
 

 

 

 

 

 

 

 

 

 

 
 

Jamova cesta 2 

1000 Ljubljana, Slovenija 

http://www3.fgg.uni-lj.si/ 

 

 

DRUGG – Digitalni repozitorij UL FGG 

http://drugg.fgg.uni-lj.si/ 

 

 

 

Ta članek je avtorjeva zadnja recenzirana 

različica, kot je bila sprejeta po opravljeni 

recenziji. 

 

Prosimo, da se pri navajanju sklicujte na 

bibliografske podatke, kot je navedeno: 

 

 

 

 

 

 

 

 
                         University  

                           of Ljubljana  

                                               Faculty of  

                                               Civil and Geodetic 

                                               Engineering 

 
 

Jamova cesta 2 

SI – 1000 Ljubljana, Slovenia 

http://www3.fgg.uni-lj.si/en/ 

 

 

DRUGG – The Digital Repository 

http://drugg.fgg.uni-lj.si/ 

 

 

 

This version of the article is author's 

manuscript as accepted for publishing after 

the review process. 

  

When citing, please refer to the publisher's 

bibliographic information as follows: 

 

 

 

Zupan, E., Saje, M., Zupan, D. 2009. The wavelet-based theory of spatial naturally curved 

and twisted linear beams. Computational mechanics 43,5: 675-686. DOI: 10.1007/s00466-

008-0337-4. 

 

 

 

 

 

       Univerza 

v Ljubljani 

Fakulteta 

za gradbeništvo 

in geodezijo 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository UL FGG

https://core.ac.uk/display/12089216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www3.fgg.uni-lj.si/
http://drugg.fgg.uni-lj.si/
http://www3.fgg.uni-lj.si/en/
http://drugg.fgg.uni-lj.si/
http://dx.doi.org/10.1007/s00466-008-0337-4
http://dx.doi.org/10.1007/s00466-008-0337-4


Computational Mechanics manuscript No.
(will be inserted by the editor)

The wavelet-based theory of spatial naturally curved and twisted linear
beams

Eva Zupan · Dejan Zupan · Miran Saje

Received: date / Accepted: date

Abstract The paper presents the wavelet-based discretiza-
tion of the linearized finite-strain beam theory which as-
sumes small displacements, rotations and strains but is ca-
pable of considering an arbitrary initial geometry and mate-
rial behaviour. In the numerical solution algorithm, we base
our derivations on the vector of strain measures as the only
unknown functions in a finite element. In such a way the
determination of the beam quantities does not require the
differentiation. This is an important advantage which allows
a wider range of shape functions. In the present paper, the
classical polynomial interpolation is compared to scaling
and wavelet function interpolations. The computational effi-
ciency of the method is demonstrated by analyzing initially
curved and twisted beams.

Keywords wavelets · scaling functions · shape functions ·
linear beam theory · discretization

1 Introduction

The wavelets have received an increased attention in the last
decade in various engineering disciplines. They have proven
to provide a suitable mathematical background for signal
processing, processing of images, pattern recognition, diag-
nosing and monitoring the disturbances, and similar prob-
lems. The generality of their applicability stands directly on
the attractive properties the sets of wavelets have: periodic-
ity, orthogonality and linear independency. For the theoret-
ical foundation of the wavelet theory, the reader is referred
to the mammographies by Chui [2] and Daubechies [3].

The finite element method was successfully combined
with the wavelet theory in numerical solutions to Dirichlet
problem [18] and Navier-Stokes equations [17]. Several re-

Address(es) of author(s) should be given

cent publications deal with the wavelet implementation in
the finite element structural analysis, e.g. [4], [7], [10], [21].

We would like to point out that there exists a large num-
ber of types of scaling and wavelet functions, which, unfor-
tunately, could not be expressed explicitly in a general way
and do not have proper interpolation properties. That is why
the implementation of the wavelets in the finite-element the-
ories is non-trivial and often demands some additional the-
oretical work to be done. One of the implementations is the
wavelet-Galerkin method, which demands the shape func-
tions to be expressed in a form of a product of wavelet func-
tions and wavelet coefficients. In such an approach, the rela-
tion between the wavelet coefficients and the physical quan-
tities is non-trivial, which makes it difficult to treat element
boundary conditions. Alternatively, an additive-type, spline-
wavelet-based interpolation was proposed by Han, Ren and
Huang [4] to resolve this difficulty for conventional displace-
ment-based finite elements.

In the present paper we follow the idea by Han, Ren
and Huang and incorporate the additive-type wavelets in the
strain based finite-element formulation of spatial beams. In
contrast to [4] the present formulation is based on the variant
of wavelets presented by Prestin and Quak [11], [12]. The
related set of the scaling functions (of any order) and the
corresponding set of wavelets not only preserve the prop-
erties of the wavelets (they represent the orthonormal base
functions), but also possesses two additional properties of
an utmost importance in the finite-element implementation:
they can be expressed explicitly and have interpolation prop-
erties.

There are several reasons for incorporating non-standard
shape functions into beam theories. It is well known that in
standard interpolation of unknown functions with Lagrange
polynomials higher order approximation provides better re-
sults, especially in the case of curved beams, see e.g. [5]. It is
however not often discussed the use of high order Lagrange
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polynomial might lead to the convergence problems. In con-
trast to polynomials the wavelet functions are expected to
be numerically stable regardless the order of approximation,
to better describe local behaviour and are suitable for mesh
refinement. The use of wavelets could be of even more ben-
eficial in dynamic problems.

In the present paper the wavelet-based discretization will
be applied to the linearized finite-strain beam theory [23]
which assumes small displacements, rotations and strains
but is capable of considering an arbitrary initial geometry
and material behaviour. In the numerical solution algorithm,
we base our derivations on the vector of strain measures
as the only unknown functions in a finite element. In such
a way the determination of the beam quantities does not
require any differentiation. This is an important advantage
compared to formulations where the derivatives of the shape
functions are needed. The efficiency and numerical stability
of our approach will be proved by numerical examples.

2 Scaling and wavelet interpolation

2.1 Scaling functions

We follow the approach of Quak [12], and Prestin and Quak
[11], and introduce the scaling functions

ϕ j,n (x) = ϕ j,0

(
x− nπ

2 j

)
, for n = 0, . . . ,2 j+1 −1, (1)

where

ϕ j,0 (x) =
1

22 j+2
sin2(2 jx)
sin2(x/2)

, (2)

for x ̸= 2kπ and ϕ j,0 (x) = 1 if x = 2kπ; k is an arbitrary
integer and n a non-negative integer.

We will denote by Vj the vector spaces, spanned by scal-
ing functions ϕ j,n:

Vj = span
{

ϕ j,n; n = 0, . . . ,2 j+1 −1
}
. (3)

Vj are the vector subspaces of the 2π-periodic square-integrable
functions L2

2π . It is easy to see that dimension of each space
Vj equals 2 j+1 and that the spaces Vj are nested ( Vj ⊂Vj+1).
The interpolatory properties follow directly from the defini-
tion of scaling functions. If we define a set of nodes on the
interval [0,2π)

x j,m =
{mπ

2 j ; m = 0, . . . ,2 j+1 −1
}
, (4)

where m is non-negative integer, we can observe that

ϕ j,n (x j,m) =

{
1, if n = m
0, otherwise

= δn,m. (5)

0 1 2 3 4 5 6
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0.2

0.4

0.6

0.8

1

Fig. 1 Scaling functions for j = 1.

Another interesting and useful property of the scaling func-
tions concerns the change of index in discrete points, e.g.

ϕ j,n

(
2m+1
2 j+1 π

)
= ϕ j,0

(
2m+1
2 j+1 π − nπ

2 j

)
= ϕ j,0

(
2m−2n+1

2 j+1 π
)
= ϕ j,0

(
2n−2m−1

2 j+1 π
)

= ϕ j,0

(
2n−1
2 j+1 π − mπ

2 j

)
.

Hence

ϕ j,n

(
2m+1
2 j+1 π

)
= ϕ j,m

(
2n−1
2 j+1 π

)
. (6)

Due to the interpolatory properties of ϕ j,n, we can define
the interpolation of an arbitrary real-valued L2

2π function f
as

Ls
j f (x) =

2 j+1−1

∑
n=0

f (x j,n)ϕ j,n (x) . (7)

For illustration, the graphs of four base functions span-
ning V1 are presented in Figure 1. We would like to empha-
size that the sum of the base functions equals 1 at each level
j. This means that a constant can be exactly approximated
by the above type of interpolation.

2.2 Wavelet functions

In accordance with the wavelet theory, the wavelets are con-
structed as the linear combination of scaling functions:

ψ j,n (x) = 2ϕ j+1,2n+1 (x)−ϕ j,n

(
x− π

2 j+1

)
. (8)

It is obvious from (8) that ψ j,n ∈ Vj+1 and we can observe
that ψ j,n also have interpolatory properties. The correspond-
ing nodes are the midpoints between x j,m; they represent
2 j+1 equally-spaced points on the interval [0,2π):

y j,m =

{
(2m+1)π

2 j+1 ; m = 0, . . . ,2 j+1 −1
}
. (9)
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At the set of points y j,m we have

ϕ j,n (y j,m) =

{
1, if n = m
0, otherwise.

(10)

Consequently, the interpolatory properties of ϕ j+1,2n+1 re-
sult in a simple expression for the values of wavelets at x j,m:

ψ j,n (x j,m) =−ϕ j,n

(mπ
2 j − π

2 j+1

)
=−ϕ j,n

(
(2m−1)π

2 j

)
.

(11)

In addition to the vector spaces, spanned by the scaling func-
tions, we define the spaces Wj, spanned by wavelets ψ j,n:

Wj = span
{

ψ j,n; n = 0, . . . ,2 j+1 −1
}
. (12)

Due to the interpolation properties of wavelets, we can also
define the interpolation of an arbitrary real-valued L2

2π func-
tion f as

Lw
j f (x) =

2 j+1−1

∑
n=0

f (x j,n)ψ j,n (x) . (13)

0 1 2 3 4 5 6
-0.5

0

0.5

1

Fig. 2 Wavelet functions for j = 1.

The wavelets for j = 1 are shown in Figure 2. It is in-
teresting to observe that the sum of the wavelet functions
equals a cosine function, i.e. ∑2 j+1−1

n=0 ψ j,n (x)=−cos
(
2 j+2x

)
.

This result can be of an utmost importance in the analysis of
naturally curved and twisted rods, where the cosine func-
tion is typically a part of the analytical solution (see [23] for
further details).

2.3 Decomposition sequences

The main motivation in decomposition sequences is to use
both scaling functions and wavelets, as the shape functions.
Thus we are capable of accurately solving the problem, whose

solution can be expressed as the linear combination of a con-
stant and a cosine function. We now explain the necessary
mathematical background.

From the definition (8) follows that the vector space,
spanned by wavelets, is the subspace of one degree higher
vector space, spanned by scaling functions, i.e. Wj ⊂ Vj+1.
Moreover, Wj is the orthogonal complement of Vj, which is
usually written in the form [3]

Vj+1 =Vj ⊕Wj, (14)

where ⊕ denotes the orthogonal sum of vector spaces. The
orthogonality of Vj and Wj means that the scalar products of
the base functions in L2

2π are zero:⟨
ψ j,n,ϕ j,m

⟩
=

1
2π

∫ 2π

0
ψ j,n (x)ϕ j,m (x)dx = 0. (15)

We have found out that both {ϕ j+1,n; n = 0, . . ., 2 j+2 − 1}
and {ϕ j,n,ψ j,n; n = 0, . . ., 2 j+1 − 1} are orthonormal bases
of the vector space Vj+1. Thus an arbitrary vector from Vj+1
can be expressed in either of the two bases. For the inter-
polation of an arbitrary function with combined scaling and
wavelet functions, it suffices to find the connection between
the two bases.

Since Vj ⊂ Vj+1 there exist such coefficients p j,n
m that

ϕ j,n = ∑m p j,n
m ϕ j+1,m. From the properties of the interpola-

tory operator (7) we have

ϕ j,n(x) = Ls
j+1ϕ j,n(x) =

2 j+2−1

∑
m=0

ϕ j,n

( mπ
2 j+1

)
ϕ j+1,m (x) .

Since ϕ j,n

(
2sπ
2 j+1

)
= δn,s, it follows

ϕ j,n(x) = ϕ j+1,2n +
2 j+1−1

∑
s=0

ϕ j,n

(
2s+1
2 j+1 π

)
ϕ j+1,2s+1. (16)

Similarly, as Wj ⊂ Vj+1 we can find coefficients q j,n
m such

that ψ j,n = ∑m q j,n
m ϕ j+1,m:

ψ j,n (x) = 2ϕ j+1,2n+1 (x)−ϕ j,n

(
x− π

2 j+1

)
= 2ϕ j+1,2n+1 (x)−

2 j+2−1

∑
m=0

ϕ j,n

( mπ
2 j+1

)
ϕ j+1,m

(
x− π

2 j+1

)
= 2ϕ j+1,2n+1 (x)−

2 j+2−1

∑
m=0

ϕ j,n

( mπ
2 j+1

)
ϕ j+1,m+1 (x)

= ϕ j+1,2n+1 (x)−
2 j+1−1

∑
s=0

ϕ j,n

(
2s+1
2 j+1 π

)
ϕ j+1,2s+2 (x) .

Again, the property ϕ j,n

(
2sπ
2 j+1

)
= δn,s was used. The peri-

odicity of scaling functions yields

ϕ j,n

(
2 j+2 −1

2 j+1 π
)

ϕ j+1,2 j+2 (x) = ϕ j,n

(
− π

2 j+1

)
ϕ j+1,0 (x) ,
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which finally results in

ψ j,n (x) = ϕ j+1,2n+1 (x)−
2 j+1−1

∑
s=0

ϕ j,n

(
2s−1
2 j+1 π

)
ϕ j+1,2s (x) .

Further, if we take into account the index transformation (6),
the result reads

ψ j,n (x) = ϕ j+1,2n+1 (x)−
2 j+1−1

∑
s=0

ϕ j,s

(
2n+1
2 j+1 π

)
ϕ j+1,2s (x) .

(17)

Let ϕϕϕ j denote the vector
[
ϕ j,0,ϕ j,1, . . . ,ϕ j,2 j+1−1

]T
and

ψψψ j the vector
[
ψ j,0,ψ j,1, . . . ,ψ j,2 j+1−1

]T
. Let permutation

P reorder the components in the vector of scaling functions
ϕϕϕ j+1 with respect to even and odd indices n:

Pϕϕϕ j+1 =
[
ϕ j+1,0, . . . ,ϕ j+1,2s, . . . ,ϕ j+1,2 j+2−2,

ϕ j+1,1, . . . ,ϕ j+1,2s+1, . . . ,ϕ j+1,2 j+2−1,
]T

. (18)

Then we are able to re-write the results (16) and (17) in a
more convenient matrix form:[

ϕϕϕ j
ψψψ j

]
=DDD jPϕϕϕ j+1. (19)

DDD j is the so-called reconstruction matrix, which has for the
chosen wavelets the following form

DDD j =

[
III j ZZZ j

−ZZZT
j III j

]
, (20)

where III j is the identity matrix of size 2 j+1 − 1 and the ele-
ments of ZZZ j are given by

ZZZ j(n,s) = ϕ j,n

(
2s+1
2 j+1 π

)
. (21)

The argument (n,s) denotes the element of matrix in row n
and column s.

An arbitrary function f j+1 ⊂Vj+1 can be uniquely writ-
ten as

f j+1 = f j +g j, f j ⊂Vj, g j ⊂Wj. (22)

If we express the functions with respect to the bases of the
corresponding vector spaces, we have

f j+1 =
2 j+2−1

∑
n=0

a j+1
n ϕ j+1,n (x) = aaaT

j+1ϕϕϕ j+1, (23)

f j =
2 j+1−1

∑
n=0

a j
nϕ j,n (x) = aaaT

j ϕϕϕ j, (24)

g j =
2 j+1−1

∑
n=0

b j
nψ j,n (x) = bbbT

j ψψψ j. (25)

By comparing the coefficients and taking (19) into account,
it yields

Paaa j+1 =DDDT
j

[
aaa j
bbb j

]
. (26)

The above result represents one step of the decomposition.
If repeated, we obtain the wavelet coefficients bbbη for η =
0, . . . , j and a pair of scaling coefficients aaa0. In such a way
the interpolation is expressed with wavelets of various order
and the lowest level scaling functions. Shape functions for
the decomposition-based interpolation of order 23 are pre-
sented in Figure 3. It is obvious that the localizations can
particularly be well described by such an interpolation.

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3 Functions for decomposition in V2.

3 Governing equations of the beam

The complete set of Reissner’s beam equations [13] con-
sists of the constitutive equations (27)–(28), the equilibrium
equations (29)–(30) and the kinematic equations (31)–(32)
(see [22], [23]):

fff 1 =RRR(x)CN (γγγG (x) ,κκκG (x))−NNNg (x) = 000 (27)

fff 2 =RRR(x)CM (γγγG (x) ,κκκG (x))−MMMg (x) = 000 (28)

fff 3 =NNN′
g (x)+nnng (x) = 000 (29)

fff 4 =MMM′
g (x)+mmmg (x)−NNNg (x)×rrr ′g (x) = 000 (30)

fff 5 = rrr ′g (x)−RRR(x)(γγγG (x)−cccG (x)) = 000 (31)

fff 6 =ϑϑϑ ′
g (x)−TTT−T (x)(κκκG (x)−dddG (x)) = 000. (32)

The related static boundary conditions are

FFF0 +NNNg (0) = 000 (33)

PPP0 +MMMg (0) = 000 (34)

FFFL −NNNg (L) = 000 (35)

PPPL −MMMg (L) = 000. (36)
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Fig. 4 Model of the three-dimensional beam.

Here, the prime (′) denotes the derivative with respect to
the arc-length parameter of the reference line in the initial
configuration, x, and “×” marks the cross vector product.
The meaning of the notations used in the above equations is
described below (see also Figure 4):

g fixed (inertial) orthonormal basis
{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
spanning

the physical space of the beam;

G orthonormal basis
{⇀

G1,
⇀
G2,

⇀
G3

}
spanning the cross-sec-

tional planes;
NNN, MMM stress-resultant force and moment vectors over the cross-

section;
CN , CM operators describing material of the beam;

γγγ translational strain vector (γγγG1 is the extensional strain,
γγγG2, γγγG3 are shear strains);

κκκ rotational strain vector (κG1 is the torsional strain, κG2,
κG3 are the curvatures);

rrr position vector of the reference line of the beam;
RRR both rotation matrix from g to G (i.e., RRR = III+ sinϑ

ϑ ΘΘΘ+
1−cosϑ

ϑ 2 ΘΘΘ2, ϑ =
∥∥ϑϑϑ g

∥∥) and coordinate transformation ma-
trix (vvvg =RRRvvvG);

ϑϑϑ rotational vector whose axis coincides with the axis of
rotation and whose length equals the angle of rotation;

ΘΘΘ skew-symmetric matrix ΘΘΘ composed from its axial vec-
tor ϑϑϑ g =

[
ϑg1 ϑg2 ϑg3

]T ;
TTTT transformation matrix between κκκG and ϑϑϑ ′

g (i.e., TTTT =

III− 1−cosϑ
ϑ 2 ΘΘΘ+ ϑ−sinϑ

ϑ 3 ΘΘΘ2, ϑ =
∥∥ϑϑϑ g

∥∥);
ccc, ddd variational constants determined from the known strains,

position vectors and rotations in the initial configuration;
nnn, mmm external distributed force and moment vectors per unit

of the undeformed length of the axis;
FFF0, FFFL external point forces at the boundaries x = 0, x = L;
PPP0, PPPL external point moments at the boundaries x = 0, x = L;
•••0, •••L discrete value of a quantity at the boundaries x = 0, x =

L.

It is found useful to replace the cross vector product by
the adequate matrix product. After we introduce the skew-
symmetric matrix SSS(vvv) formed from the components of vec-

tor vvv, the cross vector product v×uv×uv×u can be written as:

v×u =v×u =v×u =

 v2u3 − v3u2
v3u1 − v1u3
v1u2 − v2u1

=

 0 −v3 v2
v3 0 −v1

−v2 v1 0

u1
u2
u3

=SSS(vvv)uuu.

(37)

4 Linearized equations of the beam

4.1 Mathematical background

Mathematically, equations (27)–(32) introduce 24 scalar func-
tionals, dependent on the (primary) unknowns rrrg (x), ϑϑϑ g (x),
NNNg (x), MMMg (x), γγγG (x), and κκκG (x). Let yyy= (y1,y2, . . . ,yn) de-
note the entire vector of unknowns. The linearization of the
functional F (yyy) about an arbitrary value yyy = yyy0 is defined
by

δF (yyy0;δyyy) =−F (yyy0) , (38)

where δF denotes the variation of the functional at yyy0 in the
direction δyyy

δF (yyy0;δyyy) =
n

∑
j=1

∂F

∂y j

∣∣∣∣
yyy0

δy j. (39)

This equation holds in the linear vector spaces.
The linearization of a functional in non-linear spaces re-

quires a different procedure. In our case the rotation matrix
RRR is expressed in terms of the non-additive rotational vector
ϑϑϑ g (see [1], [6] for further details). If the change of ϑϑϑ g is
denoted by αδϑϑϑ g, the rotational operator at the perturbed
value of its argument is the product RRR(α δϑϑϑ g)RRR(ϑϑϑ g), so
that the difference between the original and the perturbed
value of the rotational operator is

∆RRR=RRR(α δϑϑϑ g)RRR(ϑϑϑ g)−RRR(ϑϑϑ g) . (40)

The Gâteaux variation of RRR then follows from the definition
[19]:

δRRR =
d

dα

∣∣∣∣
α=0

RRR(αδϑϑϑ g)RRR(ϑϑϑ g) (41)

= δΘRΘRΘR, (42)
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where δΘΘΘ means the skew-symmetric matrix, whose com-
ponents are formed from its axial vector δϑϑϑ g.

When multiplied by an arbitrary vector, uuu, equation (42)
gives

δRRRuuu = δΘRΘRΘRuuu =SSSSSSSSS(δϑϑϑδϑϑϑδϑϑϑ g)RRRuuu =RRRuuu =RRRuuu =δϑϑϑ g ×RRRuuu.

Taking into account that v×uv×uv×u=−u× v−u× v−u× v and considering (37)
we get

δRRRuuu = δϑϑϑ g ×RRRuuu =−RRRu×u×u×δϑϑϑ g =−SSS(RRRuuu)δϑϑϑ g. (43)

4.2 Linearization of equations of the beam

The linearization of the constitutive equations gives:

δCN =CCCγγ δγγγG +CCCγκ δκκκG (44)

δCM =CCCκγ δγγγG +CCCκκ δκκκG. (45)

Here the components of matrices CCCγγ , CCCγκ , CCCκγ , and CCCκκ
are the partial derivatives of CN and CM with respect to the
components of γγγG and κκκG :

CCCγγ =

[
∂C N

i
∂γ j

]
, CCCγκ =

[
∂C N

i
∂κ j

]
CCCκγ =

[
∂C M

i
∂γ j

]
, CCCκκ =

[
∂C M

i
∂κ j

]
.

The matrix CCC =

[
CCCγγ CCCγκ
CCCκγ CCCκκ

]
is called the cross-section

constitutive tangent matrix.
After equation (31) is inserted in (30) and equations (44)–

(45) taken into account, the variations of the equations of the
beam are easily derived and are as follows:

δ fff 1 = δΘRΘRΘRCN +RCRCRCγγ δγγγG +RCRCRCγκ δκκκG −δNNNg (46)

δ fff 2 = δΘRΘRΘRCM +RCRCRCκγ δγγγG +RCRCRCκκ δκκκG −δMMMg (47)

δ fff 3 = δNNN′
g (48)

δ fff 4 = δMMM′
g −δNNNg ×rrr ′g −NNNg ×δrrr ′g (49)

δ fff 5 = δrrr ′g −δΘRΘRΘR(γγγG −cccG)−RRRδγγγG (50)

δ fff 6 = δϑϑϑ ′
g −RRRδκκκG. (51)

Here, it is assumed that nnng (x) and mmmg (x) do not depend on
the unknown functions. Note that the derivation of equa-
tion (51) from (32) is not straightforward. The proof can be
found in [6] or [22].

We assume that the geometry of the beam and its strains
in the initial configuration yyy0 are arbitrary, yet kinematically
exact, so that equations (31)–(32) are identically satisfied
(i.e., fff 5 (yyy0) = fff 6 (yyy0) = 000). Such a beam is called a natu-
rally strained (extended, curved and twisted) beam. We also

assume that, in the initial configuration, stress-resultant vec-
tors are identically zero, NNNg (x) =MMMg (x) = 000. The set of lin-
earized equations then takes the form

δΘRΘRΘRCN +RCRCRCγγ δγγγG +RCRCRCγκ δκκκG −δNNNg =−RRRCN (52)

δΘRΘRΘRCM +RCRCRCκγ δγγγG +RCRCRCκκ δκκκG −δMMMg =−RRRCM (53)

δNNN′
g =−nnng (54)

δMMM′
g −δNNNg ×rrr ′g =−mmmg (55)

δrrr ′g −δΘRΘRΘR(γγγG −cccG)−RRRδγγγG = 0 (56)

δϑϑϑ ′
g −RRRδκκκG = 0. (57)

All the quantities are dependent on parameter x, which was
left out from equations for the sake of clearness. The lin-
earized form of static boundary conditions reads

δNNN0
g =−FFF0 (58)

δMMM0
g =−PPP0 (59)

δNNNg (L) =FFFL (60)

δMMMg (L) =PPPL. (61)

The set of equations (52)–(61) can further be reduced by
integrating equations (54)–(57). By rearranging the terms in
(56)–(57) and considering (31) and (43) we obtain

δrrrg = δrrr0
g +

∫ x

0

{
−S−S−S

(
RRRrrr ′g

)
δϑϑϑ g +RRRδγγγG

}
dξ (62)

δϑϑϑ g = δϑϑϑ 0
g +

∫ x

0
RRRδκκκGdξ . (63)

Inserting (62) into (63) yields

δrrrg = δrrr0
g −

∫ x

0
SSS
(
RRRrrr ′g

)
dξ δϑϑϑ 0

g

+
∫ x

0

{
−SSS

(
RRRrrr ′g

)
RRRδκκκG +RRRδγγγG

}
dξ . (64)

Integration of (54)–(55) with consideration of (37) results in

δNNNg (x) = δNNN0
g −

∫ x

0
nnngdξ (65)

δMMMg (x) = δMMM0
g +

∫ x

0
δNNNg ×rrr ′g dξ −

∫ x

0
mmmgdξ

= δMMM0
g −SSS

(∫ x

0
rrr ′gdξ

)
δNNN0

g

+
∫ x

0
SSS
(
rrr ′g
)(∫ ξ

0
nnngdη

)
dξ −

∫ x

0
mmmgdξ

= δMMM0
g −SSS

(
rrrg (x)−rrr0

g
)

δNNN0
g

+
∫ x

0
SSS
(
rrr ′g
)(∫ ξ

0
nnngdη

)
dξ −

∫ x

0
mmmgdξ . (66)

The final form of the linearized equations of three-dimensional
beam then reads
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−SSS(RRRCN)δϑϑϑ 0
g −SSS(RRRCN)

∫ x

0
RRRδκκκGdξ +RCRCRCγγ δγγγG

+RCRCRCγκ δκκκG −δNNN0
g =−RRRCN −

∫ x

0
nnngdξ (67)

−SSS(RRRCM)δϑϑϑ 0
g −SSS(RRRCM)

∫ x

0
RRRδκκκGdξ +RCRCRCκγ δγγγG

+RCRCRCκκ δκκκG −δMMM0
g =−RRRCM

−
∫ x

0
mmmgdξ +

∫ x

0
SSS
(
rrr ′g
)(∫ ξ

0
nnngdη

)
dξ (68)

δrrrL
g −δrrr0

g +
∫ L

0
SSS
(
RRRrrr ′g

)
dξ δϑϑϑ 0

g

−
∫ L

0

{
−S−S−S

(
RRRrrr ′g

)
RRRδκκκG +RRRδγγγG

}
dx = 0 (69)

δϑϑϑ L
g −δϑϑϑ 0

g −
∫ L

0
RRRδκκκGdx = 0 (70)

δNNN0
g =−F−F−F0 (71)

δMMM0
g =−P−P−P0 (72)

δNNN0
g =FFFL +

∫ L

0
nnngdx (73)

δMMM0
g −SSS

(
rrrL

g −rrr0
g
)

δNNN0
g =PPPL +

∫ L

0
mmmgdx

−
∫ L

0
SSS
(
rrr ′g
)(∫ x

0
nnngdξ

)
dx. (74)

Equations (67)–(74) represent a system of linear equa-
tions for two unknown functions δγγγG (x) and δκκκG (x), bound-
ary kinematic vectors δrrr0

g, δϑϑϑ 0
g, δrrrL

g , δϑϑϑ L
g , and boundary

equilibrium stress resultants δNNN0
g, δMMM0

g. The remaining quan-
tities are known from the initial configuration of the beam.

5 Numerical solution of linearized equations

Equations (67)–(74) are generally too demanding to be solved
analytically. That is why discretization of equations and in-
terpolation of unknown functions need to be introduced.

Unknown functions δγγγG(x) and δκκκG(x) are replaced by
the set of their unknown values δγγγ p

G and δκκκ p
G at discrete

points identified by xp ∈ [0,L] ; p = 0, 1, . . ., 2 j+1 −1, ( j ≥
0) and interpolated by the set of 2 j+1 interpolation functions
Ip (x)

δγγγG (x) =
2 j+1−1

∑
p=0

Ip (x)δγγγ p
G (75)

δκκκG (x) =
2 j+1−1

∑
p=0

Ip (x)δκκκ p
G. (76)

Several options will be tested for interpolation functions: (i)
scaling functions (1), (ii) wavelet functions (8), and (iii) the
combination of scaling and wavelet functions with respect
to the decomposition (19).

The discretization of equations (67)–(68) is achieved by
satisfying them at 2 j+1 pre-selected discrete points xq ∈ [0,L];

q = 1, . . ., 2 j+1, not necessarily coincidental with any of
the interpolation points. In the present paper, 2 j+1 Gaussian
points are chosen as suitable collocation points for (67)–
(68). Note that the Gaussian points are chosen for both dis-
cretization and numerical integration, which is suitable for
the implementation of the numerical integrals in the algo-
rithm. The interpolation and discretization lead to 2 j+1 + 6
algebraic equations for 2 j+1 + 6 unknown vectors rrr0

g, ϑϑϑ 0
g,

NNN0
g, MMM0

g, rrrL
g , ϑϑϑ L

g , γγγ p
G, and κκκ p

G, p = 0, . . ., 2 j+1 −1:

−SSS(RRRCN) δϑϑϑ 0
g −δNNN0

g +
2 j+1−1

∑
p=0

RRRqCCCq
γγ Iq

p δγγγ p
G

+
2 j+1−1

∑
p=0

{
−SSS

(
RRRqC q

N

)∫ xq

0
RRRIpdξ +RRRqCCCq

γκ Iq
p

}
δκκκ p

G

=−RRRCN (xq)−
∫ xq

0
nnngdξ (77)

−SSS(RRRCM) δϑϑϑ 0
g +SSS

(
rrrg (xq)−rrr0

g
)

δNNN0
g +

2 j+1−1

∑
p=0

RRRqCCCq
κγ Iq

p δγγγ p
G

−δMMM0
g +

2 j+1−1

∑
p=0

{
−SSS

(
RRRqC q

M

)∫ xq

0
RRRIpdξ +RRRqCCCq

κκ Iq
p

}
δκκκ p

G

=−RRRCM (xq)−
∫ xq

0
mmmgdξ

+
∫ xq

0
SSS
(
rrr ′g
)(∫ ξ

0
nnngdη

)
dξ (78)

δrrrL
g −δrrr0

g +
∫ L

0
SSS
(
RRRrrr ′g

)
dx δϑϑϑ 0

g −
2 j+1−1

∑
p=0

∫ L

0
RRRIpdx δγγγ p

G

+
2 j+1−1

∑
p=0

∫ L

0
−S−S−S

(
RRRrrr ′g

)
RRRdx δκκκ p

G = 0 (79)

δϑϑϑ L
g −δϑϑϑ 0

g −
2 j+1−1

∑
p=0

∫ L

0
RRRIpdx δκκκ p

G = 0 (80)

δNNN0
g =−FFF0 (81)

δMMM0
g =−PPP0 (82)

δNNN0
g =FFFL +

∫ L

0
nnngdx (83)

δMMM0
g −SSS

(
rrrL

g −rrr0
g
)

δNNN0
g =PPPL +

∫ L

0
mmmgdx

−
∫ L

0
SSS
(
rrr ′g
)(∫ x

0
nnngdξ

)
dx. (84)

The upper index q denotes the discrete value of a quan-
tity at the discretization point xq. The system of equations
(77)–(84) is linear algebraic with known coefficients, thus it
is easy to be solved.

6 Numerical examples

We present several numerical examples in order to demon-
strate the accuracy and stability and compare the wavelet
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beam formulation to various polynomial formulations. In ac-
cord with the theoretical assumption arbitrary finite initial
bending and/or twisting curvature of the beam can be pre-
scribed at the unloaded initial configuration, but only a small
loading is allowed to be applied in order to achieve small
displacements, rotations and strains. In order to present the
full benefit of the wavelet-based discretization, we take only
a low number of elements in the mesh, while simultane-
ously employing elements of high orders. The rate of an
element is described by j; then the number of interpola-
tion points is 2 j+1. For each j, the results, obtained by La-
grangian interpolation functions, scaling interpolation func-
tions, and wavelet-based decomposition functions are pre-
sented.

The operators CN and CM in (27)–(28) are taken to be
linear, so that the cross-section constitutive tangent matrix
reads

CCC=



EAx 0 0 0 ESy −ESz
0 GAy 0 0 0 0
0 0 GAz 0 0 0
0 0 0 GJt 0 0

ESy 0 0 0 EJy EJyz
−ESz 0 0 0 EJyz EJz

 .

E and G denote elastic and shear moduli of material; Ax is
the cross-sectional area; Jt is the torsional inertial moment
of the cross-section; Ay and Az are the effective shear areas

in directions
⇀
G2 and

⇀
G3 of the cross-section; Sy and Sz are

the static moments of the cross-section about its directions
⇀
G2 and

⇀
G3 Jy and Jz are the bending inertial moments of the

cross-section about
⇀
G2 and

⇀
G3; Jyz is the product moment

of inertia of the cross-section. Please note that in the beam
model the choices of the parameters in cross-section con-
stitutive tangent matrix are arbitrary quantities. It has been,
however, observed by many researchers that the values of
shear areas and torsional moment of cross-section can con-
siderably affect the results. For the method of evaluation the
torsional inertial moment and the shear areas in the case of
an arbitrary cross section the reader is referred to the papers
by Sapountzakis and Mokos [14], [15].

6.1 Cantilever beam

We consider a straight in-plane cantilever, subjected to a
point moment at its free end (Figure 5). The geometric and
material properties are as follows:

E = 2.1 ·104 G = 1.05 ·104 L = 100

Ax= 20 Ay = Az = 16

Jt= 6.4566 Jy = 1.6667 Jz = 666.66

Sy= Sz = Jyz = 0.

X

Y

Y

Z

O

M

Fig. 5 The cantilever under free-end moment.

Table 1 Free-end displacement and rotation under an in-plane point
moment; single element of order 2 j+1.

method j uZ ϑY

Lagrange 0 14.28571 0.28571
Scaling 0 14.28571 0.28571
Decomposition 0 14.28571 0.28571
Lagrange 1 14.28571 0.28571
Scaling 1 14.28571 0.28571
Decomposition 1 13.57021 0.28571
Lagrange 3 14.28571 0.28571
Scaling 3 14.28571 0.28571
Decomposition 3 14.15023 0.28571
Lagrange 5 15.39210 0.28571
Scaling 5 14.28571 0.28571
Decomposition 5 14.27078 0.28571
Lagrange 7 divergence divergence
Scaling 7 14.28571 0.28571
Decomposition 7 14.28436 0.28571
exact 14.28571 0.285714

The results for the free-end moment of magnitude MY = 100
are shown in Table 1.

In Table 1 we compare the vertical displacement and the
rotation at the free end; the exact linear solution is also dis-
played. Note that the problem is linear with respect to the
free-end rotation, thus even the lowest order interpolation
should give exact solution for the free-end rotation. This is
confirmed in the last column of Table 1. The vertical dis-
placements, obtained by different approaches and different
orders of interpolation, are quite accurate. We can observe
that a high order Lagrangian interpolation is not a suitable
choice. The relative error of Lagrangian approach for j = 5
is about 8% for vertical displacement and the method is di-
vergent for j = 7. No such sensitivity can be observed for
scaling functions and wavelet decomposition functions. A
somewhat lower convergence rate of results is observed for
the wavelet decomposition.
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6.2 Circular arch

X
Y

O

Z

ZF
*

Fig. 6 Circular arch under in-plane and out-of-plane force.

Table 2 Out-of-plane force on circular arch; free-end displacements
for a single element.

method j uZ ∆ϑX ∆ϑY

Lagrange 0 8.396451 0.9425584 0.6406146
Scaling 0 8.746730 0.9425584 0.6406146
Decomposition 0 8.746730 0.9425584 0.6406146
Lagrange 1 10.260494 0.9969752 0.6618478
Scaling 1 9.496759 0.9969752 0.6618478
Decomposition 1 11.715486 0.9969752 0.6618478
Lagrange 3 10.132443 0.9969458 0.6618529
Scaling 3 9.906802 0.9969458 0.6618529
Decomposition 3 10.890450 0.9969458 0.6618529
Lagrange 5 10.394379 0.996946 0.661853
Scaling 5 10.017767 0.9969458 0.6618529
Decomposition 5 10.511923 0.996946 0.661853
Lagrange 7 divergence 0.996946 0.996946
Scaling 7 10.0579388 0.996946 0.661853
Decomposition 7 10.4302942 0.996946 0.661853
Tabarrok et al. [16] 9.931903 0.9931903 0.6618526
analytical [16] 10.182905 0.996940 0.661850

We consider an elastic cantilever beam with the cen-
troidal axis in the form of the circular arc with the central
angle π and radius R = 5 (Figure 6). The cross-section of
the beam is circular with radius r = 0.015. Material mod-
uli are E = 0.207 · 1012 and G = 0.95 · 1011. The cantilever
is subjected to the vertical force FZ = 100 at the free end,
which causes the out-of-plane deformation.

Results for a single element are shown in Table 2 and for
a mesh of three elements in Table 3. Vertical displacements
and rotations at the free end are presented. Present results are
compared to theoretical and numerical results obtained by
Tabarrok et al. [16]. The higher accuracy of rotations com-

pared to the accuracy to displacements stems from simpler
form of the analytical solution.

The present method gives excellent results also for a low
number of elements or a lower order. By increasing the order
of element we get more and more accurate results. This is,
however, not the case in the Lagrangian polynomial-based
formulation, where the divergence of higher order elements
is observed. We should point out that the scaling functions
and wavelet based formulations are stable for an arbitrary
order of curved element.

Table 3 Out-of-plane force on circular arch; free-end displacements
for three elements.

method j uZ ∆ϑX ∆ϑY

Lagrange 0 10.111561 0.9965658 0.6614902
Scaling 0 10.130604 0.9965658 0.6614902
Decomposition 0 10.158515 0.9969458 0.6618529
Lagrange 1 10.185741 0.9969458 0.6618529
Scaling 1 10.150307 0.9969458 0.6618529
Decomposition 1 10.138354 0.9969458 0.6618529
Lagrange 3 10.182086 0.9969458 0.6618529
Scaling 3 10.169346 0.9969458 0.6618529
Decomposition 3 10.159792 0.9969458 0.6618529
Lagrange 5 10.121157 0.9969458 0.6618529
Scaling 5 10.176226 0.9969458 0.6618529
Decomposition 5 10.158515 0.9969458 0.6618529
Lagrange 7 divergence 0.9969458 0.6618529
Scaling 7 10.1790165 0.996946 0.6618529
Decomposition 7 10.155965 0.9969458 0.6618529
Tabarrok et al. [16] 9.931903 0.9931903 0.6618526
analytical [16] 10.18290 0.996940 0.661850

6.3 Quarter-circular arch

X

Y R

Z

F
*

z

y

20

20

10

Fig. 7 Quarter-circular cantilever with non-symmetric cross-section.
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The horizontal force on circular cantilever arch with non-
symmetric cross-section results in spatial buckling of the
arch. In this example we consider a quarter-circular can-
tilever with radius R = 250 (Figure 7). The cross-section is
non-symmetric; its geometry is given in Figure 7. Material
moduli are E = 1000 and G = 375.93. The cantilever is sub-
jected to the horizontal force F = 1 at the free end, which
causes the out-of-plane deformation.

Table 4 Spatial buckling of quarter-circular cantilever under free-end
force; free-end displacements for three elements.

method j −uX −uY uZ

Lagrange 0 0.302290 0.213697 0.213779
Scaling 0 0.303025 0.214610 0.214882
Decomposition 0 0.303025 0.214610 0.214882
Lagrange 1 0.304560 0.216693 0.217553
Scaling 1 0.303741 0.215528 0.216029
Decomposition 1 0.313210 0.224808 0.225577
Lagrange 3 0.306940 0.219320 0.220400
Scaling 3 0.306360 0.218589 0.219513
Decomposition 3 0.325670 0.237892 0.238542
Lagrange 5 0.306845 0.221078 0.218052
Scaling 5 0.307203 0.219574 0.220635
Decomposition 5 0.326707 0.238933 0.239435
Lagrange 7 divergence divergence divergence
Scaling 7 0.307466 0.219884 0.220993
Decomposition 7 0.326523 0.238713 0.239161
50 elements 0.305300 0.217503 0.218430

Displacements at the free end are shown in Table 4. The
results for the mesh of three elements with various orders
and interpolation types are compared to the results, obtained
by the fine mesh of 50 polynomial cubic elements. The present
formulations gives accurate results for low and moderate or-
der elements with all types of interpolation. It should be
pointed out the divergence of high order Lagrangian inter-
polation based elements, while scaling and wavelet based
formulations show no lack of stability with order increase.

6.4 Helical beam

Our last example is the most demanding. The centroidal axis
of the beam is taken in the shape of a helix. The radius of
the helix is R = 5 and the height is H = 5 (Figure 8). Rota-
tions about the vertical axis linearly increase from zero at the
clamped point to 4π at the free end, thus the projection of
the axis to the plane describes two circles. The cross-section
and the material properties are the same as in example 6.2.
Unit concentrated force is applied in vertical direction at the
free end.

Results for three and five finite-element meshes are shown
in Tables 5 and 6. Numerical results are compared to the ref-
erence solution, obtained by the fine mesh of 50 polynomial

X

Y

Z

2R

H

ZF
*

Fig. 8 Helical beam.

Table 5 Free-end displacements of helical beam; three finite elements.

method j uX uY uZ

Lagrange 1 0.038808 -0.118707 -0.492068
Scaling 1 0.038254 -0.127251 -0.487350
Decomposition 1 0.026029 -0.130552 -0.508220
Lagrange 3 0.030029 -0.120985 -0.487657
Scaling 3 0.030662 -0.123197 -0.486891
Decomposition 3 0.010961 -0.151860 -0.478188
Lagrange 5 -44.098029 -2.287741 122.720285
Scaling 5 0.028863 -0.122439 -0.486349
Decomposition 5 0.011696 -0.155967 -0.474857
Lagrange 6 divergence divergence divergence
Scaling 6 0.028592 -0.122280 -0.486249
Decomposition 6 0.011931 -0.156415 -0.474735
50 elements 0.018127 -0.099119 -0.404918

Table 6 Free-end displacements of helical beam; five finite elements.

method j uX uY uZ

Lagrange 1 0.022301 -0.106337 -0.436749
Scaling 1 0.022912 -0.108579 -0.436284
Decomposition 1 0.014617 -0.107658 -0.432150
Lagrange 3 0.020038 -0.106751 -0.435908
Scaling 3 0.020432 -0.107457 -0.435862
Decomposition 3 0.007275 -0.114381 -0.429273
Lagrange 5 -23.155827 36.496730 131.118915
Scaling 5 0.019753 -0.107116 -0.435719
Decomposition 5 0.007208 -0.115860 -0.429716
Lagrange 6 divergence divergence divergence
Scaling 6 0.019633 -0.107034 -0.4356948
Decomposition 6 0.007311 -0.116050 -0.429844
50 elements 0.018127 -0.099119 -0.404918

three-point elements. For such a demanding initial geome-
try, the benefit of scaling and wavelet functions is obvious.
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Not only that the initial geometry cannot be adequately de-
scribed by Lagrangian interpolation, the numerical results
diverge for higher orders of interpolation. In contrast, scal-
ing functions and wavelets show good agreement with ref-
erence results of very fine mesh. Again we must point out
the stability of scaling and wavelet based formulations with
respect to order of interpolation.

7 Conclusion

We presented the wavelet based finite-element formulation
of the consistently linearized geometrically exact spatial beam,
in which the initial geometric shape of the axis and the twist
of the cross-sections are arbitrary. We have established that:

(i) The scaling functions and wavelet based decomposition
can be a suitable choice of shape functions in finite-
element formulations.

(ii) It is suitable to employ the explicit scaling functions and
wavelets with interpolatory properties.

(iii) Scaling functions and wavelet based formulations are
numerically stable for an arbitrary order of straight and
curved elements. They proved to be privileged for de-
manding initial geometry.

(iv) The stability of the numerical solution regarding the or-
der of interpolation indicates that such a formulation is
appropriate when the mesh refinement is needed.
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