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Abstract

An energy conserving finite-element formulation for the dynamic analysis of geo-

metrically non-linear beam-like structures undergoing large overall motions has been

developed. The formulation is based on classical displacement-based planar beam

finite elements described in an inertial frame. It takes into account finite axial, bend-

ing and shear strains. A theoretically consistent approach is used to derive a novel

and simple energy conserving scheme, which is distinct in that the unconventional,

a finite-size incremental strain update is used rather than the update in the strong

form. Numerical examples demonstrate perfect energy conservation, stability and

robustness of the scheme, and good convergence properties in terms of both the

Newton-Raphson method and time step size.
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1 Introduction

Non-linear dynamics of engineering structures is often described by the stiff

system of differential equations. Such equations arise due to the presence of

large difference in stiffness among different components of a structure, and/or

difference in deformation modes, and when the Lagrange multiplier technique

is employed to impose the internal or external kinematic constraints. The

classical Newmark time integration scheme [29] and many others are condi-

tionally stable for non-linear systems and are hence not appropriate for such

systems. Instable behaviour of these schemes when applied to stiff structural

systems has been often experienced in practice and is well documented, see,

e.g. [15,17,21,24].

There are several approaches to overcome the instability problems in the analy-

sis of stiff structural systems. A very popular approach is to introduce an

artificial dissipation of energy into the system, which stabilizes the dynamic

response of the system, but its energy is diminishing with time even in con-

servative systems. Such schemes are clearly not appropriate for the analysis

of a long-term dynamic response. One of the earliest energy decaying schemes

was the Hilbert-Hughes-Taylor (HHT) scheme [19]. The scheme was primarily

introduced to eliminate high frequency oscillations of a pure numerical ori-

gin resulting typically in the use of the Newmark scheme. Its generalization,

HHT-α scheme [13], provides an even better compromise between accuracy

and stability requirements. These two schemes unconditionally dissipate en-

ergy in linear systems and often, but not always, yield satisfactory results

in non-linear systems [17]. When applied to non-linear problems, energy can

be created in a time step and not dissipated [3,15], which leads to potential
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instabilities. An alternative strategy to introduce controllable numerical dis-

sipation, denoted as ‘generalized energy-momentum method’, was presented

and applied to 3D trusses by Kuhl and Crisfield [26] and to shells by Kuhl

and Ramm [27]. This method represents the combination of the generalized

HHT-α method and the energy-momentum method of Simo and Tarnow [37].

Recent investigations in time-integration schemes with energy dissipation are

developed within the framework of the time-discontinous Galerkin method

[4,5,9,10]. Using a finite difference scheme, Armero and Romero [1,2] have

obtained an energy dissipative integrator with a controllable numerical dis-

sipation in the high frequency range. Goicolea and Orden [18] employed the

discrete derivative concept for integrating non-linear Hamiltonian systems in

conjunction with the penalty method to enforce the constraints. An outstand-

ing performance in terms of robustness and accuracy was reported. A very

different energy dissipating approach was proposed by Romero and Armero

[31] and extended to 3D beams by Ibrahimbegović and Mamouri [22] who in-

troduced specific algorithmic constitutive equations with artificial dissipating

parts. The degree of artificial dissipation can be controlled by parameter α.

These schemes are analytically proven to dissipate energy in non-linear sys-

tems, which is a formal proof of the unconditional stability of the scheme.

Bottasso et al. [11] showed how the Runge-Kutta method can be employed

to design decaying schemes for non-linear dynamics. Another family of time

integrators for solving the stiff equations of motion of classical mechanics in a

general Hamiltonian context is based on the time-continuous Galerkin method

[7,12].

An alternative approach is the energy conserving scheme. Such a scheme is un-

conditionally stable [20], but often very high, unrealistic frequency oscillations
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are observed in the dynamic response, which can hinder the convergence of

the Newton method for the solution of the non-linear algebraic equations, see

e.g. [3]. The earliest schemes employing the energy conserving approach were

proposed by Simo et al. [35–37]. In the present work, a new energy conserving

algorithm for the numerical time integration of non-linear structural systems

is developed, which conserves both energy and linear and angular momenta,

in exact and discrete form, and satisfies the kinematic constraints in the weak

form. As in the energy conserving algorithms proposed by Simo et al. [36,37],

Ibrahimbegović et al. [21–23], Crisfield and Shi [14] and several others, the

present algorithm employs the midpoint time integration rule. The essential

step in the construction of the present algorithm is the derivation showing

that the strain update should be made in an incremental way, if we desire to

obtain automatically a zero energy increment in a time step. This algorithm

can easily be modified to introduce a controllable energy decay using the al-

gorithmic constitutive equations with artificial dissipation [22,31]. This line of

development will, however, not be followed in the present paper.

In order to place the algorithm into the very applicable multibody and struc-

tural engineering context, the deduction is presented only for the case of the

classical, displacement-based geometrically exact planar beam finite element

formulation [35]. The generalization of the algorithm to other types of struc-

tural systems like 3D beams, plates and shells is a straightforward matter,

as both ideology and technology remain the same. In fact, the majority of

the time integrators for stiff systems have been derived in the context of the

beam-like structures. Crisfield and Shi [14] proposed the midpoint based en-

ergy conserving integrator for their co-rotational planar truss formulation.

Crisfield et al. [15] discussed various endpoint and midpoint time integra-
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tion algorithms for the dynamic analysis of their co-rotational spatial beam.

They showed that their proposed midpoint scheme can be considered as an

‘approximately energy conserving algorithm’. They also introduced a method

with the numerical damping. Stander and Stein [38] studied the planar beam

element proposed by Simo and Vu-Quoc [35] by imposing an explicit constant-

energy constraint resulting in energy conservation. Jelenić and Crisfield [24]

extended their master-slave formulation for 3D beams and joints to dynamic

problems using the midpoint formulation, which lead to conservation of both

energy and momenta. Ibrahimbegović and Mamouri [21,22] used a modified,

non-linear, unconventional rotational velocity and torque updates in such a

way that the scheme conserves energy. Sansour et al. [33,34] developed an

energy-momentum conserving scheme applicable to any shell theory and any

non-linear form of strain-displacement relations. The scheme was very success-

fully applied in the finite element analysis of dynamics of their seven degree of

freedom shell theory. Regarding the non-linear beams as constrained mechani-

cal systems from the outset and employing the Hamiltonian formulation of the

semi-discrete beam, Betsch and Steinmann [8] derived an energy conserving

scheme, which is both accurate and stable, and does not lead to spurious os-

cillations in the stress resultants. The main drawback of their approach seems

to be the presence of the Lagrange multipliers leading to a greater number of

unknowns than in other formulations. While the specific measures taken by

any of the above cited authors are different, they all prove energy conservation

analytically, in an explicit way, or numerically, which is a sufficient condition

for the stability of the integrator.

When the Lagrange multipliers are used to impose the kinematic constraints,

the governing dynamical equations become differential-algebraic equations.
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The frequencies associated with the algebraic equations are infinite, which

makes the system stiff by definition. One such example is the strain-based

finite element formulation for 2D geometrically exact beams by Gams et al.

[16], and a number of approaches have been proposed for the integration, see,

e.g. [3–6,8–11,18,23]. We do not discuss such constrained dynamical systems

in the present paper, however.

The outline of the paper is as follows. In the next section, we present the

governing equations of the dynamics of the geometrically exact Reissner’s [30]

planar beam, undergoing large overall planar motion. Various continuum and

time-discrete forms of the Hamilton principle and the strong and weak forms

of the kinematic constraints are given there. The central part of the paper

is Section 2.6, where the energy conserving scheme is derived and its conser-

vation properties proved. The scheme is distinct in that the unconventional,

a finite-size incremental strain update is used, implied by the strict distinc-

tion between the infinitesimal and the finite-change operator. Consequently,

the proposed scheme is somewhat more complex to implement. Because the

automated code generation software package AceGen [25] was employed to

generate the finite-element matrices needed for the computer code, this pre-

sented no additional complication. Section 3 describes the displacement-based

finite-element implementation of the proposed scheme. In Section 4, we present

numerical examples and comments. We show that the present energy conserv-

ing scheme perfectly conserves energy. The paper ends with some conclusions.
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2 Construction of an energy conserving scheme for the dynamics

of a non-linear beam

2.1 Planar Reissner’s beam model [30]

We consider the deformation of an initially straight planar elastic beam of

initial length L in the (x, y)-plane of a spatial Cartesian coordinate system (x,

y, z) with base vectors ex, ey and ez (see Fig. 1). The beam is initially rotated

with respect to ex by an angle ϕ0. A material point on the beam centroid axis is

identified by the material coordinate, s ∈ [0, L]. The cross-sections, associated

with the material points, are assumed constant and symmetric with respect to

the plane (x, y). The beam is subjected to time dependent distributed loads

px(s, t), py(s, t) and mz(s, t), measured per unit length of the undeformed

axis, and generalized point loads Sk(t) (k = 1, 2, . . . , 6) at its ends. Loads

are assumed to be deformation-independent. Membrane, shear and bending

strains are taken into account.

2.2 Kinematic constraints

The spatial position of an arbitrary material point of the centroid axis of the

beam in the deformed configuration at t > 0 is described by the position

vector r(s, t)

r(s, t) =
(
x(s) + u(s, t)

)
ex +

(
y(s) + v(s, t)

)
ex, (1)

where x(s) and y(s) are the initial x and y coordinates of the material point,

identified by ‘s’, and u(s, t) and v(s, t) are its x and y displacement components
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Fig. 1. Plane beam, in undeformed and deformed configurations, left. Notation of

stress resultants, right.

at time t, respectively. As the beam is assumed straight in the undeformed

configuration, the initial coordinates of a generic material point of the centroid

axis are simply (x, y) = (x0 + s cos ϕ0, y0 + s sin ϕ0), with x0 and y0 being the

coordinates of the boundary material point s = 0 (Fig. 1). The kinematic

constraints of the geometrically exact beam theory have been provided by

Reissner [30]; they read:

1 + ε = (x′ + u′) cos ϕ + (y′ + v′) sin ϕ, (2)

γ = −(x′ + u′) sin ϕ + (y′ + v′) cos ϕ, (3)

κ = ϕ′. (4)

In Eqs. (2)–(4), the prime (′) denotes the derivative with respect to s, whereas

functions ε(s, t) > −1, γ(s, t), κ(s, t) and ϕ(s, t) denote the extensional strain,

the shear strain, the bending strain and the rotation of the cross-section,

respectively.
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2.3 Principle of virtual work

Given at time t, the standard principle of virtual work for the dynamics of a

planar beam states:

∫ L

0
(N δε + Qδγ + M δκ) ds−∫ L

0

[
(px − Aρ ü) δu + (py − Aρ v̈) δv + (mz − Iρ ϕ̈) δϕ

]
ds−

6∑
k=1

Sk δWk = 0. (5)

Here N, Q and M are the cross-sectional stress resultants. For a linear elastic

material, they are assumed to be linear functions of strains

N = EA ε,

Q = GAS γ, (6)

M = EI κ.

E and G are elastic and shear moduli, A and AS are the area and the shear

area of the cross-section of the beam, and I is its moment of inertia; ρ is the

density of material; δu, δv and δϕ are virtual displacements and rotation; δWk

(k = 1, 2, . . . , 6) are the generalized boundary virtual displacements [32]. The

superposed dot denotes the differentiation with respect to time.

Functions δε, δγ and δκ are virtual strains. Their relations to δu, δv and δϕ

are obtained by the variation of the kinematic constraints, Eqs. (2)–(4), and

read

δε = δu′ cos ϕ + δv′ sin ϕ + δϕ
(
−(x′ + u′) sin ϕ + (y′ + v′) cos ϕ

)
, (7)

δγ = −δu′ sin ϕ + δv′ cos ϕ + δϕ
(
−(x′ + u′) cos ϕ + (y′ + v′) sin ϕ

)
, (8)

δκ = δϕ′. (9)
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These equations will play an important role in devising the energy conserving

scheme. Substituting virtual strains δε, δγ and δκ from Eqs. (7)–(9) into Eq.

(5) gives

∫ L

0

[
Rx δu′ + Ry δv′ +

(
−(x′ + u′)Ry + (y′ + v′)Rx

)
δϕ + M δϕ′

]
ds−∫ L

0

[
(px − Aρ ü) δu + (py − Aρ v̈) δv + (mz − Iρ ϕ̈) δϕ

]
ds−

6∑
k=1

Sk δWk = 0. (10)

Here, Rx and Ry are the cross-sectional stress resultants with respect to the

spatial basis (see Fig. 1):

Rx = N cos ϕ−Q sin ϕ, Ry = N sin ϕ + Q cos ϕ. (11)

The terms Rx δu′, Ry δv′ and Mδϕ′ in Eq. (10) are integrated by parts, re-

sulting in

∫ L

0

[
(R′

x + px − Aρ ü) δu + (R′
y + py − Aρ v̈) δv +(

M ′ + (x′ + u′) Ry − (y′ + v′) Rx + mz − Iρ ϕ̈
)
δϕ

]
ds +(

S1 + Rx(0)
)
δW1 +

(
S2 + Ry(0)

)
δW2 +

(
S3 + M(0)

)
δW3 +(

S4 −Rx(L)
)
δW4 +

(
S5 −Ry(L)

)
δW5 +

(
S6 −M(L)

)
δW6 = 0. (12)

In the construction of the finite-element solution, the form given in Eq. (10)

rather than this modified principle of virtual work is employed.
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2.4 Hamilton’s principle and the weak form of constraints

The next step consists of integrating in time the modified virtual work prin-

ciple, Eq. (12), over the time interval [tn, tn+1]

∫ tn+1

tn

[ ∫ L

0

(
(R′

x + px − Aρ ü) δu + (R′
y + py − Aρ v̈) δv +(

M ′ + (x′ + u′) Ry − (y′ + v′) Rx + mz − Iρ ϕ̈) δϕ
)
ds +(

S1 + Rx(0)
)
δW1 +

(
S2 + Ry(0)

)
δW2 +

(
S3 + M(0)

)
δW3 +(

S4 −Rx(L)
)
δW4 +

(
S5 −Ry(L)

)
δW5 +

(
S6 −M(L)

)
δW6

]
dt = 0 . (13)

Eq. (13) represents Hamilton’s principle of Reissner’s beam model. The time

integration in Eq. (13) will be performed numerically. In order to apply the

numerical time integration in a consistent way both for the principle and

its constraining kinematic and constitutive equations, we first differentiate

the constraining equations with respect to time. The time derivatives of the

kinematic equations, Eqs. (2)–(4), read

ε̇ = u̇′ cos ϕ + v̇′ sin ϕ + ϕ̇
(
−(x′ + u′) sin ϕ + (y′ + v′) cos ϕ

)
,

γ̇ = −u̇′ sin ϕ + v̇′ cos ϕ + ϕ̇
(
−(x′ + u′) cos ϕ− (y′ + v′) sin ϕ

)
, (14)

κ̇ = ϕ̇′.

The time derivatives of the constitutive equations, Eq. (6), are:

Ṅ = EA ε̇,

Q̇ = GAS γ̇, (15)

Ṁ = EI κ̇.
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2.5 Time discretization

For the time discretization of Hamilton’s principle, Eq. (13), and its adjoined

set of the constraining kinematic and constitutive equations, Eqs. (14) and

(15), we use the following set of ‘midpoint’ approximation rules:

∫ tn+1

tn
f(t) dt = f(tm) ∆t, (16)

tm =
1

2
(tn + tn+1), (17)

∆t = tn+1 − tn, (18)

ḟm =
fn+1 − fn

∆t
=

∆f

∆t
, (19)

f̈m =
ḟn+1 − ḟn

∆t
=

∆ḟ

∆t
. (20)

‘f ’ refers to an arbitrary function of t. Subscript ‘m’ refers to the midpoint

configuration at tm = tn + 1
2
∆t, ‘n’ to a time station at tn and ‘n + 1’ to

tn+1 = tn + ∆t.

The application of the midpoint rule to Hamilton’s principle (13) yields

∆t
[ ∫ L

0

(
(R′

x + px − Aρ ü)m δum + (R′
y + py − Aρ v̈)m δvm +(

M ′ + (x′ + u′) Ry − (y′ + v′) Rx + mz − Iρ ϕ̈)m δϕm

)
ds +(

S1 + Rx(0)
)

m
δW1m +

(
S2 + Ry(0)

)
m

δW2m +
(
S3 + M(0)

)
m

δW3m +(
S4 −Rx(L)

)
m

δW4m +
(
S5 −Ry(L)

)
m

δW5m +
(
S6 −M(L)

)
m

δW6m

]
= 0.

(21)

After cancelling ∆t, we can extract equations corresponding to the individual

variations and obtain the dynamic equilibrium equations for s ∈ [0, L], t ∈

[tn, tn+1] :

(R′
x + px − Aρ ü)m = 0,
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(R′
y + py − Aρ v̈)m = 0,(

M ′ + (x′ + u′) Ry − (y′ + v′) Rx + mz − Iρ ϕ̈
)

m
= 0,

and the related boundary conditions at s = 0 and s = L:

(
S1 + Rx(0)

)
m

= 0,
(
S2 + Ry(0)

)
m

= 0,
(
S3 + M(0)

)
m

= 0,(
S4 −Rx(L)

)
m

= 0,
(
S5 −Ry(L)

)
m

= 0,
(
S6 −M(L)

)
m

= 0.

The kinematic equations (14) are also numerically integrated in time by the

midpoint rule yielding

∫ tn+1

tn
ε̇ dt = ε̇m∆t = ∆ε = εn+1 − εn (22)

= ∆u′ cos ϕm + ∆v′ sin ϕm + ∆ϕ
(
−(x′ + u′

m) sin ϕm + (y′ + v′
m) cos ϕm

)
,

∫ tn+1

tn
γ̇ dt = γ̇m∆t = ∆γ = γn+1 − γn (23)

= −∆u′ sin ϕm + ∆v′ cos ϕm + ∆ϕ
(
−(x′ + u′

m) cos ϕm − (y′ + v′
m) sin ϕm

)
,

∫ tn+1

tn
κ̇ dt = κ̇m∆t = ∆κ = ∆ϕ′, (24)

where u̇′
m∆t = ∆u′, v̇′

m∆t = ∆v′, ϕ̇′
m∆t = ∆ϕ′ has been assumed in accord

with Eq. (19). Note the formal equality of Eqs. (7)–(9) and (22)–(24) in all

respects but one: the first set of equations deals with the variations of the

strains, in contrast to the second set, which deals with the finite-time incre-

ments. We will take advantage of this equality when constructing the energy

conserving scheme.

If the same sequence of steps is applied to the second form of the principle

of virtual work, Eq. (10), the following alternative time-discretized form of
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Hamilton’s principle is obtained

∫ L

0

[
Rxm δu′

m + Rym δv′
m +

(
−(x′ + u′

m)Rym + (y′ + v′
m)Rxm

)
δϕm + Mm δϕ′

m

]
ds−∫ L

0

[
(pxm − Aρ üm) δum + (pym − Aρ v̈m) δvm + (mzm − Iρ ϕ̈m) δϕm

]
ds−

6∑
k=1

Skm δWkm = 0 . (25)

This equation will be needed when proving the conservation properties of the

time-integration scheme.

2.6 Energy conservation

The mechanical energy of the unloaded beam at a specific time is the sum of

the strain and kinetic energy

E =
1

2

∫ L

0
(EA ε2 + GAS γ2 + EI κ2) ds +

1

2

∫ L

0
(Aρ u̇2 + Aρ v̇2 + Iρ ϕ̇2) ds.

The change of the energy between two consecutive time stations is

∆E = En+1 − En =

1

2

∫ L

0

[
EA (ε2

n+1 − ε2
n) + GAS( γ2

n+1 − γ2
n) + EI( κ2

n+1 − κ2
n)

]
ds +

1

2

∫ L

0

[
Aρ (u̇2

n+1 − u̇2
n) + Aρ (v̇2

n+1 − v̇2
n) + Iρ (ϕ̇2

n+1 − ϕ̇2
n)

]
ds.

We rewrite the differences of the squares of ε and u̇ in the following fashion:

1

2
(ε2

n+1 − ε2
n) =

εn+1 + εn

2
(εn+1 − εn) = εm ∆ε, εm =

εn+1 + εn

2
, (26)

1

2
(u̇2

n+1 − u̇2
n) =

u̇n+1 + u̇n

2
(u̇n+1 − u̇n) = u̇m ∆u̇, u̇m =

u̇n+1 + u̇n

2
. (27)

Similar expressions are written for the pairs (γ, v̇) and (κ, ϕ̇). The above form

for εm and u̇m assumes the trapezoidal rule for determining the values of strains

(εm, γm, κm) and velocities (u̇m, v̇m, ϕ̇m) at the midpoint time configurations.

14



The velocities are further worked on using rules (19) and (20) in the following

way:

u̇m ∆u̇ =
∆u

∆t
üm ∆t = üm ∆u.

These modifications along with the relations for the midpoint stress resultants

emerging from the numerical integration of Eqs. (15) by the midpoint rule

Nm = EA εm, Qm = GAS γm, Mm = EI κm (28)

lead to a new form for the change of energy:

∆E =
1

2

∫ L

0
(Nm ∆ε + Qm ∆γ + Mm ∆κ) ds +

1

2

∫ L

0
(Aρ üm ∆u + Aρ v̈m ∆v + Iρ ϕ̈m ∆ϕ) ds. (29)

By substituting ∆ε, ∆γ and ∆κ with the expressions given in Eqs. (22)–(24)

and after employing Eqs. (11) , we get

∆E =
∫ L

0

[
Rxm ∆u′ + Rym ∆v′ +(

−(x′ + u′
m)Rym + (y′ + v′

m)Rxm

)
∆ϕ + Mm ∆ϕ′

]
ds +∫ L

0
(Aρ üm ∆u + Aρ v̈m ∆v + Iρ ϕ̈m ∆ϕ) ds. (30)

Note that the deduction yielding to the above equation is identical to the one

leading to Eq. (10).

After we eliminate the external loading terms from Eq. (25) and compare

the result to Eq. (30), we see that the expressions in equations are virtually

the same, with the differences being that (i) in Eq. (25) we have infinitesi-

mal variations, while in Eq. (30) there are finite-size changes in u, v and ϕ;

and (ii) Eq. (25) represents the principle of virtual work and thus identically

equals to zero for any virtual generalized displacements, if the dynamic equi-

librium equations are satisfied, while Eq. (30) only represents the change of
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energy at two consecutive time stations, which generally does not vanish for

any finite-size increments of generalized displacements. If, however, the dy-

namic equilibrium equations and, consequently, the principle of virtual work

are satisfied indeed, it is easy to show that Eq. (30) also vanishes for any finite

increments ∆u, ∆v, ∆ϕ, related to ∆ε, ∆γ and ∆κ by Eqs. (22)–(24). Thus

the energy in the time step is conserved.

Remark 1. It is significant that we have proven the conservation of the me-

chanical energy before the spatial discretization has been applied. Hence, the

proposed scheme sets no restrictions whatsoever on the manner the equations

are discretized in the space variable.

Remark 2. It is now rather obvious why we cannot fulfil the condition of the

energy conservation solely using the basic form of the principle of virtual work

as given in Eq. (5) and its constraints in the strong form (2)–(4).

Remark 3. The proposed time-integration scheme conserves energy only when

computed for the discrete times, tn+1, tn, . . . Therefore, the conservation of

energy holds true solely in a time-discrete, algorithmic sense. Similarly, the

equations of the dynamic equilibrium are satisfied to be zero only at the mid-

point times, at tm, tm+1, . . . Because the dynamic equilibrium equations are

obtained as the time derivative of the linear and angular momenta, it follows

that the linear and angular momenta are also conserved in an algorithmic

sense during motion, yet at different time stations, i.e. at tn, tn+1, . . .

Remark 4. The strong form of the kinematic equations is not exactly satisfied

in our formulation. The drift from the kinematic constraint manifold depends

mainly on the size of the time step. In most cases, the drift is so small that it

can be neglected, see the discussion in our second numerical example.
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Remark 5. Unlike the formulations by, e.g. Ibrahimbegović and Mamouri [21]

or Simo et al. [36], where the midpoint rotation matrix, Λm, is approximated

by Λm = 1
2
(Λn + Λn+1), which is not an orthogonal matrix, our formulation

retains orthogonality of the rotation operator.

Remark 6. Some energy conserving schemes are derived by heavily relying on

substituting the linear operator δ with the finite-size incremental operator ∆.

This is not a consistent line of thinking, at least in the view of the authors of

this article, and no such assumption has been made in our derivation. Never-

theless, we acknowledge the fact that, if we had also abused this substitution,

we would have ended up with the same theoretical result as the one presented.

3 Finite element formulation

3.1 Spatial and time discretization

The displacement and rotation distributions along the beam axis are inter-

polated by the linear combination of the Lagrangian polynomials, Pi(s), of

an arbitrary order k. We denote the discrete nodal values of generalized dis-

placements (u, v and ϕ) with their capital letter counterparts (Ui, Vi and Φi ,

i = 1, 2, . . . , k). Equidistant points along the finite element axis in the unde-

formed configuration are used for the interpolation in spatial domain. Hence

u(s, t) =
k∑

i=1

Ui(t) Pi(s), (31)

v(s, t) =
k∑

i=1

Vi(t) Pi(s), (32)

ϕ(s, t) = ϕ0 +
k∑

i=1

Φi(t) Pi(s). (33)
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The same type of interpolation rules are imployed to describe variations of

virtual generalized displacements (δu, δv, δϕ), increments in generalized dis-

placements (∆u = un+1 − un, ∆w = wn+1 − wn, ∆ϕ = ϕn+1 − ϕn) and time

derivatives (u̇, v̇, ϕ̇, ü, v̈, ϕ̈). The derivatives with respect to s are obtained by

differentiating the interpolated variables. The time discretization employs the

midpoint rule, which is applied to the discrete nodal values of displacements

and rotations once the spatial discretization has been completed. To make the

text shorter, we introduce a generic symbol Ψ, which stands for any of the

discrete displacements (Ui or Vi or Φi), and present the midpoint rules as:

Ψm =
Ψn + Ψn+1

2
, (34)

Ψ̇m =
Ψn+1 −Ψn

∆t
, (35)

Ψ̈m =
2

∆t2
(Ψn+1 −Ψn − Ψ̇n ∆t) (36)

along with the corresponding velocity update

Ψ̇n+1 =
2

∆t
(Ψn+1 −Ψn −

1

2
Ψ̇n ∆t). (37)

3.2 Tangent stiffness matrix, mass matrix and residual vector

The derivation of the tangent stiffness matrix of the displacement-based for-

mulation in conjunction with the present time integration scheme can be a

relatively tedious job to do, partly also due to the introduction of unconven-

tional relations (22)–(24). This is one of the reasons why we resorted to an

automated code generation software package AceGen, developed by Korelc

[25]. The package works inside the Mathematica [39] environment and can

produce a finite element code in various programming languages. We used the

package to generate the code for evaluating the tangent stiffness matrix, KT,
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the mass matrix, M , and the residual vector, fR. The code was then used in

Matlab [28] to perform actual calculations. The main advantage of working in

such an environment is that whenever we need to differentiate a functional, we

just execute a command, which saves us a lot of time, guarantees the no-error

results for the generated code and its computational optimization. The details

of the energy conserving algorithm are schematically presented in Box 1.

Box 1: Energy conserving scheme.

(1) Given nodal displacements and velocities at tn: Ψn, Ψ̇n

1. Initialization: Ψn+1 := Ψn, Ψ̇n+1 := Ψ̇n, δΨ = 0

2. Newton’s iteration

while ||δΨ||
max(1,||Ψ||) > tol

a. midpoint nodal displacements and velocities, Eqs. (34)–(36): Ψm, Ψ̇m

b. incremental nodal displacements: ∆Ψ = Ψn+1 −Ψn

c. incremental displacements, Eqs. (31)–(33): ∆u, ∆v, ∆ϕ
d. midpoint displacements: um, vm, ϕm

e. midpoint accelerations: üm, v̈m, ϕ̈m

f. derivative of midpoint displacements with respect to s: u′
m, v′

m, ϕ′
m

g. incremental strains, Eqs. (22)–(24): ∆ε, ∆γ, ∆κ
h. strains: εn+1 = εn + ∆ε, γn+1 = γn + ∆γ, κn+1 = κn + ∆κ
i. midpoint forces, Eq. (28) and (11): Nm, Qm, Mm; Rxm, Rym

j. residual vector: δ(Γ− Σ) ⇒ fR

k. tangent stiffness matrix: δ2(Γ− Σ) ⇒ KT, KT 6= KT
T

l. solve: KT δΨ = fR ⇒ δΨ
m. update: Ψn+1 := Ψn+1 + δΨ, Eq. (37): Ψ̇n+1 = 2

∆t(Ψn+1 −Ψn − 1
2Ψ̇n ∆t)

end while

Γ and Σ in Box 1 designate the first and the second integrals in Eq. (25).

When we neglect the effect of the external forces, Eq. (25) can be rewritten

as

Γ− Σ = 0. (38)

The integral in Γ is numerically integrated by the reduced integration to alle-
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viate the locking, whereas the integral in Σ is integrated fully. As observed in

Box 1, the presented scheme is found fundamentally different when compared

to other displacement-based finite element schemes, e.g. [3,14,21,22,36,38], be-

cause the weak kinematic equations (22)–(24) rather than their strong forms,

Eqs. (2)–(4), are used to determine strains at tn+1.

Remark 7. Notice from Box 1 that the tangent stiffness matrix is not symmet-

ric. The non-symmetry is a typical characteristic of energy conserving schemes,

see, e.g. [15,21,22,24].

Remark 8. Because the equations of a finite element have been derived in the

spatial (‘global’) coordinate system, no further local-to-global transformation

of the matrices is needed.

3.3 An alternative ‘strong’ formulation

Having to calculate strains repeatedly by the incremental Eqs. (22)–(24),

which requires storing current strains in addition to the displacements, seems

a bit uneconomical. This is overcome, if an alternative formulation is intro-

duced, which exploits the direct evaluation of strains from current displace-

ments using Eqs. (2)–(4) rather than the finite-size incremental relation (22)–

(24). Because time steps must be small by definition, this alternative way

of evaluating strains at tn+1 normally leads to only slightly different results

for strains. The way these two variants of the formulation compute strains,

suggests the terms ‘weak’ and ‘strong’ formulation, and this terminology will

be adopted here. We will compare the results of these variants in the second

numerical example. We wish to emphasize that the explicit theoretical proof

of energy conservation only holds for the weak variant. If we wish to make the
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present strong formulation to be theoretically-based energy conserving one,

we must construct a special angular velocity update and the related modified

algorithmic constitutive equation for the bending moment, see, e.g. [21,22].

4 Numerical examples

4.1 The swing pendulum

This example, leading to a highly stiff system of differential equations, was

originally proposed by Bauchau et al. [3,4], and subsequently analyzed by

Ibrahimbegović and his co-workers [21–23]. The pendulum consists of a flexible

beam hinged on both ends into two rigid links (Fig. 2). The rigid links impose

a kinematic constraint corresponding to fixed distance between points O1 and

A, and O2 and E.

Fig. 2. The swing pendulum: geometry and load data.

A point mass m = 0.5 kg is rigidly connected to the flexible beam at its mid-

span. Point B is the observation point. The material and geometric properties
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of the flexible beam are:

E = 73 · 109 N/m2, A = 0.05 × 0.01 m2, L = 0.72 m,

I =
1

12
0.05 × 0.013 m4, ρ = 2700 kg/m3, mBEAM = 0.972 kg.

Shear strains are made negligible by setting a large value for the shear modulus

(G = 100 E). As in [21] and [3] the rigid links are assumed weightless (ρ = 0

kg/m3) and their rigidity is modelled by assuming large Young’s modulus, i.e.

ten times the value of the modulus of the flexible beam.

The system is initially at rest. It is set in motion by a horizontal time-

dependent pulse at the mid-span of the beam. The time variation of the pulse

intensity is shown in Fig. 2. After the pulse vanishes at t = 0.256 s, the system

is left to oscillate freely in such a way that the total energy is conserved.

Only the weak variant of the formulation is discussed in this example.

The sequence of deformed shapes of the swing pendulum are shown in Fig. 3.

At first, the links are moving in the counter clock-wise direction. At roughly

t ≈ 0.62 s, the right link reverses its direction and starts moving clock-wise.

Simultaneously, the horizontal velocity of the point mass changes its direction,

which acts almost like an impact on the system. A smooth response in low

frequencies abruptly changes into a complicated high frequency response. This

event, however, does not perturb predominantly swinging motion.

In order to check if energy is conserved for any order of the spatial interpo-

lation, we made use of three different orders of spatial interpolation, i.e. the

linear, quadratic and cubic interpolation. The linear mesh employed 4 linear

elements to model each of the rigid links and 40 linear elements for the flexible

beam. The corresponding figures for the quadratic elements are 4 and 8, and
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Fig. 3. Motion of the system, drawn until 1 s, depicted in 0.1 s time intervals.
The dotted line depicts the initial configuration. 16 quadratic elements, time step
∆t = 0.0005 s.

for the cubic elements 1 and 4. We found out that the meshes with 48 linear,

16 quadratic or 6 cubic elements produced the results of nearly equal quality

(Fig. 4).

To analyze the high frequency response of the beam in modes related to axial

vibrations, we show the time variation of the axial force at the first Gauss

point to the left of the midspan mass. We compare the results for three spatial

interpolations in Fig. 5. As the locations of the first Gauss points in the three

finite-element meshes are not coincident, these graphs should not be the same.

Yet, the peak occurring at the time of the right link reversal is essentially the

same for all three meshes. By contrast, the noise being produced afterwards is

quite different. The least noise left-over is produced with quadratic elements.

Any oscillations with such a high frequency could only be extremely poorly

accounted for with the time step fixed to 0.0005 s. Practically any oscillation

modes with periods less than 0.005 s only produce noise. Nevertheless, the

noise remains within the reasonable bounds, enforced by the energy conserving

scheme.

We conclude this example with the graph of the total energy of the system (Fig.
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Fig. 4. Time variations of vertical and horizontal displacements at the point of
observation, B. Comparison of results obtained by different spatial interpolations.

Fig. 5. Time variation of axial force at the first Gauss point to the left of the midspan
mass. Comparison of different spatial interpolations.
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6). This particular graph was obtained by the use of the quadratic elements,

but there is no difference whatsoever in graphs if any other order of the spatial

interpolation has been employed.

Fig. 6. Time variations of total, kinetic and potential energy of the system.

In an iterative solution of non-linear equations by a computer, the norm of

the residual vector does not equal to zero in a strict mathematical sense of

equality, and depends on the machine precision of the computer used and the

tolerance required by the user. In the present study, the tolerance is set to

bound the iterative increments in the Newton-Raphson procedure rather than

the residual vector as

||δΨ||
max(1, ||Ψ||)

< 10−10.

The inaccuracy is reflected in the non-constant values of the total mechanical

energy with time. The flat line that we can observe after 0.256 s, is, in fact,

numerically a little bit curly. With the above given criterion being satisfied, we

have observed the absolute difference between the maximum and the minimum
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energy within the time interval t ∈ [0.256 s, 1 s] to be about 10−10 or less, see

Table 1. This is considered to be a perfect energy conservation for double

precision arithmetics.

The number of Newton’s iterations in any time step ranged from 3 to 7. In the

majority of time steps, 4 to 5 iterations sufficed. This indicates that the high

oscillations in axial forces do not slow down the convergence of the Newton-

Raphson method.

Table 1
Maximum difference in total energy in time interval t ∈ [0.256, 1] for different spatial
interpolations.

max(Energy)–min(Energy)

48 FE lin. 16 FE quad. 6 FE cub.

1.6 ·10−10 7.7 ·10−11 1.4 ·10−10

4.2 Planar motion of a multibody system

This example was introduced by Ibrahimbegović and Mamouri [21] to demon-

strate the versatility of their formulation for dealing with different types of

joints. This also holds true for the present formulation, because, as in [21], the

joints are accounted for through a simple condensation on the element level.

Moreover, the example is of interest in its own right, since it undergoes in-

teresting configurations, responds in high and low frequencies, and cannot be

satisfactorily solved with non-conserving methods, such as the Newmark [29]

or HHT [19] methods, as was clearly shown in [21].

The multibody system under consideration is made of 4 flexible members

interconnected by either revolute or prismatic joints (Fig. 7). Point B is the
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Fig. 7. The multibody system: geometry and load data.

observation point. The system is initially at rest. It is put into motion by a

concentrated torque at the right support. The time variation of the torque is

depicted in Fig. 7. The remaining descriptive data are:

EA = 5.65 · 105 N, GAS = 1.4038 · 105 N, EI = 3.04 · 101 Nm2,

Aρ = 1.35 · 10−2 kgm, Iρ = 1.125 · 10−6 kgm.

Again, three different spatial interpolations were used in combination with the

weak version of the formulation. For a converged solution (i.e. a sufficiently

accurate solution), at least 80 linear, 12 quadratic or 8 cubic elements were

needed. The time variation of the vertical displacement at point B is shown

in Fig. 8.

The system exhibits a gradual increase towards a high frequency response.

This is particularly true for the variation in time of the axial force at the first

Gauss point to the left of point B, see Fig. 9.

The results for the displacements and the axial force, if obtained by the strong

version, compare well with the results obtained by the weak formulation, and

the differences are so small that they are not visible on the graphs. Table 2

shows the absolute difference between the maximum and the minimum values

of the total energy within the time interval t ∈ [0.25 s, 1 s]. The results clearly
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Fig. 8. Time variation of vertical displacement at the point of observation, B. Com-
parison of three different spatial interpolations.

Fig. 9. Time variation of axial force at the first Gauss point to the left of the point
of observation, B. Comparison of three different spatial interpolations.

demonstrate the advantage of the weak formulation in that it is capable of a

much more stringent energy conservation. Without doubt this must help in
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long term calculations.

Table 2
Maximum difference in total energy in time interval t ∈ [0.25, 1]. Different spatial
interpolations, weak and strong variant.

max(Energy)–min (Energy)

80 FE lin. 12 FE quad. 8 FE cub.

Weak formulation 8.5·10−8 7.7·10−8 1.1·10−7

Strong formulation 9.5·10−3 1.4·10−4 1.4·10−4

The case is further analyzed, this time with an aim to compare the long

term calculations. This time the problem is solved in 10 s interval. Vertical

displacements at point B as obtained by weak and strong formulations are

shown in Fig. 10. The two solutions agree completely up to about 2.4 s, and

split into two separate curves afterwards.

Fig. 10. Time variation of vertical displacement at point B. Comparison of results
by weak and strong variants of the formulation. 12 FE quadratic, ∆t = 0.001 s.
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A careful analysis reveals that the strong variant of the formulation experi-

ences high frequency oscillations in vertical displacements at the instant of the

split. These oscillations damp out in about 1 s. No such phenomenon could be

detected in the solution by the weak version. The solution by the strong ver-

sion exhibits further unexpected behaviour after 5th second, which suggests

that it has some sort of difficulties. The data in Table 3 show that the total

energy is conserved with at least two orders of magnitude greater accuracy

in the weak formulation, although the degree of conservation of the strong

variant should also be considered sufficient to retain the stability of the time

integration scheme.

Table 3
Maximum difference in total energy in time interval t ∈ [0.25, 10]. Weak and strong
variants of the formulation.

max(Energy)–min(Energy)

12 FE quadratic

Weak formulation 1.7 · 10−5

Strong formulation 6.0 · 10−3

The graphs of total, kinetic and potential energies are shown in Fig. 11.

In order to asses the drift from the strain manifold due to the incremental-

type of the update, we computed the strains by Eqs. (2)–(4) once the up-

dated displacements at tn+1 have been evaluated, and made comparisons with

the strains computed incrementally as given in Box 1. Small differences were

found. This indicates that the drift is small and can be neglected.

The normalized errors of displacements at point B and strains at the first

Gauss point left to it, as a function of the number of time steps in the log-

log scale, are shown in Fig. 12. The error is calculated with respect to the
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Fig. 11. Time variation of total, kinetic and potential energy of the system. Weak
formulation. 16 FE quadratic, ∆t = 0.001 s.

Fig. 12. Convergence study.

reference solution at time t = 0.5 s, and plotted as a function of the number

of time steps. Analysis employs quadratic finite elements, and the reference

solution uses ∆t = 0.0000625 s. The results show that the rate of convergence
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of the present time integration scheme combined with the quadratic elements

is between two and three. Not much is changed if elements of various orders

are employed, however.

5 Conclusions

A new time integration scheme has been presented for planar, elastic, geomet-

rically exact beam-like structures, which perfectly conserves momenta and the

total energy of the dynamic system with constant external loads. The scheme

conserves the energy regardless of the particular spatial discretization chosen.

It is distinct in that the unconventional, a finite-size incremental strain update

is used, implied by a strict distinction between the infinitesimal and the finite

change operator. The scheme is implemented in the displacement-based beam

finite-element of geometrically exact theory of Reissner [30]. The automated

code generation software package AceGen [25] was employed to generate the

finite-element matrices needed for the computer code.

The energy conservation has been formally and numerically proved. Hence, the

scheme is unconditionally stable [20]. The time discretization of the rotation

matrix is assumed such that its orthogonality is retained. This is an advantage

compared to the scheme proposed in [21–23] and many others.

The above scheme is marked the ‘weak’ scheme. In addition to the weak

scheme, a ‘strong’ scheme has also been proposed which evaluates the current

strains directly from the current generalized displacements. Such a ‘strong’

scheme does not conserve energy in an exact theoretical sense unless the up-

dates for the velocity of rotation and for the torque are modified in a consistent

manner [21].
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Two well known numerical examples have been thoroughly analyzed. The re-

sults confirm a perfect conservation of energy for the weak formulation for

any order of the spatial interpolation. A rather good, yet not perfect conser-

vation of energy has been found when strong formulation is applied and the

differences between the results were found to be very small. The investigation

of the rate of convergence with regard to the time step size showed that the

convergence order was between two and three.

Hence, the results of the numerical examples demonstrate an excellent per-

formance in terms of the energy conservation, stability and accuracy of the

scheme, and prove good convergence properties in terms of both the Newton-

Raphson method and the time step size.
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