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The quaternion-based

three-dimensional beam theory

E. Zupan, M. Saje and D. Zupan∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

This paper presents the equations for the implementation of rotational quaternions
in the geometrically exact three-dimensional beam theory. A new finite-element for-
mulation is proposed in which the rotational quaternions are used for parametriza-
tion of rotations along the length of the beam. The formulation also satisfies the
consistency condition that the equilibrium and the constitutive internal force and
moment vectors are equal in its weak form. A strict use of the quaternion algebra
in the derivation of governing equations and for the numerical solution is presented.
Several numerical examples demonstrate the validity, performance and accuracy of
the proposed approach.

Key words: quaternions, three-dimensional rotation, three-dimensional beam,
interpolation of rotations

1 Introduction

In non-linear three-dimensional beam formulations, the deformed geometry of
the beam is described by the deformed axis of the beam and by the rotation of
the cross-sections. The configuration space of the beam thus consists of (i) the
linear space of the position vector of the deformed axis, and (ii) the non-linear
space of rotations of cross-sections, and is thus a non-linear manifold. The
non-linearity of spatial rotations requires a special treatment, which makes
the study of three-dimensional beams interesting and challenging.

Among suitable mathematical tools to treat the rotations are the Lie algebra,
the Clifford algebra and the algebra of quaternions. The mathematical mod-
elling of spatial rotations, their parametrization and linearization have been
discussed in several publications, see, e.g. Argyris [1], Argyris and Poterasu
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[3], Atluri and Cazzani [4], and Géradin and Rixen [10]. While alternative
non-rotation based three-dimensional beam formulations have aslo been pro-
posed (see, e.g. [21]), finite rotations are taken to be the primary variables by
most of authors. Battini and Pacoste [6], Cardona and Géradin [8], Crivelli
and Felippa [9], Ibrahimbegović [12], Iura and Atluri [14], Jelenić and Saje
[16], Nour-Omid and Rankin [20], Simo [28], Simo and Vu-Quoc [29], Zupan
and Saje [34], to mention just a few, contributed to the development of the
rotation-based finite-element beam formulations. The way the rotations are
parametrized is in the beam theory crucial, because a particular selection of
the parametrization has a strong impact on both the algorithm and the form
of the tangent stiffness matrix. In the present paper we consider the so called
‘geometrically exact finite-strain beam theory’ (Reissner [24] and Simo [28]).
In this approach the strain measures are fully complemental to the cross-
sectional stress resultants through the virtual work principle at the deformed
state for any magnitude of displacements, rotations, and strains.

There is a number of possible ways of choosing the parameters describing
spatial rotations. As the three independent parameters suffice to describe lo-
cally the spatial rotation, the three-parameter formulations have almost ex-
clusively been used in beam theories. A particularly important representative
of these parametrizations is the ‘rotational vector’ [1]. While the rotational
vector possesses a clear geometrical meaning, which is an advantage, one of
its disadvantages is that the discretization of rotations using a standard addi-
tive interpolation spoils the objectivity of rotational strain measures outside
the interpolation points (Jelenić and Crisfield [15]). Jelenić and Crisfield [15]
proposed a new formulation based on the linked interpolation of incremental
local rotations which resolves the objectivity, but enhances the complexity of
the formulation substantially. An alternative approach by Betsch and Stein-
mann [7] employs the nine-parameter description of rotations, in which the
components of the director triad are interpolated. Their approach relaxes the
orthogonality condition to hold only at the discretization points of the el-
ement. Several alternative interpolation strategies have also been discussed
by Romero in [25] where the quaternions for the rotational update and the
interpolation purposes are also presented.

A promising alternative for the parametrization of rotations is the four-parameter
rotational quaternion. The use of rotational quaternions in beam theories has
been so far limited to construct numerically stable and efficient local com-
putational algorithms that avoid singularity problems and accelerate compu-
tations. An example of a widely used quaternion-based algorithm in beam
formulations is the extraction of rotational parameters from the rotation ma-
trix (Spurrier [30]). Yet the quaternions not only prove to be a numerically
stable and computationally efficient tool for algebraic operations with rota-
tions, but also offer an alternative description of rotations in four dimensions.
The use of quaternions as the primary variables of the problem is now well
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spread in aerodynamics [22], robotics [33] and computer graphics [27]. Quater-
nions proved to be the most suitable parametrization of rotations in dynamics
of rigid bodies; see the paper by Zupan and Saje [37] for further details. The
theoretical background of the quaternion algebra and the related Clifford al-
gebra is well established, see, e.g. the monographs by Ward [32] and Poreous
[23]. McRobie and Lasenby [18] discuss advantages of employing the Clifford
algebra, show crucial steps needed for the Simo and Vu-Quoc formulation [29]
and compare the steps of the Lie algebra to be replaced by equivalent simpler
forms in terms of the Clifford algebra.

In the present paper, we fully abandon the rotation matrix concept and intro-
duce the rotational quaternions as the only rotational unknowns of the prob-
lem. Thus not only the local computational algorithms, but also the equa-
tions of the beam are presented in terms of the quaternions. Strict use of
quaternions results in formulations that differ considerably from the classical
beam formulations, so the direct incorporation in existing computer programs
is not possible without some modifications. However, the use of quaternions
brings a number of advantages so that modifications are worth being done. It
is shown that quaternion algebra provides a suitable and efficient tool both
for the formulation of the continuum and discrete governing equations of the
beam, and for the implementation of numerical algorithms. Furthermore, a
novel, collocational-type of finite-element formulation is presented based on
the consistent equilibrium at the chosen cross-sections requiring that the cross-
sectional stress resultants, obtained from the equilibrium equations and from
the constitutive equations, are equilibrated.

2 Quaternion parametrization of rotations

Rotations and their application in computational mechanics have been ex-
tensively discussed in literature. Mathematically, rotations represent a mul-
tiplicative group of proper orthogonal operators. For the three-dimensional
rotational operator to be expressed by the associated matrix, nine scalar com-
ponents are needed. Not all of them are independent, in fact only three scalar
values suffice to describe fully the rotation in the three-dimensional space.
There exists a number of ways to parametrize the rotations, see, e.g. the com-
prehensive texts by Argyris [1], Atluri and Cazzani [4], and Géradin and Rixen
[10]. It is well known that any choice of three parameters for describing spatial
rotations results in a singularity. Our objective here is to employ a special four-
parameter description of rotations known as the ‘quaternion parametrization
of rotations’. Because this parametrization uses a special algebra, called the
algebra of quaternions, some mathematical fundamentals need to be presented
first.
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The set of quaternions, IH, is formally defined as an abstract set of elements
â, formed from scalars and vectors:

IH =
{
â = a0 +

⇀
a, a0 ∈ IR,

⇀
a ∈ IR3

}
.

Three elementary operations are defined for any quaternions â, b̂ ∈ IH, â =

a0 +
⇀
a , b̂ = b0 +

⇀

b , and any scalar λ ∈ IR:

• addition

(+) : IH × IH → IH

â+ b̂ = (a0 + b0) +
(
⇀
a +

⇀

b
)
, (1)

• scalar multiplication

() : IR× IH → IH

λâ = λa0 + λ
⇀
a, (2)

• and quaternion multiplication

(◦) : IH × IH → IH

â ◦ b̂ =
(
a0b0 −

⇀
a ·

⇀

b
)
+
(
b0

⇀
a + a0

⇀

b +
⇀
a ×

⇀

b
)
, (3)

where (·) and (×) denote the scalar and the cross-vector product, respec-
tively, in vector space IR3. The identity element for the quaternion multi-

plication is denoted by 1̂ = 1 +
⇀
0; thus â ◦ 1̂ = 1̂ ◦ â = â for any â ∈ IH.

The set of the quaternions with the addition and the scalar multiplication is
the four-dimensional linear space over IR and is therefore isomorphic to IR4.
The quaternion multiplication (3) is associative, but not commutative, which
makes the set of quaternions IH an associative non-commutative algebra.

The quaternions with a zero scalar part are called pure quaternions. They
constitute a three-dimensional linear subspace of IH which is isomorphic to
IR3. Therefore, we can identify a pure quaternion with its vector part

0 +
⇀
a ≡ ⇀

a.

We further introduce

• conjugated quaternion
â∗ = a0 −

⇀
a,

• quaternion norm

|â| =
√
â ◦ â∗ =

√
a20 +

∣∣∣⇀a ∣∣∣2,
4



where
∣∣∣⇀a ∣∣∣ = √

⇀
a · ⇀a is Euclidean vector norm in the three-dimensional vec-

tor space,
• angle between two quaternions â, b̂ ∈ IH

cosλ =
a0b0 +

⇀
a ·

⇀

b

|â|
∣∣∣b̂∣∣∣ ,

• and inverse of a quaternion with the non-zero norm

â−1 =
â∗

|â|
.

When applied to a pure quaternion, the definition of the conjugated quaternion
gives

â∗ = −â ⇐⇒ â = 0 +
⇀
a. (4)

From the above listed definitions, it can easily be shown that every quaternion
can also be written in the polar form:

â = |â|
(
cosϑ+

⇀
n sinϑ

)
, (5)

where
⇀
n is a unit vector. When |â| = 1, one easily identifies

⇀
n as the axis of

rotation with ϑ being the rotational angle. As discussed above, the quaternion
multiplication is not commutative. Hence, for a given unit quaternion q̂ (|q̂| =
1) and an arbitrary quaternion x̂, we can introduce two linear operators

• left multiplication
ϕL (q̂) : x̂ 7−→ q̂ ◦ x̂ (6)

• and right multiplication

ϕR (q̂) : x̂ 7−→ x̂ ◦ q̂. (7)

For both ϕL and ϕR we can prove that they conserve length, angle, and orienta-
tion of x̂ [32]. Therefore ϕL and ϕR represent rotations in the four-dimensional
space of quaternions. However, neither of them represents rotations in three
dimensions, because they do not map pure quaternions (vectors) into pure
quaternions (vectors). Yet it is easy to find a composite of the two operators
that also fulfils the condition of mapping pure quaternion into a pure quater-
nion. Recalling that the composite of two rotations in four dimensions is again
a four-dimensional rotation, we define a new rotational operator, Q,

Q (q̂) = ϕR (q̂∗)ϕL (q̂) = ϕL (q̂)ϕR (q̂∗)

Q (q̂) : x̂ 7−→ q̂ ◦ x̂ ◦ q̂∗, (8)

which conserves pure quaternions. The proof that Q
(
0 +

⇀
x
)
results in a pure

quaternion is straightforward and therefore omitted here. Because the axes of
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the two rotations are colinear, the angle of rotation of the composed rotation,
Q = ϕR (q̂∗)ϕL (q̂), is twice the angle of a single rotation ϕR (q̂∗) or ϕL (q̂).
Thus a unit quaternion q̂ can be expressed in its polar form as

q̂ = cos
ϑ

2
+

⇀
n sin

ϑ

2
. (9)

Due to its direct relation to the axis and the angle of rotation, expression (9)
is often taken as the definition of the rotational quaternion.

In the numerical implementation, the matrix form of quaternions is often
more appropriate, yet it requires the introduction of the basis into the space
of quaternions IH. The generalization of Euclidean orthonormal base vectors
in IR3,

{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
, into IH results in ĝi = 0 +

⇀
g i, i = 1, 2, 3. These vectors

uniquely represent only pure quaternions, hence the basis {ĝ1, ĝ2, ĝ3} spans the
three-dimensional subspace of pure quaternions. The fourth base quaternion is

then naturally taken to be ĝ0 = 1+
⇀
0 = 1̂. It is easy to show that {ĝ0, ĝ1, ĝ2, ĝ3}

are orthonormal. With respect to {ĝ0, ĝ1, ĝ2, ĝ3}, any quaternion in IH can be
uniquely expressed as a linear combination

â = a0ĝ0 + a1ĝ1 + a2ĝ2 + a3ĝ3.

The set of quaternions {ĝ0, ĝ1, ĝ2, ĝ3} will be called the quaternion basis.

It is found convenient to introduce the following matrix notation. The scalar
components ai, i = 0, 1, 2, 3, of a quaternion â, are described by the one-column
matrix

â =
[
a0 a1 a2 a3

]T
.

Similarly, the linear operators on the space of quaternions can be represented
by 4× 4 matrices. Considering the basis {ĝ0, ĝ1, ĝ2, ĝ3} yields the linear maps
(6)–(7) in their matrix representation as:

ΦL (q̂) =



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


, ΦR (q̂) =



q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0


, (10)

where q̂ =
[
q0 q1 q2 q3

]T
. It is easy to check that both ΦL and ΦR are proper

orthogonal matrices, which shows that they are elements of a special orthog-
onal group SO (4), and confirms that they can be identified with rotations in
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IR4. Introducing the above given matrix notations into equations (6)–(7) gives

q̂ ◦ x̂ = ΦL (q̂) x̂ (11)

x̂ ◦ q̂ = ΦR (q̂) x̂. (12)

Note that equations (11)–(12) also hold true for any non-unit quaternion q̂, but
the matrices ΦL (q̂) and ΦR (q̂) are then not orthogonal. Consequently, equa-
tions (11)–(12) provide us with the general rule for expressing the quaternion
product by the matrix product. There is another issue of interest that directly
follows from (10): the multiplication of the matrices ΦR (q̂∗) and ΦL (q̂) gives
a 4× 4 matrix

Q = ΦR (q̂∗)ΦL (q̂) =

 1 01×3

03×1 R

 (13)

with the submatrix R being the standard rotation matrix in the three-dimensional
vector space (see, e.g. [29, Equation (B.4)] ):

R = 2


q20 + q21 − 1

2
q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 q20 + q22 − 1
2
q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 q20 + q23 − 1
2

 .

From its matrix representation (13) it is now evident that operator Q maps
a pure quaternion into a pure quaternion with the vector part being rotated
only:

Q

 0

a

=
 1 0T

0 R


 0

x

 =

 0

Rx

 .

3 Geometry of the three-dimensional beam

3.1 Basic definitions

An arbitrary configuration of the three-dimensional beam is uniquely de-
scribed by the position vector

⇀
r (x) of the line of centroids and by the family of

orthonormal base vectors
{
⇀

G1 (x) ,
⇀

G2 (x) ,
⇀

G3 (x)
}
, with

⇀

G2 and
⇀

G3 spanning

the planes of cross-sections and
⇀

G1 being the normal vector of the cross-section.
In general all the quantities are dependent on parameter x ∈ [0, L], the arc-
length of the line of centroids in the initial configuration. We assume that the
cross-sections are rigid, thus conserving their shape during deformation. In or-
der to describe the deformation of the beam with respect to the physical space,
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we introduce an orthonormal triad
{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
of fixed vectors together with

the reference point O, which define the global coordinate system (X, Y, Z).

An arbitrary vector,
⇀
a , can be expressed with respect to either of the two

vector bases

⇀
a = ag1

⇀
g 1 + ag2

⇀
g 2 + ag3

⇀
g 3 = aG1

⇀

G1 + aG2

⇀

G2 + aG3

⇀

G3. (14)

The scalar components in (14) may also be represented by one-column matrices
with three components

ag =
[
ag1 ag2 ag3

]T
, aG =

[
aG1 aG2 aG3

]T
,

where index g or G denotes the corresponding basis. The relationship between
the two representations is given by the rotational operator R (x), which maps{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
into

{
⇀

G1,
⇀

G2,
⇀

G3

}
:

⇀

Gi = R⇀
g i, i = 1, 2, 3. (15)

Operator R (x) is a linear operator on the three-dimensional Euclidean space
and represents the rotation between the two bases. Its matrix representation

is obtained by expressing vectors
⇀

Gi as the linear combination of base vectors{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
:

⇀

Gi = R1i
⇀
g 1 +R2i

⇀
g 2 +R3i

⇀
g 3, i = 1, 2, 3 (16)

R = [Rji] , i, j = 1, 2, 3.

Inserting (16) into (14) gives the matrix relationship between the two one-
column representations:

ag = RaG. (17)

In order to apply the quaternion algebra for the description of rotations, we

O 1

2
3

G

G

X

Y

Z
2

3
r

( )x

( )x G1( )x
*

*

*

g

g
g

*

*
*

Fig. 1. Model of the three-dimensional beam.
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need to extend the space of rotations into four dimensions. As already ex-
plained, a direct generalization is achieved by (i) adding quaternion 1̂ to the
three-dimensional basis, and (ii) substituting the three-dimensional vector ba-
sis with the pure quaternions. Thus, the global and the local bases of the beam
in the quaternion space become

{ĝ0, ĝ1, ĝ2, ĝ3} and
{
Ĝ0, Ĝ1, Ĝ2, Ĝ3

}
;

here ĝ0 = Ĝ0 = 1+
⇀
0 = 1̂ and ĝi = 0+

⇀
g i, Ĝi = 0+

⇀

Gi, i = 1, 2, 3. In contrast

to
⇀

Gi, i = 1, 2, 3, Ĝ0 is not dependent on parameter x. One-column quaternion
representations of vectors then follow as:

âg =
[
0 ag1 ag2 ag3

]T
, âG =

[
0 aG1 aG2 aG3

]T
.

The rotational operator R is in the quaternion space identified with linear
map Q. Consequently, the quaternion version of equation (15) reads

Ĝi = Qĝi = q̂ ◦ ĝi ◦ q̂∗, i = 1, 2, 3. (18)

The coordinate transformation (17) can now be written in the quaternion
notation as

âg = QâG = q̂ ◦ âG ◦ q̂∗. (19)

The inverse of the above relation must consider the fact that operator Q and
its matrix Q are orthogonal. This yields

âG = QT âg = ϕT
L (q̂)ϕT

R (q̂∗) âg = ϕR (q̂)ϕL (q̂
∗) âg

= q̂∗ ◦ âg ◦ q̂. (20)

Note that the rotational quaternion has identical representations in both bases,
i.e. q̂G = q̂g = q̂.

3.2 Derivative and variation of rotations

The derivative of base vectors
⇀

Gi with respect to parameter x is essential in
any beam theory. If equation (15) is differentiated and the result expressed
with respect to the same basis, we have

⇀

G
′

i = R′⇀g i = R′RT
⇀

Gi, (21)

where Ω = R′RT is a physically sound measure of curvature. When the
parametrization with the rotational vector is used, the form of equation (21)
becomes non-trivial. In contrast, when rotational quaternions are used for the
parametrization, the compact form of (21) is conserved (see, e.g. [10], [22]).
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The quaternion analogy to (21) can easily be derived. Starting from equation
(18) and taking the first derivative with respect to x yields

Ĝ′
i = q̂′ ◦ ĝi ◦ q̂∗ + q̂ ◦ ĝi ◦ q̂∗′

= q̂′ ◦ q̂∗ ◦ Ĝi + Ĝi ◦ q̂ ◦ q̂∗′. (22)

For the rotational quaternions we have

q̂ ◦ q̂∗ = q̂∗ ◦ q̂ = 1̂ = 1 +
⇀
0 .

The differentiation of the above equation with respect to x gives

q̂′ ◦ q̂∗ + q̂ ◦ q̂∗′ = 0̂,

q̂ ◦ q̂∗′ = −q̂′ ◦ q̂∗ = − (q̂ ◦ q̂∗′)∗ . (23)

Due to (4) q̂ ◦ q̂∗′ is a pure quaternion. Ĝi, i = 1, 2, 3, is a pure quaternion
by the definition. When the two facts are considered, equation (22) simplifies
into

Ĝ′
i = 2 q̂′ ◦ q̂∗ ◦ Ĝi. (24)

We are now able to identify a pure quaternion κ̂ as

κ̂ = 2q̂′ ◦ q̂∗, (25)

which is the quaternion representation of the curvature vector. In classical
mechanics the vector part of this quantity is interpreted as the axial vector of
the skew-symmetric operator R′RT . See [1] and [4] for further details.

Because κ̂ = 0 +
⇀
κ is a pure quaternion, equation (24) can also be written as

Ĝ′
i = 0 +

⇀
κ ×

⇀

Gi. (26)

As the scalar part in (26) vanishes, it suffices to observe its vector part only.
It is convenient to introduce the notation

[â]IR3 =
[
a0 +

⇀
a
]
IR3

=
⇀
a (27)

for the projection of a quaternion onto the three-dimensional Euclidean space.
The projection of equation (26) onto the three-dimensional space then reads

⇀

G
′

i = 2 [q̂′ ◦ q̂∗]IR3 ×
⇀

Gi.

In what follows we need the component form of equation (25). Following the
rules in equations (18) and (19), the representations of κ̂ with respect to the
two bases read

κ̂g = 2q̂′ ◦ q̂∗ κ̂G = 2q̂∗ ◦ q̂′. (28)

10



It is well known that the variation of rotations needs to be performed carefully
as the three-dimensional rotations are not additive. One of the important
technical advantages of the quaternion parametrization of rotations is in a
considerably simpler linearization. As the rotational quaternion is the basic
unknown of the problem, its variation is an arbitrary quaternion, here denoted
by δq̂. However, such a linear change of the rotational quaternion has not a
unit norm, which implies that it is not directly applicable as the increment
of a rotational quaternion. An appropriate solution of this problem can be
obtained by observing the variation of base vector Ĝi which gives

δĜi = 2δq̂ ◦ q̂∗ ◦ Ĝi, (29)

where 2δq̂ ◦ q̂∗ is a pure, yet a non-unit quaternion. We will use the notation

δϑ̂ = 2δq̂ ◦ q̂∗ (30)

introducing the measure for the rate of change of the basis Ĝi due to the
variation of the quaternion. The advantage of δϑ̂ compared to δq̂ is that its
projection onto the set of rotational quaternions can be easily found. Since

δϑ̂ = 0 + δ
⇀

ϑ, the corresponding unit rotational quaternion q̂ can be defined
from the polar form (9) as

q̂
(
δϑ̂
)
= cos

δϑ

2
+

δ
⇀

ϑ

δϑ
sin

δϑ

2
, (31)

where δϑ denotes the norm of δϑ̂. Please observe the analogy with the standard

variation of the rotational vector where δ
⇀

Gi = δ
⇀

ϑ ×
⇀

Gi. The implementation
of (31) that avoids singularities for small values of |δϑ| (less than π/4) in
numerical computations is presented in Appendix A.

4 Strain measures and stress resultants

The geometrically exact finite-strain beam theory introduces two strain vectors
[24]: (i) the translational strain vector

⇀
γ , and (ii) the rotational strain vector

⇀
κ. When expressed with respect to the base vectors

⇀

Gi, their components
have sound physical interpretation: γG1 is the extensional strain, and γG2, γG3

are shear strains; similarly, κG1 is the torsional strain, and κG2, κG3 are the
bending strains (curvatures).

The relations between the strain, displacement and rotational vectors are de-
rived from the condition that the strains and stresses are consistent with the
virtual work principle for any internal forces and any magnitude of deforma-
tion. This condition yields the following relationships between the variations of
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kinematic vector variables
(
⇀
r ,

⇀

ϑ
)
and the relative variations of strain vectors(

⇀
γ ,

⇀
κ
)
:

δ
(
⇀
γ
)
rel

= δ
⇀
r

′ − δ
⇀

ϑ × ⇀
r

′
(32)

δ
(
⇀
κ
)
rel

= δ
⇀

ϑ
′
, (33)

where (·)rel is the relative variation of the vector with respect to basis
⇀

Gi,
defined as

δ
(
⇀
u
)
rel

= δuG1

⇀

G1 + δuG2

⇀

G2 + δuG3

⇀

G3 = δ
⇀
u − δ

⇀

ϑ × ⇀
u. (34)

See the paper of Zupan and Saje [34] for further details. According to (34),

δ
⇀
r

′ − δ
⇀

ϑ ×⇀
r

′
is the relative variation of vector

⇀
r

′
; therefore, the integration

of equation (32) gives
⇀
γ =

⇀
r

′
+

⇀
c , (35)

where
⇀
c is a variational constant, given in the initial configuration of the

beam. Although equation (33) looks simple, its integration in terms of rota-
tional matrices and vectors is a demanding task (the details of the integration
were presented by Reissner [24] and Ibrahimbegović [13]). The integration is
much easier using the quaternion algebra. This will become clear through the
following derivation. The derivative of equation (30) with respect to x gives

δϑ̂′ = 2δq̂′ ◦ q̂∗ + 2δq̂ ◦ q̂∗′, (36)

while the variation of equation (25) yields

δκ̂ = 2δq̂′ ◦ q̂∗ + 2q̂′ ◦ δq̂∗

2δq̂′ ◦ q̂∗ = δκ̂− 2q̂′ ◦ δq̂∗. (37)

Inserting (37) into (36) results in

δϑ̂′ = δκ̂− 2q̂′ ◦ δq̂∗ + 2δq̂ ◦ q̂∗′

= δκ̂− 2q̂′ ◦ q̂∗ ◦ q̂ ◦ δq̂∗ + 2δq̂ ◦ q̂∗ ◦ q̂ ◦ q̂∗′

= δκ̂− 1

2
κ̂ ◦ δϑ̂∗ +

1

2
δϑ̂ ◦ κ̂∗.

Since both κ̂ and δϑ̂ are pure quaternions, we have

δϑ̂′ = 0 + δ
⇀
κ − δ

⇀

ϑ × ⇀
κ = 0 + δ

(
⇀
κ
)
rel
. (38)

The projection of equation (38) onto IR3 equals (33), which proves the fact
that the integrated form of equation (33) in terms of quaternions reads

κ̂ = 2q̂′ ◦ q̂∗ + d̂, (39)
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where d̂ is a variational constant given in the initial configuration of the beam.

Equations (35) and (39) were derived in an abstract form. For the compu-
tational purposes the component form is more convenient. To this aim it is
suitable to choose a fixed basis (g) to represent

⇀
r , r̂ and q̂, and a local basis

(G) for
⇀
γ and κ̂. Equations (35) and (39) then take the matrix form

γG =
[
q̂∗ (x) ◦ r̂ ′

g (x) ◦ q̂ (x)
]
IR3

+ cG (40)

κ̂G = 2q̂∗ ◦ q̂′ + d̂G. (41)

In the above equations, the index at q̂ denoting the related basis is omitted
since the componential representation is identical in the two bases.

It is found convenient to present the equilibrium equations of the beam with
respect to the fixed basis:

ng (x) = −N ′
g (x) (42)

mg (x) = −M ′
g (x)− r ′

g (x)×N g (x) . (43)

Here, N g and M g are the stress resultants of the cross-section, i.e. the re-
sultant force and the resultant moment vector. ng and mg are the external
distributed force and moment vectors per unit of the undeformed length of the
axis. It is obvious from equations (42)–(43) that the stress resultants depend
on the external distributed force and moment vectors and on the deformed
shape of the axis. On the other hand, the stress resultant vectors with respect
to the local bases are related to strains by the constitutive equations given as

NG = CN (γG,κG) (44)

MG = CM (γG,κG) . (45)

Operators CN and CM must be invariant under superimposed rigid-body mo-
tions and at least once differentiable with respect to γG and κG, but are oth-
erwise arbitrary. The condition that the constitutive-based stress resultants
(44)–(45) should be equal to the equilibrium-based stress resultants obtained
from (42)–(43) is imposed in the form

[
q̂∗ ◦ N̂ g ◦ q̂

]
IR3

= CN (γG,κG) (46)

q̂∗ ◦ M̂ g ◦ q̂ = ĈM (γG,κG) , (47)

where the hat ·̂ over N̂ g and M̂ g denotes the expansion of these vectors to
pure quaternions. Similarly, ĈM denotes the epansion of the image of operator
CM to pure quaternion.
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5 Governing equations of the beam

The complete set of the beam equations consists of the kinematic equations
(40)–(41), the constitutive equations (46)–(47), and the equilibrium equations
(42)–(43). In the quaternion representation, this set of equations reads:

f 1 = N ′
g (x) + ng (x) = 0 (48)

f 2 = M̂
′
g (x) + m̂g (x)− ̂N g (x)× r ′

g (x) = 0̂ (49)

f 3 =
[
q̂ (x) ◦ ĈN (γG (x) ,κG (x)) ◦ q̂∗ (x)

]
IR3

−N g (x) = 0 (50)

f 4 = q̂ (x) ◦ ĈM (γG (x) ,κG (x)) ◦ q̂∗ (x)− M̂ g (x) = 0̂ (51)

f 5 =
[
q̂∗ (x) ◦ r̂ ′

g (x) ◦ q̂ (x)
]
IR3

− (γG (x)− cG (x)) = 0 (52)

f 6 = 2q̂∗ (x) ◦ q̂′ (x)−
(
κ̂G (x)− d̂G (x)

)
= 0̂. (53)

In equations (48)–(53), the hat over a symbol ·̂ designates a quaternion or an
expansion of a vector to a pure quaternion, while the brackets [ ]IR3 designate
the vector part of a quaternion. It must be emphasized that equations (49),
(51) and (53) related to moments and rotational strains are considered in four
dimensions. This enables that the four components of the rotational quater-
nion are taken as independent scalar variables. The remaining equations are
restricted to stay in three dimensions to avoid possible numerical singularities
at the scalar part of the quaternions. The boundary conditions at the two
boundaries, x = 0 and x = L, are

h1 = F 0
g +N g (0) = 0 (54)

h2 = P 0
g +M g (0) = 0 (55)

h3 = F L
g −N g (L) = 0 (56)

h4 = P L
g −M g (L) = 0. (57)

F 0
g, P

0
g, F

L
g , P

L
g are the external point forces and moments at the two bound-

ary points.

The solution of the boundary value problem (48)–(57) is achieved in several
successive steps. The fist step consists of integrating equations (42)–(43) for
N g and M g assuming that ng and mg are given analytic functions of x:

N g (x) = N g

(
L

2

)
+
∫ L/2

x
ng (ξ) dξ (58)

M g (x) = M g

(
L

2

)
+
∫ L/2

x
mg (ξ) dξ −

∫ L/2

x
N g (ξ)× r ′

g (ξ) dξ. (59)

Note that the integrations in equations (58) and (59) are performed with
respect to the midspan of the beam to preserve the symmetry of the solution
with respect to the geometrical symmetry point of the beam.
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In the next step, we insert γG and κ̂G from (52)–(53), and N g and M̂ g from
(48)–(49) into the weak (differentiated) form of equations (50)–(51). After
considering (58) we obtain the following result:

fff1= f ′
3 =

[
q̂ (x) ◦ ĈN (γG (x) ,κG (x)) ◦ q̂∗ (x)

]′
IR3

+ ng (x) = 0 (60)

fff2= f ′
4 =

(
q̂ (x) ◦ ĈM (γG (x) ,κG (x)) ◦ q̂∗ (x)

)′
+ m̂g (x)− ̂N g (L/2)× r ′

g (x)−
∫ L/2

x

̂ng (ξ) dξ × r ′
g (x) = 0̂, (61)

where, from (52)–(53),

γG (x) =
[
q̂∗ (x) ◦ r̂ ′

g (x) ◦ q̂ (x)
]
IR3

+ cG (x) (62)

κG (x) = 2 [q̂∗ (x) ◦ q̂′ (x)]IR3 + dG (x) . (63)

The integrated forms of the equilibrium equations (58) and (59) are also taken
into account when rewriting the boundary conditions as

h1 = F 0
g +N g

(
L

2

)
+
∫ L/2

0
ng (ξ) dξ = 0 (64)

h2 = P 0
g +M g

(
L

2

)
+
∫ L/2

0
mg (ξ) dξ −

∫ L/2

0
N g (ξ)× r ′

g (ξ) dξ = 0 (65)

h3 = F L
g −N g

(
L

2

)
−
∫ L/2

L
ng (ξ) dξ = 0 (66)

h4 = P L
g −M g

(
L

2

)
−
∫ L/2

L
mg (ξ) dξ +

∫ L/2

L
N g (ξ)× r ′

g (ξ) dξ = 0. (67)

After the last terms in equations (65) and (67) are integrated by parts and
the result rearranged considering (58) we get

h1 = F 0
g +NL/2

g +
∫ L/2

0
ngdx = 0 (68)

h2 = P 0
g +ML/2

g −NL/2
g ×

(
rL/2
g − r0

g

)
−
∫ L/2

0
ng ×

(
rg − r0

g

)
dx+

∫ L/2

0
mgdx = 0 (69)

h3 = F L
g −NL/2

g +
∫ L

L/2
ngdx = 0 (70)

h4 = P L
g −ML/2

g −NL/2
g ×

(
rL
g − rL/2

g

)
+
∫ L

L/2
ng ×

(
rL
g − rg

)
dx+

∫ L

L/2
mgdx = 0. (71)

The values of stress resultants N g and M g at the midspan of the beam ele-
ment, x = L/2, are obtained from the consistency equations, when applied at
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x = L/2:

NL/2
g =

[
q̂L/2 ◦ ĈN

(
γ
L/2
G ,κ

L/2
G

)
◦ q̂∗L/2

]
IR3

(72)

ML/2
g =

[
q̂L/2 ◦ ĈM

(
γ
L/2
G ,κ

L/2
G

)
◦ q̂∗L/2

]
IR3

. (73)

Equations (60)–(61) and (68)–(71) along with the auxiliary relations (62)–(63)
and (72)–(73) represent the complete set of the governing equations of the
present beam formulation. The unknowns in these equations are the position
vector of the deformed line of centroids, rg (x), and the rotational quaternion,
q̂ (x), describing the current rotation of the cross-sections.

6 Numerical solution

6.1 Discrete governing equations

In the numerical formulation, functions rg (x) and q̂ (x) are replaced by a
set of their unknown values r p

g and q̂p at N + 2 discrete points xp; p = 0,
. . ., N + 1, chosen from the interval [0, L] so that x0 = 0 and xN+1 = L.
Equations (60)–(61) are required to be satisfied at N pre-selected collocation
points yk; k = 1, . . ., N . For simplicity, they are here taken to coincide with
internal points xp; p = 1, . . ., N . After such a discretization is made, a set
of 2N + 4 matrix equations is obtained, which needs to be solved for 2N + 4
unknowns r p

g and q̂p:

fffk1 =
[
q̂k ◦ ĈN

(
γk
G,κ

k
G

)
◦ q̂∗k

]′
IR3

+ nk
g = 0 (74)

fffk2 =
(
q̂k ◦ ĈM

(
γk
G,κ

k
G

)
◦ q̂∗k

)′
+ m̂k

g −
̂NL/2
g × r ′k

g +
∫ L/2

xk

̂ngdx× r ′k
g = 0̂ (75)

h1 = F 0
g +NL/2

g +
∫ L/2

0
ngdx = 0 (76)

h2 = P 0
g +ML/2

g −NL/2
g ×

(
rL/2
g − r0

g

)
−
∫ L/2

0
ng ×

(
rg − r0

g

)
dx+

∫ L/2

0
mgdx = 0 (77)

h3 = F L
g −NL/2

g +
∫ L

L/2
ngdx = 0 (78)

h4 = P L
g −ML/2

g −NL/2
g ×

(
rL
g − rL/2

g

)
+
∫ L

L/2
ng ×

(
rL
g − rg

)
dx+

∫ L

L/2
mgdx = 0. (79)
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The system of non-linear algebraic equations (74)–(79) is solved by Newton’s
method. This requires the linearization of algebraic equations to obtain a
system of linear equations, which is solved iteratively

K[n]δy = −f [n], for n = 0, 1, 2, . . . (80)

until the accuracy is sufficient. Here K[n] is the global tangent stiffness matrix,
f [n] the residual vector, and δy a vector of corrections of unknowns.

6.2 Linearization of governing equations

In discussing the linearization, we have to consider that the variations of the
primary unknowns are arbitrary independent one-column matrices, denoted
by δr p

g and δq̂p. Next, the governing equations depend also on the derivatives
of the primary unknowns with respect to x. That is why we have to introduce
an interpolation of the variations along the element here chosen in the form

δrg (x) =
N+1∑
p=0

Lp (x) δr
p
g (81)

δq̂ (x) =
N+1∑
p=0

Lp (x) δq̂
p, (82)

where Lp (x) denotes at least twice differentiable interpolation functions which
is due to the weak form of internal equilibrium equations employed in our
formulation . The first and the second derivatives at any point x are then
obtained as

δr′
g =

N+1∑
p=0

L′
p (x) δr

p
g δr′′

g =
N+1∑
p=0

L′′
p (x) δr

p
g (83)

δq̂′ =
N+1∑
p=0

L′
p (x) δq̂

p δq̂′′ =
N+1∑
p=0

L′′
p (x) δq̂

p. (84)

The deduction of the linearization of equations (74)–(79) is greatly simplified,
if variations of the quantities involved are prepared in advance. The lineariza-
tion of strains with respect to primary unknowns has already been discussed
and need not be repeated, i.e. (see equation (37))

δκ̂G = 2δq̂∗ ◦ q̂′ + 2q̂∗ ◦ δq̂′. (85)

Linearizing the definition of strain vector γG in equation (40) gives

δγG =
[
δq̂∗ ◦ r̂ ′

g ◦ q̂ + q̂∗ ◦ δr̂ ′
g ◦ q̂ + q̂∗ ◦ r̂ ′

g ◦ δq̂
]
IR3

. (86)
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The linearization of the derivatives of strain measures follows from (85) and
(86):

δγ ′
G = −

[
δq̂∗′ ◦ r̂ ′

g ◦ q̂ + δq̂∗ ◦ r̂ ′′
g ◦ q̂ + δq̂∗ ◦ r̂ ′

g ◦ q̂′ + q̂∗′ ◦ δr̂ ′
g ◦ q̂ + q̂∗ ◦ δr̂ ′′

g ◦ q̂

+q̂∗ ◦ δr̂ ′
g ◦ q̂′ + q̂∗′ ◦ r̂ ′

g ◦ δq̂ + q̂∗ ◦ r̂ ′′
g ◦ δq̂′ + q̂∗ ◦ r̂ ′

g ◦ δq̂′
]
IR3

(87)

δκ̂′
G = 2δq̂∗′ ◦ q̂′ + 2δq̂∗ ◦ q̂′′ + 2q̂∗′ ◦ δq̂′ + 2q̂∗ ◦ δq̂′′. (88)

In varying operators CN and CM , we have to consider that they are dependent
only on γG and κG. Hence

δCN = CγγδγG + CγκδκG

δCM = CκγδγG + CκκδκG

δC ′
N = C′

γγδγG + C′
γκδκG + Cγγδγ

′
G + Cγκδκ

′

G

δC ′
M = C′

κγδγG + C′
κκδκG + Cκγδγ

′
G + Cκκδκ

′
G,

where Cγγ, Cγκ, Cκγ, Cκκ are the sub-matrices of the cross-section constitutive
tangent matrix defined as

Cγγ =

[
∂Ci

N

∂γj

]
i,j=1,2,3

Cγκ =

[
∂Ci

N

∂κj

]
i,j=1,2,3

Cκγ =

[
∂Ci

M

∂γj

]
i,j=1,2,3

Cκκ =

[
∂Ci

M

∂κj

]
i,j=1,2,3

.

After these preparations have been done, the linear form of equations (74)–(79)
is easily derived and is thus not presented here. Prior to solving the system of
linear equations (80), the quaternion form of linearized equations should be
rearranged into the matrix form using rules (11)–(12).

6.3 Update procedure

As a result of an iteration step, the corrections δr p
g and δq̂p are obtained.

In application of Newton’s method in linear vector spaces, the correction is
added to the previous solution vector: y[n+1] = y[n] + δy. This is, however,
not the case in the non-linear spaces which requires a non-additive update. As
the position vectors are linear quantities, their corrections are added to the
current iterative values:

rp[n+1]
g = rp[n]

g + δrp
g. (89)

In updating the rotational quaternions, we must consider their multiplicative
nature. A new, improved value of the rotational quaternion is obtained by
mapping from the tangent space onto the configuration space of rotational
quaternions. This may be achieved by using equations (30)–(31). Note that
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δq̂p is a quaternion with a non-unit norm; its normalization would resolve this
problem, but such a reduced quaternion would be inconsistent with the theory
of three-dimensional rotations and their variations. To obtain the incremental
rotational quaternion in a consistent manner, the following formula directly
derived from (30)–(31) is used

∆q̂p = cos |δq̂p ◦ q̂∗p|+
[δq̂p ◦ q̂∗p]

IR3

|δq̂p ◦ q̂∗p|
sin |δq̂p ◦ q̂∗p| . (90)

The improved rotational quaternion is then obtained by the left quaternion
multiplication as

q̂p[n+1] = ∆q̂p ◦ q̂p[n]. (91)

A similar result is reported by Lasenby and McRobbie [18] for the update
procedure in the Clifford algebra.

The solution of non-linear equations (74)–(79) requires the first and the second
derivatives of the primary unknowns to be given at the chosen discrete points.
This does not represent a problem for the position vectors, where the same
type of interpolation as the one for variations can be used. Hence we have

r′
g (x) =

N+1∑
p=0

L′
p (x) r

p
g (92)

r′′
g (x) =

N+1∑
p=0

L′′
p (x) r

p
g. (93)

This type of interpolation is not permitted for the approximation of quater-
nions due to their multiplicative nature. The right way to obtain the deriva-
tives of the rotational quaternion is to use equation (28) along with a well
known property on the additivity of the rotational strains, see, e.g. [34, page
5229]. Prior to obtain the derivative of the rotational quaternion from equa-
tion (28), we must compute the current rotational quaternion and the current
rotational strain. The current rotational strain is obtained by inserting (91)
into (28)

κ̂[n+1]
g = 2

(
∆q̂ ◦ q̂[n]

)′
◦ q̂∗[n] ◦∆q̂∗

= 2∆q̂′ ◦∆q̂∗ + 2∆q̂ ◦ q̂[n]′ ◦ q̂∗[n] ◦∆q̂∗

= ∆κ̂g +∆q̂ ◦ κ̂[n]
g ◦∆q̂∗. (94)

The transformation into the local basis
(
G[n+1]

)
gives

κ̂
[n+1]

G[n+1] = q̂∗[n+1] ◦∆κ̂g ◦ q̂[n+1] + q̂∗[n+1] ◦∆q̂ ◦ κ̂[n]
g ◦∆q̂∗ ◦ q̂[n+1]

= ∆κ̂G[n+1] + κ̂
[n]

G[n] . (95)
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The result is significant: the sum of the curvature quaternion with respect to
the local basis in iteration n, and its correction with respect to the local basis
in iteration n+1, gives the curvature in iteration n+1 with respect to the local
basis in current iteration n+ 1. Inserting (82) into (90) gives the incremental
rotational quaternion at an arbitrary point x

∆q̂ (x) = cos

∣∣∣∣∣∣
N+1∑
p=0

Lp (x) δq̂
p ◦ q̂∗ (x)

∣∣∣∣∣∣
+

[∑N+1
p=0 Lp (x) δq̂

p ◦ q̂∗ (x)
]
IR3∣∣∣∑N+1

p=0 Lp (x) δq̂
p ◦ q̂∗ (x)

∣∣∣ sin

∣∣∣∣∣∣
N+1∑
p=0

Lp (x) δq̂
p ◦ q̂∗ (x)

∣∣∣∣∣∣ . (96)

Inserting (96) in (91) gives the rotational quaternion in iteration n + 1, and
applying (96) in (95) yields the curvature quaternion in iteration n+ 1. After
the rotational and the curvature quaternions in iteration n + 1 have been
obtained, q̂[n+1]′ is evaluated from equation (28).

To obtain the second derivative of the rotational quaternion, it is convenient
to differentiate equation (94) with respect to x

κ̂[n+1]′
g = ∆κ̂′

g +∆q̂′ ◦ κ̂[n]
g ◦∆q̂∗ +∆q̂ ◦ κ̂[n]′

g ◦∆q̂∗ +∆q̂ ◦ κ̂[n]
g ◦∆q̂∗′

and transform it into the local basis at n+ 1
(
G[n+1]

)
:

κ̂
[n+1]′
G[n+1] = q̂∗[n+1] ◦∆κ̂′

g ◦ q̂[n+1] + q̂∗[n+1] ◦∆q̂′ ◦ κ̂[n]
g ◦ q̂[n] + q̂∗[n] ◦ κ̂[n]′

g ◦ q̂[n]

+ q̂∗[n] ◦ κ̂[n]
g ◦∆q̂∗′ ◦ q̂[n+1]

= ∆κ̂′
G[n+1] +

1

2
q̂∗[n+1] ◦∆κ̂g ◦∆q̂ ◦ κ̂[n]

g ◦ q̂[n]

+ κ̂
[n]′
G[n] +

1

2
q̂∗[n] ◦ κ̂[n]

g ◦∆q̂∗ ◦∆κ̂∗
g ◦ q̂[n+1]

= κ̂
[n]′
G[n] +∆κ̂′

G[n+1] +
1

2
∆κ̂G[n+1] ◦ κ̂[n]

G[n] +
1

2
κ̂

[n]

G[n] ◦∆κ̂∗
G[n+1]

= κ̂
[n]′
G[n] +∆κ̂′

G[n+1] +
1

2

(
∆κ̂G[n+1] ◦ κ̂[n]

G[n] −
1

2
κ̂

[n]

G[n] ◦∆κ̂G[n+1]

)
.

Once the first derivative of the rotational strain is known, the second derivative
of the total rotational vector is extracted from the differentiated equation (28).

7 Numerical examples

We present several classical numerical examples in order to demonstrate the
validity, performance and the accuracy of the proposed approach. Arbitrary
finite-size initial bending and/or twisting strains along the beam can be pre-
scribed at the unloaded configuration, and the model is capable of considering
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finite displacements, rotations and strains. Numerical solutions were obtained
in the Matlab [17] computing environment. Here we limit ourselves to linear
elastic materials whose linear operators CN and CM in (48)–(49) are diagonal
and written as:

CN =


EA1 0 0

0 GA2 0

0 0 GA3

γG = CNγG, (97)

CM =


GJ1 0 0

0 EJ2 0

0 0 EJ3

κG = CMκG. (98)

E and G denote elastic and shear moduli of material; A1 is the cross-sectional
area; J1 is the torsional inertial moment of the cross-section; A2 and A3 are the

effective shear areas in the principal inertial directions
⇀

G2 and
⇀

G3 of the cross-
section; J2 and J3 are the corresponding principal bending inertial moments
of the cross-section.

The accuracy of the present numerical model can be enhanced by (i) the
increase of the number of elements, ne, and/or (ii) by the increase of the
number of discretization points within the element, N . Several combinations
will be considered to show their effects.

7.1 Illustration of insensibility to shear locking

To demonstrate that the present formulation overcomes the shear locking prob-
lem, we study a straight cantilever beam under a vertical tip load F = 1
(Figure 2). The geometric and material properties of the cantilever are:

E = 107 G = 1013 L = 1 t = 0.1.

Note that the shear modulus G was taken exceedingly large as the problem
of shear locking becomes severe by increasing G. On the other hand, in con-
ventional displacement-based finite elements, locking progresses rapidly as the
height of element decreases. The height h of the beam was therefore varied
from 0.1 (small) to 10 (large). Our numerical results for the tip displacement
uZ are compared with the exact solution uZ,ref . The variation of the error
uZ/uZ,ref is shown with respect to the structural parameter GL2/Eh2 in log-
arithmic scale in Figure 3.
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Fig. 2. The cantilever under free-end vertical force.

u

log  ( / )GL Eh

/uZ

10

2 2

Z,ref

4 5 6 7 8
0.9

0.95

1

1.05

1.1

1.15

n =1
n

n

=5
=10

e

e

e

Fig. 3. Normalized vertical tip displacement vs. parameter GL2/Eh2.

The present results are completely insensitive to the variation of structural
parameter for any density of the finite-element mesh. This clearly shows that
the present formulation is locking-free.

7.2 Cantilever beam under free-end moment

We consider a straight in-plane cantilever beam, subjected to a point moment
at its free end (Figure 4). Our numerical results are compared with the an-
alytical solution [26] and the convergence study of the numerical solution is
presented. The following geometric and material properties of the cantilever
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are taken into account:

E = 2.1 · 104 G = 1.05 · 104 L = 100

A1 = 20 A2 = A3 = 16

J1 = 6.4566 J2 = 1.6667 J3 = 666.66.

Two different values of the free-end moment were applied: a unit moment
MY = 1 resulting in small deformation of the cantilever, and MY = 100
resulting in large displacements both in X and Z-direction.

X

Y

Y

Z

O

M

Fig. 4. The cantilever under free-end in-plane moment.

In Table 1 the displacements and the rotation at the free end are displayed
and compared to the exact values [26]. Our numerical solution for the free-
end rotation agrees with the exact values to all digits for any magnitude of
the applied moment regardless of the number and order of elements used. For
a small magnitude of the applied moment, even a single element with one
internal point gives accurate results. For a large magnitude of the moment,
the influence of the non-linearity increases and somewhat affects the accuracy
of the discretized solution. It is obvious, however, that in the present case, it
suffices to use a single element with two internal points (N = 2) to obtain the
results accurate to at least five significant digits.

7.3 Unrolling of circular cantilever

This example presents a circular in-plane cantilever beam, subjected to a
bending moment at the free end (Figure 5). The problem is inverse to a pure
bending of a straight cantilever and has an exact solution. By unrolling of a
circular beam, we can demonstrate that the finite element properly considers
initially curved centroidal axis. The problem was studied by Ibrahimbegović
[12]; hence the same geometric and material properties of the beam are taken
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Table 1
Free-end displacements and rotation under an in-plane moment.

ne N uX uZ ϑY

MY = 1
1 1 0.00010 0.14286 0.00286

2 0.00014 0.14286 0.00286
2 1 0.00013 0.14286 0.00286

2 0.00014 0.14286 0.00286

exact non-lin. [26] 0.00014 0.14286 0.00286

MY = 100
1 1 1.01867 14.23718 0.28571

2 1.35507 14.18880 0.28571
2 1 1.27107 14.20086 0.28571

2 1.35501 14.18880 0.28571

exact non-lin. [26] 1.35500 14.18880 0.28571

ne=number of elements, N=number of internal points.

here:

E = 1200 G = 600 L = 10

A1 = 1 A2 = A3 =
5

6

J1 = 0.14058 J2 = J3 =
1

12
.

X

Z
M

Fig. 5. Unrolling of a circular beam.
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The beam is subjected to the moments M = 10π and M = 20π, which
for the chosen characteristics turn the beam into a semicircle and a straight
line, respectively. Our results for the free-end displacements and rotation are
presented in Table 2 and compared to the exact values. Numerical results are
obtained by a mesh of ten curved elements with one or three internal points.

Table 2
Free-end displacements and rotation of the unrolled circular cantilever.

N uX uZ ϑY

MY = 10π
1 0.04252 -6.35635 3.12505
3 -0.00033 -6.36645 3.14147

exact 0.00000 -6.36620 3.14160

MY = 20π
1 -9.99847 0.13831 6.24919
3 -10.00000 0.01114 6.28196

exact -10.00000 0.00000 6.28320

N=number of internal points.

Our results are in good agreement with the exact ones. Minor differences stem
from the error of the polynomial interpolation of rotational quaternions in the
undeformed configuration, but they reduce considerably by the use of higher-
order elements.

7.4 Twisted cantilever

In order to demonstrate that the present finite-element formulation takes the
initial twist of cross-sections into account properly, the standard test by Mac-
Neal and Harder [19] is studied. The beam is clamped at one end and subjected
to the unit in-plane and the out-of-plane forces at the other. The centroidal
axis of the beam is straight at the beginning, but the rectangular cross-sections
are twisted about the centroidal axis, see Figure 6. The initial twist angle along
the beam is taken to be a linear function of the arc-length, x, with its value
set to 0 at the clamped end and to 1

2
π at the free end of the beam. As dis-

cussed by Zupan and Saje [35], such a variation of the twist results in curved
edges along the length of the beam (Figure 6). The remaining geometric and
material characteristics of the beam are:

h = 1.1 t = 0.32 L = 12 E = 29 · 106 ν = 0.22.
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Table 3
Free-end displacements of a π/2-twisted cantilever.

F1 F2

ne N uY uZ uY uZ

1 3 0.005005 0.001584 0.001431 0.001677
5 0.005427 0.001725 0.001725 0.001754
6 0.005430 0.001720 0.001719 0.001749
7 0.005429 0.001719 0.001719 0.001749

2 2 0.005428 0.001728 0.001655 0.001711
3 0.005426 0.001716 0.001714 0.001747
4 0.005429 0.001719 0.001719 0.001750

4 1 0.005480 0.001795 0.001795 0.001755
2 0.005429 0.001719 0.001715 0.001747
3 0.005429 0.001719 0.001719 0.001750

analytical [36] 0.005422 0.001719 0.001719 0.001743

theoretical [19] 0.005424 0.001754

ne=number of elements, N=number of internal points.

The results for the free-end displacements in the direction of the applied force
are shown in Table 3 and compared to the theoretical values presented by
MacNeal and Harder [19]. Their solution is based on the beam equations,
which do not fully agree with the present geometrically exact ones. That is
why our results are also compared to the analytical solution by Zupan and
Saje [36] obtained from the linearized version of the three-dimensional Reissner
beam theory.

The initial twist of the cantilever results in displacements being not parallel
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to the applied forces. Numerical results for the free-end displacement indicate
that a rather low number of elements is capable of giving highly accurate
results. The present results for displacements in the direction perpendicular to
the applied force fully agree with the analytical values, while small differences
in the parallel direction can be observed. The results accurate in two significant
digits are obtained by a single element with five internal points or by four
elements with two internal points.

7.5 Lateral buckling of a right-angle frame

In this classical problem, introduced by Argyris et al. [2] and later on studied
by many others, we analyze a simply supported thin rectangular right-angle
frame to check the ability of the present formulation to consider the torsional-
bending coupling properly. The frame is subjected to the in-plane moments in
opposite directions, as shown in Figure 7. The same geometrical and material
parameters are taken as in [2]:

J1 = 2.16 A1 = 18 E = 71240

J2 = 0.54 A2 = 21.6 G = 27191

J3 = 1350 A3 = 21.6 L = 240.
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Fig. 7. Lateral buckling of a right-angle frame.

Due to the extreme slenderness of the rectangular cross-section, the frame
buckles out of the plane. The numerical value of the critical moment is ob-
tained iteratively from the condition that the tangent stiffness matrix becomes
singular. The buckling moment, Mc, is sought for different-order elements and
several finite-element meshes. In Table 4 our results are compared to the an-
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Table 4
Critical moment Mc of the simply supported right-angle frame.

ne = 1 ne = 2 ne = 4 ne = 6 ne = 8 ne = 10

N = 1 ±622.00 ±622.00 ±622.00 ±622.20 ±622.20 ±622.20
N = 3 ±622.00 ±622.43 ±622.24 ±622.23 ±622.22
N = 5 ±622.19 ±622.22 ±622.22 ±622.22
N = 7 ±622.22 ±622.22

[16] ±622.2

[20] ±626.7

[29] ±626

analytical solution ±622.21

ne=number of elements, N=number of internal points.

alytical solution by Timoshenko and Gere [31] and to the numerical results of
others.

The present element gives quite accurate results even for a single low-order
element. A rapid convergence of the numerical solution can be observed with
the increasing number of internal interpolation points. The four-digit accurate
critical moment was obtained with a single element with 5 internal points. The
same accuracy can be obtained with 6 elements of the lowest order. It is noted
that slight differences between the analytical and numerical solutions are at-
tributed to taking large, but finite values for axial, shear and in-plane bending
rigidities rather than the infinite ones, assumed in the analytical solution [31].

X

Y

Z

O

F
*

Fig. 8. Cantilever 45◦ bend.
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7.6 Bending of 45◦ cantilever

This classical problem, presented by Bathe and Bolourchi [5], includes all
possible natural modes of deformation of a beam: bending, shear, extension
and torsion, and has, therefore, become a standard beam finite-element test.
The initial axis of the cantilever is an arc of the circle with the radius 100
located in the horizontal plane (X, Y ). The cross-section is taken to be a unit
square. The beam is subjected to a point load in direction Z at the free end.
Two magnitudes of the load are applied: 300 and 600. The remaining material
and geometric data are:

h = 1 t = 1 R = 100

E = 107 G = E/2.

No theoretical result is available for this problem. Table 5 displays the com-
parison of the results for the position vector of the free end of the cantilever.
In the majority of solutions given in literature, the arch is modelled with 8
straight elements. Thus, we use 8 straight elements, too, but also compare the
results of the mesh made of 8 initially curved elements. The present results
were achieved in 6 uniform load steps requiring each 5 iterations for the accu-
racy tolerance 10−9. The solutions presented in Table 5 well compare to each
other. Only minor differences are observed between the results of the curved
and straight elements for the lower value of the applied force. Differences are
more significant for the higher value of the load.

Table 5
Free-end position of the cantilever 45◦ bend under out-of-plane force.

F = 300 F = 600

formulation rX rY rZ rX rY rZ
present, straight, N = 1 22.16 58.55 40.52 15.91 46.98 53.94

present, straight, N = 3 22.15 58.55 40.44 15.79 46.92 53.42

present, curved, N = 1 22.16 58.54 40.54 15.91 46.91 54.05

present, curved, N = 3 22.14 58.54 40.47 15.61 46.89 53.60

[5] 22.5 59.2 39.5 15.9 47.2 53.4

[29] 22.33 58.84 40.08 15.79 47.23 53.37

[8] 22.14 58.64 40.35 15.55 47.04 53.50

[9] 22.31 58.85 40.08 15.75 47.25 53.37

number of elements=8, N=number of internal points.
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7.7 Cantilever bent to a helical form

Our last example considers a straight in-plane cantilever subjected simultane-
ously to a point moment and an out-of-plane point force at the free end. This
example was first presented by Ibrahimbegović [13] and later studied by several
authors (e.g. [6], [11], [34]). The analyses of Ibrahimbegović [13] and Battini
and Pacoste [6] show the importance of the suitable parametrization of rota-
tions in order to obtain the correct results. This example also demonstrates
the ability of parametrization of rotations to consider properly large (more
than 2π) and oscillating rotations. The geometric and material properties of
the cantilever are:

GA2 = GA3 = EA1 = 104 L = 10

EJ2 = EJ3 = GJ1 = 102.
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Y

Y Y

Z
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MF

Fig. 9. Cantilever bent to the helical form.

The two loads, M = 200πλ and F = 50λ, increase incrementally from λ = 0
to λ = 1 in 1000 steps. The result of a simultaneous application of moment
and force is a beam, bent into a helical form. By simultaneously increasing
the load, the out-of-plane displacements oscillate around the zero value. For
the values of geometrical and material properties as taken, the beam bends
into ten helical rings (Figure 10). At the final loading stage, the beam is bent
in the direction opposite to the direction of the applied force.

The present results are obtained with the mesh of 25 elements, each with 7
internal points. The displacement uY of the free end of the cantilever as a
function of loading factor λ is shown in Figure 11. The results in Figure 11
agree with the results in [13] and are almost identical to the results in [34].
Beam elements presented in [6] and [11] also show very similar behaviour. The
above discussed results clearly indicates that large and oscillating rotations
present no problem for the present quaternion-based formulation.
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Fig. 10. Cantilever: deformed shape at the final load step.
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Fig. 11. Load-displacement curve for helical beam.

8 Conclusions

The present quaternion-based formulation is specific in several respects. It
completely abandons the rotation matrix concept and introduces the rota-
tional quaternions as the rotational measures of the problem. Since the quater-
nions represent the rotation in the four-dimensional space, it is convenient
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to reformulate the rotational part of the governing equations in the four-
dimensional quaternion space, and considering that then the rotational quater-
nions are mutually independent. This yields the linearization of quaternion-
based equations rather simple. Moreover, each of the quaternion variations can
be interpolated independently, and, consequently, four iterative increments of
quaternion per node become the independent rotational unkowns of the prob-
lem. Lagrangian polynomials of the same order for each quaternion component
have been employed for the interpolation of iterative increments of quater-
nions. Such a formulation strictly satisfies the orthonormality condition of the
local rotated basis at any point at the beam axis.

The proposed finite-element formulation is also very specific. It is essentially
a collocation-type of discretization where the equilibrium conditions for forces
and moments are required to be satisfied in strong, integrated form at the two
boundary points, while the field equilibrium equations in the differential form
are satisfied point-wise at a specified set of interior collocation points. At the
midpoint the consistent equilibrium is further required that the constitutive
and the equilibrium stress resultants are equal. By such an approach we in-
herently avoid any shear locking problem for any order of the finite element.
In formulating equations at interior points, the constitutive stress resultants
are assumed. The present procedures are also fundamental in deriving compu-
tational formulae for the derivatives of the rotational quaternion with respect
to x. It is noted that the above discretization approach can fairly easily be
extended for use in dynamic problems.

Numerical experimentations show the validity of the proposed approach for the
static geometrically non-linear analysis of initially straight or curved/twisted
spatial beams. A large number of various numerical tests performed with new
finite elements using different meshes and element orders also confirm their
high accuracy, robustness and, due to a favorable number of numerical oper-
ations, fast computational performance.
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9 Appendix A. Numerical implementation of the rotational quater-
nion and its derivatives

Let q̂ = cos ϑ
2
+ n sin ϑ

2
be an arbitrary rotational quaternion. It can be ex-

pressed in the form of an infinite sum as

q̂ = 1̂+
1

1!

ϑ̂

2
+

1

2!

ϑ̂

2
◦ ϑ̂

2
+

1

3!

ϑ̂

2
◦ ϑ̂

2
◦ ϑ̂

2
+ ... = exp

(
ϑ̂

2

)
, (99)

where ϑ̂ = [0 ϑn]T . Expression (99) is called the exponential form of the rota-
tional quaternion. The proof is straightforward: for an arbitrary pure quater-
nion, ϑ̂,

ϑ̂ ◦ ϑ̂ = −ϑ2 (100)

ϑ̂ ◦
(
ϑ̂ ◦ ϑ̂

)
= −ϑ2ϑ̂. (101)

By inserting (100)–(101) into (99) we get

q̂ = 1̂+
1
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2
− 1

2!

(
ϑ

2

)2

− 1
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= sin

ϑ

2
+
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ϑ
cos

ϑ

2
.
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In contrast to its polar form, the expression in equation (99) does not suffer a
singularity at ϑ = 0. In the numerical implementation, it is therefore prefer-
able to employ (99) for small values of ϑ at least. The exponential form is also
preferable to be used to obtain numerically stable formulae for the derivatives
and the variations of the rotational quaternion for small values of ϑ. For exam-
ple, the first derivative of q̂ with respect to x is achieved by differentiating (99)
while taking into account that the quaternion product is non-commutative:

q̂′ =
1

1!

ϑ̂
′

2
+

1

2!

ϑ̂

2

′

◦ ϑ̂

2
+

ϑ̂

2
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2

′
+

1

3!

ϑ̂

2
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◦ ϑ̂

2
◦ ϑ̂

2
+

ϑ̂

2
◦ ϑ̂

2

′

◦ ϑ̂

2
+

ϑ̂

2
◦ ϑ̂

2
◦ ϑ̂

2

′+ ...

The second derivative is obtained in an analogous way.
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