatigue crack propagation. 

The X38CrMoV5 having 5% Chrome is considered to be oxidation resistant, especially at room 

temperature. At temperatures above 550°C and in humid air the speed of oxidation is rapid 

6, 7]. The effect of oxidation on crack propagation 

A specimen of 0.6mm thickness 

on the crack propagation behaviour. A specimen 

oxidized at 600°C for five hours under stress free conditio

specimen is then cooled (natural cooling) 

propagation experiment is continued f

crack propagation procedure 

establish if there exists an effect of oxygen penetrating beyond the visible oxide layer int

material or not i.e. if the apparently non oxidised material (in front of crack tip) is weakened 

under the effect of oxidation.

16. 

Fig 14. Illustration of the fatigue crack propagation at elevated temperatures, COD and creep

For the specimens of 1mm thickness a creep test was performed by holding the specimen 

under a monotonic traction load, figure 14. The idea was to determine qualit

presence, or absence of creep deformation at this temperature and load at the crack tip

III.4 Effect of oxidation on crack propagation 

Much research has been done on the effect of environment on the fatigue crack propagation. 

ing 5% Chrome is considered to be oxidation resistant, especially at room 

temperature. At temperatures above 550°C and in humid air the speed of oxidation is rapid 

. The effect of oxidation on crack propagation is studied. 

specimen of 0.6mm thickness is selected for the purpose of studying the effect of oxidation 

on the crack propagation behaviour. A specimen is pre cracked to a certai

600°C for five hours under stress free conditions in a tube furnace

s then cooled (natural cooling) to room temperature and re-polished

s continued for a prescribed crack length. This oxidation

propagation procedure is repeated several times. The idea behind this experiment was to 

establish if there exists an effect of oxygen penetrating beyond the visible oxide layer int

if the apparently non oxidised material (in front of crack tip) is weakened 

under the effect of oxidation. The experimental conditions are schematically shown in figure 

III. Experimental procedure 

44 

 

ted temperatures, COD and creep 

test was performed by holding the specimen 

The idea was to determine qualitatively the 

presence, or absence of creep deformation at this temperature and load at the crack tip. 

Much research has been done on the effect of environment on the fatigue crack propagation. 

ing 5% Chrome is considered to be oxidation resistant, especially at room 

temperature. At temperatures above 550°C and in humid air the speed of oxidation is rapid [3, 

for the purpose of studying the effect of oxidation 

cked to a certain length; then 

ns in a tube furnace, figure 15. The 

polished and the crack 

or a prescribed crack length. This oxidation-polishing-

The idea behind this experiment was to 

establish if there exists an effect of oxygen penetrating beyond the visible oxide layer into the 

if the apparently non oxidised material (in front of crack tip) is weakened 

The experimental conditions are schematically shown in figure 
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Fig 15. (a) Schematic representation of the 

propagation and (b) tubular furnace used for oxidation of specimen

The tube furnace is an electric resistance furnace with the elements placed externally to a tube 

of tantalum. The advantage of this furnace is it

temperature distribution. The furnace is controlled by a Eurotherm 2704 controller. The 

thermocouples are mounted directly on the specimen by spot welding. The thermocouples are 

connected to a data acquisition syst

experiment. This type of test is very long and takes about 5 

Fig 16. Illustration of the intermittent oxidation experiment parameters

(a) 

 

Fig 15. (a) Schematic representation of the experiment to study effects of oxidation on 

propagation and (b) tubular furnace used for oxidation of specimen

The tube furnace is an electric resistance furnace with the elements placed externally to a tube 

of tantalum. The advantage of this furnace is its short heating and cooling time and even 

temperature distribution. The furnace is controlled by a Eurotherm 2704 controller. The 

thermocouples are mounted directly on the specimen by spot welding. The thermocouples are 

connected to a data acquisition system which gives the whole thermal cycle during the 

experiment. This type of test is very long and takes about 5 – 7 days to complete. 

Fig 16. Illustration of the intermittent oxidation experiment parameters

(b) 
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experiment to study effects of oxidation on 

propagation and (b) tubular furnace used for oxidation of specimen 

The tube furnace is an electric resistance furnace with the elements placed externally to a tube 

s short heating and cooling time and even 

temperature distribution. The furnace is controlled by a Eurotherm 2704 controller. The 

thermocouples are mounted directly on the specimen by spot welding. The thermocouples are 

em which gives the whole thermal cycle during the 

7 days to complete.  

 
Fig 16. Illustration of the intermittent oxidation experiment parameters 
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IV.  POST MORTEM ANALYSIS 

The post mortem analysis in fatigue fracture gives important insights into the modes and 

mechanisms of fracture and damage of the material. At the end of each experiment the 

fracture surface as well as the profile of fracture is observed. Here, the preparation, 

orientation, equipment and the different techniques used are described. 

IV.1 Specimen preparation 

Generally at the end of a fatigue crack propagation experiment the specimen is fractured into 

two parts, figure 17. One of the fractured parts is generally conserved for further analysis, 

figure 17(1) while the other part is prepared for fractographic analysis, figure 17(2). The part 

cut for fractography is mounted on a double coil spring to keep it upright. It is then observed 

under binoculars for macroscopic analysis. Afterwards it is mounted on the stage of the SEM for 

microscopic analysis figure, 17.     

 

Fig 17. Specimen preparation for post mortem analysis of specimens 

Under the SEM the crack initiation zone near the notch is observed. Afterwards the crack 

propagation for “long” crack is observed while looking for fatigue striations, propagation path 

and texture of the surface to try to interpret the presence of slip bands or other artefacts. 

1 

2 

3 
4 
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After this the specimen is mounted on its flat profile, figure 17(3) or edgewise, figure 17(4) in a 

conducting resin. Generally the configuration (3) is used for microstructure analysis or surface 

artefacts due to deformation. Initially the specimen is observed under SEM as is for presence of 

slip bands. 

IV.2 Chemical attacks for microstructure 

If there is an oxide layer on the crack surface it has to be removed chemically by a mixture of 

HCl (etchant) and HMTA (Hexamethylene-Tetramine inhibitor). The HCl removes the oxide layer 

but the underlying metal surface is protected by the HMTA. 

Different chemical attacks may be used to reveal the microstructural properties or 

modifications during the test. Mostly the Nital (3% HNO3 in Ethyl alcohol) is used to reveal the 

martensite microstructure. The crack path then can be traced in the microstructure of the 

material and the interaction of the two can be studied. 

In some of the tests an electrolytic etching method using chromic acid is used to reveal the 

previous austenitic grain network. This method is used to find out if the crack propagation is 

intergranular or transgranular in nature. 

During crack propagation considerable plastic deformation occurs beyond the crack tip. A 

method was devised to get an indication of the size of this large plastic deformation. The 

cracked specimens are heated, in air, up to 50°C above the AC3 (950°C in this case) for 10 

minutes and then cooled. This causes the recrystallisation of the deformed grains, wherein the 

severely deformed grains have smaller crystal structure as compared to the undeformed ones. 

The oxide of the air penetrates the grain boundaries more severely. After removal of the oxide 

layer the austenite structure can be easily seen under a microscope. However with this 

procedure the crack surface is completely destroyed and no information on crack path remains. 
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V. CONCLUSION 

In this chapter the different experimental methods, procedures and conditions have been 

described. The metal chosen for this study is an X38CrMoV5 (AISI H11) hot work tool steel. The 

metal studied has been heat treated by air quenching followed by double tempering to obtain a 

tempered martensitic microstructure and a hardness of 47 HRC. 

The specimen used is an SE(T) specimen with a dog bone profile. Fatigue crack propagation 

experiments are carried out at different temperatures. The effects of oxidation on crack 

propagation is also studied. All the observations during the experiment are carried out in-situ 

without interruptions to the experiments. Heating of the specimen is done by an internally 

water cooled induction heating system. High temperature grips were specifically developed for 

this purpose.  

At the end of the experiments the data recorded on tape is analysed. The specimens undergo 

post mortem analysis. The preparation of the specimens differs with the testing conditions. 

Different etching techniques are used to get information on the interaction between the crack 

propagation and the microstructure of the metal.  
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RESUME EN FRANÇAIS 

Les conditions expérimentales de cette étude imposent un dimensionnement spécifique des 

éprouvettes. La validité de la caractérisation de l’endommagement du matériau dépend de la 

détermination précise du paramètre d’endommagement. Cela permet aussi de comparer les 

résultats obtenus sur nos éprouvettes non normalisées avec d’autres travaux, concernant des 

éprouvettes normalisées. Ce chapitre est consacré à l’analyse numérique qui a permis de 

calculer les facteurs d’intensité de contrainte en mode I (FIC) ou KI, ainsi que les valeurs 

d’intégrale J élasto-plastique à différentes longueurs de fissure.  

La surface des outillages est très sensible à la fissuration et à l’usure. Afin d’avoir une meilleure 

caractérisation de l’endommagement de la surface des outillages, les essais sur des éprouvettes 

de faible épaisseur sont mieux adaptés par rapport à des éprouvettes C(T) massives 

normalisées. À cet effet, les essais réalisés sur les éprouvettes de type SENT encastrées (ensuite 

appelée SE(T)C) présentent une alternative très intéressante à des éprouvettes C(T). Les 

éprouvettes SE(T)C enlèvent complètement les problèmes de flambage ou flexion sous 

chargement en fatigue traction - traction. Les problèmes de flambage et de flexion existent 

aussi dans les éprouvettes de traction mises en place avec un système à goupilles. D’autre part, 

la surface en contact avec les goupilles est susceptible de s’endommager, en particulier pour les 

éprouvettes d’épaisseur voisine de 0.1 mm. Lorsque la surface est plate, caractéristique des 

éprouvettes SE(T)C, des mesures précises (de l’ordre de 1 micromètre) d’ouverture de fissure à 

l’aide d’une caméra sont également réalisables. Un schéma d’une éprouvette SE(T)C est 

présenté dans la figure 1, sur laquelle la direction d’application de la charge est indiquée. Il est 

alors nécessaire d’utiliser une méthode de calcul de facteur d’intensité de contrainte adapté à 

ce type d’éprouvette. 

 
Fig 1. Schema d’une éprouvette SE(T)C 
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Le calcul du facteur d’intensité de contrainte utilisé dans cette étude est basé sur la méthode 

énergétique utilisant l’intégrale J. Le logiciel utilisé pour la simulation numérique est 

ABAQUS/StandardTM. Les conditions aux limites considérées sont le déplacement uniforme 

imposé et la force uniforme imposée sur l’éprouvette. La comparaison des résultats d’analyse 

avec ceux qui sont répertoriés dans la littérature (réalisée sur des éprouvettes normalisées de 

forme rectangulaire avec différents rapports longueur/largeur) a permis la validation de la 

méthode numérique. On constate que la méthode donne des résultats suffisamment précis 

pour la condition aux limites de déplacement uniforme imposé. 

Après cette vérification, la méthode d’analyse est appliquée sur les formes d’éprouvettes 

« réels » dont le profil est de type « Dog Bone ». Quatre types d’analyses ont été réalisés : 

1) analyse élastique à 20 °C, 

2) analyse élasto-plastique à 20 °C, 

3) analyse élastique à 600 °C, 

4) analyse élasto-plastique à 600 °C.     

Les résultats obtenus pour l’analyse élastique et élasto-plastique à température ambiante sont 

identiques car l’effet de la plasticité en pointe de fissure sur les valeurs de l’intégrale J est 

insignifiant. Cependant, l’analyse élastique à 600°C et l’analyse élastique à température 

ambiante donnent des valeurs identiques de l’intégral J en revanche pour l’analyse élasto-

plastique à 600°C l’effet de la plasticité (en pointe de fissure) influe considérablement sur la 

valeur de l’intégrale J, menant à des valeurs très différentes de celles obtenues à température 

ambiante. 

En mécanique linéaire élastique de la rupture, l’application du facteur d’intensité de contrainte 

comme critère de propagation de fissure n’est plus justifiée lorsque la plasticité devient 

importante notamment à températures élevées. Un autre critère qui tient compte de la 

plasticité en pointe de fissure tel que : ��&',�'�) est alors introduit. Les critères KI et ��&',�'�) 
sont utilisés dans le chapitre 4 « Experimental results ».  

L’effet de la variation de la position des éprouvettes dans les mors a aussi été étudié. Des 

petites variations de l’écart entre les deux mors au cours de l’installation des éprouvettes 

peuvent exister. Ce sont des variations inévitables. Il a été constaté que cette variation d’écart 

n’a pas un effet important sur le facteur d’intensité de contrainte.    
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The testing conditions imposed on the experiments in this study require us to use non standard 

specimen profiles. The validity of the characterisation of damage behaviour of the material is 

dependent on the accurate determination of a damage criterion. The accurate determination is 

also required to able us to compare the experimental results with those of other researchers. 

This section describes the numerical analyses carried out in order to determine the mode I 

Stress Intensity Factors (SIF) or KI and elastic-plastic J-Integral values at different crack lengths. 

The effects of variation in specimen installation, inherent to the experimental procedure, are 

also explored. 

I.  INTRODUCTION  

The surface of forming tools is highly prone to cracking and wear. To get better insight into the 

behaviour and damage accumulation near the surface of the tools, testing on specimens with 

reduced thickness is more appropriate as compared to standard C(T) specimens. To test the 

surface damage of die steels, small specimens of very low thickness are needed[1, 2]. For this 

purpose clamped SE(T)C specimens provide a good alternative to C(T) specimens because they 

completely remove the possibility of buckling or bending during tensile fatigue testing. The 

same problems of buckling and bending would be present in pin loaded specimens (effects of 

non symmetric rotation) as well as failure at the bearing surfaces since the specimen 

thicknesses can be as low as 0.10mm[1, 2]. Also the free standing surface keeps a flat view 

towards the camera throughout the test which is very important for making displacement 

measurements of the order of 1 micron accurately. A schematic for the single edge cracked 

specimen is shown in figure 1. The direction of the applied load is also shown. However a 

method is needed to calculate accurately the stress intensity factors generated in these 

specimens.  

 
Fig 1. Schematic of the single edge cracked tensile specimen with clamped ends, SE(T)C 
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Nomenclature 

 
SE(T)  side edge cracked, tension specimen 
SE(T)C  side edge cracked, clamped tension specimen 
a/W  crack length to specimen width ratio 
C(T)  compact tension specimen 
a  crack length 
B  specimen thickness 
W  specimen width inside gauge length 
We  specimen width at the specimen ends 
H  specimen height 
H/W  height to width ratio 
s  length of the arc around the contour 
y  direction perpendicular to crack plane 
v,u  displacement parallel to y axis and x axis respectively 
υ*  displacement vector 
w  deformation energy density 

Γ  contour for J-Integral 
T  traction vector 
F  force perpendicular to crack plane 
K  stress intensity factor 
KI  mode I stress intensity factor 
E  Young’s modulus 
FEA  finite element analysis 
ε  strain 
r  distance from the crack tip 
σy  yield stress 
υ  Poisson’s ratio 
Uy  displacement applied at the end of a specimen 
Rx, Ry, Rz rotation of specimen ends along x, y and z axis respectively 
f  reaction force on each node of an finite element model 
f(a/W)  geometric correction factor for stress intensity factor ∅ ratio of in plane rigidity of gauge length to in plane rigidity of specimen ends 

 

I.1 Bibliography: Methods of SIF calculation 

Different strategies and calculation procedures have been employed by researchers over the 

years. Some of these methods are used to calculate the SIF directly by measuring displacement 

fields near the crack tip, while others use an indirect energetic approach (global). This section 

describes some of the methods used in the numerical simulation of SIF. This section is based 

largely on a review of the numerical simulation methods by S. Courtin et al[3]. 
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I.1.1 Extrapolation of displacements method 

This is a method often used to calculate the SIF. It is based on the extrapolation of 

displacements in the vicinity of the crack tip and the use of analytical expressions of LEFM 

(equation 1)[3, 4]:  

	+ ,
2. / 1�123 42  / 123 342
2. 6 1�378 42  / 378 342 9  �  4;<2=�  >?@?AB (1) 

Where,  

; �  �2
1 6 C�  
(2) . �  3 / C1 6 C       DEF8G 3H�G33  

. �  3 / 4C    DEF8G 3H�F78 

Considering a meshed two dimensional crack tip, figure 2: 

 
Fig. 2. 2D crack tip in a cylindrical reference  

The finite element analysis can be used to get the displacement field in the vicinity of the crack. 

The expression (1) can be used at any point along the radial line emanating from the crack tip. 

In general, authors like to work on the crack faces (or lips) for which we have 4 � =. Thus the 

expression 1 becomes: 

	+  �  �4
1 / C%� <2=�  ?A Plane Strain 

(3) 	+  �  �4 <2=�  ?A Plane Stress 
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The expressions 3 can be used to plot the K values against a radial distance r from the crack tip 

figure 3. The values close to the crack tip may be discarded and the K value for the nodes near 

the tip may be extrapolated. Obviously the value of K at r = 0 is the stress intensity factor KI.  

 

Fig 3. Obtaining K by displacement extrapolation method [3, 4] 

I.1.2 Singular finite elements method of SIF determination 

This method was introduced by Barsoum [5], wherein singular finite elements are used. It gives 

better results in the vicinity of the crack tip as compared to the displacement extrapolation 

method. The procedure consists of collapsing three nodes of an element on the same 

geometric point, figure 4. Then the mid-side nodes are then shifted to quarter point positions 

(figure 4), which exactly simulates the square root stress intensity factor predicted by LEFM. 

 

Fig 4. Quarter-point finite elements in (a) 2D and (b) 3D [6] 

 I.1.3 Energetic approach of determining SIF 

The energetic approach involves determining the J-Integral value in the cracked body. The J-

Integral introduced by Rice [7] is shown schematically in figure 5. Here a material with a crack is 

monotonically loaded by a force F in the direction perpendicular to the direction of crack 

propagation. Considering T as traction independent of the crack length on a contour Γ around 

the crack tip and assuming there is no load on the crack faces, the integral “J” around the 

contour Γ is given by the expression [7,11]: 
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� �  I �J. LM / N. OP
O� . L3$
Γ

         (4) 

Where,  w = deformation energy density 

dy = displacement perpendicular to crack plane 

T = traction vector 

ds = differential length of arc around contour 

ν* = displacement vector

  

 

 
Fig 5. Schematic of a cracked body loaded for contour integral or “J-Integral” calculation 

The elastic J-Integral calculated in this manner may be easily related to the elastic mode I stress 

intensity factor KI which is directly calculated using the expression. 

� �  	+% �Q⁄            (5) 

Where E’ = E for plane stress and E’ = E/(1-υ2) for plane strain. 

The J-integral by definition is independent of the path or the contour on which the integral has 

been calculated as long as it represents a minimum volume which includes the deformation due 

to the presence of the crack. Due to this property the numerical simulation can be carried out 

for fairly coarse mesh without much problem [3]. 

I.2 Conclusion 

A comparison of the different methods discussed here and the analytical expressions has been 

provided by Courtin et al. [3] for the C(T) specimens at a specific crack length (Table 1). 

Table 1: Comparison of K-values (in MPa√T) obtained with various methods 

Empirical 
Expressions 

2D 3D 3D Coarse mesh 

 Singular 
elements 

Displacement 
extrapolation 

Displacement extrapolation Displacement extrapolation J-Integral 

    In the crack 
plane 

Perpendicular to 
the crack plane 

 

985-1015 1015 999 1045 1046 1057 1060 
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The different methods give similar results with a variation of upto 8% between different 

authors. In the laboratory we have access to the finite element code ABAQUS/StandardTM which 

is used to carry out all the calculations. This code uses the J-Integral method explained above to 

calculate the KI values in the specimens. 

II.  NUMERICAL SIMULATION OF SE(T)C SPECIMENS 

With reference to the figure 1, KI is known to be dependent on the H/W ratio and the end 

conditions as shown in literature [8-10]. These variations are calculated for clamped SE(T)C 

specimens and compared with values found in the literature [8-10]. It is also observed that in 

practice the position of the specimens inside the grips may vary slightly from one experiment to 

another. The influence of these variations on the KI values needs to be assessed to determine 

its effects on the interpretation of the results of the experiments. Thus a sensitivity study has 

been carried out to seen the effects of this variation on the SIF values in the specimen. 

II.1 Numerical model 

Detailed finite element analyses are performed on plane strain models of three types of 1-T 

SE(T)C specimens, all having a thickness of 2.5mm using the software package ABAQUS/ 

StandardTM. The analysis is carried out on two rectangular specimens with height to width ratio 

(H/W) of 2 and 3 respectively as well as on one dog bone type specimen shown in Figure 6. 

 
Fig 6. Schematic of the SE(T)C specimens used in finite element analyses: (a) Rectangular H/W=2 

(b) Rectangular H/W = 3 (c) Dog bone used in FEA and experiments 

As indicated above the KI is dependent on the H/W ratios in rectangular specimens. This does 

not pose a problem as long as the test specimens are rectangular and the KI values may be 
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obtained directly in the literature. However, when using a dog bone specimen as in this work, 

the situation is more complex. The specimen no longer represents a simple rectangular form. In 

this example, there are different H/W ratios; for gauge length it is 1.875 and that for the 

unconstrained length between grips is 3.125. It may also be noted that in the unconstrained 

length between grips there are shoulders which change the compliance of the specimen due to 

variable section along the length. This specimen thus has to be considered as a structure 

instead of a simple rectangular specimen. However since the two extreme H/W ratios possible 

are between ≈ 2 & 3 figure 6, the numerical analysis procedure is verified for these two H/W 

values. 

 Although the finite element analyses are carried out on all the specimens (rectangular and dog 

bone), the procedure is described only for the dog bone specimen whereas the procedure for 

other two geometries stays the same. Figure 7 shows the finite element model constructed for 

the SE(T)C specimen along with the finite element mesh. In the rectangular specimens, a is the 

crack size including the notch, W is the width of the specimens and H is the height. The 

rectangular specimens are analyzed with the intention of comparing the results obtained with 

those of other researchers [8-10]. The comparison will be presented in the results section.  

 

Fig 7. Finite element model used in plane strain analyses: (a) Complete specimen (b) region of 

interest around the crack tip 
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All the specimens are tested for 0.125 ≤ a/W ≤ 0.625 which corresponds to crack lengths of 

1mm to 5mm in a total width of 8mm. A conventional crack analysis mesh configuration is used 

with a focused ring of 15-node quadratic triangular prism (C3D15) elements around the crack 

tip, figure 8. Around this first cylinder of triangular elements five concentric rings of 20-node 

quadratic brick, reduced integration (C3D20R) elements are generated. These rings are 

subsequently used for calculation of the J-Integral wherein the values on the first ring are 

ignored [11]. There has to be convergence on all other element rings for results to be valid (see 

ABAQUS/StandardTM user’s manual [11] for a detailed analysis). The position of the center of 

these rings defines the crack front. A typical 3D finite element mesh contains about 10000 

elements. A transverse plane surface is then chosen from the center of the rings to the crack 

edge which is defined as the crack plane. In the analysis ABAQUS/StandardTM duplicates the 

nodes on the crack plane and then assigns one set of nodes to one face and the other set to the 

other. This creates a crack with no opening at initial condition (zero charge) and at the crack tip 

a singularity in terms of stresses and strains. However since the large strain zone is very 

localized at the singularity the problem can be overcome satisfactorily using small-strain 

analysis. The crack tip strain depends on the choice of the material model used. In this analysis 

an incremental plasticity isotropic hardening model is used. If r is the distance from the crack 

tip then the strain singularity valid for small strain is: 

U V  1 √��            (6) 

 
Fig 8. A schematic of stepwise procedure of meshing 

This singularity is automatically built into the finite element model in ABAQUS/StandardTM with 

the help of the triangular prismatic elements which are used to represent collapsed quadratic 

elements. The need for creating “quarter point” nodes manually is essentially eliminated. The 
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0.25 stress singularity simulates the collapsing of quadratic elements at a distance of 0.25 

points from the crack tip into a wedge element [11] figure 9. 

 

Fig. 9. C3D20R element collapsed on one side to create a singularity, the collapsed element can 

be simulated automatically by using a C3D15 element [11] 

The finite element code ABAQUS/StandardTM provides the numerical solutions for plane strain 

analyses for 3D models as presented here. The plane stress analyses are usually treated using 

2D models to reduce the time of calculation, however here only the 3D models are analysed. 

The evaluation of the J-integral is based on the domain integral procedure [7] which yields J 

values in excellent agreement with other methods of calculation [3]. The procedure is supposed 

to maintain strong path independence for domains outside the highly strained field near the 

crack tip. Such J values provide a convenient parameter to characterize the average intensity of 

far field loading on the crack front. The advantage being that we can directly calculate the KI 

stress intensity factor values using the equation 5.  

II.2 Computational procedure 

II.2.1 Material behaviour  

The material behaviour defined for all the analyses is an incremental plasticity isotropic 

hardening model using values for an X38CrMoV5-47HRC hot work tool steel (see appendix H for 

material properties). As indicated in table 2, two material property sets are chosen for the 

purpose of simulating material at ambient temperature and at 600°C. 

Table 2: Tensile test data for X38CrMoV5 – 47HRC 

Temperature Rp0 (MPa) Rp0.2 (MPa) E (MPa) n ν 

20°C 913 1100 208000 12 0.3 
600°C 213 600 147000 5.3 0.3 
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The charge in all the specimens never exceeds 250MPa in total thus giving a fairly accurate 

approximation to a linear elastic analysis with a confined plastic zone ahead of the crack tip 

specimens at ambient temperature. However, the material properties at 600°C are such that 

there may be generalised plasticity (monotonic) ahead of the crack tip or in the whole of the 

specimen. Therefore the analyses are carried out for linear elastic materials at different 

temperatures as well as elastic-plastic material model. Different types of analyses are 

performed at ambient temperature and at 600°C which are detailed separately as follows. 

II.2.2 Rectangular specimens and boundary conditions (linear elastic) 

The main purpose of testing the rectangular specimens is to compare the procedure of 

numerical analysis explained above with that of other researchers [8-10]. The analysis is also 

used to correctly identify the effect of different boundary conditions for the calculation of  KI ; 

(i) with one end fixed while a uniform force applied on the other end or (ii) one end fixed with a 

uniform displacement applied at the free end. Two different H/W values (figure 6a, 6b) are 

used because the final dog bone (figure 6c) specimen falls within this ratio as discussed above. 

Figure 10 shows the end conditions in detail. 

In the first set of boundary conditions (figure 10a), one end of the specimen is fixed while at the 

other end a uniform force is applied such that the total force is equal to F, while the 

displacement of this face is kept completely free. In the second set of boundary conditions 

(figure 10b), one end is fixed as before while a fixed displacement Uy is applied on the other 

end. The magnitude of this displacement is adjusted in such a way that the sum of reaction 

forces f, on all the nodes of this face should be equal to the force F applied in the first case. This 

second set of boundary conditions follows more closely the real testing conditions inside the 

laboratory while using fixed end loading.  

 

Fig 10. Boundary conditions: (a) Applied uniform force (b) Applied displacement 
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The KI values are calculated for both boundary conditions to be compared with the work of 

Chiodo et al.[8, 10] and that of John et al.[9], both of whom use the applied displacement 

boundary condition in their analyses. John et al.[9] have used the singular elements method [5] 

of KI calculation, which is a method based on the displacement of near crack-tip nodes. The 

software used is ADINATM.  Whereas the method used by Chiodo et al. [8, 10] is similar to the 

one described in this work i.e., is an energetic solution based on the domain integral method (J 

– Integral) [3, 10]. They have carried out the simulation in WARP3DTM software. The results of 

the simulation comparison will be presented in the results section of this chapter. 

II.2.3 Dog bone specimens and boundary conditions 

With the help of the comparative study on rectangular specimens as described above it was 

concluded that the applied displacement method gives a better correlation for the KI values. It 

is, in any case physically closer to the experimental configuration in the fixed grip loading. This 

point is discussed in more detail in paragraph III.2. 

The dog bone specimen is completely constrained on one end where the ends of the specimen 

that go into the grips (represented by faces xy in figure 11a) are also constrained, figure 11a. On 

the free end of the specimen (hydraulic piston side on the machine) the displacement is applied 

on the top face (plane xz, figure 11b) with a magnitude adjusted to create a 250 MPa stress in 

the gauge length of the specimen. The side faces of this end (faces on xy plane figure 11b) also 

are constrained for axial displacement only, figure 11b.  

Subsequently, finite element analyses are run for five different crack lengths that lie in the 

range 0.125 ≤ a/W ≤ 0.625. 

 

Fig 11. Boundary conditions of dog bone specimen: (a) Fixed end (b) Applied displacement end 

For this configuration four different material models (mechanical behaviour models) are 

applied i.e. 1) Linear elastic at 25°C, 2) elastic – plastic at 25°C, 3) Linear elastic at 600°C and 4) 
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Elastic-plastic at 600°C. J-Integral values are obtained for all these conditions however the KI 

values are calculated only for linear elastic models. For the elastic plastic models with 

incremental plasticity, a parameter is defined that takes into account the plasticity ahead of the 

crack tip ��&',�'�), described later in this chapter. 

II.2.4 Sensitivity analysis of grip position 

As will be seen in the results section, the values of KI in the rectangular specimens are strongly 

dependent on the H/W ratio. During the installation of specimens in the machine grips, it was 

noted that there is usually some variation in the position of the grips on the specimen. This 

variation may be due to operator error or due to installation of an extensometer on some 

experiments and its absence on others. This requires more clearance between the grips, 

consequently pushing them apart. It follows from the H/W sensitivity, that the variation in 

position in the grips may be a source of errors during the experiment. Thus a sensitivity analysis 

of the grip position on the specimen is carried out to quantify the error, if any exists. Different 

grip positions are analyzed, from the extremity of the specimen to full coverage of specimen 

broad ends in the grip, figure 12. This analysis is carried out on linear elastic models at 25°C. 

 

Fig 12. Variation in the position of the specimen in the grips 

III.  RESULTS 

III.1 J-Integral calculations  

After running the analysis in ABAQUS/StandardTM we get the KI values for different concentric 

domains around the crack tip. The table 3 presents one such line (group of five contours) as an 

example from the ABAQUS/StandardTM output. These results verify the path independence of 

the J-integral obtained at the crack tip and in domains further away. Also, since the steel is a 

very high tensile stress material with a high hardening constant the plastic zone remains 

essentially confined near the crack tip and the plasticity effects on the far field domains are 
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minimal. The same has been found to be true for 600°C, the J-Integral simulation shows a 

strong path independence as shown in table 3. 

Table 3: An example of J Integral values output by ABAQUS for one layer of contours. 

Crack front node set Temperature °C Contour -1- -2- -3- -4- -5- 

-12- 20°C J 1.288 1.290 1.291 1.292 1.292 

-12- 600°C J 1.927 1.978 1.985 1.988 1.989 

Considering one element layer along the thickness, the analysis will calculate 10 values for five 

element contours on element faces and 5 values for midplane positions (Left of figure 13). 

These include the 5 rings of nodes of the quadratic element edges (Green) plus the 5 mid-side 

node rings (Red). However the output in the *.dat file is always for five contours averaged 

between mid-side nodes and edge nodes. The mid-side nodes are always present in 20 node 

quadratic brick elements (Lower right figure 13). The 3D model consists of five layers of 

elements that make up the thickness of the specimen (each layer being 0.5mm). The outer 

most layers gives lower values due to plane stress condition. There are 11 parallel sets of node 

rings making up the thickness of the specimen. Six contour rings on the element faces and five 

on the mid-plane positions. Thus we have a total of 55 J-integral values for each analysis carried 

out. Here, only the values of the last ring of nodes are considered. The 11 values (11 layers of 

elements) are then averaged to find out the desired J-integral. The value of J-integral at the first 

contour, closest to the singularity, is never considered because they may give erroneous results 

due to large strains [3, 11]. The contours are explained in detail in the figure 13. 

 
Fig 13. Positions of the contours in the specimen numerical model 
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The table 4 presents the summary of the conditions under which the analyses are carried out 

and the total number of analyses. 

Table 4: Summary of the numerical analyses carried out in the study 

Specimen Type Material Analyses 

Rectangular X38CrMoV5 20°C Linear-Elastic 5 (H/W=2) 

5 (H/W=3) 

Dog Bone X38CrMoV5 20°C Linear-Elastic 5 

X38CrMoV5 20°C Elastic-Plastic 5 

X38CrMoV5 600°C Linear-Elastic 5 

X38CrMoV5 600°C Elastic-Plastic 5 

Sensitivity Analysis X38CrMoV5 20°C Linear-Elastic 25 

III.2 Rectangular Specimens 

The rectangular specimens, as described previously are analyzed for verification and 

comparison of the method of FEA used in this analysis and by other researchers [8-10]. 

Table 5: Values of the correction factor f(a/W), comparison with literature 

H/W = 2  | ( ) aKWaf I πσ=  

a/W 0.125 0.250 0.375 0.500 0.625 

ABAQUS Force 1.1240 1.1869 1.2641 1.3806 1.5651 
ABAQUS Displacement 1.1117 1.1457 1.1939 1.2855 1.4495 
John  et al [9] 1.1292 1.1555 1.2023 1.2875 1.4471 

Chiodo et al [8, 10] 1.1243 1.1577 1.2099 1.3009 1.4605 

H/W = 3  | ( ) aKWaf I πσ=  

a/W 0.125 0.250 0.375 0.500 0.625 

ABAQUS Force 1.1563 1.2657 1.4084 1.5931 1.8298 
ABAQUS Displacement 1.1502 1.2445 1.3623 1.5199 1.7338 
John  et al[9] 1.1580 1.2470 1.3680 1.5211 1.7282 
Chiodo [8, 10] et al  1.1493 1.2309 1.3451 1.5011 1.7165 

The stress intensity factor in a body (Figure 1) loaded by a force F leading to a nominal stress � � W/YZ, is given by: 

	+ �  �√=. F . [
F Z⁄ �         (7) 

Where f(a/W) is the geometric correction factor. During the numerical simulation the software 

gives an output of the KI values. From these values the f(a/W) can be deduced from the 

equation 7. The Table 5 presents all the values of the correction factors. The graph in the figure 

14 represents the variation of the geometric correction factor as a function of the ratio of the 

crack length to the specimen width. 
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Fig 14. Verification of the numerical analysis method on standard rectangular SE(T)C specimens 

by comparing with other publications 

The lower set of curves represents the correction factors for H/W =  2 and the upper set 

represents the curves for H/W = 3. The correction factors obtained under different conditions 

of applied uniform force and applied uniform displacement are represented by the names 

“ABAQUS Force” and “ABAQUS Displacement” on the graph (figure 14) respectively. These 

curves are subsequently compared with the calculations done by John  et al. [9] and Chiodo  et 

al. [8, 10] using procedures as mentioned previously. The two authors have used an applied 

uniform displacement boundary condition. The comparison of the graphs clearly shows that the 

applied displacement boundary condition correlates very well in comparison to these authors, 

with the error ranging from 0.25% for a/W = 0.125 to 1.5% for a/W = 0.625. Whereas the error 

in readings at the same positions goes up to 8% for applied force boundary conditions. 

Being an asymmetric specimen with respect to the force axis, the applied force boundary 

condition tends to add a bending moment at the crack tip. This was analyzed in detail by S. 

Cravero et al. [10] for pin loaded SE(T) specimens. In fixed grip specimens, the reaction of this 

moment is present on the grips which, being very rigid as compared to the specimen, do not 

deform considerably. This has an effect analogous to closing the crack, thus reducing the values 

of the correction factors. 
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In view of the above discussion and the experimental conditions analyzed in section II.2.3, it 

was decided to analyze the dog bone specimen with the applied displacement boundary 

condition only.  

III.3 Dog bone specimen 

III.3.1 Elastic and elastic-plastic analysis for tests performed at ambient temperature 

The correction factors for the dog bone specimen are calculated in the same manner as above 

for crack lengths corresponding to 0.125 ≤ a/W ≤ 0.625. The values obtained for this specimen 

are given in the Table 6 for elastic and elastic-plastic models. 

Table 6: Correction factor f(a/W) for dog bone specimens at 25°C 

a/W 0.125 0.250 0.375 0.500 0.625 

f(a/W) 
Elastic 1.1428 1.2363 1.3568 1.5088 1.7119 

Elastic-Plastic 1.1463 1.2412 1.3623 1.5151 1.7272 

 

[ � �\$ � 1.0869 6 0.2383 � �\$ 6 1.9830 � �\$% /2.8373 � �\$� 6 2.5771 � �\$c   (8) 

 

Fig 15. Comparison of correction factors of dog bone specimen for elastic and elastic-plastic 

material model at 25°C  
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We can see that for the experimental conditions and material properties presented here there 

is less than 1% difference between the elastic and elastic plastic material correction factors (see 

figure 15 and table 6). The expression calculated and the subsequently used in all the 

experiments for ambient temperature is based on the elastic solution, represented by the 

fourth order polynomial given in equation 8. 

In figure 16 the values of f(a/W) are compared for the dog bone specimen and the standard 

rectangular SE(T)C specimen with H/W = 3. It is interesting to note that the f(a/W) values for the 

dog bone specimen approach those for the rectangular specimen. Considering figure 6c and the 

results in figure 16, one can thus see that the effective H of the specimen should be considered 

to be the length between the shoulder extremities (25 mm) and not the gauge length (15 mm). 

However, since the specimen is a structure (not a simple rectangle) it is considered prudent to 

make the proper numerical simulations for each type of specimen form, prior to coming to any 

conclusions about the effect of H/W. 

 

Fig 16. Comparison of correction factors of dog bone specimen and a rectangular specimen of 

H/W = 3 with applied displacement condition 
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III.3.2 Elastic and elastic-plastic analysis of material tested at elevated temperature (600°C) 

The details presented for ambient temperature are satisfactory for a purely elastic material or 

material with high yield limit. However at higher temperatures the effects of plasticity are non 

negligible and thus the use of KI may no longer be justified due to generalised or large scale 

yielding (LSY) in front of the crack tip. The use of KI in this case may also give erroneous results 

on Paris law of fatigue crack propagation. 

A new crack driving force parameter ��&',�'�) is defined. It was introduced by Sadanada[12] for 

characterising high temperature fatigue crack propagation of superalloys. The term Jel,pl is the J-

Integral calculated in the finite element model by using an elastic-plastic model. However, this 

parameter is a monotonic parameter (determined by monotonic tensile test simulation) and 

not to be confused with the cyclic J-Integral of Dowling [13]. E’ is the young’s modulus for plane 

deformation defined as: 

�) �  �
1 1 / C%⁄ �              (9) 
 

The advantage of this parameter is that at room temperature, it gives almost the same values 

as for an elastic analysis since the crack tip plasticity is of small scale. However at higher 

temperatures the parameter shows the effects of crack tip plasticity while keeping the same 

dimensions (and units) as the KI parameter. A second important advantage is for comparison of 

fatigue crack propagation curves at room and elevated temperatures. In practice the parameter 

takes the form: 

��&',�'�)  � d � FZ$ �√=F (10) 

The values obtained for the correction factor g(a/W) at 600°C are given in the table 7. 

Table 7: Correction factor g(a/W) for dog bone specimens at 600°C 

a/W 0.125 0.250 0.375 0.500 0.625 

g(a/W) 
Elastic 1.1424 1.2363 1.3569 1.5091 1.7216 

Elastic-Plastic 1.1865 1.3163 1.4988 1.7403 2.0761 

 
At room temperature the correction factor given by equation (8) is used because the effects of 

plasticity are negligible. However the expression of the correction factor at 600°C is presented 

in equation (11). d � FZ$ � 1.1321 6 0.0151 � FZ$ 6 3.9899 � FZ$% /5.6491 � FZ$� 6 4.9493 � FZ$c
 (11) 

All the results obtained for the elastic and elastic-plastic correction factor for different material 

models as a function of crack length are presented in figure 17 for comparison. 
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Fig 17. Comparison of correction factors of dog bone specimen for elastic and elastic-plastic 

material model at 20°C and 600°C 

As can be seen in the figure 17, the elastic correction factor f(a/W) at 20°C and g(a/W) at 600°C 

coincide completely. Different values of J – Integral are obtained at different temperatures for 

the same amount of applied load. The correction factors (f(a/W) and g(a/W)) calculated for 

elastic model from these different J values are found to be the same. This provides some 

verification for the procedure of J-Integral calculation and its path independence, that under 

different Young’s modulus materials (with different J values for the same applied load), the 

correction factor for KI has a constant value. However, the effects of plasticity are visible at 

600°C, g(a/W)  values increase considerably. 

III.3.3 Sensitivity analysis of the specimen grip position variation 

The justification of sensitivity study has been presented in the section II.2.4 of this chapter. The 

sensitivity of grip installation position is studied for crack lengths corresponding to 0.125 ≤ a/W 

≤ 0.625. The analysis is carried out for 0 mm to 12 mm grip position, measured as shown in the 

figure 12. The results of the sensitivity analysis are shown in the figure 18. A maximum variation 

of 3% can be observed at the extreme positions. It should however be noted that this value in 

itself is very low, coupled with the fact that the sensitivity analysis is carried out for extreme 

position of the grips, whereas in reality only the half range of these conditions is encountered. 

To get an idea of acceptable limits of error, one needs to look at the comparison of different 
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methods of calculation, analytical and numerical by Courtin et al. [3] for standard C(T) 

specimens, showing up to 8% variation for the calculated values by different authors. Thus an 

error of 3% is considered to be acceptable.  

 

Fig 18. Sensitivity analysis of variation of specimen position in the grips on f(a/W) 

The configuration of the test specimen and the experiment was not considered to be highly 

dependent on the variation of H/W in a dog bone specimen. This seems to be in contradiction 

to the H/W sensitivity seen in rectangular specimens, where much more sensitivity is observed. 

The difference in sensitivities can be explained by the extra rigidity provided by the large ends 

of the dog bone specimen (figure 19). The H/W sensitivity in rectangular specimens is in fact the 

effect of in plane rotation in an SE(T)C specimen [10]. The specimens with higher value of H, 

being less rigid, will show a higher KI value. It follows from the in plane rotation of the specimen 

and the beam theory that the resistance to the bending moment, produced by the non 

symmetric loading, would be proportional to the moment of inertia or B.W3, where W is the 

width of the specimen and B is its thickness as shown in figure 19. 
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Fig 19. Asymmetric loading due to side cracking produces in plane bending or rotation which is 

more pronounced in the gauge length as compared to the specimen ends 

Applying the above explanation to our specimen with W = 8mm inside the gauge length and We 

= 20mm at the ends (We being the width of the ends) the ratio of resistance to bending by the 

non symmetric loading in the gauge length to the specimen grip ends would be: 

∅ �  �Z& Z� $� e 15.6 

This shows that the specimen ends that are gripped by the machine are almost 16 times as rigid 

as the gauge length as regards to the in plane bending, hence the apparent non sensitivity of 

the position of the grips on the values of KI of the specimens.  

In light of the above discussion it can be safely said that the minor changes in the installation 

position of the specimens will not show a marked error on the results of the experiments that 

were performed on these specimens.  
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IV.  CONCLUSION 

In this chapter the numerical analysis carried out for clamped SE(T)c specimens is presented. A 

literature survey is initially presented detailing the different common strategies used for 

determining the stress intensity factors for this type of specimen. These include the 

displacement extrapolation method, the singular elements method and the energetic J-Integral 

method. It is shown that the J-Integral method can give satisfactory results with fairly coarse 

element mesh.  

The method used in this study is based on the energetic J-Integral method, using the software 

ABAQUS/StandardTM. Different boundary conditions are tested for the simulation of the 

specimens: applied uniform force and applied uniform displacement. The simulation results are 

verified using standard rectangular SE(T)c specimens of different H/W ratio, by comparing with 

the work of other researchers, using different methods. It is concluded that the procedure 

followed for the numerical simulation in this study gives satisfactory results for applied uniform 

displacement.  

After verification, the numerical analysis procedure is applied on the real specimen, which has a 

“Dog Bone” profile. Mainly four types of analyses are carried out on the specimens viz: 

1) Elastic analysis at 20°C 

2) Elastic – Plastic analysis at 20°C 

3) Elastic analysis at 600°C 

4) Elastic – Plastic analysis at 600°C 

It is shown that the analyses at ambient temperature for elastic and elastic-plastic models are 

almost the same and there is very little effect of plasticity on the J-Integral values. However, for 

the numerical simulation at elevated temperatures the elastic analysis results give the same 

values as for ambient temperature, whereas for the elastic-plastic analysis, there is a strong 

effect of the plasticity on the J-Integral values.  

Due to the effect of plasticity at elevated temperature, the stress intensity factor may no longer 

be valid as a crack propagation criterion. Another criterion that takes into account the plasticity 

effects ��&',�'�) is also introduced. The KI and the ��&',�'�) criterion are used in the chapter 4. 

A sensitivity study has been carried out to determine the effect of specimen position in the 

grips. There can be slight variation in the way the specimens are installed in the grips; this 

variation is inherent to the experimental setup. It is found that this variation has a negligible 

effect on the stress intensity factor measurements. 
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RESUME EN FRANÇAIS 

Ce chapitre est consacrés aux résultats expérimentaux. Deux types d’essais sont réalisés ; la 

propagation de fissure en fatigue, et la propagation de fissure monotone pour obtenir les 

valeurs de KC. Les essais sont réalisés sur des éprouvettes d’épaisseurs différentes ainsi que 

dans des conditions d’essais variables. Les faciès de rupture ainsi que le chemin de propagation 

par rapport à la microstructure ont été caractérisés en analyse post mortem. Trois grands 

groupes d’essais sont réalisés : 

1) propagation de fissure en fatigue à température ambiante, 

2) détermination du facteur d’intensité de contrainte critique KC à température ambiante, 

3) propagation de fissure en fatigue à 600 °C. 

A. PROPAGATION DE FISSURE EN FATIGUE A TEMPERATURE AMBIANTE  

Ce groupe d’essai représente le plus grand nombre d’essais réalisés au cours de cette étude. 

Toutes les calibrations et les étalonnages d’essais et du banc d’essais ont été réalisés sous ces 

conditions. Les buts principaux des ces essais sont : 

1) déterminer les courbes de propagation de fissure de base, nécessaire pour comparer les 

courbes de propagation sous d’autres conditions, 

2) étudier l’effet du rapport de charge R sur la propagation de fissure en fatigue, 

3) étudier l’effet de l’épaisseur des éprouvettes sur la propagation de fissure en fatigue, 

4) observer la morphologie des faciès de rupture dans les différentes conditions de 

chargement, 

5) étudier les mécanismes de fissuration (inter-granulaire ou intra-granulaire), et le 

branchement de fissure dans les différentes conditions expérimentales, 

6) mesurer l’ouverture de fissure (COD) qui est utilisée comme un paramètre de propagation 

de fissure. 

L’effet de la variation de R sur la propagation de fissure est étudié pour plusieurs épaisseurs 

d’éprouvette. Les essais sont conduits principalement avec R = 0,1 et 0,7. On constate que 

l’augmentation de la valeur de R augmente la vitesse de propagation de fissure à la 

température ambiante. Cela peut être expliqué par l’effet de la fermeture de fissure pour des 

basses valeurs de R qui augmente la valeur apparente de ΔK.  

L’effet de la variation de l’épaisseur des éprouvettes sur la propagation de fissure est que plus 

l’éprouvette est fine, plus la vitesse de propagation diminue pour les mêmes valeurs de ΔK. Cela 

semble dû à l’augmentation de la zone plastique en pointe de fissure qui augmente la 

fermeture de fissure. 
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B. DETERMINATION DE K C A LA TEMPERATURE AMBIANTE  

Les objectifs de la détermination des valeurs de KC dans les éprouvettes minces sont : 

1) déterminer la dépendance de KC en fonction du rapport a/W, 

2) déterminer la dépendance de KC en fonction de l’épaisseur de l’éprouvette. 

KC est indépendant de a/W pour l’épaisseur de 2,5 mm, alors qu’il est fortement dépendant 

pour les éprouvettes de 1,0 et 0,6 mm d’épaisseur. La valeur de KC augmente avec 

l’augmentation de a/W. L’évolution de KC dans les éprouvettes de faible épaisseur semble 

suivre une loi quadratique de forme : 

	f �  g� � �\$% 6 g% � �\$ 6 g�         (3) 

où C1, C2 et C3 sont des constantes déterminées par les essais. 

KC est aussi dépendant de l’épaisseur pour toutes les valeurs de a/W. En général la valeur de KC 

augmente avec une réduction de l’épaisseur.  

C. PROPAGATION DE FISSURE EN FATIGUE A 600 °C 

La propagation de fissure à 600°C dépend de plusieurs phénomènes comme le facteur 

d’intensité de contrainte en mode I, l’oxydation, la plasticité, le fluage, etc. Puisque la plasticité 

est élevée à cette température, le critère de propagation de fissure ��&',�'�) a été utilisé en 

plus de KI. Le premier critère est basé sur un calcul énergétique et rend compte de la plasticité 

alors que le deuxième est basé sur un calcul purement élastique. 

L’effet de la variation de R est étudié pour plusieurs épaisseurs d’éprouvette. Généralement, il 

n’y a pas d’effet du rapport de charge sur la propagation de fissure dans le régime de 

propagation de Paris, alors qu’il existe un effet sur le seuil de propagation de fissure. Une 

augmentation du rapport de charge diminue la valeur de ΔK seuil de la propagation de fissure. 

Le seuil de propagation de fissure à 600°C a été également étudié. La valeur du seuil de 

propagation de fissure à 600 °C est beaucoup plus élevée que celle des essais à température 

ambiante. Un essai a été spécialement réalisé pour confirmer l’augmentation du seuil de 

propagation de fissure à 600°C en augmentant la température en cours d’essai. Un arrêt de 

fissure a été démontré à 500°C ce qui confirme cette augmentation. 

L’effet de la variation de l’épaisseur d’éprouvette est la diminution de la vitesse de 

propagation de fissure avec une diminution de l’épaisseur à l’instar des essais à l’ambiante. 
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This chapter is dedicated to the results of all the experimental work carried out during the research. 

Mainly two types of tests are carried out; fatigue crack propagation and monotonic crack propagation 

under tearing (determination of critical stress intensity). The tests are performed on different specimen 

configurations and under different testing conditions. Post mortem analysis of crack surface and crack 

path with respect to microstructure is also studied. There are mainly three groups of experiments: 

1) Fatigue crack propagation at room temperature 

2) Critical stress intensity factor, Kc at room temperature 

3) Fatigue crack propagation at 600°C 

4)  Effect of oxidation on fatigue crack propagation (See appendix B) 

 

I.  FATIGUE CRACK PROPAGATION AT ROOM TEMPERATURE . 

This makes up the bulk of the work carried out during the study. The machine and experimental 

calibrations are also done under the same conditions. There are many aims of experimental testing at 

room temperature: 

1) Create base line crack propagation curves for comparison with other experimental   conditions and 

specimen thicknesses (See appendix B for standard C(T) test). 

2) Study the effects of load ratio R on the crack propagation behaviour. 

3) Determine and study the effects, if any, of specimen thickness on the crack propagation curves. 

4) Observation of morphology of crack face under different conditions of crack propagation. 

5) Study the crack mode (inter or trans granular) and branching under different experimental 

conditions and thicknesses. 

6) Measure the crack opening displacement (COD) and if possible use it as a fatigue crack propagation 

criterion. 

The data for the fatigue crack propagation is presented as Paris[1] curves using the power law: 

LF Lh⁄ � g. ∆	�          (1) 

I.1 Effect of R ratio on fatigue crack propagation  

The R ratio is defined as the ratio of the minimum stress to the maximum applied stress during a fatigue 

crack propagation experiment: 

� �  ���� ����⁄              (2) 

The details of the experimental procedures are given under paragraph III.1-Chap 2. The results are 

shown below. 
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Fig 1. Paris curve for 2.5mm thickness specimen at R=0.1 at Ambient Temperature 

Figure 1 presents the fatigue crack propagation curve for 2.5mm at R = 0.1  with different data 

smoothing techniques. The smooth curve has been obtained by cubic spline curve fitting, while the 

Δa/ΔN presents the full data scatter without any smoothing technique. All the data presented is 

smoothed using the cubic spline curve fitting unless specified otherwise. 

It is noted that at room temperature the increase in R, causes an increase in the crack propagation 

speed by up to 2 times while the slope of the Paris curve remains the same, as shown in the comparison 

figure 2. 

A more complete picture of the R effect appears in the figure 3.  Here a specimen of 0.6mm thickness is 

tested at R 0.1 and 0.7. The specimen tested at R = 0.7 gives a simple log-linear fatigue crack growth 

curve, that may be characterised by the Paris law with a slope of m = 3.6. However, the specimen tested 

at R = 0.1 shows two distinct slopes on the fatigue crack propagation curve. It has the same slope as that 

of R = 0.7 (m = 3.6) for a certain value of ∆K. For higher values of ∆K the crack propagation curve follows 

a different slope of m = 2.5. This effect of slope change is related to the thickness and is discussed in the 

section I.2 of this chapter. As compared to the test carried out at 2.5mm the increase in crack 

propagation speed may be up to 5 times. The effect of increase of crack propagation speed with the 

increase in R ratio seems to increase with a decrease in thickness of the specimen. 
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Fig 2. Effect of R ratio, comparison for 2.5mm thickness 

 
Fig  3. Effect of R ratio, comparison for 0.60mm thickness 
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The crack propagation curves for specimens of 0.12 mm show an effect of the R ratio as well, figure 4. 

The used R ratios for this experiment are 0.6 and 0.1. The need to use the R value of 0.6 is due to the 

difficulty of testing such thin specimens for R=0.7 on the equipment used. 

 
Fig  4. Effect of R ratio, comparison for 0.12mm thickness 

As noted in literature, the variation in R values may increase the crack propagation rate [2-4] or it may 

remain the same under vacuum [5-7]. The apparent increase in the propagation rate may be explained 

by the crack closure phenomenon [3] which may be caused by crack face roughness, oxide or crack front 

plasticity effects [8]. 

I.2 Effect of thickness “e” on fatigue crack propagation 

The state of stress and strain (plane stress or plane strain) is dependent on the thickness of a cracked 

plate type material. The ASTM E647 “Standard Test Method for Measurement of Fatigue Crack Growth 

Rate” [9] and E399 “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials” 

[10] dictate that the thickness of the material should be: G i 2.5 j	+k �lm⁄ n%
.  This condition is to 

ensure the validity of the linear elastic fracture mechanics small scale yielding condition (SSY) as well as 

a plane deformation condition at the crack tip. For the material used in this study the specimen 

thickness according to this rule would be around 15mm. However this study deals with the surface and 

subsurface damage of tool steels which requires the testing of thin layers of material (a reduced 

thickness of the specimens).  
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In general plane strain conditions are dominant in thicker plate materials. At the surface (ends of crack) 

a plane stress condition prevails. If the thickness of a specimen has to be reduced the plane stress 

conditions become dominant. The effect of this change in the stress – strain state, due to a change of 

the thickness, on fatigue crack propagation is studied here. 

 

Fig 5 . Effect of specimen thickness e = 2.50 & 0.60mm 

 

The figure 5 shows the effect of the thickness of the specimen on the crack propagation curve. The 

effect of the reduction of the specimen thickness seems to be the reduction of rate of fatigue crack 

propagation. In the comparison between 2.5mm and 0.6mm thickness specimens, figure 5, the two 

curves have the same propagation characteristics for lower ∆K values, whereas the rate of crack 

propagation of e = 0.6mm seems to diminish for higher ∆K values. In the comparison between the 

2.5mm, 0.25mm and 0.12mm specimens the thinner specimens have lower crack propagation rates for 

all values of ∆K, figure 6. The 0.6mm thickness specimen presents a transition curve between thick 

specimens and the thinner specimens, whereas for the 0.25mm and 0.12mm specimens the crack 

propagation curve is identical. It is due to this transition that two slopes seem to exist in the crack 

propagation curve as shown in figure 3. This behaviour is probably linked to the fact that for higher ΔK, 

plane stress conditions become dominant in the specimen of e = 0.6mm. For the specimens of e < 

0.6mm, this conditions exists for all crack lengths. 
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Fig 6. Effect of specimen thickness e = 2.50, 0.60, 0.25 & 0.12mm 

 

I.3 Observation of fracture surface 

Following the tests all the specimens are observed under a scanning electron microscope. The 

crack surface morphology and profile forms are observed. The arrow in all the micrographs 

indicates the direction of crack propagation.  
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I.3.1 Mechanism of fatigue crack propagation 

A notch is machined in all the specimens used. Multiple zones of crack initiation are observed 
on the notch root figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Crack initiation at the specimen notch root 
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A certain length of fatigue crack propagation is required for these multicracks to coalesce and 
present a unique crack front. This length is found to be about 600μm in 2.5mm specimens. Any 
crack seen at the surface of the specimen below this length should not be considered as 
representative of a continuous crack front.  

Fatigue striations can usually be seen in regions of high ∆K values or in a zone of strong plastic 
deformation ahead of the crack tip, figure 8. In the specimens of 2.5mm thickness, fatigue 
striations are detectable near the end of the crack propagation, figure 9. Also it can be seen 
that the fatigue striation correspond well to the speed of crack propagation of 1×10-6 m/cycle at 
this position where each striation measures 1 micrometer in width, figure 9.  

 
Fig 8. Zone of strong plastic deformation 

 

Fig 9. Fatigue striations corresponding to da/dN of 1×10
-6

 m/cycle R=0.1, 25°C 

Zone of strong plastic 

deformation 
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The observation of the fracture surface shows that in the 2.5mm thickness specimens, the crack 

surface is a flat plane for low ΔK. However, as the crack length increases, the crack starts to 

take a convex form (perpendicular to the plane of the crack). This convex form starts at the 

edges and later on covers the whole crack surface. This convex form is composed of flat planes 

separated by 45° inclined planes (blue) figure 10. This sort of tensile to shear mode transition 

was reviewed by Schijve [11], in the case of sheet metal (thin specimens). 

It is to be noted that the creation of these planes depends on the Kmax. On specimens of 2.5mm 

thickness they appear at around 38 MPa.m1/2, irrespective of the load ratio. The form of the 

crack surface may be related to the presence of increased plasticity, where the inclined planes 

form along the slip bands. The presence of slip bands alongside the convex or concave crack 

surface is demonstrated later in observations on thinner specimens.  

  

 

Fig 10. Creation of 45° inclined planes on the crack surface in a 2.5mm specimen 

In specimens of 0.6mm thickness the flat zone is completely absent and these inclined planes 

appear right from the start. The only difference is that they are fine and more in number at the 

beginning, while they are larger in size and fewer in number as the crack advances as shown in 

figure 11.  
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Fig 11. Creation of 45° inclined planes on the crack surface in a 0.6mm specimen 

The presence of these inclined planes (shear mode transition) corresponds to the slip bands 

formed during crack propagation. This is very clearly observed in thinner specimens of 0.25mm 

thickness. The mechanism of formation of slip planes is much more evident in thinner 

specimens as shown in figure 12.  

 

 

             

Fig 12 . Creation of 45° inclined planes on the crack surface in a 0.25mm specimen 

Some micrographs are presented in figure 13 (a-d) to show the presence of slip bands in the 

material near the crack tip on the path of fatigue crack propagation. These micrographs show 
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the complex crack propagation mechanism with a mixed (normal and shear) mode of 

propagation. 

  

Fig 13(a). Presence of parallel slip bands, larger 

than the grain size (10µm) 
Fig 13(b).Presence of slip bands, mostly at 45° to 

the crack plane 

  

Fig 13(c). Presence of slip bands at 45°. Intrusions 

and extrusions are evident 

Fig 13(d). Extrusions and intrusions in slip bands 

I.3.2 Specimens of 2.5mm thickness 

For short crack lengths ; crack propagation is mostly trans granular figure 14(a-d). The fatigue 

crack propagates through the grains without much deviation. With the increase in length and 

subsequently the value of Kmax the mode of propagation becomes mixed; intergranular and 

transgranular with the presence of shear propagation planes. The change in mode is related to 

the maximum value of the stress intensity factor Kmax. This value corresponds to almost 38 

MPa.m1/2. It is also observed that the appearance of the mode of inter granular propagation 

corresponds exactly to the presence of the 45° planes on the crack faces. The figures 14(b,c) 

show the transgranular propagation. The micrograph in fig 14(d) is treated with an edge 

detection filter in Matlab®, in order to visualize the grain boundaries and path of crack 
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propagation. The grain boundaries have a higher contrast when viewed under the SEM as 

compared to the marteniste laths and carbides. The edge detection filter in Matlab® uses this 

contrast to trace a path. All the martensite laths and carbides seen as randomly dispersed lines 

inside the grains are deleted. This leaves only the grain boundaries and the crack path (also high 

contrast). The visualisation of the crack path thus becomes easier

Fig 14(a). Zone of transgranular fatigue crack 

propagation 250X

Fig 14(c). Previous austenitic grain network 

and martensite lattes. X5000. Nital 4%

 

At a value of a = 2.77mm which corresponds to K

propagation transforms into the mixed trans granular and inter granular propag

15(a-d). Some micrographs are

f). 

I.  Fatigue crack propagation at room temperature

propagation. The grain boundaries have a higher contrast when viewed under the SEM as 

compared to the marteniste laths and carbides. The edge detection filter in Matlab® uses this 

a path. All the martensite laths and carbides seen as randomly dispersed lines 

inside the grains are deleted. This leaves only the grain boundaries and the crack path (also high 

contrast). The visualisation of the crack path thus becomes easier.  

 

granular fatigue crack 

propagation 250X 

Fig 14(b). Previous austenitic grain network 

and martensite lattes. X2500. Nital 4%

 

(c). Previous austenitic grain network 

and martensite lattes. X5000. Nital 4% 

Fig 14(d). Previous austenitic grain network 

crack path. Edge detection on micrograph with 

Matlab®

At a value of a = 2.77mm which corresponds to Kmax = 38 MPa.m1/2

propagation transforms into the mixed trans granular and inter granular propag

d). Some micrographs are added to show the mode of crack propagation in 3D figure 15(e, 
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propagation. The grain boundaries have a higher contrast when viewed under the SEM as 

compared to the marteniste laths and carbides. The edge detection filter in Matlab® uses this 

a path. All the martensite laths and carbides seen as randomly dispersed lines 

inside the grains are deleted. This leaves only the grain boundaries and the crack path (also high 

 

(b). Previous austenitic grain network 

and martensite lattes. X2500. Nital 4% 

 

(d). Previous austenitic grain network 

crack path. Edge detection on micrograph with 

Matlab® 

1/2 the mode of crack 

propagation transforms into the mixed trans granular and inter granular propagation figure 

added to show the mode of crack propagation in 3D figure 15(e, 



Chapter 4 : Experimental Results 
          

 

Fig 15(a). Zone of intergranular fatigue crack 

propagation 250X

Fig 15(c). Previous austenitic grain network 

and martensite lattes. X2500. Nital 4%

Fig 15(e). Combined view of crack profile and 

crack faces in trans granular propagation

 

I.  Fatigue crack propagation at room temperature

 

(a). Zone of intergranular fatigue crack 

propagation 250X 

Fig 15(b). Previous austenitic grain network 

and martensite lattes. X2500. 

 

(c). Previous austenitic grain network 

and martensite lattes. X2500. Nital 4% 

Fig 15(d). Previous austenitic grain network 

crack path. Edge detection on micrograph 

with Matlab®

 

(e). Combined view of crack profile and 

granular propagation  

Fig 15(f). Combined view of crack profile and 

crack faces in inter granular prop
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(b). Previous austenitic grain network 

and martensite lattes. X2500. Nital 4% 

 

(d). Previous austenitic grain network 

crack path. Edge detection on micrograph 

with Matlab® 

 

(f). Combined view of crack profile and 

granular propagation  
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Branching and decohesion of grain boundaries may also be viewed on the fracture surface 

figure 16(a,b). The distance between the crack branching is approximately of the same order of 

magnitude as the grain size.  

 

  

  

I.3.3 Specimens of 1.0mm, 0.60mm and 0.250mm thickness 

Most of these specimens show mixed trans granular-inter granular propagation and presence of 
shear mode planes right from low Kmax values or shorter crack lengths, figure 11. One of the 
specimens of thickness 1.0mm was electrolytically attacked in a solution of chromic acid in 
order to reveal the austenite grain network before testing, figure 17.  
 
The inter granular propagation that is seen cannot be regarded as the natural propagation 
mode since the specimen was attacked before testing, which causes the crack to follow the 
grains uniquely on the surface. This type of attack weakens and etches the grain boundaries 
(sites of chromium concentration). However, crack closure due to coupling of fracture surface 
roughness and mis-alignment of crack faces is evident, figure 19. This is observed in specimens 
without chemical etching as well. Some segregation banding (due to uneven precipitation 
during solidification) is also seen in the material figure 18. 
 

All the observations presented here are post mortem using a scanning electron microscope.  

 

Fig 16(a). Branching and grain boundary decohesion

seen on the crack surface.2.5mm specimen. 250X 

Fig 16(b). Branching and grain boundary decohesion 

seen on the crack surface. 2.5mm specimen. 4000X 

Crack branching into the 

crack plane 
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Fig 17. Austenitic grain network revealed by chromic acid 10% W/W 

  

 

Fig 18. Banding segregation and crack propagation following the band 

 

 

Banding 

segregation in 

the material. 

Austenitic grain 

boundaries 
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Fig 19. Crack closure due to misalignment of crack faces and roughness of the crack faces in 

inter granular propagation 
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II.  DETERMINATION OF K C AT ROOM TEMPERATURE  

The values of critical stress intensity factor Kc are obtained in different specimens. The 

procedure for evaluation of Kc is presented in appendix D. Since the specimens are not made to 

standard ASTM E399 [10] parameters some conditions of the standard, like thickness sufficient 

for plane strain deformation and SSY condition etc. are not strictly followed. These experiments 

are carried out in order to: 

1) Find dependence of Kc on a/W ratio. 

2) Find dependence of Kc on specimen thickness.  

I I.1 Dependence of Kc on a/W 

Kc is found to be completely independent on the value of a/W for the 2.5mm specimens as shown in the 

figure 20. However for specimens of 1.0mm and 0.6mm thickness the Kc values show a marked 

dependence on the crack length to width ratio a/W in the range of 0.3 < a/W < 0.6, generally 

recommended by ASTM standards. The value of Kc increases with a corresponding increase in a/W as 

shown in figure 20. 

 

Fig 20. Dependence of critical stress intensity factor Kc on a/W ratios for different thicknesses 

The increase in Kc values for thinner specimens seems to follow a quadratic law of the form: 
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Where, C1, C2 and C3 are constants dependant on the thickness of the material. The values are 

given in the table 1. 

Table 1: Constant of equation 3, to determine KC dependent on a/W in thin specimens 

Specimen Thickness mm a/W C1 C2 C3 

2.5 0.30 - - - 
1.0 0.45 162 -93 56.4 
0.6 0.60 208 -111 65.5 

II.2 Dependence of Kc on the specimen thickness e 

The values of Kc for this configuration of specimen are dependent on the specimen thickness. 

The decrease in the specimen thickness causes a corresponding increase in the Kc values figure 

21. This is to be expected as the decrease in the specimen thickness causes an increase in the 

monotonic plastic zone size, which in turn increases the ability of the material to absorb energy 

before unstable crack propagation, consequently increasing the Kc value [12]. 

 
Fig 21. Dependence of critical stress intensity factor Kc on specimen thickness e for different 
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III.  FATIGUE CRACK PROPAGATION AT 600°C. 

As mentioned in chapter 2 (Experimental Procedures), the fatigue crack propagation at 

elevated temperatures depends on numerous parameters. Therefore the question arises: what 

to use as a crack propagation criterion for the specimens tested at 600°C. Any one of KI, Jel,pl, or 

Jδ can be used as a fatigue crack propagation criterion.  

III.1 Effect of R ratio on fatigue crack propagation and comparison with ambient 
temperature results.  

The experiments are carried out at R = 0.1 and R = 0.5 for specimens of 2.5mm thickness and R 

= 0.1, 0.3 and 0.7 for specimens of 0.6mm thickness. All the results of fatigue crack propagation 

are shown as a function of ∆K  or Δ��&',�'�). The first criterion is most commonly used to 

represent the fatigue crack propagation data. The advantage of the second criterion is that it 

presents a better correlation between tests at 600°C and at ambient temperature. Also, the Δ��&',�'�) criterion takes into account the effects of crack tip plasticity at 600°C. Thus all the 

figures are presented as pairs of the two criteria. 

Fatigue crack propagation at 600°C in specimens of e = 2.5mm at different R values seems to 

show absolutely no effect in the Paris region, figures 22, 23. However, there seems to be a 

marked difference in the threshold values of specimens tested at different R ratios.  The 

threshold ∆K value for R = 0.1 is found to be 11.9 MPa.m1/2, whereas for the specimen tested at 

R = 0.5 has a lower threshold value of 7.8 MPa.m1/2. Higher crack closure in the threshold 

region, for R = 0.1 may be the cause of this difference.  

The specimens of 0.6mm thickness have also been compared in the same manner with R = 0.1, 

0.3 and 0.7 in figures 24 and 25. The effect on the threshold value is more pronounced for 

0.6mm specimens. The threshold ∆K values are 12.8, 10.6, 7.8 MPa.m1/2 for the R ratios of 0.1, 

0.3 and 0.7 respectively. The increase in the threshold value especially for R = 0.1 may be due to 

increased plasticity in the thinner specimens, or may be an effect of reduced Kmax. The 

reduction in Kmax is inevitable to search for threshold values in thin specimens. This effect is 

graphically presented in the figure 26. 

Contrary to ambient temperature where no threshold value was detected, ΔKth clearly exists for 

specimens tested at 600°C. This could be attributed to crack tip plasticity and blunting. 

 



Chapter 4 : Experimental Results III. Fatigue crack propagation at 600°C 
          

102 

 

 

Fig 22. Effect of R ratio in 2.5mm specimen on fatigue crack propagation at 600°C ∆	 

 

Fig 23. Effect of R ratio in 2.5mm specimen on fatigue crack propagation at 600°C ∆��&',�'�) 
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Fatigue crack propagation curves for 600°C are compared with those at ambient temperature. 

Figures 27 and 28 show this comparison for 2.5mm specimens with elastic and elastic-plastic 

crack propagation criteria respectively. The crack propagation rate for the specimens at 600°C is 

higher for low values of ∆K  or Δ��&',�'�). However this difference diminishes for higher ∆K  or Δ��&',�'�).  
Specimens of 0.6mm tested at these temperatures as shown in figures 29 and 30 show the 

same behaviour. The difference of fatigue crack propagation rate can be described for low, 

intermediate and high ∆K  or Δ��&',�'�) values as explained below. 

It is observed that in general the material at 600°C has higher crack propagation rate for low ∆K  
or Δ��&',�'�) values. The slope of the Paris curve “m” is lower at 600°C; the consequence is that 

the curves intersect at some intermediate value of ∆K  or Δ��&',�'�).  
The Kc at 600°C seems to be lower than at 25°C, which again forces the curves to separate for 

higher ∆K  or Δ��&',�'�) values. It is pertinent to mention here that due to large number of 

points measured in experiments carried out on specimens of 0.6mm thickness, the raw data is 

presented without cubic spline smoothing techniques. 

At higher R ratio, the situation is different. The curves seem to follow a more or less parallel 

path in the Paris regime, with the specimen at high temperature having higher fatigue crack 

propagation rate, figures 33 and 34.  

The threshold values for high temperature specimens are explored in an experiment performed 

specifically for this purpose in a 0.6mm thickness specimen for R = 0.1. Under normal conditions 

of ascending ∆K fatigue crack propagation, there is a possibility of confusing the threshold value 

with the notch effect. This is because at low ΔK values the crack length is low as well and thus 

there is the risk that the crack tip is still in the large residual plastic zone of the precracking. The 

small amount of uncracked ligament (small specimen size) renders the exit of crack tip from the 

plastic zone difficult. The threshold values are thus tested at different crack lengths, while 

keeping the evolution of ∆Kmax limited.  
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Fig 24. Effect of R ratio in 0.6mm specimen on fatigue crack propagation at 600°C ∆	 

 

Fig 25. Effect of R ratio in 2.5mm specimen on fatigue crack propagation at 600°C ∆��&',�'�) 

1E-09

1E-08

1E-07

1E-06

4 40

d
a/

d
N

 (
m

/c
yc

le
)

∆K(MPa.m1/2)

X38CrMoV5 (AISI H11)
47HRC,  Ѳ = 600°C
e = 0.6mm  

600°C R0.3 142MPa

600°C R0.1 168MPa

600°C R0.1 250MPa

600°C R0.7 250MPa

1E-09

1E-08

1E-07

1E-06

4 40

d
a

/d
N

 (
m

/c
yc

le
)

∆√Jel,plE'(MPa.m1/2)

X38CrMoV5 (AISI H11)
47HRC,  Ѳ = 600°C
e = 0.6mm  

600°C R0.3 142MPa

600°C R0.1 168MPa

600°C R0.1 250MPa

600°C R0.7 250MPa

8          12     16  20 

8          12     16  20 



Chapter 4 : Experimental Results III. Fatigue crack propagation at 600°C 
          

105 

 

 
Fig 26.  ΔKth as a function of load ratio R for different specimen thicknesses tested at 600°C 

 

Fig 27. Fatigue crack propagation at ambient temperature and 600°C, R=0.1, e=2.5mm, ∆K 
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Fig 28. Fatigue crack propagation at ambient temperature and 600°C, e=2.5mm, R=0.1,  ∆��&',�'�) 

 
Fig 29. Fatigue crack propagation at ambient temperature and 600°C, e=0.6mm, R=0.1, ∆K 
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and 600°C, e=0.6mm, R=0.1,  

 

Determination of threshold value at 600°C , ∆K 
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Fig 32. Determination of threshold value at elevated temperature ∆��&',�'�) 
 

The figures 31 and 32 show the experiment performed to determine ΔKth and its comparison 

with a normal ascending ∆K crack propagation experiment. 

The figures 31 and 32 provide an insight into the crack propagation behaviour, especially in the 

threshold region. The stress values indicated are the maximum stress values applied at the 

specimens. The effects are summarised below as: 

� The threshold value in the region of 8 to 12 MPa.m1/2 is not an artefact of the notch, 

but is reproducible at different crack lengths. 

� Increase in the R ratio tends to decrease ΔKth. This indicates a presence of crack closure 

at threshold region. 

� Increase in the maximum stress at 600°C seems to increase the crack propagation rate 

and reduce the threshold value slightly. This increase could be due to the reduction of 

the effect of crack closure at higher stresses which might also explain the apparent 

insensitivity of this material to R ratio when tested at 600°C at 250MPa.  

� When compared to the specimen tested at 25°C, it seems that the threshold values for 

the specimen at 600°C is higher. In fact no ΔKth was determined for specimens at 

ambient temperature. 
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Fig 33. Fatigue crack propagation at 25°C (R=0.7) and 600°C  (R=0.5) , ∆K 

 

Fig 34. Fatigue crack propagation at 25°C (R=0.7) and 600°C  (R=0.5) ∆��&',�'�) 

1E-09

1E-08

1E-07

1E-06

1E-05

1 10 100

d
a

/d
N

 (
m

/c
yc

le
)

∆K (MPa.m1/2)

X38CrMoV5 (AISI H11)
47HRC
e = 2.5mm

Ѳ = 600°C,  m=2.2, R=0.5
Ѳ = 25°C,    m=2.4, R=0.7

1E-09

1E-08

1E-07

1E-06

1E-05

1 10 100

d
a

/d
N

 (
m

/c
yc

le
)

∆√Jel,plE'(MPa.m1/2)

X38CrMoV5 (AISI H11)
47HRC
e = 2.5mm

Ѳ = 600°C,  m=1.93, R=0.5
Ѳ = 25°C,    m=2.44, R=0.7



Chapter 4 : Experimental Results III. Fatigue crack propagation at 600°C 
          

110 

 

The effect of higher threshold values at 600°C is also shown in the figures 33 and 34 in 

specimens of 2.5mm thickness. The R ratios are different but it is believed that no crack closure 

exists for either of these R ratios in the stable crack propagation region. 

In all the comparisons between the specimens tested at 600°C, it is observed that the ∆K 

threshold values at 600°C seem higher than ambient temperature. The experiment shown in 

figures 31 and 32 is carried out to confirm this. The experiment does confirm that the threshold 

values obtained are not notch or loading history artefacts. However, to confirm the increase in 

the threshold values with an increase in temperature another experiment is carried out with 

increasing temperatures during the crack propagation. 

The results are shown in figure 35. In this experiment fatigue crack propagation at 25°C is 

carried out in a specimen of 0.6mm with R = 0.7. An increased R gives an inherent advantage to 

be able to apply low ∆K values in thinner specimens more conveniently from the testing 

machine control standpoint. The different steps followed during the experiment and the results 

are listed as follows: 

� Fatigue crack propagation at 25°C R=0.7. This gives a crack propagation curve which is 

parallel to the other FCGR curve obtained for higher ∆K values with the same loading 

conditions. The curve follows the simple Paris regime of propagation between 4.4 and 

5.0 MPa.m1/2. However for this level of ∆K there is fair amount of scattering in the FCGR 

data. This is shown as the yellow data in figure 35. 

� Specimen heated to intermediate temperature at 300°C R=0.7. All the other testing 

conditions like maximum load, frequency, load ratio etc are kept the same. The heating 

is done rapidly. The fatigue crack propagation experiment is continued at 300°C. Two 

distinct observations are made. One is that the FCGR increases three times, however the 

curve remains parallel to the FCGR curve at 25°C (Data in red in figure 35). This may be 

explained by the increase in material damage with a subsequent increase in the 

temperature. The second observation is a strong reduction in the scattering of the FCGR 

data. Due to an increase in temperature the Young’s modulus decreases. This effect 

increases the crack opening displacement, which in turn may reduce the effects of crack 

face roughness and misalignment on the scattering of FCGR data. The propagation is 

carried out up to 5.7 MPa.m1/2. 

� Specimen heated to 500°C R = 0.7. This temperature is 50°C below the first tempering 

temperature of the material and is thus expected that no rapid phase transformation 

will occur at this temperature (in particular precipitation). The effects on the FCGR curve 

would be in principle related to mechanical properties more than metallurgical changes. 

However at this temperature we find a crack arrest. It is shown as the data in brown 

colour in the figure 35. To restart the propagation, the stress level is increased. The 

FCGR curve for 500°C follows closely that of 600°C.  It should be emphasized that 
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oxidation measurements carried out at 550°C show a very slow oxidation rate [13] (even 

negligible). Therefore it can be assumed that this crack arrest effect is not related to 

environmental effects, but to the mechanical behaviour of the material at this 

temperature. The dashed black line shows the path followed upto this step. 

 

 
Fig 35. Effect of temperature variation during fatigue crack propagation. Propagation at 25°C, 

300°C, 500°C, 600°C at R = 0.7, ∆K 

� Specimen heated to 600°C R = 0.7. Not much effect is observed on the FCGR curve and 

it continues to follow the 500°C curve. This temperature approaches the second 

tempering temperature of the material so over tempering and the reduction dislocation 

density by thermal effects and mechanical cycling may be expected. The experiment is 

continued for some increase in the crack length. Then the ∆K is reduced to try to search 

for the threshold value, which was the principal goal. This value is found to be near 8 

MPa.m1/2 which agrees to threshold values obtained in other experiments for these 

experimental conditions (figures 31 and 33). The test is then continued up to rupture. 

 

The results in this experiment are presented only as a function of ΔK, because the Δ��&',�'�) for 

400°C and 500°C are not available (numerical simulations not performed for intermediate 

values). This experiment has established beyond any doubt that the material at high 

temperature of 600°C has a higher crack propagation threshold value. It has also been 

established that fatigue crack propagation curve for 600°C may cross over the curve for 25°C 
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near the threshold values. The same observation was made by Makhlouf et al. [14] in FCGR 

experiments on 18%CrNb ferritic stainless steels tested at 500°C. They have explained this 

effect due to plasticity induced crack closure at 500°C as opposed to roughness induced crack 

closure at room temperature. Here the phenomenon may be explained by an increase in the 

crack tip plastic zone size due to reduced yield stress and drastic cyclic softening at elevated 

temperature. This plastic zone is large enough to cause a complete crack arrest. The evidence 

of crack arrest due to increased crack tip plastic zone is presented in the appendix C. 

 

III.2 Effect of specimen thickness on the fatigue crack propagation rate at 600°C and 
comparison with ambient temperature 

As explained in the section I.2, decrease in thickness favours the plane stress state condition, 

whereas in thick specimens the plane strain condition prevails. This difference may have an 

effect on the fatigue crack propagation behaviour of the material. In this section are presented 

the fatigue crack propagation curves for specimens of different thicknesses all tested at 600°C. 

There seems to be a trend of reduction in crack propagation rate in the Paris region with a 

subsequent decrease in the specimen thickness figure 36 and 37. This behaviour is less 

pronounced than tests carried out at ambient temperature.  

The main effect however is seen at the threshold values, with those of the 0.4mm specimen 

being 20.8 MPa.m1/2, which is almost twice that of the 1.0mm and 0.6mm specimen figure 36. 

The effect on the ΔKth is explored in detail in the previous section. The evolution of ΔKth with 

respect to thickness for R=0.1 in specimens tested at 600°C is summarized in table 2 and shown 

in figure 38. 

Table 2: Evolution of ΔKth with reduction in thickness 

 Thickness of specimens “e” (mm) 

 2.5 1.0 0.6 0.4 

ΔKth (MPa.m1/2) 11.9 12.4 12.8 20.8 

The sharp increase in the ΔKth of the 0.4mm specimen may be attributed to the increased crack 

closure. Observations of the fracture surface of this specimen (figure 39) show the presence of 

a sort of tearing at the crack edges. Although this tearing is not seen for short crack lengths, its 

presence on the crack surface indicates a presence of large deformations as well as a possibility 

mismatch of the two crack surfaces even for short crack lengths, which may be the source of 

increased crack closure.  
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Fig 36. Effect of specimen thickness e = 2.50, 1.0, 0.60 & 0.40mm à 600°C, ΔK 

 

Fig 37. Effect of specimen thickness e = 2.50, 1.0, 0.60 & 0.40mm à 600°C, ∆��&',�'�) 
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Fig 38.  ΔKth as a function of specimen thickness “e” for R=0.1 tested at 600°C 

III.3 Observation of fracture surface 

In this section the fractography is presented for specimens tested at 600°C.  

The fractographic analysis is presented for a specimen of 0.4mm thickness, tested at R=0.1. 

At a certain value of crack length (a>3.2mm) the fracture surface shows distinct morphology 

near the crack edges (free surface of the specimen). We can see distinct saw tooth type 

morphology with extrusion appearing on the specimen free surface as well as the crack surface 

as shown in figure 39. This type of morphology mainly gives an indication to the large plastic 

deformation as well as a mixed mode of crack propagation with mode II type mechanism near 

the edges. The thicker specimens do not show this effect. The arrow indicates the direction of 

propagation in the micrographs. 
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Fig 39. Creation of saw tooth morphology at the edges of the crack (free surface) in fatigue 

crack propagation in a specimen of 0.4mm thickness tested at R=0.1, 600°C 
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The fracture surface is made up of flat planes separated by flat inclined planes at almost 45° as 

in the specimens tested at room temperature. These inclined planes are probably shear mode 

propagation planes figure 40. Different types of oxide layers were found on these planes. The 

oxide layer on the flat plane figure 40, is of grey colour and has an approximate composition of 

FeO where the point X shows the position of the analysis, Table 3. In BSE it shows as the darker 

fracture surface.  

 

Fig 40. Analysis of oxide layer on the flat surface of fracture surface 

Table 3: Chemical analysis of the oxide layer on the flat fracture surface 

Element K Ratio Weight % Atomic % 

O K 0.1533 24.989 53.769 
SiK 0.0031 0.510 0.626 

MoL 0.0168 1.863 0.668 
CrK 0.0483 3.497 2.315 

MnK 0.0031 0.281 0.176 
FeK 0.7753 68.860 42.447 

Total  100.000 100.000 

The oxide layer on the shear planes is richer in oxygen with an approximate composition of 

Fe2O3, Table 4. It appears as a red coloured oxide layer in the optical microscopy and as a lighter 

colour on the BSE detector of the SEM figure 41.  
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Fig 41. Analysis of oxide layer on the shear planes of fracture surface 

Table 4: Chemical analysis of the oxide layer on the flat fracture surface 

Element K Ratio Weight % Atomic % 

O K 0.2915 40.554 70.391 
SiK 0.0051 0.720 0.712 

MoL 0.0194 1.940 0.562 
CrK 0.0382 2.662 1.422 

MnK 0.0017 0.140 0.071 
FeK 0.6441 53.983 26.843 

Total  100.000 100.000 

It may also be noted that fatigue striations can be seen only on the shear planes of the fracture 

surface, figure 42. These striations exist only in the oxide layer. Their size corresponds to the 

propagation per cycle in the FCGR curves. However each shear plane defines a fully developed 

crack front instead of a continuous single crack tip over the whole fracture surface. The crack 

front is composed of many smaller fully developed crack fronts that cover each inclined plane. 

Since we cannot detect striations on the flat planes, the exact shape of the crack front is 

difficult to interpret.  
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Fig 42. Multiple fully developed crack fronts in specimen tested at 600°C 

During fatigue crack propagation there is considerable branching out of the plane of crack 

propagation. However most of this branching seems to stop at a grain boundary or a martensite 

lath boundary figure 43. 

The crack branching is generally believed to be beneficial in reducing the fatigue crack 

propagation rate. The branching absorbs a part of the energy received by the main crack tip. 

This amount of branching was not found in specimens tested at ambient temperature. Most of 

the branched cracks are seen to be completely filled with an oxide layer. 

At the end of the test in a 1mm specimen at 600°C a constant load was applied to determine 

qualitatively any presence of creep deformation. Effectively, creep deformation was observed, 

which created inter lath porosities. These porosities are elongated in the direction of the 

martensite laths, figure 44. 
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Fig 43. Crack arrest on branched crack fronts at grain boundaries in specimen tested at 600°C 

  

Fig 44. Evidence of porosities created by creep deformation ahead of crack tip at 600°C 
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IV.  CONCLUSION 

In this section the results of fatigue crack propagation experiments are presented. The 

specimens have been tested at ambient temperature and at 600°C. In addition to fatigue crack 

propagation some experiments of critical stress intensity factor are carried out at ambient 

temperature. Fractographic analysis of specimens tested at ambient temperature and 600°C 

are been presented. 

The effect of R ratio on fatigue crack propagation is studied. It is seen that at room temperature 

the increase in R ratio causes an increase in the speed of crack propagation. This is usually 

explained by the presence of crack closure at lower R ratios. The effect of crack closure is more 

thoroughly discussed in chapter 5. At higher temperatures the effect of R ratio on crack 

propagation is different in the threshold region and the Paris region. In the stable crack regime 

there is almost no effect of R ratio. This is due to the absence of crack closure at elevated 

temperatures in this regime of propagation. However, there is a strong effect on the threshold 

values. At higher R ratios the threshold values are reduced. It shows that in the threshold 

regime a strong crack closure effects exist. The threshold values are found to be around 12 

MPa.m1/2 for R = 0.1 and 8 MPa.m1/2 for R = 0.7 at 600°C. This effect of variation in threshold 

values seems to increase with a decrease in the specimen thickness. Intermediate temperature 

of 300°C simply causes an increase in the crack propagation rate, but no effect on the threshold 

value is observed under the experimental conditions investigated. The threshold values for 

ambient temperature have not been established. Crack propagation is seen at SIF values as low 

as 3.5 MPa.m1/2. 

The effect of thickness on fatigue crack propagation has been studied. In general it is found that 

the crack propagation speed is reduced with a subsequent reduction in the specimen thickness. 

This effect exists for both ambient temperature and elevated temperature. However at 

ambient temperature it seems that below 0.6mm thickness this effect diminishes. The 

threshold values at 600°C seem to increase with the decrease in thickness especially for R = 0.1. 

The reduction of specimen thickness from 0.6mm to 0.4mm causes a very sharp increase in 

ΔKth.  

Experiments carried out at ambient temperature to determine the Kc have yielded some 

interesting results. The specimens of 2.5mm thickness tested at ambient temperature show a 

constant Kc independent of the crack length to width ratio. However with a reduction in 

thickness to 1.0mm the Kc value increases sharply and becomes dependent on the crack length 

to width ratio. This may indicate that the SSY conditions that may have existed in 2.5mm 

thickness no longer exists and the plastic zone evolves with an increase in the crack length, 

causing an increase in Kc. For the 0.6mm thickness specimen the a/W dependence is even 

stronger and the increase in the Kc value is even more pronounced.  
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RESUME EN FRANÇAIS 

Ce chapitre présente la modélisation empirique et analytique réalisée pour établir un critère de 

propagation de fissure. La durée de vie d’un matériau sollicité par un chargement en fatigue 

comprend plusieurs étapes : 

1) Amorçage 

� évolution de la microstructure entraînant l’endommagement permanent, 

� formation de microfissures, 

� croissance et coalescence des microfissures, 

2) La propagation 

� propagation stable des macrofissures, 

� rupture brutale ou propagation instable. 

L’initiation de l’endommagement par fatigue est principalement traitée par « l’approche de 

durée de vie totale ». Cette dernière peut être basée sur la contrainte cyclique appliquée 

(Courbes S-N utilisées en HCF) ou la déformation cyclique appliquée (Fatigue oligocyclique). 

La partie « propagation » de la durée de vie est très souvent traitée par « l’approche de 

tolérance au défaut » pendant laquelle, le matériau est considéré comme endommagé ou 

contenant un défaut de petite taille (en général la résolution minimum du moyen de détection 

de défaut est considérée comme la taille de ce défaut). Les contraintes cycliques appliquées 

pour caractériser la propagation sont souvent inférieures à la limite élastique du matériau. 

Quand la fissure atteint une longueur prédéterminée (longueur critique de la fissure aC ou la 

ténacité KIC), on considère alors que le matériau a atteint sa durée de vie.  

La prédiction de la propagation de fissure est faite avec des lois empiriques décrivant la 

croissance de fissure basées sur la mécanique linéaire de la rupture (LEFM). Ces lois sont en 

général appliquées dans les conditions de SSY ou « Small Scale Yielding ». Dans ces conditions la 

zone plastique autour de la pointe de fissure est relativement petite (par rapport à la longueur 

de la fissure ou à la taille de la structure qui contient la fissure) et est bien confinée par une 

zone du matériau élastiquement déformée.  

Lorsque les charges appliquées sont assez fortes pour déformer plastiquement le matériau, les 

critères utilisés pour prédire la propagation se basent plutôt sur la mécanique élasto-plastique 

de la rupture (EPFM). Le critère utilisant l’intégrale J est très souvent utilisé à cet effet. Bien que 

l’intégrale J ait été développée pour un matériau élastique non linéaire, son application pour 

caractériser la propagation de fissure dans un matériau élasto-plastique a été réalisée avec 

succès dans de nombreux travaux.  
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La dernière étape dans la durée de vie d’un matériau est la rupture brutale ou la propagation 

instable qui se caractérise par la ténacité KIC ou JIC. 

Dans la durée de vie d’un outillage de mise en forme à chaud toutes les étapes précédentes 

peuvent exister. Les matériaux massifs sont très souvent caractérisés sous fatigue oligocyclique. 

Par contre, comme il a été indiqué dans le chapitre 1, l’approche développée pour caractériser 

l’endommagement des surfaces des outillages requiert des éprouvettes de faible épaisseur. Il 

est difficile de caractériser les matériaux minces en contraintes de compression (fatigue 

oligocyclique) à cause des problèmes de flambage. Nous avons donc décidé de caractériser les 

matériaux minces en se basant sur la mécanique linéaire et la mécanique élasto-plastique de la 

rupture. Dans un premier temps, seule la partie propagation de durée de vie en fatigue des 

surfaces des outillages sera étudiée. 

Les paramètres de l’étude de l’endommagement sont : 

� échelle 

o effet de l’épaisseur, 

� conditions d’essais 

o effet du rapport de charge R, 

o effet de la température.  

Le but de la modélisation de la propagation peut consister à : 

� trouver un critère d’endommagement en fatigue indépendant de l’échelle ou des 

conditions d’essais, 

� trouver un critère (ou paramètre) qui soit utile pour rationaliser les courbes de 

propagation des différents essais par une fonction unique qui tient compte de l’échelle 

ou/et des conditions d’essai.  

La rationalisation de l’effet de R a été réalisée par la correction de la fermeture de fissure à R = 

0,1. Une méthode de rationalisation mathématique est aussi présentée en considérant que la 

propagation est un effet combiné de ΔK et de Kmax. Il a été démontré que l’ouverture de la 

fissure est un critère efficace permettant de rationaliser l’effet de R. 

L’effet de la variation de température sur la propagation de fissure a été analysé en utilisant le 

critère de l’ouverture en pointe de la fissure (CTOD) et l’intégrale J déterminée à partir de 

l’ouverture en pointe de fissure. 

Le développement mathématique d’un critère (indépendant de R) basé sur l’ouverture de 

fissure est exposé. Ce critère a servi pour modéliser la propagation de fissure à chaud. 

Une analyse critique des différents critères utilisés est reportée à la fin de ce paragraphe. 
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I.  INTRODUCTION  

This chapter presents the empirical and analytical modelling used for establishing damage 

criteria. The total fatigue life of materials is considered to consist of several stages [1]: 

1) Initiation 

� Microstructural changes which cause permanent damage. 

� Microscopic crack formation. 

� Coalescence and growth of microscopic cracks into macroscopic cracks also called 

‘dominant’ cracks. 

2) Propagation 

� Stable crack propagation of the dominant crack(s). 

� Complete failure or structural instability. 

The fatigue damage initiation is mainly dealt with the “total-life approaches”, which are based 

on the cyclic stress range (S-N curve generally applied in High Cycle Fatigue or HCF) method or 

the applied strain range (Low Cycle Fatigue or LCF) methods. Generally, the LCF testing has an 

appreciable amount of plastic deformation, tensile and compressive, applied on smooth 

specimens. The LCF testing is very often used to characterise in many circumstances the 

damage properties of hot work tool steels at different temperatures[2, 3]. The life of the tool 

material is represented (number of fatigue cycles) as a function of a fixed cyclic deformation. 

The propagation mode of the fatigue damage is dealt under the “defect-tolerant approach”. In 

this approach the material is either always inherently flawed or a small size defect has been 

detected in the material. Cyclic stresses are applied on the material, usually but not always 

within the elastic limits of the material [1]. Whenever the crack propagation of the material 

under study reaches a certain predetermined length (may be defined by critical crack length ac 

or fracture toughness KIC) the material or component is said to have achieved the service life Nf.  

The prediction of crack propagation is based on empirical crack growth laws based on the 

fracture mechanics approach. The linear elastic fracture mechanics approach or LEFM is used in 

crack propagation laws applicable in the small scale yielding (SSY) conditions where the crack 

length and the component size is much larger than the crack tip plastic zone, and where 

predominantly elastic loading condition prevails. The elastic plastic fracture mechanics or EPFM 

approach is used when there is crack propagation under considerable plastic deformation. The 

approach in general involves the use of the J-Integral [4]. Even though the J-Integral is derived 

using the monotonic non linear elastic model it has been experimentally successfully applied to 

elastic-plastic fatigue crack growth [1, 5, 6] and the parameter itself has been proved to be 

mathematically viable (path independent) for Dugdale type crack where extensive plastic 

deformation occurs [7-9]. 
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The final stage of the material damage is the unstable rupture of the material which is often 

characterised by a critical value of fracture toughness KIC or JIC. 

In the life of a hot-work tool steel all the stages described above exist. The bulk materials are 

most often characterised using the low cycle fatigue damage criterion. This however, involves 

the use of large compressive stresses and strains applied on the specimen. As described in 

chapter I, the approach used in the modelling of the surface damage of tool steels was to use a 

very thin layer of un-deformed material taken from the tool material, which is to be considered 

characteristic of the material exposed to damaging conditions. The characterisation of a very 

thin material by LCF is very difficult from a practical standpoint, as high compressive stresses in 

such a material cause buckling of the specimen. It was thus decided to consider using the 

fracture mechanics approach to characterise, as a first measure, only the crack propagation 

component of the fatigue life of the tools surface.  

Two main variables have been studied for the fatigue crack propagation characterisation: 

� Scale 

o Effect of thickness. 

� Testing conditions 

o Effect of R ratio. 

o Effect of temperature. 

The goal of modelling the fatigue crack propagation parameter may involve several approaches: 

� Find a fatigue crack propagation criterion independent of scale or testing conditions. 

� Determine a criterion that consolidates all the test results onto a single function taking 

into account scale or testing conditions or both. 

The parameter modelling in this study is mainly carried out for the testing conditions like load 

ratio R and temperature. Whereas the effect of scale has been limited to its effect on FCGR 

results and is discussed in detail in chapter 4. 
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II.  EFFECT OF R RATIO  

The increase in R ratio is in general considered to increase the crack propagation rate for a 

given ∆K value. Two methods have been identified to consolidate the different crack 

propagation curves.  

One method is based on the physical aspects of the effect of R ratio[10]. This involves the effect 

of crack closure which is higher at lower values of R (typically R=0.1) and diminishes to no 

closure at higher R values (typically R=0.7).  Due to the closure effects the crack is shielded from 

the applied load during a part of the loading cycle even under tensile loads. This shielding 

causes a reduction in the applied ∆K. A reduction in the applied ∆K causes an apparent 

decrease in the crack propagation rate. The ∆K for which the crack is shielded may be 

subtracted from the applied total ∆K to consolidate the results.  

The other method is principally empirical and mathematical proposed by Kujawski et al [11]. It 

is considered that the crack propagation rate is no longer a unique function of the stress 

intensity factor range ∆K, but a combined function of the ∆K and Kmax. The author has explored 

many possible data consolidation techniques [11-14] of which the generalized form seems to be 

the most adapted to our work [11].  

II.1 Data consolidation of R ratio effect based on crack closure 

The effect of R ratio on the fatigue crack growth rate in the Paris regime is an apparent 

decrease in the crack propagation rate with a decrease in the R ratio, figure 1. 

 
Fig 1. Effect of R ratio on the crack propagation speed of ductile materials, after Suresh [1] 

 

This reduction in the crack propagation speed may be explained by the reduction in the applied 

stress intensity factor range (∆K) due to crack closure. Figure 2 represents the relationship 

between applied load and the COD measured by strain gauges. Here the line OE represents the 
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strain gauge response if there was no crack in the specimen. The response is elastic depending 

on the Young’s modulus of the material. However when there is a presence of the crack, the 

region A-B represents a constant slope on a σ-δ plot. At point B the crack starts to close, which 

increases the specimen’s stiffness. Approaching C, the stiffness keeps on increasing due to 

increase in the length of the closed crack. At point C it is considered to be completely closed 

and region C-D behaves like a solid specimen without crack. It sould be noted that traditionally 

the σ-δ plot is presented as a P-δ plot (load-displacement plot instead of stress displacement 

plot). However, in this study different thickness specimens are used and the use of σ allows us 

to normalise all the data on a common base. 

 
Fig 2. Relationship between applied stress and crack opening displacement measured by strain 

gauges [1, 10] 

The stress at point B is to be considered the crack opening stress σop. Any stress range below 

σop has no effect on the crack tip, because the material in front of the crack tip is completely 

shielded. The compliance plot in figure 2 may be represented as a function of K instead of σ.  

The shielding of the crack tip by closure has a direct effect on the applied stress intensity factor 

range ∆K. Without closure, ∆K is given by:  

∆	 �  ∆�√=F. [
F/Z� ;                 ∆� �  ����  /  ����      (1) 

Where, σmin corresponds to the stress at point D. But as explained above the crack tip is 

shielded for all stresses between point B and D. An effective stress range is defined for which 

the crack tip is “exposed” to the loading cycle, which can be used to define an effective stress 

intensity factor range [10], equation 2: 
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∆	&qq  �  ∆�&qq√=F. [
F/Z� ;               ∆�&qq  �  ����  /  �r�    (2) 

In practice it is observed that tests carried out at R = 0.1 show the effects of closure while those 

carried out at R = 0.7 show no crack closure, in which case ∆σeff  �  ∆σ. The value of K 

corresponding to σop is called Kop. Using the Kop and Kmax an effective R may be defined or Reff 

defined as: 

�&qq � 	r� 	���⁄           (3) 

The results applied on the tests carried out on specimens of 0.6mm thickness at 20°C are 

presented here. However, the complete procedure and the symbols used are explained first. 

Δδeff is the actual crack opening displacement range (COD) measured by the virtual 

extensometer. In case there is crack closure then it is taken as the displacement for the 

completely open crack only. Figure 3 and 4 explain this concept. 

Δδmax is maximum possible crack opening displacement (COD) measured by the virtual 

extensometer if no crack closure exists. In the case where there is no crack closure Δδmax is 

the same as Δδeff, see figure 5. In case crack closure does exist then the linear part of the 

unloading curve is extended (linearly) to the point of minimum stress, figure 3 and 4. The 

total linear + extrapolated linear crack opening displacement is defined as Δδmax. 

The figure 3 presents the crack opening displacement (COD) for a crack length of 4.8mm in a 

specimen of 8.0mm width. The virtual extensometer here is placed 0.6mm behind the crack tip. 

The COD measurements are experimentally carried out between σmax and σmin (so as not to 

disturb the fatigue experiment). The value of COD at zero load is not accessible, thus the 

absolute value of δ0 is arbitrary. However, the difference values like; Δδeff, Δδmax, etc have 

physical sense and represent the real displacement of the virtual extensometer as a response to 

stress range ∆� �  ���� / ����. The crack opening data for other crack lengths and specimens 

is given in appendix E. 
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Fig 3. Relationship between applied stress and crack opening displacement measured by a 

virtual extensometer 

In figure 3 the region A-B represents the linear variation of the COD with respect to applied 

stress. It is an unloading curve. From point B we can see the crack closure begins to appear, 

right upto point F. The crack opening displacement corresponding to A-B is given by Δδeff. This is 

a tension-tension test with R = 0.1 the σmax = 250 MPa and σmin = 25 MPa. From the figure 3 

(Point B) the σop = 75 MPa. From here we can calculate the ∆Keff or Reff  [10] from equations 2 

and 3. For this specific case Reff is found out to be 0.3. In practice it is easier to present the crack 

opening displacement as a function of time or number of images if a triangular load signal is 

used figure 4. In reality the figure 4 is the same as figure 3 rotated 90° counter-clockwise. The 

advantage is that the untreated values measured by the machine and the extensometer may be 

used directly to calculate the Δδeff, δop and Δδmax. If there were no closure present then the 

straight line A-B would continue to point C corresponding to σmin, figure 3. Thus the line A-B-C 

represents the extrapolated crack opening for no closure the magnitude of which is given by 

Δδmax.  
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Fig 4. Variation of δ (COD) as a function of a number of images during fatigue cycles in a 

specimen of 0.6mm tested at R=0.1 showing crack closure 

This same procedure of COD measurement is applied on the same type of specimen tested at R 

= 0.7. Under R = 0.7 no crack closure is detected as shown in figure 5. In most of the cases 5 

virtual extensometers are placed at 200 µm intervals behind the crack tip. However according 

to the conditions of the experiment more extensometers (further from or nearer to crack tip) 

may be added. The effect of using ∆Keff as a fatigue crack propagation criterion is shown in 

figure 6. The specimens are of 0.6mm thickness tested at 25°C at two different R values of 0.7 

and 0.1. The crack closure measurements were carried out throughout the crack propagation 

(for all crack lengths, see appendix E). 
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Fig 5. Variation of δ (COD) as a function of a number of images during fatigue cycles in a 

specimen of 0.6mm tested at R=0.7 showing no crack closure 

 
Fig 6. Effect of using ∆Keff of Paris curve for R=0.1 in a 0.6mm specimen at 25°C 
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∆Keff correction makes the two curves overlap, however, the slope of the two curves is distinctly 

different with: 

� �  0.1;      T �  2.5  
� �  0.7;      T �  3.6  

Here it is pertinent to note that the FCGR curve at R=0.1 using ∆K as crack driving force 

parameter shows two distinct slopes (Discussed in more detail in the section I.2 Chapter 4). For 

lower ∆K it is parallel to the FCGR curve of R = 0.7 i.e. m = 3.6 however, for higher ∆K the slope 

reduces to m = 2.2. The final slope after application of the ∆Keff criterion gives an averaged 

slope of m = 2.5. 

II.2 Consolidation of R ratio effect based on a “two parameter crack driving force” 

In a propagating fatigue crack, the crack closure phenomenon may be present due to many 

reasons. They include but are not limited to, plasticity, crack wake roughness, oxide formation 

on crack faces, debris [1] etc. Any correction for the effects of variation in R based on the crack 

closure mechanism assumes that as soon as the crack begins to close it is fully shielded from 

the applied load. However this is not always true in reality. In practice the crack closure does 

not always account for the difference in crack propagation curves due to variation in R 

ratio[13].  

Problems associated with the crack closure based models have been reviewed by Kujawski et al. 

[13]. To account for the R ratio effects, many different models have been presented based on 

closure, residual compressive stresses, environmental influence and the partial crack closure [1, 

13].  

The data consolidation model presented here removes the need for taking into account the 

crack closure phenomenon. The model is based on the proposition made by Walker [15] 

reviewed by Kujawski [11] according to which there is a close similarity between fatigue life 

corresponding to crack initiation and that of fatigue crack propagation behaviour. He showed 

that an effective stress based on maximum stress and the applied varying stress range: 

� v  �  ����
����∆��          (4) 

was able to correlate the effects of R ratio on fatigue life (crack initiation) in 7075-T6 and 2024-

T3 aluminium alloys. In this approach m is considered to be a material property. The equation 4 

may be modified and adapted to the fatigue crack growth correlation: 

	 ���  �  	���
����∆	� � 
1 / ���	���       (5) 
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Where, 	v is an effective stress intensity range used to demonstrate the consolidation of fatigue 

crack propagation data for positive R ratios: 

As discussed above the effect of R ratio may be due to many different reasons which are not 

necessarily dependent on the material properties. Thus the m in equation 5 may be replaced by 

α. The α is used to normalise the crack propagation curves at different R values. The equation 5 

then takes the form [11]: 

	v
  �  
	�����
∆	����         (6) 

Where 0wαw1 is a parameter that characterises the apparent sensitivity of Kv
 to the applied 

Kmax value. The value of α may depend on the material, temperature, environment and the 

dimensions of the specimen (thin or thick). The definition of Kv
 is based on the assumption 

that: 

� The damage at the crack tip is due to two simultaneous damage mechanisms based on 

monotonic damage due to Kmax and cyclic damage due to ∆K. 

� Existence of tensile stresses in the process zone (Kmax>0) is a necessary condition for 

fatigue crack propagation. 

There are some interesting properties of α that may be mentioned here. In a case of very brittle 

material the value of α→1 which shows the damage is based on Kmax only. In the case of ductile 

materials with no effect of charge ratio R (like under vacuum for some materials) α→0. For 

ductile metallic materials an intermediate value is generally found. 

II.2.1 Determining α for fatigue crack 

FCG data obtained on two positive load ratios, namely R2iR1i0 is presented schematically in 

the figure 7. Now from the explanation in the preceding paragraphs we know that α is the 

sensitivity of the FCGR curve on Kmax. 

We know: 

	���  �  ∆	/
1 / �� 	v
       �  
	�����
∆	����             �  {∆	/
1 / ��|�
∆	����             �  ∆	/
1 / ��� 

(7) 

For consolidating the two curves any da/dN value should lie on the same crack driving force 

parameter Kv
, thus: 
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	v�
  �  	v%
 ∆	� 
1 / ����  �  ∆	% 
1 / �%��           (8) 

Rearranging and taking log on both sides of equation 8 we get: 

} �  E2d
∆	�/∆	%� E2d
1 / ��/1 / �%�           (9) 

An average αavg may be obtained at different da/dN values along the curve and collapse the 

FCG data onto a thin band. 

 

Fig 7. Schematic representation of fatigue crack growth rates at two stress ratios 

II.2.2 Application on experimental data 

This method of fatigue crack growth rate consolidation is applied on a specimen of 0.6mm 

thickness tested at R=0.1 and 0.7, figure 8. The FCGR curve without consolidation is presented 

in figure 6. We have chosen three crack propagation rates of da/dN = 2e-8, 6e-8 and 2e-7 to 

determine the value of α the values of which are summarised in table 1. The two curves overlap 

for 2G�~ w LF/Lh w 2G�� (m/cycle). 

Table 1: Summary of α values determined for specimen 0.6mm tested at R = 0.1 and 0.7 

da/dN ∆K1 ∆K2 R1 R2 α 

2e-8 11.6 10.5 
0.1 0.7 

0.1 
6e-8 17.8 14.2 0.2 
2e-7 28.6 19.9 0.3 

    αavg 0.2 
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Fig 8. Consolidation of fatigue crack growth data for R = 0.1 and R = 0.7, using the Kv
parameter. Value of α = 0.2 

 

Results are then similar to what was obtained after crack closure correction. 
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III. D AMAGE  PARAMETER : CRACK  OPENING DISPLACEMENT  

III.1 Use of J Integral as a damage parameter 

Different testing conditions like change in temperature, dimensions, charge ratio etc. may 

cause a change in the fatigue crack propagation behaviour of the material tested. Taking all of 

these into account by calculations alone is difficult and many approximations have to be made. 

At high temperatures, especially, the fatigue crack propagation can no more be treated using 

the LEFM assumptions of SSY, and needs to be treated using the EPFM criterion. Dowling [5, 6] 

initially proposed using the J-Integral of Rice[16] as a parameter for characterising elastic-plastic 

fatigue crack growth.   

In this procedure hysteresis curves were plotted between crack opening displacement δ and 

applied force in C(T) specimens. The same was done for centre crack panels by calculating the 

elastic component Jel (based on load and geometry) and adding the plastic component Jpl 

(based on load displacement curve). The methods are schematically represented in figure 9. 

 

Fig 9. Definition of cyclic J calculated by using load displacement curves [6] 

The method and definitions of cyclic J integral were then reviewed and analysed extensively by 

Chow [7]. The J – Integral used as a fatigue crack growth parameter was also presented by 

Sadanada [17, 18] as: 

LFLh  �  �� ��∆�klk'�
���
 (10) 

This law has been extensively used in this study to characterise the fatigue crack propagation of 

specimens at high temperature. 

 

 



Chapter 5: Modelling of fatigue crack propagation criteria III. Damage Parameter: Crack Opening Displacement 

 

140 
 

III.2 Use of CTOD as a damage parameter 

The J-Integral calculated by Dowling[5, 6] and Chow[7] is based on load displacement curves 

dependent on the geometry of the specimen. Another parameter that may be used to calculate 

the J-Integral is the Crack Tip Opening Displacement or CTOD which will henceforth be denoted 

as δt.  

I II.2.1 Bibliography: Relationship between J-integral and δt 

The relationship between crack tip opening displacement and the J-Integral proposed by Rice[4] 

is extensively reviewed and treated by Shih [19] among others principally Hutchinson[20], 

Tracey[21], McClintock[22] and McMeeking[23]. However the model used in this study is 

mostly adapted from Shih[19]. The calculations are based on monotonic loading of the crack 

tip. 

In a power law hardening material the monotonic plastic strain is related to the stress σ 

through the relationship: 

U�  �  } � ������� �� (11) 

Where E is the young’s modulus, α is a material constant, n is the hardening exponent and σ0 is 

the yield stress. The equation 11 can be generalised to multiaxial stress states according to the 

J2 deformation theory of plasticity which gives:  

U��  � 32  } ��&������ ����  (12) 

Where Sij is the stress deviator and the equivalent stress is given by: 

�&%  �  �% ������            (13) 

Based on the power-law description Hutchinson[20] and Rice and Rosengren[4] showed that 

the stress and strain fields in the vicinity of the crack are: 

���  � �� � ��}��%���� ���� ����
4, 8� 

(14) U��  � }��� � ��}��%���� ���� U�̃�
4, 8� 

Where r,Ѳ are polar coordinates centred at crack tip, In is an integration constant and ���� and U�̃�  are dimensionless functions of the hardening exponent n, polar coordinate Ѳ and 
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the state of stress i.e. plane stress or plane strain[1]. The J-Integral represents the amplitude of 

the HRR singularity described by equation 14. 

The crack opening profile δ(x) may be presented in a similar fashion. Thus the displacements 

along the edge of the crack (4 �  �=, figure 10) are given by: 

�2  � }��� � �}��% ���� ���� � ����. ?�l
8� 

(14) ?�  � }��� � �}��% ���� ���� � ����. ?��
8� 

 

 

Fig 10. Sharp and deformed crack showing the 45° procedure for defining δt. 

Where ux and uy are displacements in the x and y directions respectively, while δ = 2uy. The 

definition of δt suggested by Rice and reviewed by Tracey is shown in figure 10(b) [21] with two 

45° lines drawn back from the crack tip with the deformed profile. Thus at the intercept: 

� / ?� � �/2           (15) 
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The value of δ that satisfies equations 14 and 15 is given by [19]: 

��  �  L� ��� (16) 

Where: 

L�  �  �}��� $�� j?�� 6 ?�ln�� ���� 

 
(17) � � �  2?�l 

Rice and Schwalbe have also presented the relation in a similar fashion, reviewed by Shih[19]: 

��  �  2� 	%��� ���
� 6 ��0.0116 ���
 (18) 

Where X and Y are values of ux and δ/2 at � � 0.0077	%/��% and γ0 is the shear yield strain. 

Another relation, suggested by Tracey [21] is: 

��  �  0.49 	%��� ��
8 6 1������ (19) 

Where, λ = (n+1)/n. 

This study is based principally on the use of equation 16 as a damage parameter for fatigue 

crack propagation. The factor dn is a function of material properties: 

L�  �  [ ���� , 8$ (19) 

This parameter varies slightly with σ0/E but significantly with n. For elastic-perfectly plastic 

materials the value of dn approaches 1. The evolution of dn with respect to n and σ0/E is shown 

in the figure 11. 
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Fig 11. Variation of dn with n and σ0/E for plane stress [19] 

III.2.2 Determination of parameters of ����t = dn(J/����0) for X38CrMoV5 at 20°C and 600°C 

III.2.2.1 Test conditions 

The model is applied on thin specimens of thicknesses of 1.0mm and 0.6mm. Some 

assumptions that have been made as regards to the state of stress and strain in these 

specimens are 

� Plane stress state exists in material at 20°C and 600°C. 

� There is a possibility of generalised yielding in high temperature specimens, but this is 

considered to be a narrow strip of material ahead of the crack tip. This configuration 

allows the Dugdale model to be invoked, which represents a particular condition for J-

integral path independence (under Large Scale Yielding) and validity for large plastic 

deformations[8, 9, 19].   

� All material properties used are obtained by monotonic tensile tests. The material in 

reality presents different properties under cyclic loading (like cyclic softening). 

� At 600°C the material properties are considered to be constant. This temperature is very 

near the tempering temperature of this material, so tempering of the metal will occur 

during the test. This temperature was chosen because it is often achieved during real 

working conditions. 
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III.2.2.2 Determination of dn. 

The results of monotonic tensile tests are presented in figure 12. 

 
Fig 12. Monotonic tensile test stress-deformation curve for X38CrMoV5 – 47 HRC 

 

The results are summarised in table 2. Using the values of E, Rp0.2=σ0 and n one can calculate 
the value for dn. 
 
Table 2: Tensile test data for X38CrMoV5 – 47HRC 

Temperature Rp0 (MPa) Rp0.2 (MPa) E (MPa) n dn 

20°C 913 1200 208000 12 0.8 
600°C 213 600 147000 5.3 0.5 

III.2.3 Adaptation of ����t = dn(J/����0) for fatigue crack propagation 

The model presented above is basically used for the monotonic loading of the cracked 

specimen. However, the study has been carried out for the fatigue crack propagation. The 

model has to be modified in such a manner that it can deal with the following parameters: 

1. Ability to calculate crack driving force from ∆δt. In fatigue experiments the loading is 

cyclic. It is in general preferable not to disturb the loading conditions during the 

experiment. Thus the ΔCTOD is determined for the stress range Δσ = σmax - σmin. We thus 
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do not have the CTOD value at unloaded specimen. The form of the crack driving force 

parameter becomes: 

∆��  �  L� ∆���  J�G�G ∆��  �  ��" ¡¢ / ��" £¤  (20) 

2. Find a unique law that shows the ∆δt to be a function of R. This is necessary to be able 

to compare results of crack propagation experiments at different R values. 

3. Ideally be able to correlate test results of specimens tested at cold and hot 

temperatures. 

4. Data obtained by ∆δt should be comparable to some extent with the numerical 

simulations carried out for these specimens. 

Some of the mathematical derivation will be carried out using LEFM assumptions, especially for 

the effect of R on the crack driving force. 

Under linear elastic conditions: 

� �  	+%�)  (21) 

Where E’ is E for plane stress and E/(1-ν2) for plane strain. 

The definition of KI dictates that it is linearly proportional to the applied stress, thus from 

equation 1: 

∆	 �  ∆�√=F. [
F/Z� ;                 ∆� �  ����  /  ����      (1) 

From equation 20: 

��" ¡¢  �  L� ������   �  L� ¥	+���%�)�� ¦ 

(22) ��" £¤  �  L� ������   �  L� ¥	+���%�)�� ¦ 

The expressions 22 show that ΔK depends on the square root of the Δδt. Also if the charge ratio 

is to be taken into account (necessary to present a coherent fatigue crack propagation law): 

� �  	���	��� 

 ∆	+  �  	��� / 	��� 
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∆��  �  L� ¥	+���%�)�� ¦ / L� ¥	+���%�)�� ¦  

∆��  �  L� ¥	+���%�)�� ¦ / L��)�� j�	+���n%
  

∆��  �  L��)�� 	+���% 
1 / �%� (23) 

Inversely the equation 23 may be used to calculate the stress intensity factor range from 

ΔCTOD denoted ∆Kδ: 

	����  �  < �)��∆��L�
1 / �%� (24) 

∆	�  �  
1 / �����< �)��∆��L�
1 / �%� (25) 

Where, 

R used to calculate the 	����  parameter 

Rapp is any value of applied stress ratio 

The interest in calculating expression 24 is that if LEFM conditions prevail, 	����  can be 

calculated through an experiment carried out at R and then use these values to determine the ∆	�  for any other Rapp, where R ≠ or = Rapp. 

Now in cases where the plasticity cannot be ignored, we will replace  	+���% /�Q by  ����.  Thus 

from equations 24 and 25: 

�����  �  ��∆��L�
1 / �%� 
(26) 

∆� �  ���� / ���� 
 

∆��  �  
1 / ����% � � ��∆��L�
1 / �%�� (27) 

The ∆�� calculated in this manner may be used directly as a fatigue crack propagation criterion. 

Comparisons of this parameter measured experimentally and calculated by numerical 

simulations are presented in the following section. 
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IV. A PPLICATION OF ∆CTOD CRITERION ON FATIGUE CRACK PROPAGATION  

This section deals with two main aspects of the application of ΔCTOD criterion on fatigue crack 

propagation: 

1. The method of measurement of the crack tip opening displacement. 

2. Use of the measured ΔCTOD in fatigue crack propagation. 

IV.1 Measurement of ∆CTOD 

IV.1.1 Definition of terms 

Some additional terms are defined for establishing the ΔCTOD as a criterion for fatigue crack 

propagation: 

∆δt or crack tip opening displacement (ΔCTOD) is calculated from Δδeff. Taking the crack tip 

as origin, a number of virtual extensometers at specified distances are placed around the 

crack. Each extensometer gives a Δδeff reading. Obviously the extensometer which is further 

away will show higher ΔCOD values. Of interest is the ΔCTOD value. Thus all the Δδeff values 

are plotted against the position of the extensometer and extrapolated to the crack tip. The 

procedure is explained in figure 13.  

∆δth is calculated from Δδmax. The exact same procedure used for the calculation of ∆δt is 

followed while using the extrapolated Δδmax readings from the extensometers. The 

procedure is explained in figure 13. 

∆δcalc is calculated via J-Integral using equations 20 and 22. The numerically calculated values 

of J or KI are used directly to calculate this parameter. It is used in validating the hypothesis 

used in this modelling. This parameter is calculated through J-Integral obtained by numerical 

simulations. It is not related to the measurement procedure using virtual extensometers. 
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Fig. 13: Definition of terms used for CTOD criterion Δδeff , Δδmax , ∆δt and ∆δth 

IV.1.2 ∆COD and ∆CTOD measurement 

In this section the real ΔCTOD measurements for 0.6mm specimens are described for a crack 

length of 4.8mm in a specimen of 0.6mm thickness. The specimen is tested at a maximum 

stress of 250MPa with a charge ratio of 0.1. Here five extensometers are placed separated by a 

distance of 200µm. The first extensometer is also placed at a distance of 200 µm from the crack 

tip. The Δδeff and Δδmax measurements are made from data as presented in the figure 4. These δ 

values measured for the five extensometers are then extrapolated by linear fitting up to the 

crack tip as shown in the figure 14. The extrapolation of Δδeff gives ∆δt and the extrapolation of 

Δδmax gives ∆δth. 

This procedure is further used to determine the ∆δt and ∆δth for the whole length of the crack 

during the crack propagation experiments. 
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Fig. 14: Estimation of  ∆δt and ∆δth with the help of Δδeff  and Δδmax respectively. The 

specimen is of 0.6mm thickness, tested at R=0.1 and 25°C 

IV.2 ∆δt and ∆δth for specimens under different conditions 

In this section are presented the CTOD values for specimens tested under conditions as given in 

table 3. The data presented is for the complete crack propagation from the start to the end of 

the experiment. 

Table 3: Experimental conditions for the ∆δt and ∆δth determination 

Thickness (e mm) Temperature R σmax (MPa) Figures 

0.6 20°C 
0.1 250 15, 16 
0.7 250 17,18 

0.6 600°C 0.1 250 19,2 

In each the graphs presented are as follows: 

1.   One extensometer reading to determine presence or absence of closure 

2. One graph presents ∆δt, ∆δth and ∆δcalc and their corresponding mathematical function 

along the length of the crack during propagation. 
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Fig 15. Crack closure detected by extensometer in a specimen of 0.6mm tested at R=0.1 at 25°C 

 

Fig 16. Evolution of  ∆δt, ∆δth and ∆δcalc with increase in crack length R=0.1 at 25°C 
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Fig 17. No crack closure in a specimen of 0.6mm tested at R=0.7, 25°C 

 
Fig 18. Evolution of  ∆δt, ∆δth and ∆δcalc with increase in crack length R=0.7 at 25°C 
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Fig 19. No crack closure in a  specimen of 0.6mm tested at R=0.1, 600°C 

 
Fig 20. Evolution of  ∆δt, ∆δth and ∆δcalc with increase in crack length R=0.1 at 600°C 
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0.6mm R=0.1 25°C specimen ΔCOD data is presented in the figures 15 and 16. The figure 15 is 

the virtual extensometer response during fatigue cycling. In this case the extensometer is 

placed 600µm behind the crack tip. The total crack length for this measurement is 4.8mm, 

which represents the end of the fatigue crack propagation (a/W ≤ 0.6). Crack closure is 

detected in this specimen throughout the fatigue experiment. The whole crack closure 

procedure is defined in the section II.1 of this chapter.  

The figure 16 gives the values of the crack tip opening displacements in this specimen for the 

full length of the crack during crack propagation. Due to crack closure there is a difference 

between the values of the ∆δt and ∆δth. The evolution of these quantities follows a linear law. 

The ∆δcalc is calculated using the elastic-plastic J values calculated by numerical simulation 

under the same test conditions. ∆δcalc shows smaller values as compared to the ∆δt and ∆δth 

especially for lower crack lengths. This is probably due to cyclic softening in the material which 

changes the material constants given in table 2. This phenomenon is further discussed in 

section V.3.1 of this chapter. 

0.6mm R=0.7 25°C specimen ΔCOD data is presented in the figures 17 and 18. The figure 17 is 

the virtual extensometer response during cycling. It is clear from the response that no 

discernible crack closure exists under these conditions. Due to absence of crack closure the ∆δt 

and ∆δth have the same value (figure 18). However as for test at R=0.1 25°C, the ∆δcalc also 

shows smaller values especially for lower crack lengths. 

0.6mm R=0.1 600°C specimen ΔCOD data is presented in the figure 19 and 20. The figure 19 is 

the virtual extensometer response during cycling at 600°C. The crack length taken here is 

4.05mm. This is because the experiment ends at this crack length at 600°C. From this response 

crack closure is not detected. As for tests at ambient temperature ∆δcalc is smaller than ∆δt and 

∆δth. The comparison of ∆δth and ∆δcalc for this test is similar to the test with the same loading 

conditions at 25°C.  

The absence of crack closure is confirmed by tests on specimens of 2.5mm and 0.6mm 

thickness specimens tested at different R ratios at 600°C as shown in chapter 4. There we can 

see that the variation in R has no effect on the FCGR curve. This is only possible if there were no 

shielding of the crack tip at R=0.1 or no crack closure. The absence of crack closure may be due 

to greater cyclic softening in specimens tested at 600°C. The cyclic softening is known to reduce 

the effect of crack closure. 

IV.3 Calculation of FCGR criterion based on ∆δt and ∆δth 

The interest of using the ∆δt or ∆δth as damage parameters is that they are measured on the 

specimen. They are dependent on material properties and also reflect any changes in the 
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material properties during experimentation. According to equation 10 above, an FCGR criterion 

based on the J – Integral is defined as [17, 18]: 

LFLh  �  �� ��∆�klk'�
���
 (10) 

In this equation the ∆Jcycl may be replaced by the ∆��  as defined in the equation 27. The Young’s 

modulus used is for plane stress. Thus the equation 10 becomes: LFLh  �  �� ��∆���$��
 (29) 

The �∆��� parameter is especially adapted for the high temperature fatigue crack growth; however it 

approaches the KI values for materials tested at ambient temperature or small scale yielding condition. 

Its use has the added advantage that the tests carried out at high temperature may be compared 

directly with those carried out at ambient temperature. 

The specimens showing crack closure have different values for ∆δt or ∆δth. Both of them were tested to 

find the FCGR criterion that gives the best data consolidation. It is observed practically that the ∆δth gives 

better data consolidation for FCGR curves at different values of R. An added advantage of using ∆δth is 

the simplicity in its use and calculations, because crack closure is not taken into account, and an R 

independent criterion may be defined. Equation 29 thus will be modified to: 

LFLh  �  �� ��∆�����$��
 (30) 

In addition to the criterion in equation 30, the FCGR curves may be obtained by using the ∆���� directly. 

This is especially adapted when large scale plasticity exists. In this case the crack propagation law takes 

the form: LFLh  �  �%j∆����n�§
 

(31) 

IV.3.1 Application of �∆¨©ª«¬ and ∆¨©ª« on specimens tested at 25°C at R = 0.1 and 0.7 

The evolution of �∆����� measured by using ∆δth for two conditions of crack propagation of R 

= 0.1 and 0.7 are compared in the figure 21. As expected the values of the �∆����� are higher 

for the specimen tested at R = 0.1.  

The FCGR curves based on this criterion are plotted in the figure 22. Here we can see that the 

curves are completely superposed. Also the effect of multiple slopes seen while using ∆K 

(section I.1 figure 6) has completely disappeared for the specimen tested at R = 0.1. One should 

take care however in the interpretation of this data, since we know that crack closure exists, 

but when applying this criterion the data is only consolidated if this crack closure is neglected.  
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Fig 21. Evolution of �∆����� with increase in crack length for different R 

 

Fig 22. �∆����� as a FCGR parameter at R = 0.7 and 0.1 in a 0.6mm specimen at 25°C 
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Since the Young’s modulus is the same for the two specimens, the FCGR curves as a function of 

the crack driving force parameter ∆����  will also be parallel as for figure 22. The comparison is 

presented in figure 23. 

 

Fig 23. ∆����  as a FCGR parameter at R = 0.7 and 0.1 in a 0.6mm specimen at 25°C 

IV.3.2 Comparison of  �∆¨©ª«¬ and ∆¨©ª« FCGR curve at 600°C and 25°C tested at R = 0.1 

The use of the ∆δt or ∆δth has the advantage of reflecting any changes in the material 

properties, since they are measured directly on the specimen being tested. The �∆����� 

parameter values at same loading conditions and different temperatures are shown in the 

figure 24. 
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Fig 24. Evolution of �∆����� with increase in crack length for different 25°C and 600°C at R = 0.1 
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Fig 25. �∆����� as a FCGR parameter at R = 0.1 in a 0.6mm specimen at 25°C and 600°C 

 

Fig 26. ∆����  as a FCGR parameter at R = 0.1 in a 0.6mm specimen at 25°C and 600°C 
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IV.3.3 Use of  �∆¨©ª«¬ and ∆¨©ª« as an R independent FCGR criterion 

We have presented in equation 27 above an R independent criterion of fatigue crack 

propagation based on the ∆δth parameter. The validity of this criterion is explored in this 

section.   

∆��  �  
1 / ����% � � ��∆��L�
1 / �%�� (27) 

For simplicity of calculations, it was decided to use FCGR data under such experimental 

conditions for which no crack closure is observed. It was also decided to use the criterion 

calculated for 0.6mm specimens directly on specimens of 2.5mm thickness. The temperature 

chosen is 600°C because of an absence of crack closure in a test of R=0.1. The FCGR curves for 

∆K are reproduced in figure 27. The specimens are 2.5mm thickness specimens tested at 600°C 

at R = 0.1 and 0.5.  

 
Fig 27. Effect of R ratio on fatigue crack propagation at 600°C ∆	 

Some observations about these FCGR curves can be made here. The two curves are 
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To validate the criterion presented in the equation 27, one should be able to find the crack 

propagation law for R = 0.1, then be able to apply it on the specimen tested at R = 0.5 and find 

the same superposed FCGR curves. This is demonstrated in the equation below: 

∆��  �  
1 / ����% � � ��∆��L�
1 / �%�� 
(27) 

� �  0.1 

����  �  0.5 or 0.1 

��  �  600 ­�F 

L�  �  0.5 

 

Now for R = 0.1 the equation 27 has been determined to be:  

∆�®¯�.��  �  ���∆��L� � 
1 / 0.1%�
1 / 0.1%�  
�  �6000.5 � 
0.0021F 6 1.5292� ° 10�±  �/T% 

(32) 

Where, “a” is the crack length. The equation 32 can be used to interpret the FCGR criterion for 

the specimen tested at R = 0.5: 

∆�®¯�.²�  �  ���∆��L� � 
1 / 0.5%�
1 / 0.1%�  
�  �6000.5 � ° 0.758 ° 
0.0021F 6 1.5292� ° 10�±  �/T% 

(33) 

From the equations 32 and 33 the FCGR curves may be plotted using the �∆����� or ∆����  

parameter. Both of these parameters will give the same FCGR characteristics because the two 

specimens have been tested at the same temperature and the value of the young’s modulus is 

constant. For simplicity of comparison of units with figure 27, the comparison is presented for 

the �∆����� in figure 28. 
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Fig 28. Effect of R ratio on fatigue crack propagation at 600°C �∆����� 

From figure 28 we can see that the definition of ∆��  as presented in equation 27 is able to 

reproduce the FCGR curve characteristics of two experiments carried out at different R values. 

The FCGR curves in figure 28 are superposed as for the parameter ∆K. One thing interesting to 
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dependent on R2. The source of this difference is explained in the section II of this chapter. 
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V. CRITICAL  ANALYSIS  OF THE CRACK  DRIVING  FORCE MODELS 

All the crack driving force models presented above may have some limitations. The limitations 

may be related but not limited to  

� The physical phenomena associated with the fatigue crack driving force 

� Mathematical justifications of the model 

� Assumptions or hypotheses made in the definition of the crack driving force parameter 

� Material properties 

� Utilisation of monotonic damage criteria on cyclic loading 

V.1 Rationalisation of R ratio: �v
  �  
�³´µ�¶
∆��·�¶ 

There are certain physical and practical limitations associated with this model. This model uses 

an empirical mathematical adjustment to rationalise the FCGR data. Its physical interpretation 

is somewhat vague. The model assumes that the fatigue damage is a function of ∆K and Kmax. It 

however, presents no real physical proof to this effect. The fact that the FCGR may be a 

function of the average stress intensity factor Kav is also a possibility, not explicitly defined in 

the model.  

The model presents no real reference curve to which the data will collapse. FCGR data of 

different charge ratios is displaced by a factor proportional to α towards the left (lower K value) 

with respect to a simple ∆K based FCGR curve. The curves at different charge ratios will be 

displaced in the same direction, by different amounts to achieve superposition. 

The model may represent false results for cases where there is no effect. For example: α is 

calculated as a unique value using FCGR data for R = 0.1 and 0.7. The material tested shows no 

crack closure for R ≥ 0.3. Thus all FCGR curves for R ≥ 0.3 will coincide on a Paris curve based on 

simple ∆K. The correction applied by 	v
 will make these curves non coincident and in some 

cases the FCG rate for lower R ratios will be higher than for higher R ratios (inverse R effect). 

This effect has been found to be very low because of low α values of this material and the 	v
 

model in general gives satisfactory results. 

V.2 J-Integral as a damage parameter. 

The J-integral Rice[16] on its own has been developed by assuming a non linear elastic material. 

This causes problems because the unloading of this material has to follow the same path as the 

loading curve. This is not the case because real metallic materials most often show an elastic-

plastic behaviour, which while unloading simply follows a linear elastic path. Thus the definition 

of the cyclic J integral presents difficulties and is ambiguous. Chow[7] has performed a detail 

critical analysis of the cyclic J – integral, the use of which, for fatigue, was first proposed by 
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Dowling[6]. The main problem with the definition of the cyclic J – Integral arises when it is 

compared to the stress intensity factor for small scale yielding conditions. For a specific case of 

fatigue crack propagation when a material is cycled between σmax and σmin, the stress intensity 

factor range ∆K is given by: 

∆	 �  
���� / �����√=. F. [
F/Z�       (34) 

The cyclic J-Integral may be presented as the difference of the monotonic J value at σmax and 

σmin, which we will call Jmax and Jmin respectively: 

∆� �  
���� / �����          (35) 

However for SSY conditions Suresh[1]: 

� �  	%/�           (36) 

Now the cyclic J-Integral may be defined as either: 

 ∆�klk'  �  
∆	�%/� �  
	��� / 	����%/�      (37) 

Or, 
 ∆� �  ∆
	�%/� �  
	���% / 	���% �/�       (38) 
 
Where,  
 
	���% / 	���% �  ¸  
	��� / 	����%        (39) 

 
This difference presents difficulties in the operational definition of the cyclic J integral. 

According to the Griffith energy balance [24] reviewed by Chow[7], the crack driving force is the 

forward loading part of the cycle represented by ∆J in equation 38. 

In this study the stress intensity factor range has been calculated by calculating the Kmax from 

Jmax using ����  �  	���% /� and the simple LEFM relation ∆	 �  
1 / ��	���. Jmin has not 

been explicitly calculated but assumed to be a linear function of applied σ as is the case in the 

LEFM problems. This calculation strategy gives a solution best represented by equation 38. 

However, ∆Jº is determined using Δδ and may be considered representative of ∆�klk'. 
The same problem arises when using the ΔCTOD criterion as a parameter linearly proportional 

to loading. Since ��  �  L�
� ��⁄ � shows a linear relationship of δt with J, the same cannot be 

true for K, since K has a quadratic proportionality to J. Due to these difference care must be 
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taken while making calculations of ΔCTOD, K and J especially, when they are being used as 

comparative fatigue crack driving force parameters. 

V.3 Cyclic J – Integral calculated using ©ª  �  »¼
¨ ½¾⁄ � as a damage parameter 

V.3.1 Material properties 

The basic expression ��  �  L�
� ��⁄ � [19] is defined for monotonic loading of a cracked 

specimen. In this study we have used ∆δt in lieu of the monotonic δt. This presents two 

problems. One is the same as explained in the previous paragraph that by definition it is not 

linearly proportional to loading, whereas practically it is seen to be linearly variable with 

respect to applied load.  

The other issue is that the material used for the study follows a power law hardening behaviour 

under monotonic tensile stress, and thus can be easily characterised by  

 U�  �  } � ������� �� (11) 

 

Where n and α represent monotonic material properties. The material used however shows 

cyclic softening under LCF tests figure 29. Thus in reality the cyclic plastic zone will have a lower 

σ0
c and nc as compared to the monotonic set of these material properties. Also these cyclic 

material constants will be dependent on the number of cycles and the magnitude of the plastic 

deformation seen in the cyclic plastic zone. This will in general give larger ΔCTOD values as 

compared to the ones determined by numerical analyses.  This effect is shown schematically in 

figure 30. The softening is much more pronounced at higher temperatures. 

V.3.2 Large scale yielding in front of crack tip 

The expression of J Integral has been found to be valid and path independent in large scale 

yielding conditions for the unique case of Dugdale type thin strip yielding [7-9] even though the 

non linear elastic material assumption is invalidated. However this path independence has been 

studied extensively by Shih[19], McMeeking and Parks[25], Shih et al.[26], Shih and German[27] 

on centre cracked panels CCP, edge cracked panels ECP and cracked bend bars CBB. They have 

determined that the region dominated by the singularity fields (equation 14) is dependent on 

specimen geometry and material hardening behaviour. They have concluded that the size of 

HRR (equation 14) is greater for the CBB than for CCP. The dominating region for ECP (used in 

this study) lies in between the two. They suggest that the relationship between J and δt as 

expressed by equations 16 and 17 will continue to hold for hardening materials where the un 
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cracked ligament (under generalised plasticity) is subjected primarily to bending and may not 

be valid for ligaments under primarily tensile loading. 

 
Fig. 29: Cyclic softening under imposed deformation isothermal LCF testing. The cyclic plastic 

zone may lie on any part of the curve (grey spots) 

 

 
 
 

Fig 30: Variation of material constants with respect to the monotonic and cyclic plastic zone at 

the crack tip 
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Shih[28] has also presented the analysis of fully plastic edge cracked specimens where it is 

suggested that a deep crack in an edge cracked plate may give an important HRR dominant 

zone due to an important component of bending stresses. However the fact that the specimen 

in our experiments is fixed grip type, which may increase the tensile component of the crack tip 

stresses thus reducing the HRR dominant field.  

 

Care must thus be taken when using the J and δt relations (equations 16 and 17) in fatigue crack 

propagation experiments in SENT specimens especially at elevated temperatures. At elevated 

temperatures the hardening exponent becomes low and there is a larger possibility of a 

generalised plastic deformation. 
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VI. CONCLUSION 

In this section the different models for fatigue crack propagation developed during the research 

work are presented. Most of the models are developed to be able to consolidate the FCGR 

curve obtained at different experimental conditions. Of interest are the variations in the charge 

ratio, and the effects of temperature.  

A model for the consolidation of the effects of the charge ratio R is presented. The model is 

mostly empirical in nature based on mathematical consolidation of FCGR curves by considering 

the fatigue crack propagation as a function of a two parameter law based on Kmax and K. 

The use of the J-Integral [4] for fatigue crack propagation is presented. The J-Integral may be 

determined using measured ΔCTOD (Δδt) values by optical observation of the crack faces during 

fatigue crack propagation experiments. Most of the parameters and the methodology used are 

discussed. The parameters defined are then used to create the FCGR curves and make 

comparisons. It is found that the use of ΔCTOD as an FCGR crack driving force parameter is 

interesting and presents an R independent alternative to the simulated ∆K parameter. 

In the last section a critical analyses of all the proposed models is presented. All the models 

stated above are based on certain hypotheses and assumptions which may render them 

inaccurate in certain conditions. The problems have been discussed in the light of a detailed 

literature review based mostly on the works of Shih[19]. In spite of all the probable pitfalls 

associated with using these relations for fatigue loading it is shown that they may provide a 

good FCGR criterion. This has been confirmed mostly by experimental results of this study. 
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RESUME EN FRANÇAIS 

Dans ce chapitre, un bref résumé de la stratégie poursuivie dans cette étude est donné. Ensuite, 

un rappel des principaux résultats obtenus est présenté. Quelques suggestions sont données 

pour les futurs travaux à la fin du document. 

A. RESUME 

Le travail réalisé est une contribution à la caractérisation de l’endommagement d'un acier à 

outils pour travailler à chaud « X38CrMoV5-47HRC ». Cette nuance a fait l’objet de nombreuses 

études menées dans le laboratoire. Toutefois, il s'agit de la première étude systématique sur la 

propagation de fissure de fatigue. La stratégie de la recherche se focalise sur la caractérisation 

de l'endommagement de la surface. Les cinq principales étapes suivies sont : 

� Présentation d'une méthode de détermination de l’endommagement des surfaces des 

outillages. Il a été proposé que la propagation de fissure en fatigue dans des 

échantillons minces, ce qui représente la surface d'un outillage, soit comparée à celle 

déterminée à partir des échantillons massifs. Différentes conditions d’essais ont été 

réalisées pour déterminer une gamme complète des effets de l'épaisseur qui peuvent 

exister ; 

� Un banc d'essai capable de tester des échantillons minces a été installé. Il se compose 

d'une machine d'essai universelle de capacité de chargement en fatigue à des 

fréquences élevées. Les échantillons sont testés à différentes températures. Le système 

de chauffage utilise l’induction à fréquence élevée. Les lignes d’amarrages ont été 

conçues et fabriquées dans le laboratoire pour réaliser des essais aux températures 

élevées ;  

� Les données expérimentales ne peuvent êtres utilisées de façon fiable qu’avec un 

paramètre d’endommagement pertinent. Classiquement, les données de propagation 

de fissures en fatigue sont représentées en fonction du facteur d'intensité de contrainte 

(FIS). Ici, le FIS et l’intégrale J ont été calculés numériquement à l’aide du logiciel 

ABAQUS/StandardTM. Les conditions aux limites et les erreurs liées à l'installation des 

échantillons ainsi que les effets de la température ont été étudiés pour déterminer les 

bonnes valeurs du FIS et de l’intégral J ; 

� Une série d’essais de propagation de fissure en fatigue a été effectuée. Différentes 

conditions de chargement et température ont été utilisées pour étudier la propagation 

de fissure en fatigue ; 

� Différentes méthodes de consolidation des données de propagation de fissure ont été 

étudiées. L'effet du rapport de charge R à l’ambiante a été corrigé en utilisant la 

fermeture de fissure proposée par Elber. Les courbes de propagation déterminées à 20 
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et 600 °C ont été analysées en utilisant le critère de déplacement de l'ouverture en 

pointe de fissure qui est obtenue par des techniques de corrélation d’images. 

B. PRINCIPAUX RESULTATS OBTENUS 

Des simulations numériques sur des échantillons fissurés ont été réalisées au préalable dans le 

chapitre 3. Elles démontrent que le paramètre d’endommagement de fissure en fatigue ΔK 

dépend fortement des conditions aux limites ainsi que de la géométrie de l'éprouvette. Il a été 

démontré également, que l’usage de la condition aux limites basée sur le déplacement imposé 

simule les conditions d'essai de manière plus réaliste. La validité de ces conditions a également 

été vérifiée par rapport aux travaux de littérature. Il a été déterminé que le ΔK est fortement 

dépendant de la géométrie (rapport entre la hauteur et la largeur ou H/W). La structure des 

échantillons (profil en haltère) pose quelques difficultés pour déterminer le bon rapport H/W. 

Dans le cas étudié, on a déterminé que la longueur de l’épaulement d'échantillon en dehors de 

la zone utile doit être pris en compte dans la sélection de la hauteur H. Le problème lié au 

rapport H/W peut également être résolu en réalisant des simulations numériques pour chacune 

des formes d’éprouvette. 

L'installation des échantillons varie d'un essai à l'autre, et peut parfois changer au cours du 

même essai. Cette variation est potentiellement problématique car le ΔK dépend du rapport 

H/W. L’effet de cette différence (entre les positions des mors) sur la valeur ΔK demeure 

toutefois insignifiant en raison de la rigidité des extrémités de l’échantillon. 

La simulation numérique par le logiciel ABAQUS/StandardTM a permis d’autre part, de 

déterminer les valeurs de l’intégral J en se basant sur et les modèles élastique et élasto-

plastique. Les deux modèles donnent des valeurs identiques de J à T = 20 °C en raison de la 

limite d'élasticité élevée du matériau à cette température. Les valeurs de J calculées à 600 °C 

sont toutefois différentes. Un critère de propagation de fissure ¿��. � est utilisé afin de 

rationaliser les courbes de propagation pour les différentes températures. En effet, le ΔK est un 

paramètre qui correspond au concept de la mécanique de la rupture linéaire élastique. 

L’utilisation de ce paramètre est alors compromise quand on est en conditions de plasticité 

généralisée en pointe de fissure car il perd son sens physique. 

Après avoir déterminé les ΔK et ¿��. �, nous avons procédé à la réalisation des essais de 

propagation qui sont décrits au chapitre 4. Comme nous l’avions indiqué précédemment, ces 

expériences sont indispensables dans l’approche développée pour caractériser 

l'endommagement de la surface des outillages, car ils permettent d’établir les courbes de 

propagation de fissure pour l’X38CrMoV5 à 47HRC. Les essais ont été réalisés dans différentes 

conditions. Les paramètres étudiés sont : 
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1) l’épaisseur d’éprouvette (0.12 – 2.5 mm),  

2) le rapport de charge R (0.1, 0.3 et 0.7), 

3) la température (T = 20 et 600 °C). 

Il a été montré qu’à l’ambiante, la vitesse de propagation des fissures en fatigue (FCGR) 

augmente légèrement avec l’augmentation du rapport de charge R. Cet effet a été observé 

dans le cas des éprouvettes  d’épaisseur différentes. Il est lié à la fermeture de fissure pour un 

rapport de charge égal à 0,1. Cet effet a été mis en évidence en utilisant les techniques de 

corrélation d'images qui ont permis de déterminer le déplacement de l’ouverture en pointe de 

fissure. Le seuil de propagation n'a jamais été établi dans le cas des essais effectués à la 

température ambiante. 

Les fissures ne sont jamais complètement fermées dans le cas des essais qui sont réalisés avec 

un R = 0,7. L’effet du rapport de charge à T = 600 °C est observé plutôt dans le domaine des 

faibles vitesses de propagation où les valeurs du seuil de propagation diminuent avec 

l’augmentation de R. La fermeture de fissure (pas encore démontré) peut être à l’origine de ce 

décalage. Cependant, dans le domaine de Paris, le rapport de charge n’a pas d’effet sur la 

propagation. Cela peut être lié à la non-fermeture de la fissure. Ce comportement est à 

l’opposé des observations réalisées dans le cas des essais à chaud, car l’oxyde formé sur les 

faciès de rupture remplit la fissure et contribue donc à la fermeture de la fissure. De ce fait, 

l'absence de la fermeture de fissure à 600 ° C peut être attribuée à l'effet de l’adoucissement 

cyclique. L’adoucissement en pointe de fissure élargit en effet la zone de propagation de fissure 

par rapport à la longueur de fissure. Par conséquent, ce cas peut être assimilé aux conditions 

des fissures courtes où la zone plastique est non négligeable par rapport à la longueur de 

fissure. 

L'effet de l'épaisseur a les mêmes tendances quelle que soit la température. La réduction de 

l'épaisseur entraîne une diminution de la vitesse de propagation de la fissure. À la température 

ambiante, l’épaisseur n’a pas d’effet sur la propagation en dessous de 0.6 mm. Deux effets 

d’épaisseur ont été distingués à 600 °C ; il y a eu d’une part, une augmentation des valeurs du 

seuil de propagation lorsqu’on diminue l’épaisseur de l’éprouvette. Cette effet est 

probablement dû à la fermeture de fissure qui augmente à cause de la création d'une large 

zone plastique dans le cas des échantillons plus minces. D’autre part, il y a une légère 

diminution de la vitesse de propagation de fissure dans le domaine de Paris. On note également 

que les valeurs du seuil à 600°C sont beaucoup plus grandes qu’à la température ambiante. 

Cela peut aussi être lié à la formation d'une zone plastique très large devant la pointe de fissure 

qui entraîne l'arrêt de la fissure (voir annexe C). Cet effet a été démontré expérimentalement et 

nous avons pu observer l’arrêt de la fissure lorsque la température de l’essai a été élevée. 
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Nous avons tenté dans le chapitre 5, de rationaliser les différentes courbes de propagation 

déterminées par les différents essais. De nombreuses stratégies ont été testées. La première 

consiste à utiliser le facteur d’intensité de contrainte effective ΔKeff en corrigeant l’effet de la 

fermeture de fissure dans le cas de l’éprouvette de 0,6 mm d'épaisseur testé avec R = 0,1. 

L’utilisation de Keff conduit à la superposition des courbes de propagation pour R = 0,1 et 0,7. La 

deuxième procédure est purement mathématique et est tirée des travaux de Kujawski et al. La 

loi de propagation est exprimée dans ce cas là, en fonction de Kmax et de ΔK. Une fonction de 

poids est introduite pour rendre compte des effets de R et se distinguer de la loi de Paris. LFLh � g. �∆	� . 	���
����$�
 

où α est la fonction de poids déterminée directement à partir des courbes expérimentales de la 

propagation de fissure. 

Une autre approche basée sur l'ouverture de fissure ΔCTOD a été utilisée pour tenir compte des 

effets de la température sur la propagation par fatigue. Les valeurs de l’intégrale J ont été 

estimées à partir des valeurs ΔCTOD qui sont déterminées par la méthode de corrélation 

d'images. Il a été démontré que l'intégrale J calculée à partir de ΔCTOD donne une bonne 

corrélation entre les courbes de propagation établies à différentes températures. Cette 

approche a permis également de rationaliser les courbes de propagation pour les différentes 

valeurs de R tout en ignorant l’effet de la fermeture de fissure. 

Nous avons développé à partir des approches précédentes, un modèle indépendant de R mais 

utilisant le critère ΔCTOD. L’analyse critique des différents modèles utilisés a permis de discuter 

la validité de chaque critère de propagation. 

C. PERSPECTIVES 

Quelques suggestions sont présentées dans ce paragraphe en perspective.  

Techniques expérimentales: Des possibilités d'amélioration ont été constatées dans les 

techniques de mesure utilisées dans les expériences. Nous avons utilisé un microscope à longue 

porté pour toutes les observations et les mesures de la longueur de la fissure. La mesure de la 

longueur de la fissure peut être améliorée en utilisant la technique de chute de potentiel en 

complément de la microscopie. Cela sera particulièrement utile pour déterminer la propagation 

de fissure par fatigue à des températures transitoires ou à des positions d'arrêt de la fissure, 

par exemple, chauffage pendant la propagation de fissure en fatigue. 

Toutes les images sont stockées dans un film magnétique, qui est ensuite converti en images en 

utilisant un logiciel iMovie®. Des caméras vidéo rapides de résolution supérieure sont 

disponibles ces jours-ci. Elles permettent d’améliorer la précision de mesure ΔCTOD. Aussi 
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l'utilisation des caméras numériques avec enregistrement d’images de haute qualité au lieu de 

la vidéo peut également être avantageux notamment dans la détermination de la déformation 

plastique en pointe de la fissure. 

Le chauffage et le signal de force peuvent êtres synchronisés pour réaliser des expériences de 

fatigue thermomécanique TMF. En réalité, la plupart des aciers de mise en forme à chaud sont 

utilisés dans des conditions TMF et rarement dans des conditions isothermes. 

D'autres essais doivent êtres réalisés à des températures intermédiaires afin de déterminer 

l'effet de la température dans les domaines du seuil de propagation et de Paris. Des essais à des 

températures élevées pour déterminer le KC doivent êtres également effectués. 

L'effet de l'oxydation sur la vitesse de propagation de fissure en fatigue peut être établi. Pour ce 

faire, des éprouvettes d’épaisseur plus fin doivent êtres testées. 

Simulations numériques: Toutes les simulations effectuées, ainsi que les modèles de matériaux 

utilisés sont monotones. En effet, les paramètres des modèles utilisés dans la simulation ont 

été déterminés à partir des essais de traction monotone à différentes températures. Les valeurs 

de l’intégrale J ont été également déterminées pour les conditions de chargement monotone. 

Les résultats seront plus pertinents en considérant les conditions cycliques. Par ailleurs, les 

valeurs de ΔCTOD calculées numériquement et déterminées expérimentalement doivent être 

comparées. Leur comparaison pourrait être utilisée comme un critère pour la validation des 

simulations numériques. 

Modélisation: De même, la considération des conditions de chargements cycliques peut 

s’étendre aux cas de la modélisation de la propagation de fissure (modèle utilisant le critère 

ΔCTOD). Cela peut en effet réduire l’écart entre les valeurs du ΔCTOD calculé numériquement 

et celles obtenues par la corrélation d'images. 
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In this chapter a short résumé of the strategy followed in this study is given followed by a brief 

recall of the principal results obtained. In the end some suggestions are given for future work 

on this subject. 

I.  RESUME 

The work carried out is a contribution to the characterisation of the damage behaviour of a hot 

work tool steel X38CrMoV5-47HRC. Other studies have already been carried out on this 

material in the laboratory. However, this is the first systematic study carried out to determine 

the fatigue crack propagation characteristics of this material at different temperatures. The 

strategy of research follows the need to characterise the surface damage of tools steels. There 

are five principal stages followed during this thesis: 

� Presentation of a method of determining surface damage of tool steels. It was 

proposed that the fatigue crack propagation characteristics in thin specimens, 

representing the surface of a tool, be compared with those of bulk material specimens. 

Different conditions of tests are used to determine the full range of thickness effects 

that may exist. 

� A test bench capable of testing thin specimens was setup. It consists of a universal 

testing machine with a capacity of high speed fatigue testing. The specimens are tested 

at different temperatures. The heating system consists of high frequency induction 

heating. Special grips made of IN 718 and IN 100 were designed in house and fabricated 

to be used with these specimens. 

� Experimental data can be reliably used only when there is a proper characterisation 

criterion available. Classically the fatigue crack propagation data is presented as a 

function of the stress intensity factor (SIF). Here, SIF and the J-Integral were determined 

using numerical simulations using the ABAQUS®/Standard software package. Different 

end conditions, imposed by the machine and errors in specimen installation and effects 

of temperature were extensively studied to determine the right values for fatigue crack 

propagation experiments. 

� A series of fatigue crack propagation experiments was carried out. Different conditions 

of loading and temperature are imposed to fully characterise the FCGR behaviour. 

� Different methods of consolidation of the FCGR data are established. The effect of load 

ratio R at ambient temperature was corrected using the classic crack closure correction 

of Elber. An attempt was made to consolidate the FCGR curves of the specimens tested 

at ambient temperature and at 600°C by using the Crack Tip Opening Displacement 

obtained by data correlation techniques. 
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II.  PRINCIPAL RESULTS OBTAINED  

Before carrying out any experiments on the specimens, numerical simulations of the cracked 

specimens are performed in chapter 3. It was determined that the fatigue crack driving force ΔK 

is strongly dependant on the end conditions imposed during simulation and the specimen 

geometry. It was determined that the use of fixed displacement boundary condition closely 

simulates the real test conditions. The validity of this conditions was also verified by comparing 

to work carried out by other researchers. It was also determined that the fatigue crack driving 

force is strongly dependent on the geometric parameter: height to width ratio or H/W. The 

structure of the specimens (dog bone profile) presents some difficulties in determining the 

correct H/W ratio. In the case studied here, it was determined that the shoulders of the 

specimen outside the gauge length should be included when selecting the height of the 

specimen. The other solution to the H/W problem is to carry out numerical simulations 

separately for every form of specimen. 

From a practical standpoint, the specimen installation varies from one experiment to another, 

and it may vary during the test as well if ever the specimen is dismounted from the machine. 

Since ΔK seems to be dependent on the H/W ratio, this variation may cause some problems. It 

was shown that in reality this difference in grip position does not have an adverse effect on the 

ΔK values mainly because of the rigidity of the specimen ends.  

The numerical simulation performed in ABAQUS/Standard gives us values of the J-integral. It 

was determined that for specimens tested at ambient temperature the J-integral has the same 

values for elastic or elastic-plastic material models due to the high yield limit of this material. At 

600°C however, there is a large difference between the elastic and elastic-plastic material 

models. A different crack driving force parameter ¿��. � is introduced for comparison with the 

specimens at ambient temperature. The need for a new parameter arises from the fact that ΔK 

is a linear elastic fracture mechanics parameter and loses physical sense when there is 

generalised plasticity in front of the crack tip. 

Having determined the crack driving force parameters ΔK and ¿��. � , fatigue crack growth 

experiments were carried out, described in chapter 4. Here it may be recalled that the main 

goal of the experiments was to determine a way to characterise the surface damage of hot 

work tool steels as well as to establish the fatigue crack propagation curves of X38CrMoV5-

47HRC. For this purpose the specimens are tested at different experimental conditions. The 

parameters varied for the experimentation were the 1) Thickness of the specimens (0.12 – 

2.5mm), 2) Load ratio R and 3) The testing temperature. 

We have established that at ambient temperature the fatigue crack propagation rate (FCGR) 

increases slightly with a corresponding increase in the load ratio. This effect is seen in all the 
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different thicknesses tested. The effect is due to crack closure at R = 0.1. This effect was 

demonstrated using the image correlation techniques while determining the crack tip opening 

displacement. No discernible threshold ΔK was ever established in the experiments performed 

in the laboratory at ambient temperature.  

Crack closure is completely absent in specimens tested at R = 0.7. At 600°C there seems to be 

no effect of the R ratio in the Paris zone of propagation. However, the threshold values seem to 

decrease with an increase in the R ratio. This effect may be due to crack closure but we have 

not yet been able to demonstrate this crack closure at the near threshold ΔK. No crack closure 

was observed in specimens tested at 600°C, in the Paris regime. This seems to be in accordance 

to the absence of the effect of R at 600°C. This behaviour is contrary to normal observations of 

high temperature FCG testing. The creating of oxides at the crack faces would normally increase 

the crack closure. In this case the absence of crack closure at 600°C may be attributed to the 

effect of stronger cyclic softening of the material in reducing the crack closure phenomenon at 

elevated temperatures. This changes the small scale yielding situation and extends the plastic 

zone with respect to the crack length. It can be claimed that under these conditions we are 

approaching the same conditions as short cracks where the plastic zone is non negligible as 

compared to the crack length.  

The effect of thickness is found to have the same tendencies at ambient and elevated 

temperatures. A decrease in the thickness causes a decrease in the crack propagation rate. At 

ambient temperatures it seems that below 0.6mm thickness there is no effect of thickness. At 

600°C however the effect of thickness is twofold. Reduction in thickness causes an increase in 

the threshold values. This may be due to increased crack closure because of a larger plastic 

zone in the thinner specimens. There is a very slight reduction in FCGR in the stable propagation 

zone. One thing to be noted is that the threshold values at 600°C are much greater than the 

ambient temperatures. We believe this is due to the creation of a very large plastic zone in 

front of the crack tip at 600°C which causes crack arrest (see appendix C). This effect was 

demonstrated by a special FCGR test done under slowly increasing temperature. 

With all the different effects of the variation in experimental conditions on FCGR, an attempt 

was made to consolidate all the different data onto a single curve in chapter 5. Different 

strategies were adopted for this purpose. The first is to use the effective stress intensity factor 

or ΔKeff by correcting for crack closure in a specimen of 0.6mm thickness tested at R = 0.1. The 

results show that by correcting for crack closure, the curves of the two experiments i.e., R = 0.1 

and 0.7 collapse onto the same path. The second procedure is purely mathematical and is taken 

from the works of Kujawski et al. [1] The FCGR is considered in this case to be a function of Kmax 

and ΔK. A weight function is introduced to take into account the effects of the load ratio giving 

the Paris law the form: 
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Where α is the weight function determined directly from experimental FCGR curves. 

An approach based on the Crack Tip Opening Displacement or ΔCTOD criterion was used for the 

effect of temperature on FCGR. J-Integral values were estimated from the ΔCTOD values. The 

ΔCTOD itself was determined by image correlation at ambient temperature as well as at 600°C. 

It was demonstrated that the J-integral calculated through ΔCTOD provides good correlation 

between the experiments carried out at different temperatures. It has also proved to be of use 

in consolidating the experiments at different R values, without taking into account the crack 

closure phenomenon.  

In the end some mathematical development is presented and subsequently applied on FCGR 

curves of an R independent fatigue crack propagation criterion based on the ΔCTOD. A critical 

analysis of all the FCGR criteria and correction used therein is also presented to discuss the 

assumptions made in determining these criteria and the possible problems that may arise due 

to their use. 

III.  FUTURE PERSPECTIVES 

Some suggestions are presented here for the possible line of research or improvement in the 

methodology followed in this work. 

Experimental techniques: Some room for improvement has been found in the measurement 

techniques used in the experiments. We have used a long distance microscope for all the 

observations and the crack length calculations. Improvements may be made in the crack length 

calculations by using the potential drop technique in addition to the microscope. This will be 

especially useful in determining the FCGR at transient temperatures or at positions of crack 

arrest, e.g. heating during fatigue crack growth.  

All the images are stored in on analogue film, which is then converted to images using software. 

Higher video speed and resolution cameras are available these days, which may greatly improve 

the ΔCTOD measurement accuracy. Also the use of digital cameras, saving high quality images 

instead of video may also be used to determine the plastic deformation ahead of the crack tip. 

The machine heating and force signals may be synchronised, in order to be able to do TMF 

experiments. In reality most of these tools steels are used under TMF conditions and rarely 

under isothermal conditions. 
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Further experiments need to be carried out at intermediate temperatures to determine the 

effect of temperature on threshold as well stable fatigue crack growth. Experiments for Kc 

determination at elevated temperatures should also be performed. 

The effect of oxidation may be established on fatigue crack growth rate. For this specimens of 

even lesser thickness may be used with experiments carried out at low frequencies. 

Numerical simulations: All the simulations carried out as well as the material models used are 

monotonic. That means that the tensile test data used is obtained by monotonic tensile tests at 

different temperatures. The J-integral values obtained are also under monotonic tensile loads. 

All of these results will be more pertinent if they are obtained under cyclic conditions as for the 

experimental conditions. In addition to that the ΔCTOD values obtained by numerical 

simulations and by experimental conditions should be compared. Their proper correlation could 

be used as a criterion for validation of the numerical simulations. 

Modelling: The same comment regarding the use of cyclic properties made in the numerical 

simulation section may be used in the FCGR modelling and data consolidation techniques. All 

the material properties for ΔCTOD and J-Integral based criteria follows the monotonic tensile 

tests. Cyclic properties may for example reduce the difference between ΔCTOD calculated 

numerically and that obtained by image correlation. 

 



Appendices 

 

183 
 

Appendices 
Appendix A : Thermal Gradient In Specimens ................................................. 185 

Appendix B : Supplementary Paris Curves ....................................................... 187 

I. Comparison of Paris curves of different specimen configurations SE(T)C and C(T) at R = 0.1 ......... 187 
II. Study of the effect of crack front oxidation on fatigue crack propagation ................................... 188 
III. Effect of multicracking ............................................................................................................. 189 

Appendix C : Temperature Dependent Evolution of Crack Tip Plastic Zone ...... 191 

Appendix D : Procedure of Kc Determination .................................................. 193 

Appendix E : ΔCOD Measurements ................................................................. 195 

Appendix F : ΔCTOD Measurements ................................................................ 199 

Appendix G: Symbols and Abbreviations......................................................... 203 

Appendix H: Material Properties Used in Numerical Simulations .................... 205 

 

 

  



Appendices 

 

184 
 

 

  



Appendix A : Thermal Gradient in Specimens 

185 
 

APPENDIX A :  THERMAL GRADIENT IN SPECIMENS 

The heating system used in these experiments is based on induction heating with a rectangular 

helix surrounding the specimens. There are advantages and disadvantages to the induction 

heating system.  

Advantages: Quick heating and cooling of the specimens is possible with a high frequency 

induction heating system. The interest of this is for doing TMF experiments (for future work) at 

high frequency. Also for cooling, the power can be simply cutoff, and there is no “furnace type” 

thermal inertia. The other advantage is easy visual access to the specimen which is necessary for 

measuring the crack length and the crack opening displacement.  

Disadvantages: The main disadvantage of an induction heating system is in managing the 

thermal gradients. Very fine adjustments need to be made to be able to get a reasonable 

thermal gradient. There are two main sources of the thermal gradient. One is the uneven 

distribution of the eddy currents in the specimen causing hot and cold zones. The other source 

is the conduction of heat by the grips of the machine. Normally only the specimen is heated 

while the grips act as heat sinks. Even if the grips are heated, they have a higher thermal inertia 

(heavy construction) so they heat up much more slowly than the specimens. 

In this experiment the thermal gradient is controlled with the help of three type K 

thermocouples. Their distribution on the specimen is shown in the figure 1-A. The two 

distributions are used in different experiments and give the same gradient. 

 

Fig 1-A. Thermocouples on the specimen to control the thermal gradient 1) Generator pilot, 2) 

Overheat security and 3) Thermal gradient surveillance  
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The three thermocouples are used as 1) Pilot of the induction generator, 2) Overheat security 

and 3) General temperature surveillance. Since the specimens are thin no real thermal gradient 

was observed across the flat faces. The pilot thermocouple is always the furthest from the 

notch. This is because the presence of the crack can perturb the heating of the specimen and 

there is lesser danger of thermocouple coming off on the uncracked material. 

At the stabilised regime a thermal gradient of no more than 5°C is obtained, which is considered 

to be fairly accurate for an induction heating setup. The low thickness of the specimens also 

helps in maintaining a low thermal gradient throughout the experiment.  
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APPENDIX B : SUPPLEMENTARY PARIS CURVES 

Certain experimental results of fatigue crack propagation are presented here. These 

comparisons and tests are carried out as a means for verification or to gain better insight into 

the results presented in the manuscript. 

I. Comparison of Paris curves of different specimen configurations SE(T)C and C(T) at R = 
0.1 

Paris curve of X38CrMoV5 47HRC steel at R=0.1 is established using CT25B12mm thickness 

specimens by Souki (Thesis in progress at ICAA). The specimen is prepared respecting all the 

dimensional parameters imposed by ASTM E647 standard. This curve is compared with the 

2.5mm SE(T)C [side edge cracked clamped tension] specimen in figure 1-B. 

 
Fig 1-B. Comparison of FCGR in C(T) and SE(T)C specimen configuration, R=0.1, 25°C 

The figure 1-B shows the same slope of Paris law for the two specimens. However the curves are 

slightly offset resulting in lower FCGR for SE(T)C specimen. This is in contradiction with the 

findings of this study where a reduction in thickness is causes a reduction in FCGR. However this 

error may be from one of the following sources. 

1) Difference in configuration may introduce errors in the calculation of ΔK. Numerical 

simulation is carried out (chapter 3) to try to reduce this effect as much as possible. 
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2)  The C(T) specimen crack length is measured mainly by the compliance method, whereas the 

SE(T)C specimen crack length is measured optically. This may introduce a difference in the 

measured crack lengths. 

3) The two curves are established on the same grade of material, however these are completely 

different lots from foundry. Also the thermomechanical history of the two materials may be 

different. In addition to this, the orientation of the specimens inside the material is not the 

same. These metallurgical differences may be responsible for this offsetting of the curves. 

 II. Study of the effect of crack front oxidation on fatigue crack propagation 

This test is described in the section III.4 of Chapter 2. The results are shown in the figure 2-B. 

 
Fig 2-B. Effect of cyclic oxidation of crack tip on the FCGR at 25°C. 

The main idea was to explore the effect of oxidation of the material at 600°C on FCGR at 

ambient temperature. It is seen that by heating the specimen at 600°C and then cooling in 

ambient air a jump in the FCGR is witnessed. The length material perturbed in front of the crack 

tip that causes this jump is much larger (100μm app.) than the oxide layer built up on the 

specimen surface (5μm). This shows that the oxygen weakens the damaged material in front of 

the crack tip. After each jump the FCGR slow down to a rate below the FCGR curve at ambient 

temperature. However with further propagation the FCGR curve has a tendency to rejoin the 

undisturbed ambient temperature curve.   
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III. Effect of multicracking  

In one of the tests on a specimen of 0.6mm thickness at 600°C, in addition to the crack at notch 

root, another crack initiated at the specimen shoulder. This crack was not seen until the end of 

the experiment. The effect of this crack was to decrease the bending resistance of the material, 

consequently increasing the effective ΔK. This in turn is seen as an increase in the FCGR. The 

cracked specimen as well as the FCGR curve are shown in the figure 3-B. 

 

 

Fig 3-B. Increase in FCGR due to multicracking in the specimen of e=0.6mm tested at R=0.1 and 

600°C 

The reason of crack initiation in the specimen shoulder was uneven machining, which created a 

stress concentration. The shoulders were subsequently polished for all other experiments 

carried out at 600°C. 
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APPENDIX C : TEMPERATURE DEPENDENT EVOLUTION OF CRACK TIP PLASTIC 

ZONE  

This section is in complement to the paragraph III.1 of Chapter 4, figure 35. The experiment 

deals with the heating of the specimen during crack propagation in order to study the effect of 

material behavior modification on FCGR. It is seen that the FCGR of a specimen when heated to 

300°C increases whereas heating to 500°C may completely stop the fatigue crack advance (crack 

arrest). The reason of this effect is the large crack tip plastic zone created at 500°C that causes 

crack arrest as shown in figure 1-C. 

 

Fig 1-C. Effect of heating on the crack tip plastic zone size. 

It can be seen in the figure 1-C that heating the specimen to 300°C does not create a large crack 

tip plastic zone. Also the surface damage along the path of propagation is larger than that at 

ambient temperature. Heating to 500°C causes a drastic softening in the material and the 

subsequent severe crack tip plastic zone is evident in the figure 1-C. During propagation at 

500°C a much larger surface damage along the path of propagation is seen also indicating high 

amount of material deformation. The point of crack arrest is clearly shown as the black spot. 

Once the crack tip leaves the point of crack arrest (which corresponds to ΔKth at this 

temperature) stable fatigue crack propagation resumes. 
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APPENDIX D : PROCEDURE OF K C DETERMINATION  

The standard procedure of Kc evaluation ASTM E399 should be followed to obtain the Kc value 

by the 5% reduction in compliance method.  

Usually specimens can be tested by using the 5% compliance drop method, if the crack length is 

sufficiently long (a/W = 0.6). One such measurement is shown for a 2.5mm specimen with a/W 

= 0.6, figure 1-D. The point of intersection of the actual load displacement curve and the slope 

representing 5% compliance drop is called P5. The corresponding load (P5) is used to calculate 

the Kc which in this case is 35.2 MPa.m1/2. 

 

Fig 1-D. Force displacement curve for Kc measurement by 5% drop in compliance method 2.5mm 

specimen, a/W = 0.6. 

In the 2.5mm specimen when the crack length is low (a/W = 0.3), the specimen shows fragile 

behaviour and compliance drop cannot be detected as shown in figure 2-D. In this case the 

maximum force before rupture is used as PQ = P5 to calculate Kc. 

In general the specimens of 0.6mm thickness show a compliance drop throughout the crack 

length, whereas the specimens of 1.0mm thickness show a behaviour similar to that of the 

2.5mm specimens, i.e. fragile for low a/W and ductile behaviour for high a/W. 
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Fig 2-D. Force displacement curve for Kc measurement by 5% drop in compliance method 2.5mm 

specimen, a/W = 0.6 
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APPENDIX E : ΔCOD MEASUREMENTS  

Crack opening readings in specimens of 0.6mm thickness are presented. In all cases the virtual 

extensometer is placed 600μm behind the crack tip. The choice of the extensometer position is 

from a practical standpoint, this distance is found to give the best compromise between camera 

resolution and proximity to crack tip. All data has undergone cubic spline smoothing. All the 

curves are unloading curves. The maximum applied stress in all the cases is σmax = 250 MPa, 

while the minimum stress depends on R. 

 
Fig 1-E. COD measurements 600μm behind the crack tip for different crack lengths in 0.6mm 

thickness specimen tested at R = 0.1, 25°C. 

The figure 1-E shows the crack opening displacement (ΔCOD or Δδ) measured in a specimen of 

0.6mm thickness tested at R=0.1 and 25°C. Crack closure at 75 MPa is obvious in this 

experiment. 

 

The figure 2-E shows the ΔCOD for a specimen tested at R = 0.7 and 25°C. The displacement 

values at this length become very small. This causes the noise of image acquisition system 

(camera + video recorder) and the machine vibrations to introduce an error in the readings as 
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shown in the figure 2-E. Cubic spline smoothing techniques give erroneous results, thus a linear 

interpolation is used to measure the crack opening displacements figure 2-E.  

 
Fig 2-E. COD measurements 600μm behind the crack tip for different crack lengths in 0.6mm 

thickness specimen tested at R = 0.1, 25°C. 

It should be noted that this noise error exists in all measurements of ΔCOD. However, when the 

ΔCOD readings are small, the effect of the noise amplifies. The values of ΔCOD for this test are 

in the range of 1.6 – 6 microns. The maximum resolution of an optical system is considered to 

be 1µm (1.6λ, λ = maximum wavelength of visible light ≈ 600nm). Thus this measurement is at 

the physical limitation of the optical measurement system causing large scattering in measured 

ΔCOD.   

 

 

 

 

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280

-5 0 5 10

σ
m

ax
(M

P
a)

Δδ (μm)

X38CrMoV5 (AISI H11)
47HRC
R=0.7, Ѳ = 25°C, e = 0.6mm

a=1.8mm
a=2.4mm
a=3.2mm
a=4.0mm
a=4.8mm

Extensometer 600μm 

behind crack tip

σmax

σmin



Appendix E : COD Measurements 

197 
 

The figure 3-E shows the ΔCOD values for a specimen tested at R=0.1 and 600°C. The data is 

presented with cubic spline smoothing. The quality of the ΔCOD measurement is very good 

mainly due to two reasons: 

1. The magnitude of the displacements is large due to reduced E as well as reduced σ0 at 

600°C. Thus the noise as seen as figure 2-E does not have a large effect on the measured 

data. 

2. The texture necessary for the image correlation is created automatically by the oxide 

layer at 600°C. The polishing marks are preferentially oxidized giving a very fine, high 

contrast texture on the specimens. This greatly increases the quality of correlation.  

 
Fig 3-E. ΔCOD measurements 600μm behind the crack tip for different crack lengths in 0.6mm 

thickness specimen tested at R = 0.1, 600°C 

No discernible crack closure is seen. For the 3.2mm, and 4.0mm crack lengths there seems to be 

a crack closure like effect, but this is an artefact of measurement errors and cubic spline 

smoothing. 
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APPENDIX F : ΔCTOD MEASUREMENTS  

The procedure of ΔCTOD measurements is given in chapter 5 (Section III, Figure 13). Here the 

actual measurements for 0.6mm thickness specimens tested at R=0.1 and 0.7 at 25°C and at 

R=0.1 at 600°C are presented. Figure 1-F presents the Δδmax as a function of the placement of 

the extensometers. The data is extrapolated to the crack tip to get Δδth values. Here λ is the 

distance of the extensometers from the crack tip. 

 

Fig 1-F. Δδmax as a function of extensometer position behind crack tip λ. The extrapolation to 

crack tip (λ=0) gives Δδth. Specimen e=0.6mm, R=0.1 and 25°C 

For R = 0.1 at 25°C there is an effect of crack closure which is seen in the lower Δδt as compared 

to Δδth for the same conditions, figure 2-F. The figure 3-F shows the same plot for R = 0.7. No 

crack closure is detected at R=0.7, thus Δδth = Δδt. The extensometer near the crack tip 

(λ=200μm) shows erroneous results. This is a problem of resolution as the displacements at R = 

0.7 are very small. This extensometer reading is thus not used in the extrapolation of Δδth. 
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Fig 2-F. Δδeff as a function of extensometer position behind crack tip λ. The extrapolation to crack 

tip (λ=0) gives Δδt. Specimen e=0.6mm, R=0.1 and 25°C 

 
Fig 3-F. Δδmax as a function of extensometer position behind crack tip λ. The extrapolation to 

crack tip (λ=0) gives Δδth. Specimen e=0.6mm, R=0.7 and 25°C 
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Figure 4-F presents the Δδmax as a function of λ for a specimen of 0.6mm thickness tested at R 

= 0.1 and 600°C. An attempt was made to find out the ΔCOD very close to the crack tip for short 

and long crack lengths. Extra virtual extensometers were placed at λ = 50μm, 100μm and 150μm 

from the crack tip. It is observed that these extensometers are useful for short crack lengths 

where there is not much deformation of the near crack tip material. However, for longer crack 

lengths as can be seen in the figure 4-F, the near tip ΔCOD values drop sharply. Image 

correlation requires the presence of a window for correlation as shown in chapter 2, figure 11 . 

If there is large deformation near the crack tip, the correlation results will give an average of the 

uncracked and cracked displacement. Any rotary displacement (due to presence of crack tip) 

will not be detected. This effect manifests as a non linear drop in the measured ΔCOD, figure 4-

F. This effect will not exist for small cracks due to low deformation of near crack tip material. For 

long cracks the near tip extensometers are not taken into account.  

 
Fig 4-F. Δδmax as a function of extensometer position behind crack tip λ. The extrapolation to 

crack tip (λ=0) gives Δδth. Specimen e=0.6mm, R=0.1 and 600°C 
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APPENDIX G: SYMBOLS AND ABBREVIATIONS  

Symbols  
  
da/dN Crack propagation rate with cubic spline smoothing 
Δa/ΔN Crack propagation rate without smoothing 
C Intercept of Paris law 
m Slope of Paris law 
e Thickness of specimen 
a/W Crack length to width ratio 
H/W Specimen height to width ratio 
KI Mode I stress intensity factor 
KIC Plane strain critical stress intensity factor 
KC Critical stress intensity factor 
ΔK Stress intensity factor range 
ΔKeff Effective stress intensity factor range 
R Load ratio 
Reff Effective load ratio 
Rapp Applied load ratio 
Jel,pl Elastic-Plastic J Integral 
Jel Elastic J Integral 
Jδ J Integral calculated through ΔCTOD 
δ0 Crack opening displacement at zero load 
δop Crack opening displacement at the point of crack opening 
Δδeff Effective crack opening displacement range 
Δδmax Extrapolated crack opening displacement range assuming no crack closure 
Δδt CTOD range 
Δδth CTOD range extrapolated to no crack closure 
α Stress intensity factor weight function 
rp Crack tip plastic zone size 
λ Distance of extensometer from crack tip in opposite direction of propagation 
θ Specimen temperature °C 
  
Abbreviations 
  
LEFM Linear elastic fracture mechanics 
EPFM Elastic plastic fracture mechanics 
FCG Fatigue crack growth 
FCGR Fatigue crack growth rate 
LSY Large scale yielding 
SSY Small scale yielding 
SIF Stress intensity factor 
PID Proportional, Integral, Differential control parameter of hydraulic systems 
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APPENDIX H:  MATERIAL PROPERTIES USED IN NUMERICAL SIMULATIONS  

In this section the material properties used to carry out numerical simulations to determine the 

values of the J Integral are presented. The table 1 presents the Rp0, Rp0.2, E, n, and ν. These 

mechanical properties are determined through tensile tests carried out on X38CrMoV5-47HRC 

steel. 

Table 1: Tensile test data for X38CrMoV5 – 47HRC 

Temperature Rp0 (MPa) Rp0.2 (MPa) E (MPa) n ν 

20°C 913 1100 208000 12 0.3 
600°C 213 600 147000 5.3 0.3 

Since the material model used is an incremental plasticity model, the table 2 and 3 present the 

tensile test data of deformation vs stress increments for 600°C and 25°C respectively. 

Table 2: Incremental plasticity data for X38CrMoV5 – 47HRC at 600°C 

Strain Stress Strain Stress Strain Stress Strain Stress 

0 247 7.2446E-05 323.707952 0.00022587 401.012536 0.00057503 478.172686 

1.8032E-05 249.121701 7.578E-05 326.462742 0.00023322 403.437454 0.00059068 480.596376 

1.9117E-05 251.877113 7.8805E-05 328.878245 0.0002402 405.68213 0.00060665 483.016861 

1.9894E-05 253.773776 8.1925E-05 331.291672 0.00024789 408.098973 0.00062311 485.45748 

2.1067E-05 256.527731 8.4451E-05 333.191736 0.00025694 410.862808 0.00064094 488.043721 

2.206E-05 258.762834 8.8232E-05 335.951464 0.00026449 413.110609 0.00065805 490.471301 

2.3174E-05 261.175151 9.1644E-05 338.360563 0.00027222 415.358593 0.00067428 492.726874 

2.4333E-05 263.585826 9.4918E-05 340.604748 0.00028074 417.775844 0.00069211 495.154788 

2.5538E-05 265.99657 9.828E-05 342.844359 0.00029012 420.368139 0.00071029 497.579441 

2.6793E-05 268.409281 0.00010256 345.607007 0.00029912 422.794366 0.00072756 499.835472 

2.7907E-05 270.476572 0.00010642 348.018725 0.00030766 425.042816 0.00074925 502.608349 

2.9448E-05 273.229409 0.00011011 350.263435 0.00031707 427.460576 0.00076871 505.040413 

3.0852E-05 275.636756 0.0001139 352.500924 0.00032603 429.709292 0.00078706 507.289878 

3.242E-05 278.221695 0.00011812 354.925098 0.0003366 432.299346 0.00080734 509.725782 

3.3719E-05 280.287461 0.00012275 357.506663 0.0003475 434.90147 0.00082943 512.323587 

3.5518E-05 283.044469 0.00012722 359.921278 0.00035788 437.319654 0.0008505 514.749312 

3.7273E-05 285.627832 0.00013216 362.510428 0.00036778 439.571922 0.00087049 517.00635 

3.8726E-05 287.691838 0.00013656 364.753334 0.00037865 441.990404 0.00089086 519.263733 

4.0359E-05 289.937669 0.00014177 367.337688 0.00038981 444.415053 0.00091803 522.2102 

4.2433E-05 292.68715 0.00014681 369.760362 0.00040121 446.833767 0.00093763 524.291939 

4.4191E-05 294.933279 0.00015197 372.172927 0.00041374 449.427744 0.00096091 526.71831 

4.6139E-05 297.339206 0.0001569 374.418776 0.00042659 452.024939 0.00098646 529.328028 

4.831E-05 299.925172 0.00016235 376.834166 0.00043799 454.275032 0.00101086 531.769438 

5.0108E-05 301.995762 0.00016837 379.424206 0.00044965 456.528325 0.00103552 534.188986 

5.2427E-05 304.579931 0.00017373 381.670423 0.00046338 459.122856 0.0010609 536.630706 

5.467E-05 306.992378 0.00017923 383.919433 0.00047554 461.366974 0.00108291 538.709668 

5.6988E-05 309.402755 0.00018529 386.32993 0.00048897 463.792815 0.00111295 541.492755 

5.939E-05 311.817499 0.00019154 388.751192 0.0005027 466.218862 0.00113591 543.579359 

6.1871E-05 314.230203 0.00019935 391.688567 0.00051774 468.813972 0.00116315 546.010721 

6.4622E-05 316.814931 0.00020501 393.760699 0.00053209 471.233834 0.00119486 548.78318 

6.6703E-05 318.712184 0.00021178 396.177013 0.00054682 473.663578 0.00122126 551.046457 

7.002E-05 321.638641 0.00021824 398.424089 0.00056184 476.086929 0.00125236 553.662057 
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Strain Stress Strain Stress     

0.0012819 556.098018 0.00374344 680.456945     

0.00130551 558.013194 0.00382177 683.11605     

0.0013383 560.625725 0.00389609 685.598113     

0.00137393 563.407053 0.00396657 687.916888     

0.00140578 565.843748 0.00404333 690.40449     

0.00143586 568.104439 0.00412722 693.079728     

0.00146652 570.369135 0.00421224 695.746069     

0.00150267 572.990636 0.00428205 697.903321     

0.00153453 575.259707 0.00436379 700.392893     

0.00157187 577.8699 0.00445327 703.07524     

0.00160741 580.3079 0.00452603 705.224386     

0.00164371 582.754081 0.00461224 707.734753     

0.00168571 585.529336 0.00470605 710.423669     

0.00171535 587.454543 0.00480815 713.301005     

0.00175648 590.082037 0.00487346 715.11568     

0.00180107 592.874146 0.00498492 718.167675     

0.00183215 594.787793 0.00507215 720.517759     

0.00187836 597.584482 0.00516064 722.868469     

0.00191373 599.687409 0.005271 725.754585     

0.00195558 602.13561 0.00535596 727.943233     

0.00199198 604.230727 0.00546286 730.657542     

0.00204755 607.369488 0.00555077 732.85758     

0.00208564 609.481724 0.00565379 735.400029     

0.00212727 611.754201 0.005766 738.12681     

0.00217629 614.384651 0.00585857 740.344186     

0.00221955 616.666133 0.00596652 742.894057     

0.00227014 619.288714 0.0060772 745.470174     

0.00231133 621.389597 0.006197 748.215689     

0.00236379 624.021371 0.00630348 750.620066     

0.0024173 626.657662 0.00643507 753.546364     

0.00246784 629.104567 0.0065379 755.799588     

0.0025124 631.227979 0.00665781 758.390893     

0.00256836 633.852431 0.0067793 760.977984     

0.00261788 636.136141 0.00690363 763.586907     

0.00267566 638.756725 0.00703037 766.20739     

0.00273487 641.395258 0.00716765 769.002883     

0.00278353 643.529012 0.00728202 771.298909     

0.00283652 645.818419 0.00741534 773.938767     

0.00289841 648.449083 0.00754282 776.427004     

0.00296151 651.084594 0.00768097 779.085416     

0.00302182 653.561029 0.00925389 806.904299     

0.00307893 655.869653 0.01036438 824.311141     

0.0031495 658.674613       

0.00320812 660.965916       

0.00326774 663.262186       

0.00332876 665.576941       

0.00339954 668.219505       

0.00346706 670.698926       

0.00353072 673.001164       
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Table 3: Incremental plasticity data for X38CrMoV5 – 47HRC at 20°C 

Strain Stress Strain Stress Strain Stress Strain Stress 

0 913 0.00011302 986.637842 0.00028347 1061.08103 0.00067013 1134.90061 

4.30E-05 914.25781 0.00011506 988.208612 0.00028821 1062.29488 0.00068216 1136.63303 

4.38E-05 915.992405 0.00011738 989.600392 0.00029247 1063.68094 0.00069421 1138.2245 

4.47E-05 917.210463 0.00011998 991.157667 0.00029855 1064.90934 0.00070645 1139.79223 

4.58E-05 918.760357 0.00012161 992.866819 0.00030475 1066.6332 0.00071627 1141.3603 

4.67E-05 920.482418 0.00012433 993.921005 0.00030865 1068.35677 0.00073027 1142.59897 

4.7705E-05 921.879126 0.00012713 995.650634 0.00031507 1069.42777 0.0007402 1144.33966  

4.8733E-05 923.422579 0.00012883 997.393979 0.00032098 1071.15875 0.00075608 1145.5549  

4.9682E-05 924.972494 0.0001317 998.43454 0.00032702 1072.72471 0.00076793 1147.46797  

5.063E-05 926.375604 0.00013434 1000.16427 0.00033305 1074.29839 0.00077988 1148.87163  

5.1965E-05 927.753316 0.00013672 1001.72863 0.00033858 1075.8423 0.00079365 1150.26725  

5.2723E-05 929.654017 0.00013947 1003.11383 0.0003456 1077.23617 0.00080597 1151.85143  

5.3846E-05 930.71293 0.00014286 1004.68504 0.00035206 1078.97458 0.00081847 1153.24715  

5.5001E-05 932.256529 0.00014506 1006.5804 0.0003564 1080.54845 0.00083452 1154.64321  

5.6179E-05 933.81282 0.00014795 1007.79323 0.00036376 1081.59011 0.00085042 1156.40785  

5.7245E-05 935.369244 0.00015057 1009.35783 0.00037051 1083.32885 0.000862 1158.12498  

5.8472E-05 936.753445 0.00015353 1010.74996 0.00037737 1084.89513 0.00087703 1159.35647  

5.944E-05 938.316352 0.00015588 1012.30076 0.00038435 1086.46165 0.00089077 1160.9331  

6.0846E-05 939.528345 0.00015967 1013.50681 0.00039063 1088.02811 0.00090781 1162.35298  

6.2144E-05 941.257059 0.00016211 1015.42305 0.00039947 1089.41472 0.00092176 1164.08624  

6.3615E-05 942.820081 0.00016531 1016.63621 0.00040435 1091.33358 0.00093607 1165.48252  

6.4655E-05 944.555338 0.00016854 1018.20082 0.00041341 1092.37541 0.00095042 1166.89483  

6.6181E-05 945.760989 0.0001715 1019.75168 0.00042023 1094.27937 0.00096868 1168.291  

6.7416E-05 947.49625 0.00017487 1021.14412 0.00042794 1095.68863 0.00098551 1170.04055  

6.8689E-05 948.874183 0.00017792 1022.70894 0.00043483 1097.25534 0.00100243 1171.62543  

7.029E-05 950.271559 0.0001818 1024.10156 0.00044286 1098.6347 0.0010197 1173.19442  

7.1443E-05 951.993938 0.00018536 1025.8387 0.00045095 1100.21647 0.00103348 1174.77151  

7.3103E-05 953.21271 0.00018932 1027.40365 0.00045811 1101.78341 0.00105116 1176.01146  

7.4456E-05 954.935112 0.00019303 1029.11273 0.00046561 1103.14758 0.0010693 1177.5808  

7.6032E-05 956.312962 0.00019598 1030.68479 0.00047412 1104.55708 0.00108773 1179.16615  

7.7435E-05 957.889521 0.00019976 1031.91222 0.00048274 1106.1317 0.00110617 1180.75148  

7.9056E-05 959.267469 0.00020362 1033.46303 0.00049247 1107.6988 0.00112738 1182.3128  

8.0524E-05 960.830775 0.00020717 1035.02124 0.0004995 1109.43819 0.00114451 1184.07908  

8.1997E-05 962.221955 0.00021111 1036.42816 0.00050946 1110.6756 0.00115964 1185.48403  

8.4277E-05 963.593395 0.00021527 1037.96508 0.00051764 1112.40004 0.00118148 1186.7084  

8.6037E-05 965.673629 0.00021985 1039.55872 0.00052707 1113.79475 0.00120169 1188.45051  

8.7601E-05 967.243768 0.00022359 1041.28208 0.00053552 1115.37715 0.00122211 1190.03628  

8.9014E-05 968.615152 0.0002274 1042.66072 0.00054404 1116.77196 0.00123602 1191.61406  

9.1054E-05 969.834268 0.00023226 1044.04663 0.00055387 1118.15934 0.00125962 1192.67426  

9.2711E-05 971.563484 0.00023624 1045.78436 0.00056266 1119.73426 0.00128073 1194.44913  

9.4632E-05 972.941477 0.00023971 1047.18449 0.00057382 1121.12159 0.0013 1196.01085  

9.6574E-05 974.511878 0.00024434 1048.38384 0.00058311 1122.85358 0.00131736 1197.41616  

9.8339E-05 976.069011 0.00024904 1049.96371 0.00059459 1124.2719 0.00134697 1198.66563  

0.00010034 977.460451 0.00025373 1051.53635 0.0006028 1125.99646 0.00136728 1200.76163  

0.00010242 979.010796 0.00025804 1053.08026 0.0006148 1127.21133 0.00139053 1202.17548  

0.00010426 980.588116 0.00026407 1054.47358 0.00062586 1128.95893 0.00141145 1203.7704  

0.00010686 981.966263 0.0002668 1056.39111 0.0006357 1130.54227 0.00143764 1205.18441  

0.00010831 983.867994 0.00027356 1057.24563 0.0006483 1131.92972 0.00145656 1206.92739  

0.00011075 984.90837 0.00027938 1059.32845 0.00065725 1133.67761 0.00148391 1208.16869  
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Strain Stress Strain Stress Strain Stress    

0.001503 1209.93674 0.00326572 1285.73417 0.0069139 1364.19085    

0.00153128 1211.1535 0.00331295 1287.34341 0.0070375 1365.53618    

0.00155683 1212.92963 0.00336656 1288.79752 0.00713947 1367.4398    

0.00158277 1214.50866 0.00341485 1290.42487 0.00724219 1368.98711    

0.0016036 1216.08756 0.00346998 1291.87046 0.00736936 1370.5255    

0.00163348 1217.33782 0.00352563 1293.49803 0.00746639 1372.40224    

0.00166075 1219.10605 0.00357603 1295.11703 0.00759855 1373.81432    

0.00168554 1220.69373 0.0036342 1296.56304 0.00769641 1375.71063    

0.00171332 1222.11687 0.00369261 1298.20884 0.00780864 1377.09532   

0.00174181 1223.68797 0.00374522 1299.83718 0.00794645 1378.66348   

0.00176772 1225.2756 0.00381138 1301.28365 0.00806279 1380.56093   

0.00179736 1226.69909 0.00386724 1303.07628 0.00819379 1382.13934   

0.00182373 1228.30382 0.00393506 1304.56749 0.00832607 1383.89167   

0.00185391 1229.71078 0.00397179 1306.35177 0.00844908 1385.63521   

0.00188137 1231.29886 0.00404236 1307.30644 0.0085867 1387.23367   

0.00191227 1232.72272 0.00410029 1309.11764 0.00871255 1388.99691   

0.00194069 1234.30243 0.00417298 1310.58302 0.00885419 1390.58666   

0.001976 1235.73503 0.00423301 1312.39473 0.00898528 1392.35068   

0.00200851 1237.48775 0.0043003 1313.86934 0.00911739 1393.96039   

0.00204186 1239.07626 0.00436934 1315.49933 0.0092668 1395.56086   

0.00207555 1240.68174 0.00444018 1317.14758 0.00940442 1397.34539   

0.00210585 1242.27904 0.00450299 1318.81385 0.01011824 1398.96574   

0.00213711 1243.69507 0.00457584 1320.27122     

0.00216862 1245.13694 0.00464125 1321.93805     

0.00221182 1246.5702 0.00472321 1323.41394     

0.00224434 1248.50469 0.00478221 1325.23628     

0.00227711 1249.93828 0.00486689 1326.53028     

0.00231032 1251.36343 0.00493659 1328.36211     

0.002352 1252.78857 0.00500765 1329.84798     

0.002395 1254.55086 0.00508806 1331.34294     

0.00243001 1256.33904 0.00516071 1333.01131     

0.00246979 1257.7731 0.00526028 1334.49784     

0.00250538 1259.38002 0.00531903 1336.50422     

0.00254631 1260.79716 0.005413 1337.67182     

0.00259236 1262.40441 0.00549137 1339.51464     

0.0026257 1264.18465 0.00558865 1341.02931     

0.00265896 1265.45508 0.0056684 1342.88186     

0.0027116 1266.70829 0.00575867 1344.37865     

0.00275087 1268.66179 0.00585125 1346.04937     

0.00280034 1270.09688 0.0059345 1347.73833     

0.0028359 1271.87768 0.00602973 1349.23595     

0.00287684 1273.1401 0.00614695 1350.92567     

0.00291356 1274.57544 0.0062149 1352.97197     

0.00296572 1275.8468 0.00631377 1354.14185     

0.00301384 1277.62812 0.00642567 1355.82312     

0.00306873 1279.24559 0.00649762 1357.697     

0.00311786 1281.06224 0.00658998 1358.88612     

0.00316797 1282.66262 0.00669732 1360.39468     

0.00321417 1284.27157 0.00682775 1362.12377     
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Fatigue crack propagation experiments are carried out on the tool steel X38CrMoV5 at 
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A method of crack tip opening displacement measurement is developed. This method is 

based on image acquisition with the help of a digital camera and a long distance microscope 

followed by an image correlation procedure, to measure the crack opening displacements. A 

fatigue crack propagation model based on crack opening displacement is developed and 

compared with traditional propagation models. 
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