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Abstract

This paper presents a detailed analysis of the influence of boundary conditions

and axial deformation on the critical buckling loads of the geometrically perfect

elastic two-layer composite columns with inter-layer slip between the layers. An

investigation is based on the extension of our preliminary analytical study of slip-

buckling behavior of two-layer composite columns. It is proved that the boundary

conditions of composite columns with interlayer slip are interrlated in longitudinal

and transverse directions. The parametric analysis reveals that the influence of

different longitudinal boundary conditions on critical buckling load is significant

and can be up to 20 %, while, on the other hand, the influence of axial deformation

is negligible.
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1 Introduction

In recent years, the applications of composite layered systems in automotive,

aerospace, mechanical, and structural engineering industries have increased

tremendously. The main advantages of composite systems over the conven-

tional structures are their high strength-to-weight and stiffness-to-weight ra-

tios. However, their mechanical behavior is considerably affected by the type

of the connection between the constituents. For instance, in some widely used

composite structures in civil engineering, such as nailed, glued or bolted lay-

ered wood systems, wood-concrete or steel-concrete systems, an absolutely

stiff connection between the layers can hardly be realized in practice. As a

result an interlayer slip between the layers develops, which can, if it has a

sufficient magnitude, significantly affect the mechanical behaviour of the com-

posite system.

Therefore, the inter-layer slip has to be taken into consideration in what is

called partial interaction analysis of composite structures. Several researches

have pursued the effect of partial composite action in the analysis of the above-

mentioned structures, and as a result, many published papers that take into

account the inter-layer slip analytically or numerically are available in the lit-

erature. No attempt is made to discuss it here, but the interested reader is

referred to, e.g., Adam et al. (1997), Dall’Asta and Zona (2004), Battini et al.

(2009), Čas et al. (2004a), Čas et al. (2004b), Čas et al. (2007), Chen et al.

(2007), Silva and Sousa (2009), Heuer and Adam (2000), Heuer (2004), Chal-

lamel (2009), Ranzi and Bradford (2007a), Ranzi and Zona (2007b), Ranzi

∗Corresponding author. Tel.: +386 1 47 68 615; Fax: +386 1 47 68 629

E-mail address: sschnabl@fgg.uni-lj.si (S. Schnabl)
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(2008), Schnabl et al. (2006), Schnabl et al. (2007a), Schnabl et al. (2007b),

and Xu and Wu (2007b).

Design of structures is often based on strength and stiffness considerations.

However, a structure may become unstable long before strength and stiff-

ness criteria are violated. Therefore, buckling is an important consideration

in structural design, especially when the structure is slender and lightweight.

Thus, it is of practical importance to obtain the analytical solutions for such

problems.

There are relatively few analytical investigations of slip-buckling problem of

composite columns with interlayer slip, and to date, only a few exact models

have been developed. Rassam and Goodman (1970) derived a simplified so-

lution of buckling behaviour of three layered wood columns with both equal

and unequal layer thicknesses. Another analytical solution of buckling problem

was derived by Girhammar and Gopu (1993). An extension and generaliza-

tion of the latter theory is presented in Girhammar and Pan (2007). Recent

papers by Xu and Wu (2007a), Xu and Wu (2007b), and Xu and Wu (2007c)

have presented an interesting approach to the solution of slip-buckling and vi-

bration problem of composite beam-columns when shear deformation is taken

into account. If shear deformation is neglected, the equations for buckling load

obtained by Xu and Wu (2007a), Xu and Wu (2007b), and Xu and Wu (2007c)

are the same as those presented by Girhammar and Pan (2007). The afore-

mentioned solutions are based on what is called ”second-order theory” and in

Girhammar and Pan (2007) also on approximate buckling length coefficients.

As it is well known, this theory neglects the influence of axial deformability

on the critical buckling loads. Very recently, Kryžanowski et al. (2009) have

proposed a slip-buckling analytical model in which the effect of axial deforma-
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bility on critical buckling forces is considered while, on the other hand, the

effect of shear deformation is neglected. The comparison of the critical forces

with those of Girhammar and Pan (2007) has shown a disagreement, which,

unfortunately has not been explained in detail because only a preliminary

parametric study was conducted at that time.

To complement the aforementioned studies, the main objective of the present

paper is to clarify the reasons for disagreement between the results of Kryžanowski

et al. (2009) and those of Girhammar and Pan (2007). For this purpose, equiva-

lently as in Kryžanowski et al. (2009), a linearized stability theory is employed

(Keller, 1970). Hence, critical buckling forces are determined from the solu-

tion of a linear eigenvalue problem, i.e., detK = 0; see, e.g. (Planinc and Saje,

1999).

In the numerical examples critical buckling loads are compared to those of

Girhammar and Pan (2007). Based on the derived results, the reasons for the

disagreement between the models are clarified. Afterwards, a parametric study

is conducted in order to illustrate how the critical buckling loads of geometri-

cally perfect two-layer composite columns are affected by axial deformability

and different arrangement of end supports. In particular, it is examined, how

these effects are influenced by the inter-layer slip modulus, K, and column

slenderness, λ.
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2 Problem formulation

Consider a geometrically perfect initially straight, planar, two-layer composite

column of undeformed length L. Layers, as shown in Fig. 1, are marked by

letters a and b. The column is placed in the (X, Z) plane of spatial Cartesian

coordinate system with coordinates (X, Y, Z) and unit base vectors EX , EY

and EZ = EX ×EY . The undeformed reference axis of the layered column is

common to both layers and is defined as an intersection of the (X, Z)-plane

and their contact plane. It is parametrized by the undeformed arc-length x.

Local coordinate system (x, y, z) is assumed to coincide initially with spa-

tial coordinates, and then it follows the deformation of the column. Thus,

xa ≡ xb ≡ x ≡ X, ya ≡ yb ≡ y ≡ Y , and za ≡ zb ≡ z ≡ Z in the undeformed

configuration. The two-layer composite column is loaded longitudinally at the

free end by an axial conservative compressive force, P , in such way that ho-

mogeneous stress-strain state of the column at its primary configuration is

achieved. For further details an interested reader is referred to, e.g., Schnabl

et al. (2007b) and Kryžanowski et al. (2009).

2.1 Kinematic equations

The deformed configurations of the reference axes of layers a and b are defined

by vector-valued functions (see Fig. 1)

Ra
0 = XaEX + Y aEY + ZaEZ = (xa + ua)EX + yaEY + waEZ ,

Rb
0 = XbEX + Y bEY + ZbEZ = (xb + ub)EX + ybEY + wbEZ ,

(1)

in which superscripts a and b indicate that quantities are related to layers

a and b, respectively. Functions ua and wa denote the components of the
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Figure 1. Undeformed and deformed configuration of the two-layer composite col-

umn and the generalized equilibrium internal forces and contact tractions expressed

with respect to the fixed global and rotated local coordinate system.

displacement vector of layer a at the reference axis with respect to the base

vectors EX and EZ . Similarly, functions ub and wb are related to layer b. The

geometrical components ua, wa, ub, and wb of the the vector-valued functions

Ra
0 and Rb

0 are related to the deformation variables by the following equations,

see, e.g. (Reissner, 1972):

layer a:

1 + ua′ − (1 + εa) cos ϕa = 0,

wa′ + (1 + εa) sin ϕa = 0,

ϕa′ − κa = 0,

(2)
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layer b:

1 + ub′ − (1 + εb) cos ϕb = 0,

wb′ + (1 + εb) sin ϕb = 0,

ϕb′ − κb = 0.

(3)

Here, the prime (′) denotes the derivative with respect to x. In Eqs. (2)–

(3), the deformation variables εa and εb are extensional strains; κa, and κb

are pseudocurvatures; while ϕa and ϕb are rotations of layers’ reference axes

(Vratanar and Saje, 1999).

2.2 Equilibrium equations

The composite column is subjected longitudinally to a conservative compres-

sive force P at the free end. In addition, each layer of the two-layer composite

column is subjected to interlayer contact tractions, measured per unit of layer’s

undeformed length, which are defined by

p a = pa
XEX + pa

ZEZ = (pa
t cos ϕa + pa

n sin ϕa)EX + (pa
n cos ϕa − pa

t cos ϕa)EZ ,

p b = pb
XEX + pb

ZEZ = (pb
t cos ϕb + pb

n sin ϕb)EX + (pb
n cos ϕb − pb

t cos ϕb)EZ ,

(4)

where pa
t , pb

t , pa
n, and pb

n are tangential and normal components of the interlayer

contact tractions, see Fig. 1. Hence, the equilibrium equations of an individual

layer are, see e.g. Reissner (1972) and Čas et al. (2007):

layer a:

Ra′
X + pa

X = Ra′
X + pa

t cos ϕa + pa
n sin ϕa = 0,

Ra′
Z + pa

Z = Ra′
Z − pa

t sin ϕa + pa
n cos ϕa = 0,

Ma′
Y − (1 + εa)Qa = 0,

(5)
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layer b:

Rb′
X + pb

X = Rb′
X + pb

t cos ϕb + pb
n sin ϕb = 0,

Rb′
Z + pb

Z = Rb′
Z − pb

t sin ϕb + pb
n cos ϕb = 0,

M b′
Y − (1 + εb)Qb = 0,

(6)

where

N a = Ra
X cos ϕa −Ra

Z sin ϕa,

Qa = Ra
X sin ϕa + Ra

Z cos ϕa,

Ma = Ma
Y ,

N b = Rb
X cos ϕb −Rb

Z sin ϕb,

Qb = Rb
X sin ϕb + Rb

Z cos ϕb,

Mb = M b
Y .

(7)

Ra
X , Ra

Z , Rb
X , Rb

Z , Ma
Y , and M b

Y in (5)–(7) represent the generalized equilibrium

internal forces of a cross-section of layers a and b, respectively, with respect to

the fixed coordinate basis. On the other hand, N a, Qa, Ma, N b, Qb and, Ma

represent the equilibrium axial and shear internal forces and bending moments

of the layers’ cross-sections with respect to the rotated local coordinate system.

2.3 Boundary conditions

Kinematic equations, Eqs. (2–3), and equilibrium equations, Eqs. (5)–(6), con-

stitute a system of 12 linear differential equations of the first order with con-

stant coefficients for 12 unknown functions: ua, ub, wa, wb, ϕa, ϕb, Ra
X , Rb

X ,

Ra
Z , Rb

Z , Ma
Y , and M b

Y . The associated natural and essential boundary condi-

tions are:
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x = 0 :

r0
1R

a
X(0)+r0

2u
a(0) = −r0

1P
a,

r0
3R

b
X(0)+r0

4u
b(0) = −r0

3P
b,

r0
5R

a
Z(0)+r0

6w
a(0) = 0,

r0
7R

b
Z(0)+r0

8w
b(0) = 0,

r0
9M

a
Y (0)+r0

10ϕ
a(0) = −r0

9

ha

2
P a,

r0
11M

b
Y (0)+r0

12ϕ
b(0) = r0

11

hb

2
P b,

(8)

x = L :

rL
1 Ra

X(L)+rL
2 ua(L) = −rL

1 P a,

rL
3 Rb

X(L)+rL
4 ub(L) = −rL

3 P b,

rL
5 Ra

Z(L)+rL
6 wa(L) = 0,

rL
7 Rb

Z(L)+rL
8 wb(L) = 0,

rL
9 Ma

Y (L)+rL
10 ϕa(L) = −rL

9

ha

2
P a,

rL
11M

b
Y (L)+rL

12 ϕb(L) = rL
11

hb

2
P b,

(9)

where ri ∈ {0, 1} are parameters that determine different combinations of

boundary conditions of the two-layer composite column, where the super-

scripts ”0” and ”L” of s identify its value at x = 0 and x = L, respectively.

Besides, P a and P b represents an axial force that corresponds to the layer a

and b, respectively.

2.4 Constitutive equations

To relate the equilibrium internal forces N a, Qb, N a, and Qb and equilibrium

internal moments Ma and Mb to a material model, the following set of equa-

tions which assure the balance of equilibrium and constitutive cross-sectional
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forces and bending moments of the composite column are introduced. Due to

the assumption that the transverse shear deformations are neglected, the well

known constitutive equations of linear elastic two-layer composite columns are

N a −N a
C(x, εa, κa) = N a − Ca

11 εa − Ca
12 κa = 0,

Ma −Ma
C(x, εa, κa) = Ma − Ca

21 εa − Ca
22 κa = 0,

N b −N b
C(x, εb, κb) = N b − Cb

11 εb − Cb
12 κb = 0,

Mb −Mb
C(x, εb, κb) = Mb − Cb

21 εb − Cb
22 κb = 0,

(10)

where, N a
C , Mb

C , N b
C , and Mb

C are constitutive cross-sectional forces depen-

dent only on deformation variables εa, κa, εb, and κb. Material and geometric

constants are marked by Ca
11, Ca

12, . . ., Cb
22; e.g., Ca

11 = EaAa, where Aa and Ea

denote the cross-sectional area and the elastic modulus of layer a, respectively;

Ca
12 = EaSa and Ca

22 = EaIa, where Sa and Ia denote the static moment and

moment of inertia of layer a with respect to the reference axis of the compos-

ite column, respectively; and so forth, see e.g. Kryžanowski et al. (2008) and

Kryžanowski et al. (2009).

Furthermore, a constitutive law of the interlayer contact still has to be in-

troduced. Herein, a linear constitutive law of bond slip between the layers is

employed:

pa
t = K∆, (11)

in which K denotes a slip modulus at the interlayer surface and ∆ denotes an

interlayer slip.
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2.5 Constraining equations

In the two-layer composite column layer b is constrained to follow the defor-

mation of layer a and vice versa. Since the layers can slip along each other but

their transverse separation (uplift) or penetration is not allowed, the afore-

mentioned fact can be expressed by a kinematic-constraint requirement as

follows

Rb
0(T

b) = Ra
0(Q

a), (12)

or, written differently

Rb
0(x) = Ra

0(x
∗), (13)

where x and x∗ are coordinates of two distinct particles T b and Qa of layers b

and a in the undeformed configuration which are in the deformed configuration

in contact, see Fig. 1. Eqs. (12)–(13), when written in a componential form

read

x + ub(x) = x∗ + ua(x∗),

wb(x) = wa(x∗).

(14)

As a result of (14), a direct relation between the differentials of material co-

ordinates x and x∗ is easily defined as

dx∗

dx
=

(
1 + εb(x)

)
cos ϕb(x)(

1 + εa(x∗)
)

cos ϕb(x∗)
. (15)

Using (15), and taking into account the fact that the rotations of layers are

identical (see, Kryžanowski et al. (2009))

ϕa(x∗) = ϕb(x), (16)

it can be shown that the layers’ pseudocurvatures are constrained to each
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other by

κa(x∗)
1 + εb(x)

1 + εa(x∗)
= κb(x). (17)

The slip that occurs between layers a and b is denoted by ∆, (Čas et al.,

2004a)

∆′(x) = εa(x)− εb(x). (18)

Besides the above presented kinematic-constraint requirement (12), a stress-

constraint requirement is determined from the third Newton’s law, which en-

sures an equilibrium of the interlayer contact tractions of the particles in

contact. This requirement is expressed in the vector-valued function form as

p a(x) + p b(x) = 0, (19)

and, by substituting (4) into (19), in componential form as

pa
X + pb

X = pa
t cos ϕa + pa

n sin ϕa + pb
t cos ϕb + pb

n sin ϕb = 0,

pa
Z + pb

Z = −pa
t sin ϕa + pa

n cos ϕa − pb
t sin ϕb + pb

n cos ϕb = 0.

(20)

Therefore, Eqs. (2)–(3), (5)–(11), (14), (18), and (19)–(20) compose a complete

set of non-linear governing equations of a two-layer composite column, which

consists of 32 equations for 32 unknown functions: ua, ub, wa, wb, ϕa, ϕb, εa, εb, κa,

κb, Ra
X , Rb

X , Ra
Z , Rb

Z , Ma
Y , M b

Y ,N a,N b,Qa,Qb,Ma,Mb, pa
X , pb

X , pa
Z , pb

Z , pa
t , p

b
t , p

a
n,

pb
n, ∆, and, x∗.
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3 Buckling analysis

3.1 Linearized stability equations

The linearized stability equations for the determination of the critical load of

composite columns, at the bifurcation point, can be derived by the application

of the linearized theory of stability or linear theory of stability. It is based

on the ascertainment that the critical bifurcation points of the non-linear

system coincide with the critical points of the corresponding linearized system

(Keller, 1970). The application of the linearized stability theory, regarding the

existence and uniqueness of the solution of Reissner’s elastica, is given by Flajs

et al. (2003).

The abovementioned linearized theory of stability is founded upon the varia-

tion of a functional F , here made in the sense of the continuous linear Gateaux

operator or directional derivative, defined as follows (Hartmann, 1985)

δF(x, δx) = lim
α→0

F(x + αδx)−F(x)

α
=

d

dα


α=0

F(x + αδx), (21)

where x and δx represent the generalized displacement field and its increment,

respectively, and α is an arbitrary small scalar parameter. Accordingly, it

is convenient for Eqs. (2)–(3), (5)–(11), (14), (18), and (19)–(20) to be re-

written in compact form as F = {F1,F1, . . . ,F32}T , and their arguments as

x = {ua, ub, wa, wb, . . . , pa
n, pb

n, ∆, x∗}T .

In order to apply linearized equations to the two-layer composite column buck-

ling problem, these equations have to be evaluated at the primary configura-

tion of the column, which is an arbitrary deformed configuration in which the
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composite column remains straight. The primary configuration is then defined

as follows

εa = εb = − 1

Ca
11 + Cb

11

P,

κa = κb = 0,

ua = ub = ua(0)− x

Ca
11 + Cb

11

P

wa = wb = 0,

ϕa = ϕb = 0,

x∗ = x,

∆ = 0,

Ra
X = N a = − Ca

11

Ca
11 + Cb

11

P,

Rb
X = N b = − Cb

11

Ca
11 + Cb

11

P

Ra
Z = Qa = 0,

Rb
Z = Qb = 0,

Ma
Y = Ma = − Ca

21

Ca
11 + Cb

11

P,

M b
Y = Mb = − Cb

21

Ca
11 + Cb

11

P,

pa
X = pa

t = 0,

pb
X = pb

t = 0,

pa
Z = pa

n = 0,

pb
Z = pb

n = 0.

(22)

As a result of linearization of Eqs. (2)–(3), (5)–(11), (14), (18), and (19)–(20),

the linearized uncoupled equations of the two-layer composite column, when

written at the primary configuration (22), are:
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δF1 = δua′ − δεa = 0,

δF2 = δub′ − δεb = 0,

δF3 = δw′ + (1 + ε)δϕ = 0,

δF4 = δϕ′ − δκ = 0,

δF5 = δRa′
X − δpt = 0,

δF6 = δRb′
X + δpt = 0,

δF7 = δR′
Z = 0,

δF8 = δM ′
Y + RXδw′ − (1 + ε)δRZ = 0,

δF9 = δRa
X − Ca

11δε
a − Ca

12δκ = 0,

δF10 = δRb
X − Cb

11δε
b − Cb

12δκ = 0,

δF11 = δMY − Ca
21δε

a − Cb
21δε

b − (Ca
22 + Cb

22)δκ = 0,

δF12 = δ∆− δua + δub = 0,

δF13 = δpt −Kδ∆ = 0,

δF14 = δx∗ + δua − δub = 0,

(23)

where

ε = − P

Ca
11 + Cb

11

,

δw = δwa = δwb,

δϕ = δϕa = δϕb,

δκ = δκa = δκb,

RX = −P,

δRZ = δRa
Z + δRb

Z ,

δMY = δMa
Y + δM b

Y ,

δpt = δpa
t = −δpb

t .

(24)

15



Eqs. (23) constitute a system of 14 linear algebraic-differential equations of

the first order with constant coefficients for 14 unknown functions: δua, δub,

δw, δϕ, δεa, δεb, δκ, δRa
X , δRb

X , δRZ , δMY , δpt, δ∆, and δx∗ along with

the corresponding natural and essential boundary conditions written in the

following general form as, see e.g. Kryžanowski et al. (2009):

x = 0 :

s0
1δR

a
X(0)+s0

2δu
a(0) = 0,

s0
3δR

b
X(0)+s0

4δu
b(0) = 0,

s0
5δRZ(0)+s0

6δw(0) = 0,

s0
7δMY (0)+s0

8δϕ(0) = 0,

(25)

x = L :

sL
1 δRa

X(L)+sL
2 δua(L) = 0,

sL
3 δRb

X(L)+sL
4 δub(L) = 0,

sL
5 δRZ(L)+sL

6 δw(L) = 0,

sL
7 δMY (L)+sL

8 δϕ(L) = 0,

(26)

where si ∈ {0, 1} are parameters that determine different combinations of

boundary conditions of the two-layer composite column. The superscripts ”0”

and ”L” of s identify its value at x = 0 and x = L, respectively. If the

linearized boundary conditions (25)–(26) are accordant with the boundary

conditions (8)–(9), they are called present boundary conditions, otherwise,

Girhammar boundary conditions. Since some critical buckling loads of the

composite columns have been calculated from the Girhammar boundary con-

ditions, see e.g. Girhammar and Gopu (1993), Girhammar and Pan (2007), Xu

and Wu (2007a) and, Xu and Wu (2007c), to the authors’ opinion, the latter

division of boundary conditions seems very reasonable in case of composite

columns. On the other hand, in case of solid columns, the abovementioned
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division of the boundary conditions becomes dispensable.

3.2 Analytical solution for critical buckling load

Eqs. (23) and boundary conditions (25)–(26) are linear, and hence, a critical

buckling load can be calculated analytically. With the systematic elimination

of the primary unknowns and some regrouping the system of linearized equa-

tions (23) can be reduced to a set of three higher-order linear homogeneous

ordinary differential equations with constant coefficients for δw, δua, and δ∆

as

A δwIV + B δw′′ + C δ∆′ = 0,

D δua′′ + E δw′′′ −K δ∆ = 0,

F δua′′ + G δw′′′ − F δ∆′′ + K δ∆ = 0,

(27)

where

A = − 1

1 + ε

(
C22 −

Ca
12C

a
21

Ca
11

− Cb
12C

b
21

Cb
11

)
,

B = RX ,

C = K

(
Ca

21

Ca
11

− Cb
21

Cb
11

)
,

D = Ca
11,

E = − Ca
12

1 + ε
,

F = Cb
11,

G = − Cb
12

1 + ε
, and

δ∆ = δua − δub.

(28)

Moreover, Eqs. (27) may be replaced by three uncoupled homogeneous linear
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differential equations with constant coefficients for unknowns δw, δ∆, and δua

H δwV I + I δwIV + J δw′′ = 0, (29a)

A δwIV + B δw′′ + C δ∆′ = 0, (29b)

D δua′′ + E δw′′′ −K δ∆ = 0, (29c)

where H, I and J are constants defined from

H =
A D F

C
,

I =
B D F − C E F + A C G− A(D + F )K

C
,

J = −B(D + F )K

C
.

(30)

The solution of (27) or (29a)–(29c) consists of nine integration constants.

Consequently, due to the fact that there exist only eight basic boundary con-

ditions, an additional boundary condition to the Eqs. (29a)–(29c) is required.

For instance, it is obtained from the last equation of (29c). Thus,

F δua′′(0) + G δw′′′(0)− F δ∆′′(0) + K δ∆(0) = 0. (31)

From (31), it is evident, that the boundary conditions in the longitudinal and

transverse direction are interrelated.

The general solution of (29a) is then obtained simply by solving a correspond-

ing characteristic polynomial, which is derived if δw in (29a) is replaced by

erx. Division of the derived equation by erx gives (see e.g. Coddington and

Levinson (1955))

H r6 + I r4 + J r2 = 0. (32)

The solution of (32) is investigated parametrically for different geometric and

material parameters and as a result four real (λ1,2 = 0, λ3 and λ4) and two

complex roots (λ6 = β i, λ7 = −β i) are obtained. According to the superpo-
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sition principle, the general solution to (29a) is therefore

δw(x) = C1 + C2 x + C3 eλ3x + C4 eλ4x + C5 cos βx + C6 sin βx. (33)

By substituting (33) into (29b), and by integrating, one can obtain a solution

for δ∆

δ∆(x) = C2R + C3 λ3

(
Sλ2

3 + R
)
exλ3 + C4 λ4

(
Sλ2

4 + R
)
exλ4+

+C5 β
(
Sβ2 −R

)
sin βx + C6 β

(
R− Sβ2

)
cos βx + C7.

(34)

Similarly, when δw and δ∆ are known functions, δua is simply determined by

the integration of the equation of (29c)

δua(x) = C2
N

2
x2 + C3

(N − Pλ2
3) exλ3

λ3

+ C4
(N − Pλ2

4) exλ4

λ4

+

+ C5
(Pβ2 + N) sin βx

β
− C6

(Pβ2 + N) cos βx

β
+ C7

K

2D
x2 + C8 x + C9,

(35)

where

M = −KR

D
, N = −KP

D
, O = −E

D
,

P =
E −KP

C
, R = −B

C
, S = −A

C
.

(36)

When δw, δua, and δ∆ are known functions of x, the remaining quantities

of the two-layer column δub, δϕ, δRa
X , δRb

X , δRZ , δMY , and δx∗ and thus the

general solution of the system of Eqs. (23) can easily be obtained. In order to

properly consider the boundary conditions (25)–(26), it is suitable to express

δϕ, δRa
X , δRb

X , δRZ , δMY with (33)–(35) and their derivatives. Finally, the un-

known integration constants C1, C2, C3, C4, C5, C6, C7, C8, and C9 are determined

from the boundary conditions (25)–(26) and (31). As a result, a system of

nine homogeneous linear algebraic equations for nine unknown constants is
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obtained, which, expressed in a matrix form, reads

Kc = 0, (37)

where K and c denote a tangent matrix and a vector of unknown constants,

respectively. For a non-trivial solution of (37), the determinant of the matrix

should vanish, see e.g. Planinc and Saje (1999)

detK = 0. (38)

The condition (38) represents a linear eigenvalue problem and its solution, i.e.

the lowest eigenvalue corresponds to the smallest critical buckling load, Pcr,

of the column. The explicit form of the matrix K and the analytical solution

for the lowest buckling load, Pcr, can easily be determined, but they are un-

fortunately too cumbersome to be presented as closed-form expressions. For

further details on the determination of critical points and their classification

an interested reader is referred to Planinc and Saje (1999).

4 Parametric study and discussion

The analytical results, for critical buckling loads of geometrically perfect two-

layer composite columns with interlayer slip, obtained herein with exact linear

eigenvalue problem will be compared with existing buckling loads obtained by

other investigators, e.g. Girhammar and Gopu (1993), Girhammar and Pan

(2007), Xu and Wu (2007a) and, Xu and Wu (2007c). Thus, an influence of

different boundary conditions and axial deformation on critical buckling load

of two-layer composite columns will be investigated. Furthermore, a paramet-

ric analysis will also be conducted, by which a combined influence of axial
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deformation and position of supports on buckling forces of composite columns

with different types of boundary conditions will be analyzed in detail.

4.1 Influence of different boundary conditions and axial deformation on buck-

ling load of a two-layer composite column

With the intention of comparing the critical buckling loads of the present

analytical model to the above-mentioned buckling models, a timber-concrete

composite column is employed. This column has also been studied by other

researchers, see, e.g. Adam et al. (1997), Battini et al. (2009), Girhammar and

Pan (2007) and, Xu and Wu (2007a).

Consecutively, the geometrical and mechanical properties of the timber-concrete

composite column are presented in Fig. 2.

Figure 2. Geometrical and mechanical properties of timber-concrete column.

The critical buckling loads of timber-concrete columns with different types of

boundary conditions were evaluated. Four sets of boundary conditions were

considered of practical importance for columns with nonmovable supports:

clamped-free column (C-F), clamped-clamped column (C-C), clamped-pinned

column (C-P) and pinned-pinned column (P-P). In accordance to the bound-
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ary conditions (25)–(26), the classical boundary conditions of the two-layer

Euler columns and the corresponding non-zero values of parameters si and

effective length coefficient, βE, are summarized in Table 1.

The critical buckling loads calculated by the proposed analytical model, which

incorporates the axial shortening effect on critical buckling loads, were com-

pared to those obtained with the ”second-order theory” and Girhammar bound-

ary conditions in which the effect of axial shortening on critical loads is ne-

glected, see, Girhammar and Gopu (1993), Girhammar and Pan (2007), Xu

and Wu (2007a) and, Xu and Wu (2007c).

Therefore, critical buckling loads were computed as a function of interlayer

stiffness, K, and compared with the results of Girhammar and Pan (2007), for

two different sets of boundary conditions; for boundary conditions proposed

herein, see Table 1, and for those proposed by Girhammar and Pan (2007) and

stated in Table 2. In order to distinguish between these boundary conditions,

an asterisk ∗ symbol is attached to the Girhammar boundary conditions in

Table 2 that differ compared to those in Table 1.

Table 3 compares the critical buckling loads of Girhammar and Pan (2007),

calculated for two different sets of boundary conditions, with the proposed

exact critical buckling loads herein, for a two-layer pinned-pinned composite

column and various values of K. Interestingly, it can be seen that the solution

of Girhammar and Pan (2007) is in complete agreement with the present

results if in the present analysis the Girhammar boundary conditions given

in Table 2 are employed and if axial shortening is neglected. On the other

hand, the solution of Girhammar and Pan (2007) for boundary conditions

given in Table 2 differs compared to the exact results. The discrepancy is the
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Table 1

Present two-layer column boundary conditions, effective length coefficients βE and

buckled shapes of Euler columns.

Classical cases C-F C-C C-P P-P

s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0

4 = 1
Non-zero values s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
7 = 1

si sL
1 = sL

3 = 1 sL
1 = sL

3 = 1 sL
1 = sL

3 = 1 sL
1 = sL

3 = 1
sL
5 = sL

7 = 1 sL
6 = sL

8 = 1 sL
6 = sL

7 = 1 sL
6 = sL

7 = 1

Effective length βE = 2 βE = 0.5 βE = 0.699 . . . βE = 1
coefficient

Buckled shape

C =clamped (fixed); F= free; P= pinned

largest for values of inter-layer slip modulus, K, which usually exists in actual

practice. Note also that in the limiting case when there is absolutely stiff

connection (∆ = 0; K →∞) or there exists no connection between the layers

(∆ = ∆max 6= 0; K → 0), the solutions where the influence of axial shortening

on buckling loads is neglected agree completely. This is due to the fact, that

in the limiting case, the boundary conditions of the composite columns in

longitudinal and transverse directions become mutually independent and are

the same as for solid columns. From the results, it can also be proved that

the critical buckling loads increase with the inclusion of axial deformability,
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Table 2

Two-layer column boundary conditions and effective length coefficients βE proposed

by Girhammar and Pan (2007). In fact, these are our boundary conditions that gave

the same solution as in Girhammar and Pan (2007). The boundary conditions that

are different compared to the present boundary conditions are written as bold-faced

type and marked by an asterisk ∗ symbol.

Classical cases C-F C-C∗ C-P P-P∗

s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0∗

3 = 1
Non-zero values s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
7 = 1

si sL
1 = sL

3 = 1 sL∗
2 = sL∗

4 = 1 sL
1 = sL

3 = 1 sL
1 = sL

3 = 1
sL
5 = sL

7 = 1 sL
6 = sL

8 = 1 sL
6 = sL

7 = 1 sL
6 = sL

7 = 1

Effective length βE = 2 βE = 0.5 βE = 0.699 . . . βE = 1
coefficient

C =clamped (fixed); F= free; P= pinned

as expected.

In the sequel, an influence of boundary conditions in axial deformation on the

critical buckling loads of composite columns will be studied for other types of

boundary conditions presented in Table 1 and 2.

The effect of axial deformability may be analyzed by defining a relative error

which was here defined as

εr[%] =
Pcr(εcr 6= 0)− Pcr(εcr = 0)

Pcr(εcr 6= 0)
× 100, (39)

where Pcr(εcr 6= 0) and Pcr(εcr = 0) represent critical forces obtained by the

proposed analytical procedure where axial deformability is and is not taken
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Table 3

Comparison of the proposed critical buckling loads of P-P two-layer composite col-

umn with those of Girhammar and Pan (2007) for different boundary conditions

and various Ks.

Pcr[kN]

Girhammar &Pan present present present

K [kN/cm2] (2007)♣ εcr = 0 ♣♣ εcr = 0 εcr =
−Pcr

Ca
11 + Cb

11

10−10 92.5275413 92.5275413 92.5275413 92.5632411

10−5 92.5285413 92.5305413 92.5305412 92.5662433

10−3 92.6275052 92.6275052 92.8268019 92.8627331

10−2 93.5239516 93.5239516 95.4553844 95.4933802

10−1 102.1798151 102.1798151 116.7264005 116.7832269

1 166.0432717 166.0432717 197.0811991 197.2433030

101 309.7993001 309.7993001 317.4300916 317.8510469

102 362.6130603 362.6130603 362.9967378 363.5474325

103 369.3417768 369.3417768 369.3546149 369.9247997

105 370.1024600 370.1024600 370.1024730 370.6749727

1010 370.1101649 370.1101649 370.1101649 370.6826885

♣ Girhammar and Pan (2007) solution for Girhammar boundary conditions given in Table 2

♣♣ present solution for Girhammar boundary conditions given in Table 2

into account, respectively. Thus, Fig. 3 presents the variation of εr for various

column end conditions (see Table 1) and various values of K. The results

show that axial deformability of columns increases the buckling load. The

effect of axial deformability on critical buckling loads increases with respect

to increasing values of K. The increase is more pronounced for C-C and C-P

columns when compared to the columns with other boundary conditions. For
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Figure 3. The effect of axial deformability on critical buckling loads of geometrically

perfect two-layer composite column for various column end conditions and different

Ks; where K[kN/m2].

example, for practical value of K = 10 kN/cm2 (log K = 1), εr[C-C]= 0.335;

εr[C-P]= 0.226; εr[P-P]= 0.132; εr[C-F]= 0.037; while, in the limiting case,

when there is an absolutely stiff connection (∆ = 0; K →∞), εr[C-C]= 0.621;

εr[C-P]= 0.317; εr[P-P]= 0.155; εr[C-F]= 0.039. Evidently, the effect of axial

deformability on critical buckling loads is in this case negligible.

Similarly, the effect of column boundary conditions on critical buckling loads

may be analyzed by defining a relative error which was here defined as

εr[%] =
Pcr(εcr = 0)− PG

cr

Pcr(εcr = 0)
× 100, (40)

in which PG
cr denotes a critical force of Girhammar and Pan (2007) obtained

by column boundary conditions given in Table 2.

It is interesting to note that the discrepancy between the exact buckling loads

and buckling loads of Girhammar and Pan (2007) obtained by the second-

order theory is interlayer-slip modulus dependent and is present only in P-P
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Figure 4. The effect of column end conditions on critical buckling loads of geometri-

cally perfect two-layer composite column for various values of K; where K[kN/m2].

and C-C column case as expected. Of the values shown in Fig. 4, the maximum

discrepancy is for the P-P column and is about 18.65%. On the other hand,

critical force PG
cr is in C-C column case as much as approximately 14.88%

higher than the exact ones. Apparently, in this case, the buckling load cal-

culated by Girhammar and Pan (2007) is rather conservative. It is clear that

different end conditions have a considerable influence on critical buckling loads

of two-layer composite columns, especially for practical values of K.

4.2 Parametric study of the combined affect of axial deformability and po-

sition of end supports on critical buckling loads of two-layer composite

column

This section presents a parametric study that was conducted in order to il-

lustrate how the critical buckling loads of two-layer composite columns are

affected by axial deformability and different arrangement of end supports. In

particular, it was examined how these effects are influenced by the inter-layer
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slip modulus, K, and column slenderness, λ.

Figure 5. Different arrangements of column end supports.

For this purpose critical buckling loads of two-layer composite column (see

Fig. 2) were calculated for different arrangement of column end supports (see

Fig. 5), different values of parameters K and different boundary conditions.

Of the four boundary conditions studied, the results are different only for P-P

column case. The results are plotted in Figs. 6 and 7.

Fig. 6 shows the variation of the buckling load, Pcr, with respect to interlayer

modulus, K, for two different arrangements of P-P column end supports, i.e.

BC I and BC II, respectively. Obviously, the effect of the position of end

supports becomes considerably important with increasing values of K. For the

limiting case, where there is an absolutely stiff connection (∆ = 0; K →∞),

PBC II
cr is as much as two times larger than PBC I

cr .

Similarly, Fig. 7 shows the variation of the effect of axial deformability of

the two-layer composite column on its critical buckling forces. This effect is

represented with εr defined by Eq. (39).
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Figure 6. Critical buckling load, Pcr, for different Ks, and different arrangements of

P-P column end supports; where K[kN/m2].

Figure 7. The effect of axial shortening on Pcr for different Ks, and different ar-

rangements of P-P column end supports; where K[kN/m2].

From the results, the form of variation of the effect of axial shortening is

identical with the one presented in Fig. 7. Consequently, the effect of axial

deformability on buckling loads (on the increase of buckling load) is more

significant in the BC II case. Nevertheless, in both cases, the effect of axial

deformability is negligible and can be neglected.
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Additionally, the effect of axial deformability on the critical buckling load, Pcr,

of the geometrically perfect two-layer composite columns with partial inter-

layer connection between the layers were analyzed for various inter-layer slip

moduli K and for different column slenderness λ which is defined as

λ =
βEL

√
Aa + Ab

√
Ia + Ib

, (41)

where βE represents the effective length coefficient of Euler columns with stiff

connection between the layers. Effective length coefficients, βE, are given in

Table 1 for different types of end conditions along with schematic illustra-

tions of the buckling modes. Variation in column slenderness was achieved by

considering a range of column lengths.

The results show that allowance for axial deformability increases the critical

buckling loads when the columns are short or stocky (i.e. for large values of

column slenderness, λ) and for higher values of the inter-layer slip modulus,

K, in all cases of boundary conditions. From Fig. 8, it can be observed, that

Figure 8. The effect of axial deformability on Pcr for different column slenderness,

λ, and various Ks for the C-C column case; where K[kN/m2].
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the effect of axial deformability in the C-C column case becomes important

with decreasing values of λ (for λ ≤ 20), raising the critical load when λ = 10

by up to 10.84 % for K = 100000 kN/cm2 and, by contrast, up to 2.53 % for

K = 0.00001 kN/cm2. However, the curves for the different interlayer modulus,

K, with column slenderness, λ, higher than 50 coincide as the effect due to

axial deformability is almost negligible when the columns are very slender.

5 Conclusions

This paper presents a detailed analysis of the influence of different boundary

conditions and axial deformation on the critical buckling loads of the geomet-

rically perfect two-layer composite columns with inter-layer slip between the

layers. Based on the theoretical and numerical results the following important

conclusions can be drawn:

(1) It was shown, that for composite columns with interlayer slip, the bound-

ary conditions in the longitudinal and transverse directions are interre-

lated. Namely, that is different than in the solid column case, where the

boundary conditions in both directions are unrelated.

(2) A significant discrepancy between the critical buckling loads obtained by

different longitudinal boundary conditions were obtained. A difference

can be up to 20 % for the P-P column and 14 % in the C-C column

case. Besides, this discrepancy is proved to be interlayer-slip modulus

and boundary conditions dependent.

(3) As anticipated, the effect of axial deformability on the buckling load of

composite columns is significant for short or stocky columns. The al-

lowance for axial deformability increases the critical buckling of these
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columns. This is especially true for higher values of interlayer-slip mod-

ulus. On the other hand, the effect of axial deformability is almost neg-

ligible when the columns are very slender.

(4) The position of the column supports proved to have an important influ-

ence on critical buckling loads.
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