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Abstract

The motion of a disk spinning on a horizontal surface has drawn a great deal

of interest recently. The objectives of the researches are to find out what pro-

duces an increasing rattling sound and why the spinning ends so abruptly. In

order to understand the behaviour of the spinning disk better, we derived a

mathematical model of the rolling/sliding motion of a thin, rigid disk on a

rigid, rough horizontal plane, and found the numerical solution of the related

initial value problem. Then we studied the motion of the commercially avail-

able Tangent Toy disk [3]. The results show that the normal contact force

becomes very large whenever the inclination of the disk becomes small. As

the inclination of the disk oscillates with time, the time-graph of the normal

contact force exhibits periodical peaks, which correlate well with the peaks in

the recorded sound response. They could well be responsible for the rattling

sound heard during the motion.
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1 Introduction

The motion of a rigid disk on a rough horizontal plane, a typical example

of which is a science toy called “Euler’s disk” [3], has been arousing a con-

siderable interest since Moffatt [11] presented his explanation of the settling

process of the spinning disk. Moffatt [11] assumed that viscous dissipation

in the thin layer of air between the disk and the plane was the reason for

the observed abruptness of the settling and the finite–time singularity of the

angular velocity. His conclusions were supported neither by experiments per-

formed by Caps et al. [4], Easwar et al. [5] and van den Engh et al. [6], nor

by theoretical–experimental results by McDonald and McDonald [10]. Ruina

[12] argued that, in many cases, the sliding friction was more important than

the viscous dissipation. Stanislavsky and Weron [14] showed that the cusp

catastrophe may occur at a sufficiently small inclination of the disk.

A more comprehensive theoretical model was proposed by Kessler and O’Reilly

[8]. They assumed that the disk was a rigid cylindrical body with a sharp edge

and a finite thickness. They considered the transitions from rolling to sliding

(and vice versa) during motion, and accounted for a small deformability of the

supporting plane, which resulted in a non-zero frictional moment in addition to

the frictional force at the point of contact. The related system of differential–

algebraic equations and initial conditions was solved numerically. They made

a proposition that the oscillating, and always positive normal contact force

excites vibrations in the disk (and in the supporting surface), which produces

the sound. They further conjectured that the vibrations would result in the

disk losing contact with the surface at a small inclination. The impacts of the

disk and the plane that follow will constitute an abrupt end of the motion [8].
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A minor refinement of their model was presented by Batista [1,3] who, unlike

Kessler and O’Reilly [8], assumed that the edge of the disk was rounded.

In the present paper, we explain what produces the rattling sound during the

spinning and the settling of the disk. We derive a similar, yet not fully equal

rigid-body model of the motion of the disk. We consider the sliding of the disk

and the air resistance, but neglect the deformability of the supporting plane,

the frictional moment and the thickness of the disk. In the first part of the

paper, we briefly describe the governing equations of the motion of the disk

and discuss the conditions for the transition between the rolling and sliding.

The essential part of the paper is the presentation and the discussion of the

numerical results for the spinning motion of the Tangent Toy Euler’s disk [3].

We also present the analytical relations between the normal contact force and

the inclination of the disk. These relations show periodic peaks occuring with

the frequency which very well correlates with the “rattling” frequency of the

recorded sound response of the Tangent Toy Euler’s disk [3].

2 Description of the model and the equations of motion

Coordinate systems. We consider the disk to be a rigid, planar, homoge-

neous, perfect circular body of mass m and radius a with the thickness small

enough to be neglected. The geometry of the disk is described in a moving

Cartesian coordinate system (x, y, z) with its origin at the center of the mass

of the disk, and with the right-handed ortho-normal basis (ex, ey, ez). [Base

vector ez is perpendicular to the disk during motion; ex points to the current

contact point between the disk and the horizontal surface, and ey = ez × ex.]

The position of the disk relative to the space is described in a spatial Cartesian
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coordinate system (X, Y, Z) with the origin at a point on the horizontal plane,

and with the right-handed ortho-normal basis (EX ,EY ,EZ). [Base vectors

EX and EY lie in the plane, and EZ is its normal so that EX × EY = EZ ].

The relation between the two bases is described by the first two of the 3–2–3

Euler angles, precession ψ and nutation ϑ [7].

Kinematics. The components of the angular velocity vector of the moving

frame, ω, and of the disk, Ω, both with respect to the moving basis, are

ωx = −ψ̇ sin ϑ, ωy = ϑ̇, ωz = ψ̇ cos ϑ, (1)

Ωx = ωx, Ωy = ωy, Ωz = ωz + ϕ̇. (2)

Rotation ϕ is the third of the 3–2–3 Euler angles.

The position of the disk and its particles in space is fully determined by the

position vector of the center of the mass of the disk

r = XEX + Y EY + ZEZ , (3)

and by the rotation of the body, identified by angles ψ, ϑ, ϕ. However, not all

of the six coordinates, X,Y, Z, ψ, ϑ, ϕ, are independent, because the disk is

constrained to roll or slide on the plane.

We assume that the disk and the plane are in a single-point contact. Let the

material point (a ‘particle’ of the disk), currently in contact with the plane,

be denoted by C, its position vector relative to the center of the mass by

ρC = aex, and its velocity vector by vC. As material point C must remain on

the plane, its velocity vector is the planar vector

vC = vC e s = vC cos β EX + vC sin β EY . (4)

The velocity vector is described by the slip speed of the contact material
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point, vC ∈ (−∞,∞), and by the slip direction, e s, uniquely described by its

inclination angle, β ∈ [0, 2π], with respect to axis EX . If the disk is rolling,

vC = 0 ; consequently, vC = 0, while β does not have sense.

Since the disk is assumed to be rigid, the velocity of the contact material point

is related to the velocity of the center of the mass, v , and the angular velocity

vector of the disk, Ω, by the equation

vC = v + Ω × aex. (5)

In the sliding case, we will employ the contact point velocity vector and not

the velocity of the mass center as the basic unknown. In this case

v = vC −Ω × aex (6)

will be substituted with vC and Ω whenever v will be needed in the derivation

of the equations of motion.

Forces. We consider three external forces on an isolated disk: the vertical

gravitational force, F g = −mgEZ ; the reactive force at the point of contact,

RC; and the air resistance over the side surfaces of the disk which results in

point force and moment vectors at the center of the disk, F a and M a.

Force RC at the contact has two vector components: the normal force N =

NEZ (N ≥ 0), and the frictional force T . In the sliding case, the frictional

force acts opposite to the sliding, i.e.

T = −T e s = RXEX + RY EY = T cos αEX + T sin αEY , T ≥ 0, (7)

where

α = β − π ∈ [0, 2π]. (8)
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The two force components, T ≥ 0 and N ≥ 0, are assumed to be related by

the Coulomb law which says that during sliding their ratio is equal to the

dynamic coefficient of friction, µd ≥ 0:

T = µdN. (9)

In the rolling case, T is not directly related to N . It must be small enough,

though, to prevent the slip, i.e., it must satisfy the inequality

T < µst N. (10)

Here µst ≥ µd is the static coefficient of friction. Both dynamic and static

coefficients of friction are assumed to be constant during the motion.

We assume that the surface traction due to the air resistance, pa, acts at

each material point of the disk surface in the opposite direction of its velocity

vector relative to the air, with the intensity which is linearly proportional to

the relative normal velocity of the air. That is,

pa = −µa(vz − wz)ez. (11)

The difference vz−wz is the z-component of the relative velocity of the material

point of the disk with respect to the moving air. Parameter µa ≥ 0 denotes the

air resistance coefficient. The resultant point force and moment vectors with

respect to the center of the disk are obtained by the integration of traction

(11) over the lateral surfaces of the disk.

Equations of motion. The equations of motion of the rigid disk are ob-

tained from the balance of linear momentum, and the balance of angular

momentum with respect to the center of mass. In the analysis, the equations

of motion are needed in the component form. We express the linear momen-
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tum equation with respect to the spatial basis, and the angular momentum

equation with respect to the moving basis. The equations of motion must be

supplemented by the conditions relating the forces and the velocity of the con-

tact material point, and by the initial conditions. In what follows, we present

only a brief review of the equations. The details of the derivation are pre-

sented in [13]. For convenience, we consider the rolling and the sliding cases

separately.

¥ Equations of the motion of the rolling disk. Equations of the rolling mo-

tion constitute a system of differential–algebraic equations in which only con-

tact force RC appears algebraically. Because non-linear DAE equations often

cause inconveniencies if tackled numerically, we express RC from the linear

momentum equation with the remaining unknowns and insert it into the an-

gular momentum equation. This way we obtain three scalar first-order dif-

ferential equations. When complemented with the angle–angular velocity re-

lations (1) and (2), with the no-sliding conditions in the differential form

(V̇CX = V̇CY = V̇CZ = 0), and with the differential equations relating the po-

sition vector of the mass center and its velocity vector (VX = Ẋ, VY = Ẏ ,

VZ = Ż), we obtain 12 first-order differential equations for 12 unknowns

X,Y, Z, VX , VY , VZ , ψ, ϑ, ϕ, Ωx, Ωy and Ωz. The complete set of differential

equations along with the related set of initial conditions is displayed in Boxes 1

and 2. Box 1 also provides the formulae for the determination of the secondary

variables, i.e. contact forces RX , RY , N , T and angle α. The existence and the

uniqueness of the solution of this initial value problem are guaranteed when-

ever ϑ ∈ (0, π) [13].

¥ Equations of the motion of the sliding disk. When the disk slides, the

equations of motion are reformulated in the following manner: in the first
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step, we substitute the components of the velocity vector of the center of

mass, VX and VY , with vC and α by using equations (6), (4) and (8). In the

second step, we substitute RX and RY with T and α, using equation (7). In the

last step, after inserting equation (9), we eliminate T and N . After adding the

angle–angular velocity relations (1) and (2), the contact condition VCZ = 0 in

the differential form (V̇CZ = 0), and the differential equation which relates the

position vector (3) of the center and its velocity vector, we have 12 first-order

differential equations for 12 unknowns X, Y, Z, vC, α, VZ , ψ, ϑ, ϕ, Ωx, Ωy and

Ωz. The complete set of differential equations along with the initial conditions

is displayed in Boxes 3 and 4.

This time the existence and the uniqueness of the solution of the initial value

problem for the sliding are not automatically assured for all ϑ ∈ (0, π), the

exceptions being ϑ = 0, ϑ = π, vC = 0 and A+ma2 cos ϑ
[
µd cos(α−ψ) sin ϑ+

cos ϑ
]

= 0 [13].

¥ Rolling-to-sliding and sliding-to-rolling transitions. As ν = T/N generally

varies with time during the rolling, it may become equal to µst at a particular

instant. The sliding then begins, and the governing equations of Box 1 must

be replaced by the equations in Box 3. The initial values of variables for the

sliding motion to follow, i.e. X0, Y0, Z0, v
0
C = 0, V 0

Z , ψ0, ϑ0, ϕ0, Ω
0
x, Ω

0
y , Ω

0
z , are

the current values of these variables at the end of the rolling motion. Note

that when the dynamic and static friction coefficients are different (which is

often the case), the frictional force T suffers a discontinuity jump.

During the sliding motion, the slip speed changes with time. At a particular

time it may vanish. Which kind of the motion follows, depends on the ratio

of contact forces, Tr/Nr, determined from the current values of variables from

9



the equations of the motion for the rolling disk (see Box 1):

Tr =
√

(Rr
X)2 + (Rr

Y )2, Nr = Rr
Z = m(V̇Z+g)+µaπa2(vz−wz) cos ϑ. (12)

The time derivatives V̇X , V̇Y and V̇Z , required in equations (12), are obtained

from the equations of the motion for the rolling disk, using current values of

variables. There are two possibilities:

(i) End of sliding. If Tr/Nr < µst, the disk “sticks” and the motion which

follows is the rolling, so the equations in Boxes 3 and 4 are replaced by the

equations from Boxes 1 and 2.

(ii) Sliding continues. If Tr/Nr ≥ µst, the disk will continue to slide, and

the equations from Boxes 3 and 4 remain valid.

At the end of each time-integration step, we have to examine the slip speed,

the static friction criterion as discussed above, and the normal contact force

condition (N ≥ 0) to find out if any of the criteria is violated. If so, then

some transition takes place, and we must determine the time of transition,

calculate the current values of variables, and use them as the initial values

in the appropriate system of differential equations, Box 1 or Box 3. If N

becomes negative, the disk loses contact with the plane. As the free flight and

the subsequent impact of the disk onto the plane are not dealt with here, the

integration stops.

3 Results

The equations of the motion of the disk, supplemented by the intial and the

transition conditions, constitute an initial value problem. We solve it numer-
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ically by the help of computer program Matlab [9]. The program employs

various Runge–Kutta methods and offers a number of solution functions, of

which we choose functions ode45 and ode15s. The local relative and absolute

integration errors are chosen to be RelTol=10−8 and AbsTol=10−10, respec-

tively. The global error cannot be controlled directly. Critical events, such as

the transition from rolling to sliding, or the loss of contact, are detected within

the machine precision (approximately 10−16) by the Matlab function Events.

We assume that the disk has the same dimensions as the Tangent Toy Euler’s

disk [3], i.e. a = 3.755 cm, m = 0.4387 kg. In the analysis we disregard the

thickness of the disk.

The dynamic coefficient of friction was chosen to be µd = 0.115, as obtained in

the friction coefficient measurements performed on the Tangent Toy disk [2].

The static coefficient of friction was assumed to be somewhat bigger (µst =

0.2). These are generally small, yet realistic values for the Tangent Toy disk.

As in [8] we take that the disk is initially inclined to the horizontal plane and

given an initial angular velocity about ex. The corresponding initial conditions

are:

X0 = 0, Y0 = 0, Z0 = a sin ϑ0 ,

V 0
X = 0, V 0

Y = 0, V 0
Z = 0,

ψ0 = 0, ϑ0 =
π

2
− 1, ϕ0 = 0,

Ω0
x = 1, Ω0

y = 0, Ω0
z = 0 .

First we assess the effect of the air resistance on the motion. Numerical ex-

periments show that the linear air resistance model as assumed here has a

negligible influence on the motion of the Tangent Toy Euler’s disk.
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The numerical solution shows that the disk starts sliding at the very beginning

of the motion. During the subsequent motion, the inclination of the disk, ϑ,

oscillates with time as shown in Figure 1a for the first second of the motion,

and in Figure 1b for the 99th second of the motion. Figure 2 shows the en-

velopes of maximal and minimal amplitudes of ϑ for the first 100-second time

interval of motion. We observe that the maximal amplitude of the inclination

angle decreases all the time but remains nearly constant (0.05 rad) during the

second part of the motion. This corresponds to the actual behaviour of the

Tangent Toy Euler’s disk.

0 990.1 0.2 99.20.3 0.4 99.40.5 0.6 99.60.7 0.8 99.80.9 1 100
0 0

0.1 0.01

0.2 0.02

0.3 0.03

0.4 0.04

0.5 0.05

0.6

0.7

t t

# t( ) # t( )

a) b)

Fig. 1. The variation of ϑ with time; (a) in interval [0, 1] s; (b) in interval [99, 100] s.

Figure 3 shows the related graphs of the time derivative of the inclination, ϑ̇.

It is clear from these graphs that ϑ̇ is not a slowly varying function of time.

This quantity is not small compared to ψ̇ either (see Figure 4), as assumed by

Moffatt [11] and Stanislavsky and Weron [14] in their theoretical derivations

of the finite-time settling of the disk.
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Fig. 2. Envelopes of maximal and minimal amplitudes of ϑ in interval [0, 100] s.
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Fig. 3. The variation of ϑ̇ with time; (a) in interval [0, 1] s; (b) in interval [99, 100] s.

The variations of ν with time are depicted in Figure 5. The figure shows that

the sliding is almost regularly interrupted by a short interval of the rolling.

We can observe abrupt changes of ν from 0.115 to 0.2 (and vice versa), which

is due to the difference between the static and dynamic coefficients of friction.

The variation of the slip speed is displayed in Figure 6 for short intervals of

time ([0, 1] s and [99, 100] s), and in Figure 7, in the form of the envelope of

the maximal amplitude of vC in the time interval [0, 100] s. We see that the
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Fig. 4. The variation of
∣∣∣ ϑ̇
ψ̇

∣∣∣ with time in interval [1, 100] s.

0 990.1 0.2 99.20.3 0.4 99.40.5 0.6 99.60.7 0.8 99.80.9 1 100t t

a) b)

0 0

0.05 0.05

0.115 0.115

0.2 0.2

0.25 0.25

º( )t º( )t

Fig. 5. The variation of ν with time; (a) in interval [0, 1] s; (b) in interval [99, 100] s.

slip speed wildly oscillates during the motion. At instants when vC = 0, the

rolling takes place. The rolling motion appears rather regularly, particularly

in the settling phase (Figure 6b), in which the dominating rolling motion is

interrupted by the short sliding motion roughly 24-times per second. Once the

maximal inclination angle of the disk becomes small (at about 50 s, its value is

roughly 0.05 rad), the maximal slip speed also becomes small (at most about

8 · 10−4 m/s), but it is still non-zero and remains such, because the static

coefficient of friction is so small. This kind of behaviour will in our model
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continue for t > 100 s, i.e. the disk will never start a pure rolling motion.

t

C Cv t( ) v t( )
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Fig. 6. The variation of vC with time; (a) in interval [0, 1] s; (b) in interval [99, 100] s.
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Fig. 7. Envelopes of maximal amplitudes of vC in interval [0, 100] s.

The variation of the reduced normal contact force, N/mg, with time is dis-

played in Figure 8 for intervals [0, 1] s and [99, 100] s. For comparison reasons,

the figure also displays the graph of the inclination of the disk, ϑ. Note that

the normal contact force, N , and the inclination, ϑ, have the same frequency of

oscillations, with the period and the frequency being initially 0.14 s and 44 s−1,
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respectively (Figure 8a) in the interval [0, 1] s, and 0.042 s and 149 s−1, respec-

tively, in the interval [99, 100] s (Figure 8b). Observe also that N is large when

ϑ is small, and vice versa. The comparison between Figures 8 and 5 shows that

the rapid increase and the subsequent rapid decrease of the normal contact

force take place always during rolling phases. From Figure 8 you may see that

the normal force is positive at all times, which indicates that the disk does not

lose contact with the surface. The relation between the normal contact force

and the inclination angle is a complicated function. The graph of its envelope

is a snail–shaped curve depicted in Figure 9.
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Fig. 8. The variation of N/mg and ϑ with time; (a) in interval [0, 1] s; (b) in interval

[99, 100] s.

Figure 8 reveals an interesting phenomenon of the rolling and sliding disk, i.e.

a periodical appearance of high peaks of the normal contact force at small

inclination angles (see the dotted lines in Figure 8). These peaks are not

the consequence of the error of the numerical solution, because they can be

confirmed by the analytical solution for N in terms of ϑ, Ωx, Ωy and Ωz. This
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Fig. 9. The envelope of N vs ϑ in interval [1, 100] s.

is easily obtained by the elimination of time derivative V̇Z from N = m(V̇Z +g)

using the equations of the motion given in Boxes 1 and 3 (while neglecting

the air resistance). For the rolling motion, the analytical solution gives:

N

mg
= α1 +

α2

sin ϑ
, (13)

where α1 and α2 denote

α1 =
a cos ϑ

g(ma2 + A)

[
(C + ma2)ΩxΩz −mga cos ϑ

]
− aΩ2

y sin ϑ

g
+ 1 ,

α2 =
aAΩ2

x

g(ma2 + A)
cos2 ϑ . (14)

[A and C are the moments of inertia about the axes y and z of the disk (see

Box 1).] α1 and α2 are finite for any ϑ and any finite angular velocities Ωx,

Ωy and Ωz. In contrast, the normal contact force grows towards infinity when

ϑ approaches 0 or π. For a given α1 and α2, but with ϑ approaching 0 (or

π), the graph N vs ϑ of (13) exhibits the peak whose shape completely agrees

with the one found numerically (see Figure 8). In short, equation (13) clearly

shows that the amplitude of the normal contact force largely depends on the

current inclination, ϑ, of the disk, and tends to infinity when ϑ goes to 0 or

π. As α2 is proportional to Ω2
x, the normal contact force does not exhibit the
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peak if Ωx = 0 at ϑ = ϑmin.

For the sliding motion, the analytical solution gives:

N

mg
= α3 +

α4

sin ϑ
, (15)

where α3 and α4 are given by

α3 =
A

β0

[
1− aΩ2

y

g
sin ϑ

]
+

aCΩxΩz

gβ0

cos ϑ , α4 =
aAΩ2

x

gβ0

cos2 ϑ (16)

with β0 being an auxiliary variable

β0 = ma2 cos ϑ [µd cos(α− ψ) sin ϑ + cos ϑ] + A .

As in the rolling case, α3 and α4 are finite for any ϑ and finite angular veloci-

ties. The numerical test shows that β0 is not equal to zero during the motions

studied here. Therefore, the normal contact force grows towards infinity when

ϑ approaches 0 or π. The shape of the graph N vs ϑ of the analytical solution

(15) fully agrees with the shape of the corresponding graph, obtained numeri-

cally. This confirms our surprizing numerical results. We stress again that not

all of the peaks of the normal contact force, yet a great majority of them, take

place during rolling phases.

The results show that the rigid-body model suffers a sequence of ‘shocks’ of

very short-lasting normal contact forces of very large amplitudes. These large

values probably stem from the assumption that the supporting plane and the

disk are rigid. For a deformable supporting plane and/or disk, the amplitudes

of the normal contact forces would probably be smaller, but we believe that

the time-graph of N would still exhibit peaks.

Such a series of ‘impact’ forces could well be responsible for sounds heard

during the motion. In order to verify the assumption, we compare a recorded

18



sound vs time graph [3] of the spinning Tangent Toy disk with the calculated

N/mg vs time graph in Figure 10. We display the recorded graph of a one

second interval approximately 4 to 5 seconds before the disk stops. The cal-

culated graph is displayed for the interval [99, 100] s. Figure 10 clearly shows

that the frequencies of the recorded sound and the normal contact force peaks

are nearly equal, the frequency of the sound peaks being 154 s−1 and that of

the calculated 149 s−1.
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Fig. 10. The comparison between the recorded sound and the calculated normal

contact force time-graphs during the ending phase of the motion.

Such a periodic highly–localized kind of time variation of the normal contact

force is different from that presented by Kessler and O’Reilly [8] for a thick

disk. This may indicate that the thickness of the disk has an important effect

on its motion.
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4 Conclusions

We applied the equations of the motion of a thin rigid disk and assumed a rigid

supporting plane to describe the rolling–sliding motion of the Tangent Toy

Euler’s disk [3]. We assumed realistic, but different values of the dynamic and

static coefficients of friction and the linear air resistance law. Our numerical

and partly analytical results show (i) that the normal contact force is positive

all the time, so that the disk does not lose the contact during its motion, and

(ii) that the normal contact force becomes very large whenever the inclination

of the disk becomes small. Consequently, the time-graph of the normal contact

force exhibits impact-like peaks with the frequency from about 44 s−1 during

the initial stages, to 149 s−1 at about 100 s. The comparison of two graphs, the

time graph of the recorded sound of the Tangent Toy disk and the time graph

of the normal contact force, in one-second time interval about 4 to 5 seconds

before the disk stops, shows a very good correlation between the sound and

the force peaks. Thus, the series of ‘impact-like forces’ seems to be responsible

for the rattling heard during the motion of the disk.
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Box 1. Rolling. Differential equations of motion

Primary unknowns: X, Y, Z, VX , VY , VZ , ψ, ϑ, ϕ, Ωx, Ωy, Ωz

(1) Ẋ = VX

(2) Ẏ = VY

(3) Ż = VZ

(4) AΩyϕ̇ + AΩ̇x = (A− C)ΩyΩz − 1

4
µaπa4Ωx

(5) (ma cos ψ sin ϑ) V̇X + (ma sin ψ sin ϑ) V̇Y + (ma cos ϑ) V̇Z

− AΩxϕ̇ + AΩ̇y

= (C − A)ΩxΩz −mga cos ϑ− 1

4
µaπa4Ωy − µaπa3(vz − wz)

(6) (ma sin ψ) V̇X − (ma cos ψ) V̇Y + CΩ̇z = 0

(7) sin ϑ ψ̇ = −Ωx

(8) ϑ̇ = Ωy

(9) cos ϑ ψ̇ + ϕ̇ = Ωz

(10) V̇X − a
[
(−Ωy sin ψ sin ϑ + Ωz cos ψ)ψ̇ + Ωy cos ψ cos ϑ ϑ̇

+ cos ψ sin ϑ Ω̇y + sin ψ Ω̇z

]
= 0

(11) V̇Y + a
[
− (Ωy cos ψ sin ϑ + Ωz sin ψ)ψ̇ −Ωy sin ψ cos ϑ ϑ̇

− sin ψ sin ϑ Ω̇y + cos ψ Ω̇z

]
= 0

(12) V̇Z + a
(
Ωy sin ϑ ϑ̇− cos ϑ Ω̇y

)
= 0

Secondary unknowns: RX , RY , T, N, α

RX = mV̇X + µaπa2(vz − wz) cos ψ sin ϑ

RY = mV̇Y + µaπa2(vz − wz) sin ψ sin ϑ

T =
√

R2
X + R2

Y , N = RZ = m(V̇Z + g) + µaπa2(vz − wz) cos ϑ

sin α = RY /T, cos α = RX/T ⇒ α ∈ [0, 2π]

A =
1

4
ma2, C =

1

2
ma2

22



Box 2. Rolling. Initial conditions

Initial conditions

X(t0) = X0, Y (t0) = Y0, Z(t0) = Z0

VX(t0) = V 0
X , VY (t0) = V 0

Y , VZ(t0) = V 0
Z

ψ(t0) = ψ0, ϑ(t0) = ϑ0, ϕ(t0) = ϕ0

Ωx(t0) = Ω0
x, Ωy(t0) = Ω0

y , Ωz(t0) = Ω0
z

Constraints

V 0
X − a(Ω0

y cos ψ0 sin ϑ0 + Ω0
z sin ψ0) = 0

V 0
Y + a(−Ω0

y sin ψ0 sin ϑ0 + Ω0
z cos ψ0) = 0

V 0
Z − aΩ0

y cos ϑ0 = 0

Z0 − a sin ϑ0 = 0
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Box 3. Sliding. Differential equations of motion

Primary unknowns: X, Y, Z, vC, α, VZ , ψ, ϑ, ϕ, Ωx, Ωy, Ωz

(1) Ẋ = −vC cos α + a(Ωy cos ψ sin ϑ + Ωz sin ψ)

(2) Ẏ = −vC sin α + a(Ωy sin ψ sin ϑ−Ωz cos ψ)

(3) Ż = VZ

(4) mvC α̇ + ma
[
−Ωy cos(α− ψ) sin ϑ + Ωz sin(α− ψ)

]
ψ̇

+ maΩy sin(α− ψ) cos ϑ ϑ̇ + ma sin(α− ψ) sin ϑ Ω̇y

+ ma cos(α− ψ) Ω̇z = −µaπa2(vz − wz) sin(α− ψ) sin ϑ

(5) −mv̇C − µdmV̇Z + ma
[
Ωy sin(α− ψ) sin ϑ + Ωz cos(α− ψ)

]
ψ̇

+ maΩy cos(α− ψ) cos ϑ ϑ̇ + ma cos(α− ψ) sin ϑ Ω̇y

−ma sin(α− ψ) Ω̇z = µdmg

+ µaπa2(vz − wz)
[
µd cos ϑ− cos(α− ψ) sin ϑ

]

(6) AΩyϕ̇ + AΩ̇x = (A− C)ΩyΩz − 1

4
µaπa4Ωx

(7) ma
[
µd cos(α− ψ) sin ϑ + cos ϑ

]
V̇Z − AΩxϕ̇ + AΩ̇y =

− 1

4
µaπa4Ωy

+ (C − A)ΩxΩz −mga
[
µd cos(α− ψ) sin ϑ + cos ϑ

]

− µaπa3(vz − wz) cos ϑ
[
µd cos(α− ψ) sin ϑ + cos ϑ]

(8) µdma sin(α− ψ)V̇Z + CΩ̇z = µdmga sin(α− ψ)

+ µdµaπa3(vz − wz) cos ϑ sin(α− ψ)

(9) sin ϑ ψ̇ = −Ωx

(10) ϑ̇ = Ωy

(11) cos ϑ ψ̇ + ϕ̇ = Ωz

(12) V̇Z + a
(
Ωy sin ϑ ϑ̇− cos ϑ Ω̇y

)
= 0

Secondary unknowns: T,N, RX , RY , VX , VY

T = µdm(V̇Z + g) + µdµaπa2(vz − wz) cos ϑ

RX = T cos α, RY = T sin α, RZ = N = T/µd

VX = −vC cos α + a(Ωy cos ψ sin ϑ + Ωz sin ψ)

VY = −vC sin α + a(Ωy sin ψ sin ϑ−Ωz cos ψ)
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Box 4. Sliding. Initial conditions

Initial conditions

X(t0) = X0, Y (t0) = Y0, Z(t0) = Z0

vC(t0) = v0
C, α(t0) = α0, VZ(t0) = V 0

Z

ψ(t0) = ψ0, ϑ(t0) = ϑ0, ϕ(t0) = ϕ0

Ωx(t0) = Ω0
x, Ωy(t0) = Ω0

y , Ωz(t0) = Ω0
z

Constraints

V 0
Z − aΩ0

y cos ϑ0 = 0

Z0 − a sin ϑ0 = 0
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