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The effect of transverse shear deformation on

the buckling of two-layer composite columns

with interlayer slip

S. Schnabl∗ and I. Planinc

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,

SI-1115 Ljubljana, Slovenia

Abstract

This paper presents an efficient mathematical model for studying the buckling be-

havior of geometrically perfect elastic two-layer composite columns with interlayer

slip between the layers. The present analytical model is based on the linearized

stability theory and is capable of predicting exact critical buckling loads. Based on

the parametric analysis, the critical buckling loads are compared to those in the

literature. It is shown that the discrepancy between the different methods can be

up to approximately 22 %. In addition, a combined and an individual effect of pre-

buckling shortening and transverse shear deformation on the critical buckling loads

is studied in detail. A comprehensive parametric analysis reveals that generally the

effect of pre-buckling shortening can be neglected, while, on the other hand, the

effect of transverse shear deformation can be significant. This effect can be up to

20 % for timber composite columns, 40 % for composite columns very flexible in

shear (pyrolytic graphite), while for metal composite columns it is insignificant.

Keywords: A. Layered structures; B. Interfacial strength; B. Non-linear

behaviour; C. Buckling; Interlayer slip
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1 Introduction

Engineering structural components made of composite materials are becom-

ing increasingly important in many engineering applications, especially in

aerospace, automobile, marine, and civil engineering industry. The driving

force behind these applications is a wide range of potential advantages over the

conventional structures, such as high strength-to-weight ratio, high stiffness-

to-weight ratio, resistance to corrosion, low coefficient of thermal expansion,

ability to operate over a wide range of temperatures and their capability for

being formed according to a given requirement. In spite of their many attrac-

tive qualities, composite structures do, however, often suffer from incomplete

interaction between the constituent components. As a result, interlayer slip

between the components develops, which can, if it has a sufficient magnitude,

significantly affect the mechanical behaviour of the composite system.

Consequently, interlayer slip has to be taken into consideration in what is

called partial interaction analysis of composite structures. A considerable

amount of research has been conducted on this very interesting topic. There-

fore, a large number of references exist in the literature which consider inter-

layer slip either analytically or numerically, e.g. [1–23].

Design of structures is often based on strength and stiffness considerations.

However, the abovementioned composite structures are frequently rather slen-

der and may become unstable long before strength and stiffness criteria are

violated. Therefore, stability criterion is very important in structural design,
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especially when the structure is slender and lightweight. On the other hand,

much less literature is available on buckling analysis of composite columns

with interlayer slip between the layers, e.g. [6, 11, 22, 24–29]. In all these

studies shear deformation effect on critical buckling loads is ignored. In fact,

increasingly important composite columns are generally quite shear sensitive

because of their low shear modulus to Young’s modulus ratio. In this case, the

effect of transverse shear deformation can be significant and should be taken

into account. While the buckling analysis of solid columns with finite shear

stiffness has a long history in engineering science [30–42], only a few papers

have dealt with this subject in case of composite columns with interlayer slip

between the layers [43–45]. Recent paper by Xu and Wu [43] has presented a

unique approach of slip-buckling and vibration problem of composite beam-

columns when shear deformation is taken into account. Their formulation is

based on what is called second order theory and Engesser’s type of buckling

approach [41]. Additionally, their formulation is based also on the assumptions

of negligible effect of pre-buckling shortening on critical buckling loads and

considers the average shear and bending deformation of the cross-section. On

the other hand, Krawczyk with co-workers [44, 45] has analyzed this problem

numerically with finite element method based on a slightly different buckling

theory compared to Xu and Wu [43].

To complement the aforementioned studies, the main objective of the present

paper is to derive an analytical model for slip-buckling problem of composite

columns with interlayer slip between the layers where different pre-buckling

shortening and transverse shear deformation of each layer are taken into ac-

count. For this purpose, in the present formulation each layer is modeled by

Reissner’s large-displacement finite-strain shear-deformable beam theory [47].
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In addition, a linearized stability theory is employed [48] by which critical

buckling forces of the composite columns with interlayer slip are determined

from the solution of a linear eigenvalue problem [49].

In the numerical examples, a comparison between the different approaches

is made, followed by a detailed parametric study by which combined and

individual effects of pre-buckling shortening and transverse shear deformation

on critical buckling load are examined for a wide range of possible material and

geometric parameters, such as flexural-to-shear ratios (E/G), interlayer slip

modulus (K), column slenderness ratios (λ) and different boundary conditions.

Finally, an analytical benchmark solution to the problem of column buckling

with interlayer slip considering pre-buckling shortening and transverse shear

effects is given. This solution will serve as a tool for the verification of numer-

ical results obtained by different numerical methods.

2 Governing equations for two-layer composite column

Considered here is a geometrically perfect initially straight, planar, two-layer

composite column of undeformed length L. Layers, as shown in Fig. 1, are

marked by letters a and b. The column is placed in the (X, Z) plane of spatial

Cartesian coordinate system with coordinates (X, Y, Z) and unit base vectors

EX , EY and EZ = EX × EY . The initial undeformed reference axis of the

layered column is common to both layers. It is parametrized by the unde-

formed arc-length x. Material particles of each layer are identified by material

coordinates (x, y, z) in local coordinate system which are assumed to coincide

initially with spatial coordinates, and then they follow the deformation of the
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column. Thus, xa ≡ xb ≡ x ≡ X, ya ≡ yb ≡ y ≡ Y , and za ≡ zb ≡ z ≡ Z

in the initial undeformed configuration. The two-layer composite column is

loaded longitudinally at the free end by an axial conservative compressive

force, P , in such a way that homogeneous stress-strain state of the column in

its primary configuration is achieved. For further details an interested reader

is referred to, e.g. [22, 29].

Figure 1. Two-layer composite column. Initial undeformed and current deformed

configurations. Generalized equilibrium internal forces and contact tractions. Coor-

dinate systems and their base vectors.
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2.1 Kinematic equations

The deformed configurations of the reference axes of layers a and b are defined

by vector-valued functions (see Fig. 1)

Ra
0 = XaEX + Y aEY + ZaEZ = (x + ua)EX + yEY + waEZ ,

Rb
0 = XbEX + Y bEY + ZbEZ = (x + ub)EX + yEY + wbEZ ,

(1)

in which superscripts a and b indicate that quantities are related to layers

a and b, respectively. Functions ua and wa denote the components of the

displacement vector of layer a at the reference axis with respect to the base

vectors EX and EZ . Similarly, functions ub and wb are related to layer b. The

geometrical components ua, wa, ub, and wb of the the vector-valued functions

Ra
0 and Rb

0 are related to the deformation variables by the following kinematic

equations of Reissner’s large-displacement finite-strain shear-deformable beam

theory, see [47]:

layer a:

1 + ua′ − (1 + εa) cos ϕa − γa sin ϕa = 0

wa′ + (1 + εa) sin ϕa − γa cos ϕa = 0

ϕa′ − κa = 0

(2)

layer b:

1 + ub ′ − (1 + εb) cos ϕb − γb sin ϕb = 0

wb ′ + (1 + εb) sin ϕb − γb cos ϕb = 0

ϕb ′ − κb = 0.

(3)

Here, the prime (′) is used to indicate differentiation with respect to the axial

coordinate x. In Eqs. (2)–(3), the deformation variables εa and εb are the axial

strains; κa and κb are the pseudocurvatures; ϕa and ϕb are the rotations of

layers’ cross-sections; while γa and γb are the shear strains [46].
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In addition to Eqs. (2)–(3), Reissner [47] proved that the extensional strains

εa and εb and shear strains γa and γb, are related respectively to the corre-

sponding layer’s specific axial elongations ea and eb of the reference axis and

shearing angles χa = ϕa − θa and χb = ϕb − θb by means of the following

kinematic relations:

εa = (1 + ea) cos χa − 1, γa = (1 + ea) sin χa, (4)

εb = (1 + eb) cos χb − 1, γb = (1 + eb) sin χb, (5)

where θa and θb are the rotations of the reference axis of layer a and b, respec-

tively, defined by

θa = − arctan
wa′

1 + ua′ , θb = − arctan
wb′

1 + ub′ . (6)

It is assumed that the plane of the cross-sections remain plane but not perpen-

dicular to the column reference axis during deformation, i.e. the Timoshenko

beam approximation. The material base vectors ea
t , ea

n, eb
t , and eb

n are assumed

to remain orthogonal, see Fig. 1. The units normals, ea
x and eb

x to the layers’

cross-sectional planes in the deformed state are given by

ea
x = cos ϕaEX − sin ϕaEZ ,

ea
z = sin ϕaEX + cos ϕaEZ ,

(7)

eb
x = cos ϕbEX − sin ϕbEZ ,

eb
z = sin ϕbEX + cos ϕbEZ ,

(8)

where ea
z and eb

z lie in the layers’ cross-sectional planes in the deformed state

and define the direction of resultant shear forces. The base vectors ea
x, ea

z ,

eb
x, and eb

z also separately form the orthonormal sets of base vectors of each

individual layer.
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2.2 Equilibrium equations

The two-layer composite column is subjected only to a conservative compres-

sive force P = P a +P b at the free end, where P a and P b represent axial forces

that correspond to the layers a and b, respectively. In addition, each layer of

the two-layer composite column is subjected to interlayer contact tractions,

measured per unit of layer’s undeformed length, which are defined by

p a = pa
XEX + pa

ZEZ = (pa
t cos θa + pa

n sin θa)EX + (pa
n cos θa − pa

t cos θa)EZ ,

p b = pb
XEX + pb

ZEZ = (pb
t cos θb + pb

n sin θb)EX + (pb
n cos θb − pb

t cos θb)EZ ,

(9)

where pa
t , pb

t , pa
n, and pb

n are the tangential and normal components of the

interlayer contact tractions, see Fig. 1. Therefore, the equilibrium equations

of an individual layer are, see e.g. [47]:

layer a:

Ra′
X + pa

X = Ra′
X + pa

t cos θa + pa
n sin θa = 0,

Ra′
Z + pa

Z = Ra′
Z − pa

t sin θa + pa
n cos θa = 0,

Ma′
Y − (1 + εa)Qa + γaN a + ma

Y = 0,

(10)

layer b:

Rb′
X + pb

X = Rb′
X + pb

t cos θb + pb
n sin θb = 0,

Rb′
Z + pb

Z = Rb′
Z − pb

t sin θb + pb
n cos θb = 0,

M b′
Y − (1 + εb)Qb + γbN b + mb

Y = 0,

(11)
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where

N a = Ra
X cos ϕa −Ra

Z sin ϕa,

Qa = Ra
X sin ϕa + Ra

Z cos ϕa,

Ma = Ma
Y ,

N b = Rb
X cos ϕb −Rb

Z sin ϕb,

Qb = Rb
X sin ϕb + Rb

Z cos ϕb,

Mb = M b
Y .

(12)

The functions Ra
X , Ra

Z , Rb
X , Rb

Z , Ma
Y , and M b

Y in (10)–(12) represent the

generalized equilibrium internal forces of the cross-section of layers a and b

with respect to the fixed coordinate basis. On the other hand, N a, Qa, Ma,

N b, Qb and, Ma represent the equilibrium axial and shear internal forces and

bending moments of the layers’ cross-sections with respect to the rotated local

coordinate system ea
x, ea

z , eb
x, and eb

z.
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2.3 Boundary conditions

Kinematic equations, Eqs. (2)–(3), and equilibrium equations, Eqs. (10)–(11),

constitute a system of 12 linear differential equations of the first order with

constant coefficients for 24 unknown functions: ua, ub, wa, wb, ϕa, ϕb, θa, θb,

Ra
X , Rb

X , Ra
Z , Rb

Z , Ma
Y , M b

Y , εa, εb, κa, κb, γa, γb, pa
t , pb

t , pa
n, and pb

n. The

associated natural and essential boundary conditions are:

x = 0 :

r0
1R

a
X(0)+r0

2u
a(0) = −r0

1P
a,

r0
3R

b
X(0)+r0

4u
b(0) = −r0

3P
b,

r0
5R

a
Z(0)+r0

6w
a(0) = 0,

r0
7R

b
Z(0)+r0

8w
b(0) = 0,

r0
9M

a
Y (0)+r0

10ϕ
a(0) = +r0

9(
ha

2
− zc)P

a,

r0
11M

b
Y (0)+r0

12ϕ
b(0) = −r0

11(
hb

2
+ zc)P

b,

(13)

x = L :

rL
1 Ra

X(L)+rL
2 ua(L) = −rL

1 P a,

rL
3 Rb

X(L)+rL
4 ub(L) = −rL

3 P b,

rL
5 Ra

Z(L)+rL
6 wa(L) = 0,

rL
7 Rb

Z(L)+rL
8 wb(L) = 0,

rL
9 Ma

Y (L)+rL
10 ϕa(L) = +rL

9 (
ha

2
− zc)P

a,

rL
11M

b
Y (L)+rL

12 ϕb(L) = −rL
11(

hb

2
+ zc)P

b,

(14)

where ri ∈ {0, 1} are parameters that determine different combinations of

boundary conditions of the two-layer composite column, where the super-

scripts ”0” and ”L” of s identify its value at x = 0 and x = L, respectively.

P a and P b are interrelated in such a way that homogeneous stress-strain state
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of the column is assured. zc is the local coordinate of the contact plane between

the layers a and b, see Fig. 1.

2.4 Additional equations

Because the number of equations is lower than the number of unknown func-

tions, the additional equations, to the above-quoted system of 12 linear dif-

ferential equations, are needed to find the solution for all unknown functions.

2.4.1 Constitutive equations

To relate the equilibrium internal forces N a, Qb, N a, and Qb and equilibrium

internal moments Ma and Mb to a material model, the following set of equa-

tions which assure the balance of equilibrium and constitutive cross-sectional

forces and bending moments of the composite column are introduced. The well

known constitutive equations of linear elastic two-layer composite columns are

N a −N a
C(x, εa, κa) = N a − Ca

11 εa − Ca
12 κa = 0,

Qa −Qa
C(x, γa) = Qa − Ca

33 γa = 0,

Ma −Ma
C(x, εa, κa) = Ma − Ca

21 εa − Ca
22 κa = 0,

N b −N b
C(x, εb, κb) = N b − Cb

11 εb − Cb
12 κb = 0,

Qb −Qb
C(x, γb) = Qb − Cb

33 γb = 0,

Mb −Mb
C(x, εb, κb) = Mb − Cb

21 εb − Cb
22 κb = 0,

(15)

where N a
C , Qa

C , Mb
C , N b

C , Qb
C , and Mb

C are constitutive cross-sectional gen-

eralized forces dependent only on deformation variables εa, γa, κa, εb, γb, and

κb. Material and geometric constants of the cross section are marked by Ca
11,

Ca
12, . . ., Cb

22, . . . , Cb
33; e.g., Ca

11 = EaAa, where Aa and Ea denote the cross-
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sectional area and the elastic modulus of layer a, respectively; Ca
12 = EaSa

and Ca
22 = EaIa , where Sa and Ia denote the static moment and moment

of inertia of layer a with respect to the reference axis of the composite col-

umn, respectively; Ca
33 = ka

yA
aGa, where ka

y is the shear coefficient of the cross

section of the layer. In the case of a rectangular cross section and isotropic

material, the shear coefficient is 5/6 [50]; and so forth, see e.g. [20].

In addition to Eqs. (15), a constitutive law of the interface between the layers

still has to be introduced. Herein, a linear constitutive law of bond slip between

the layers is employed:

pa
t = K∆, (16)

in which K denotes the slip modulus at the interlayer surface and ∆ denotes

the interlayer slip between the layers; ∆ will be presented in the next section.

2.4.2 Constraining equations

The layer a of the two-layer composite column under deformation is con-

strained to follow the deformation of the layer b, and vice versa. Since the layers

can slip along each other but their transverse separation or penetration is not

allowed, the aforementioned fact can be expressed by a kinematic-constraint

requirement as follows

Rb
0(T

b) = Ra
0(Q

a), (17)

or, written differently

Rb
0(x) = Ra

0(x
∗), (18)

where x and x∗ are coordinates of two distinct particles T b and Qa of layers b

and a in the undeformed configuration, which are in the deformed configura-

tion in contact, see Fig. 1. Written in a componential form, Eqs. (17) or (18)
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are

x + ub(x) + zc sin ϕb(x) = x∗ + ua(x∗) + zc sin ϕa(x∗),

wb(x) + zc cos ϕb(x) = wa(x∗) + zc cos ϕa(x∗).

(19)

The slip, ∆, that occurs between the layers a and b can be defined as

∆(x) =
∫ x∗

x

((
1 + εb(ξ) + zcκ

b(ξ)
)

cos χb(ξ) + γb(ξ) sin χ
)
dξ. (20)

Besides the above presented kinematic-constraint requirement (17), a stress-

constraint requirement is determined from the third Newton’s law, which en-

sures an equilibrium of the interlayer contact tractions of the particles in

contact. This requirement is expressed in the vector-valued function form as

p a(x) + p b(x) = 0, (21)

and, by substituting (9) into (21), in componential form as

pa
t cos θa + pa

n sin θa + pb
t cos θb + pb

n sin θb = 0,

−pa
t sin θa + pa

n cos θa − pb
t sin θb + pb

n cos θb = 0.

(22)

Therefore, Eqs. (2)–(3), (6), (10)–(12), (15)–(16), (19)–(20), and (22) form a

complete basis for a non-linear boundary-value problem of a two-layer compos-

ite column. Thus, a complete set of non-linear governing equations consists of

32 equations for 32 unknown functions: ua, ub, wa, wb, ϕa, ϕb, θa, θb, εa, εb, γa, γb,

κa, κb, Ra
X , Rb

X , Ra
Z , Rb

Z , Ma
Y , M b

Y ,N a,N b,Qa,Qb,Ma,Mb, pa
t , pb

t , pa
n, pb

n, ∆,

and x∗.
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3 Exact buckling response analysis

3.1 Linearized stability equations

The linearized stability equations for the determination of the critical load of

the two-layer composite columns, at the bifurcation point, can be derived by

the application of the linearized theory of stability. This theory is based on

the ascertainment that the critical bifurcation points of the non-linear system

coincide with the critical points of the corresponding linearized system [48].

The application of the linearized stability theory, regarding the existence and

uniqueness of the solution of Reissner’s elastica, is given by Flajs et al [51].

The aforementioned linearized theory of stability is founded upon the variation

of a functional F , here made in the sense of the continuous linear Gateaux

operator or directional derivative, defined as follows [52]

δF(x, δx) = lim
α→0

F(x + αδx)−F(x)

α
=

d

dα


α=0

F(x + αδx), (23)

where x and δx represent the generalized displacement field and its increment,

respectively, and α is an arbitrary small scalar parameter. Accordingly, it is

convenient for Eqs. (2)–(3), (6), (10)–(12), (15)–(16), (19)–(20), and (22) to be

re-written in compact form as F = {F1,F1, . . . ,F32}T , and their arguments

as x = {ua, ub, wa, wb, . . . , pa
n, pb

n, ∆, x∗}T .

In order to apply linearized equations to the two-layer composite column buck-

ling problem, these equations have to be evaluated at the primary configura-

tion of the column, which is an arbitrary deformed configuration in which the

composite column remains straight.
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The primary configuration is then defined as follows

εa = εb = − 1

Ca
11 + Cb

11

P,

γa = γb = 0,

κa = κb = 0,

ua = ub = ua(0)− x

Ca
11 + Cb

11

P

wa = wb = 0,

ϕa = ϕb = 0,

θa = θb = 0,

x∗ = x,

∆ = 0,

Ra
X = N a = − Ca

11

Ca
11 + Cb

11

P,

Rb
X = N b = − Cb

11

Ca
11 + Cb

11

P

Ra
Z = Qa = 0,

Rb
Z = Qb = 0,

Ma
Y = Ma = − Ca

21

Ca
11 + Cb

11

P,

M b
Y = Mb = − Cb

21

Ca
11 + Cb

11

P,

pa
X = pa

t = 0,

pb
X = pb

t = 0,

pa
Z = pa

n = 0,

pb
Z = pb

n = 0.

(24)

The system of Eqs. (2)–(3), (6), (10)–(12), (15)–(16), (19)–(20), and (22) is ill-

conditioned for some special cases. In order to avoid this problem, the following

additional relations between the deflections and transverse shear forces of the
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composite column, namely, w = wa = wb and RZ = Ra
Z + Rb

Z have to be

introduced from (19). Based on these relations and linearization of Eqs. (2)–

(3), (10)–(16), (19), (20), and (21)–(22), the linearized uncoupled equations of

the two-layer composite column, when written at the primary configuration

(24), can be derived as:

δF1 = δua′ − δεa = 0,

δF2 = δub′ − δεb = 0,

δF3 = δw′ + (1 + ε)δϕa − δγa = 0,

δF4 = δϕa′ − δκa = 0,

δF5 = δϕb′ − δκb = 0,

δF6 = δRa′
X − δpt = 0,

δF7 = δRb′
X + δpt = 0,

δF8 = δR′
Z = 0,

δF9 = δMa′
Y + Ra

Xδw′ − (1 + ε)δRa
Z + δma

Y = 0,

δF10 = δM b′
Y + Rb

Xδw′ − (1 + ε)δRb
Z + δmb

Y = 0,

δF11 = δRa
X − Ca

11δε
a − Ca

12δκ
a = 0,

δF12 = δRb
X − Cb

11δε
b − Cb

12δκ
b = 0,

δF13 = δRa
Z + Ra

Xδϕa − Ca
33δγ

a = 0,

δF14 = δRb
Z + Rb

Xδϕb − Cb
33δγ

b = 0,

δF15 = δMa
Y − Ca

21δε
a − Ca

22δκ
a = 0,

δF16 = δM b
Y − Cb

21δε
b − Cb

22δκ
b = 0,

δF17 = δ∆− δua + δub + zc(δϕ
b − δϕa),

δF18 = δpt −Kδ∆ = 0,

δF19 = δx∗ + δua − δub + zc(δϕ
a − δϕb) = 0,

δF20 = δγb − δγa − (1 + ε)(δϕb − δϕa),

(25)
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where

δpt = δpa
t = −δpb

t ,

δRZ = δRa
Z + Rb

Z ,

(26)

and

ε = − P

Ca
11 + Cb

11

,

Ra
X = − Ca

11

Ca
11 + Cb

11

P,

Rb
X = − Cb

11

Ca
11 + Cb

11

P.

(27)

Eqs. (25) constitute a system of 20 linear algebraic-differential equations of

the first order with constant coefficients for 20 unknown functions: δua, δub,

δw, δϕa, δϕb, δεa, δεb, δγa, δγb, δκa, δκb, δRa
X , δRb

X , δRa
Z , δRb

Z , δMa
Y , δM b

Y ,

δpt, δ∆, and δx∗ along with the corresponding natural and essential boundary

conditions written in the following general form as:

x = 0 :

s0
1δR

a
X(0)+s0

2δu
a(0) = 0,

s0
3δR

b
X(0)+s0

4δu
b(0) = 0,

s0
5δRZ(0)+s0

6δw(0) = 0,

s0
7δM

a
Y (0)+s0

8δϕ
a(0) = 0,

s0
9δM

b
Y (0)+s0

10δϕ
b(0) = 0,

(28)

x = L :

sL
1 δRa

X(L)+sL
2 δua(L) = 0,

sL
3 δRb

X(L)+sL
4 δub(L) = 0,

sL
5 δRZ(L)+sL

6 δw(L) = 0,

sL
7 δMa

Y (L)+sL
8 δϕa(L) = 0,

sL
9 δM b

Y (L)+sL
10δϕ

b(L) = 0,

(29)
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where si ∈ {0, 1} are again parameters that determine different combinations

of boundary conditions of the two-layer composite column. The superscripts

”0” and ”L” of s identify its value at x = 0 and x = L, respectively.

3.2 Exact solution for two-layer column critical buckling load

The system of linear algebraic-differential equations of the first order with

constant coefficients (25) and the corresponding natural and essential bound-

ary conditions (28)–(29) can be written as a homogeneous system of 10 first

order linear differential equations in compact form as

Y ′(x) = AY (x), (30)

and

Y (0) = Y 0, (31)

where Y (x) = {δua(x), δub(x), δw(x), δϕa, . . . , δRZ(x), δMa
Y (x), δM b

Y (x)}T,

Y (0) = {δua(0), δub(0), δw(0), δϕa(0), . . . , δRZ(0), δMa
Y (0), δM b

Y (0)}T, and A

is a constant real 10× 10 matrix. The exact solution of the linear system (30)

together with the initial conditions (31) is given by, see e.g. [53, 54]:

Y (x) = expAx Y 0. (32)

The unknown integration constants, i.e. the initial values of the generalized

equilibrium internal forces and components of the displacement vectors, are

determined from the boundary conditions (28)–(29). As a result, a system

of ten homogeneous linear algebraic equations for ten unknown constants is

obtained, which, expressed in a matrix form, reads

KY 0 = 0, (33)
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where K denotes a tangent matrix. For a non-trivial solution of (33), the

determinant of the matrix K should vanish, see e.g. [49]

detK = 0. (34)

The condition (34) represents a linear eigenvalue problem and its solution, i.e.

the lowest eigenvalue corresponds to the smallest critical buckling load, Pcr,

of the column. The explicit form of the matrix K and the analytical solution

for the lowest buckling load, Pcr, can easily be determined, but they are un-

fortunately too cumbersome to be presented as closed-form expressions. For

further details on the determination of critical points and their classification

an interested reader is referred to [49].

4 Parametric study and discussion

The analytical procedure for critical buckling loads of geometrically perfect

shear-deformable two-layer composite columns with interlayer slip presented

in this paper will be numerically evaluated through the analysis of two exam-

ples. The first example will be introduced to make a comparison of critical

buckling loads with existing buckling loads obtained by other investigators,

e.g. [43] and [44, 45]. The second is devoted to the effect of the shear defor-

mation and pre-buckling shortening on the critical buckling loads of two-layer

composite columns. In both numerical examples, the critical buckling loads

will be computed for a wide range of material and geometric parameters, such

as flexural-to-shear ratios (E/G), interlayer slip modulus (K), column slen-

derness ratios (λ), and different boundary conditions given in Table 1.
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Table 1

Two-layer composite column boundary conditions, effective length coefficients βE ,

and buckled shapes of Euler columns.

Classical cases C-F C-C C-P P-P

s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0

4 = 1 s0
2 = s0

4 = 1
Non-zero values s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
8 = 1 s0

6 = s0
7 = 1

sL
1 = sL

3 = 1 sL
1 = sL

3 = 1 sL
1 = sL

3 = 1 sL
1 = sL

3 = 1
si sL

5 = sL
7 = 1 sL

6 = sL
8 = 1 sL

6 = sL
7 = 1 sL

6 = sL
7 = 1

s0
10 = sL

9 = 1 s0
10 = sL

10 = 1 s0
9 = sL

9 = 1 s0
9 = sL

9 = 1

Effective length βE = 2 βE = 0.5 βE = 0.699 . . . βE = 1
coefficient

Buckled shape

C =clamped (fixed); F= free; P= pinned

4.1 Comparison of critical buckling loads with existing buckling loads in the

literature

With the intention of comparing the critical buckling loads of the present

analytical model to the above-mentioned buckling models, a timber-concrete

composite column is employed. This column has also been studied by other

researchers, see, e.g. [1, 3, 22, 25], and [43].

Consecutively, the geometrical and mechanical properties of the timber-concrete
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composite column used in the analysis are presented in Fig. 2.

Figure 2. Geometrical and mechanical properties of timber-concrete column.

The critical buckling loads of the two-layer shear-deformable timber-concrete

composite column were computed by the proposed analytical model, as a func-

tion of interlayer stiffness, K, and compared with the results obtained with

what is called ”second-order theory” proposed by Xu and Wu [43]. A com-

parison is made for boundary conditions used by Girhammar and co-workers

[24, 25] and Xu and Wu [43] for four different sets of boundary conditions:

clamped-free column (C-F), clamped-clamped column (C-C), clamped-pinned

column (C-P) and pinned-pinned column (P-P). In accordance to the bound-

ary conditions (28)–(29), the classical boundary conditions of the two-layer

Euler columns and the corresponding non-zero values of parameters si and

effective length coefficient, βE, are summarized in Table 1.

The results are presented and compared in Table 2 for P-P composite column

and various interlayer slip moduli K. The results indicate that an increase

of the interlayer stiffness, K, leads to a significant increase of the critical

buckling load, Pcr. Besides, the present critical buckling loads are identical to

those obtained by Xu and Wu [43] only when the effects of axial and transverse

shear deformations on critical buckling loads are neglected. In all other cases
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the difference between the results is interlayer slip modulus, K, dependent.

Thus, it can be seen that the difference between the methods increases in

magnitude as K increases. It is, however, clear that the difference can be

neglected if only axial deformation is taken into account, while it is significant

when the influence of transverse shear deformation is taken into consideration.

For example, it is interesting to note that in this case the critical buckling

load calculated by the present method is in the limiting case when there is an

absolutely stiff connection (∆ = 0; K → ∞), by up to approximately 3.6 %

smaller than that calculated by Xu and Wu [43].

Table 2

Comparison of the proposed critical buckling loads of P-P two-layer composite col-

umn with those of [43] for various Ks.

Pcr[kN]

K Xu [43] Xu [43] present present present present

[kN/cm2] γ = 0 γ 6= 0 εcr = 0, γ = 0 εcr 6= 0, γ = 0 εcr = 0, γ 6= 0 εcr 6= 0, γ 6= 0

10−10 92.527541 91.847666 92.527541 92.563241 90.974109 91.007474

10−5 92.528541 91.848651 92.528541 92.564242 90.977010 91.008441

10−3 92.627505 91.946165 92.627505 92.663282 91.070755 91.104189

10−2 93.523952 92.829409 93.523952 93.560425 91.937288 91.971351

10−1 102.17982 101.35133 102.17982 102.22336 100.29005 100.33047

1 166.04327 163.86655 166.04327 166.15831 161.13299 161.23501

101 309.79930 302.30694 309.79930 310.20023 293.29511 293.61702

102 362.61306 352.39054 362.61306 363.16259 340.28218 340.70797

103 369.34178 358.74190 369.34178 369.91192 346.21087 346.65065

105 370.10246 359.45951 370.10246 370.67496 346.88032 347.32168

1010 370.11016 359.46678 370.11016 370.68269 346.88709 347.32847
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It should be noted, however, that the formulation used in this paper is based

on the energetically consistent formulation of Reissner [31, 47] and Haringx

[42]. On the other hand, the only available analytical solution [43] which is

used here for comparison is based on Engesser’s type of buckling approach

[41]. A matter of argument of using Engesser’s and Haringx’s approach has

been the subject of several polemics in the past, see e.g. [30, 31, 34, 36–

40]. Moreover, in [43] an average rotation and transverse shear deformation

of the composite cross-section is used, while in the present study each layer

can have different rotation and shear deformation. Consequently, the above-

mentioned differences in the two approaches are definitely the main reasons

for the discrepancy between the results.

In the sequel, the influence of boundary conditions on the discrepancy of the

critical buckling loads of composite columns obtained by the two methods will

be studied for other types of boundary conditions presented in Table 1.

This effect may be analyzed by defining a relative error which was here defined

as

εr[%] =
Pcr(εcr = 0, γ 6= 0)− P [43]

cr

Pcr(εcr = 0, γ 6= 0)
× 100, (35)

where Pcr(εcr = 0, γ 6= 0) and P [43]
cr represent the critical forces obtained by

the proposed analytical procedure, where axial deformability is not taken into

account, and by Xu and Wu [43], respectively. The results for various interlayer

slip moduli K are given in Fig. 3. Again, it can be observed in Fig. 3 that

increasing interlayer slip modulus K increases the discrepancy between the

results for all types of boundary conditions. It is perhaps of interest to note

that for the four cases of boundary conditions the discrepancy is the largest

for C-C column. In this case the difference is considerable and can be up to
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approximately 12 % for very stiff connections between the layers.

Figure 3. Comparison of the present critical buckling loads with those proposed by

Xu and Wu [43] for E/G = 16, different types of boundary conditions and various

values of K; where K[kN/cm2].

Furthermore, the discrepancy between the methods under consideration is in-

vestigated for various E/G=Ea/Ga=Eb/Gb and different interlayer slip mod-

uli K. Here, only the results for columns with E/G = 2.68 (ratio typical

for isotropic materials such as steel, aluminium, and copper), columns with

E/G = 8.67 (transversely isotropic glass-fiber-reinforced unidirectional com-

posite columns), for anisotropic wood columns with E/G = 16, and columns

with E/G = 50 are presented for C-C column boundary condition in Fig. 4.

As expected, the difference between the methods increases with the increasing

interlayer stiffness modulus K and ratio E/G. For example, the difference for

values of interlayer slip modulus, K, which usually exists in actual practice

(e.g. K = 10 kN/cm2), is for E/G = 2.68, 8.67, 16, and 50 up to approximately

1.7 %, 4.5 %, 7.5 %, and 17.5 %, respectively. It is apparent that the difference

is even more pronounced for higher interlayer slip moduli K. For instance, in

the case of wood composite column (E/G = 16) and stiff connection the dif-

24



Figure 4. Comparison of the present critical buckling loads with those proposed by

Xu and Wu [43] for C-C column case, different flexural-to-shear ratios, E/G, and

various values of K; where K[kN/cm2].

ference between the results of the two methods compared can be up to 12.5 %,

while, on the other hand, the difference in case of steel or copper composite

columns (E/G = 2.68) is less significant.

Figure 5. Comparison of the present critical buckling loads with those proposed by

Xu and Wu [43] for C-C column case, different column slenderness ratios, λ, and

various values of K; where K[kN/cm2].
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In addition, the difference between the two approaches is investigated for dif-

ferent column slenderness ratios, λ. In Fig. 5, a relative error defined by Eq.

(35) is shown for C-C column as a function of λ for two almost limiting cases

of interlayer connection, i.e. almost absolutely stiff connection (K = 1000

kN/cm2) and no connection between the layers (K = 0.001 kN/cm2). Fig. 5

shows that the difference between the methods increases steadily as the slen-

derness ratio decreases. It can be seen that for very stocky timber composite

columns (i.e. λ ≈ 35) the difference varies from around 4 % for a very flexi-

ble connection to about 14 % for a very stiff connection between the layers.

On the other hand, the results of both methods converge to each other for

slender composite columns. The difference, however, may become much less

pronounced for slender columns with λ > 140.

In what follows, the present analytical results will be compared to, as far as

the authors’ knowledge is concerned, the only in the open literature available

numerical solution for critical buckling loads of composite columns with in-

terlayer slip. This solution is obtained numerically in [45] by using a finite

element method. The numerical example under consideration is the same as

in our example, except the different elastic shear moduli are used: for wood

(the bottom layer ≡ layer a) a flexural-to-shear ratio, Ea/Ga = 20, while for

concrete (top layer ≡ layer b) elastic shear modulus Gb = 500 kN/cm2. A

uniform finite element mesh of 20 elements is used. The results are the fol-

lowing: Pcr(εcr = 0, γ 6= 0) = 255.83 kN; Pcr(εcr 6= 0, γ 6= 0) = 256.08 kN

PFEM [45]
cr = 257.9 kN; and P [43]

cr = 269.89 kN. From these results it can be con-

cluded that the buckling loads obtained by the numerical procedure presented

in [44, 45] almost agree with the present analytical buckling loads, while, on

the other hand, for the results proposed by [43] this is not the case.
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4.2 Investigation of the effect of shear deformation on the critical buckling

loads

In this example, parametric studies are undertaken to investigate the effect of

transverse shear deformation on critical buckling loads of two-layer composite

columns with interlayer slip between the layers. To this end, a shear deformable

two-layer composite column with the same geometric and material parameters

as in the first example is used. The critical buckling loads are calculated first

for various interlayer moduli K and different boundary conditions. The effect

of pre-buckling shortening is neglected. The results are plotted in Fig. 6, where

ε∗r is a relative error defined here as

ε∗r[%] =
Pcr(εcr = 0, γ 6= 0)− Pcr(εcr = 0, γ = 0)

Pcr(εcr = 0, γ 6= 0)
× 100. (36)

In Eq. (36), the critical forces are obtained by the consistent composite-column

boundary conditions given in [22].

Figure 6. The effect of transverse shear deformation on critical buckling loads of

geometrically perfect two-layer composite column with E/G = 16 for various values

of K and different types of boundary conditions; where K [kN/cm2].
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It is apparent from Fig. 6 that critical buckling loads decrease if shear defor-

mation is taken into account. It can also be seen from Fig. 6 that the effect

of shear deformation on the critical buckling loads increases in magnitude

as the column end conditions vary from C-F to C-C case and as the inter-

layer modulus, K, increases. For example, it is interesting to note that for a

practical value of interlayer slip modulus K = 10 kN/cm2 (log K = 1), the

corresponding relative errors are: ε∗r[C-F]= −1.60 %, ε∗r[P-P]= −5.88 %, ε∗r[C-

P]= −9.49 %, ε∗r[C-C]= −12.32 %, while, in the two limiting cases, when there

is no connection (∆ 6= 0; K → 0): ε∗r[C-F]= −0.43 %, ε∗r[P-P]= −1.68 %, ε∗r[C-

P]= −3.65 %, ε∗r[C-C]= −6.20 %, or there is an absolutely stiff connection

between the layers (∆ = 0; K → ∞), ε∗r[C-F]= −1.69 %, ε∗r[P-P]= −6.28 %,

ε∗r[C-P]= −12.74 %, ε∗r[C-C]= −19.84 %. Evidently, the effect of transverse

shear deformation on the critical buckling loads is negligible in C-F and P-P

column cases and in all other cases when there exists a partial interaction

between the layers with K < 0.1 kN/cm2 (log K = −1).

Besides, some parametric studies are performed next to investigate the effect of

shear deformation for various material properties, i.e. flexural-to-shear ratios

(E/G), interlayer slip modulus (K), and column slenderness ratios (λ). In Fig.

7, a relative error, ε∗r, is shown for C-C column as a function of interlayer slip

modulus, K, for different flexural-to-shear ratios. It can be observed in Fig. 7

that increasing the interlayer stiffness increases the effect of shear deformation

on critical buckling loads for all the flexural-to-shear ratios. This effect is

considerable for composite columns with E/G ≥ 16. Moreover, the effect is

also pronounced for materials with E/G = 8.67 if interlayer modulus K > 10

kN/cm2. In this case ε∗r ranges from −7.27 % for K = 10 kN/cm2 to −12.27 %

for a stiff connection between the layers. This suggests that for purposes of, e.g.
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C-C composite column design, the effect of shear deformation on the buckling

loading is found to be considerable and should be taken into account when

Figure 7. The effect of transverse shear deformation on critical buckling loads of

geometrically perfect two-layer C-C composite column for various flexural-to-shear

ratios E/G and different values of K; where K [kN/cm2].

E/G ≥ 16 or E/G ≥ 8.67 and K > 10 kN/cm2.

Additionally, the effect of transverse shear deformability on the critical buck-

ling load, Pcr, of the geometrically perfect two-layer composite columns with

interlayer slip between the layers is analyzed for various interlayer slip moduli

K and for different column slenderness ratios λ which are defined here as

λ =
βEL

√
Aa + Ab

√
Ia + Ib

, (37)

where βE represents the effective length coefficient of Euler columns with stiff

connection between the layers. Effective length coefficients, βE, are given in

Table 1 for different types of end conditions along with schematic illustra-

tions of the buckling modes. Variation in column slenderness is achieved by

considering a range of column lengths.
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The results for timber C-C composite column and 0.001 kN/cm2 ≤ K ≤

1000 kN/cm2 are given in Fig. 8. As would be expected, Fig. 8 indicates that

the transverse shear effect becomes important for short (stocky) columns with

low values of λ (for λ up to 60) and high values of K. For example, the

critical load predicted by the present theory is for the values of λ = 40 and

K = 1000 kN/cm2 about 16.5 % lower than that predicted without transverse

shear effects. On the other hand, this effect may become much less pronounced

for slender columns (λ > 60). In the latter case it may be neglected. As would

Figure 8. The effect of transverse shear deformation on critical buckling loads of ge-

ometrically perfect two-layer C-C timber (E/G = 16) composite column for various

column slenderness ratios λ and different values of K; where K [kN/cm2].

be expected, the shear deformation effect is very important in the buckling

analysis of composite columns only in the range of low slenderness ratios.

Finally, with the intention of comparing the results, the critical buckling loads

of C-C timber composite column are given in Table 3 as an analytic benchmark

solution to the problem of column buckling considering pre-buckling shorten-

ing and transverse shear effects. Once again, it is interesting to note, that
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transverse shear deformation has a significant influence on the critical buck-

ling loads, while, one the other hand, the effect of pre-buckling shortening can

be neglected.

Table 3

A benchmark solution to the composite column buckling considering pre-buckling

shortening and transverse shear effects. The critical buckling loads of C-C two-layer

composite column for E/G = 16 and various Ks.

Pcr[kN]

K present present present present

[kN/cm2] εcr = 0, γ = 0 εcr 6= 0, γ = 0 εcr = 0, γ 6= 0 εcr 6= 0, γ 6= 0

10−10 370.11016 370.68268 347.14812 347.59158

10−5 370.11116 370.68369 347.14900 347.59247

10−3 370.21013 370.78297 347.23622 347.67989

10−2 371.10748 371.68310 348.02684 348.47241

10−1 379.86233 380.46547 355.72859 356.19280

1 454.14727 455.00991 420.20327 420.83582

101 802.20158 804.90102 703.39131 704.98306

102 1216.9577 1223.1919 1008.2466 1011.1567

103 1399.2669 1407.5215 1132.2687 1135.7586

105 1472.9002 1482.0522 1180.7485 1184.4673

1010 1480.4406 1489.6871 1337.3584 1343.5515

5 Conclusions

The paper presents an efficient mathematical model for studying the buck-

ling behavior of geometrically perfect two-layer composite columns with inter-
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layer slip between the layers. The model is capable of predicting exact critical

buckling loads. The result have been compared with the solutions from the

literature. Likewise, the effects of pre-buckling shortening and transverse shear

deformation on the critical buckling loads have been studied. From the present

study, the following conclusions can be drawn:

(1) It is shown that the critical buckling loads obtained by the present analyt-

ical model are identical to those obtained by what is called the ”second-

order theory” proposed by Xu and Wu [43] only if the effects of transverse

shear deformation and pre-buckling shortening on critical buckling loads

are neglected. On the other hand, if these effects are taken into consid-

eration, a significant discrepancy between the critical buckling loads is

obtained. This discrepancy has been proved to be interlayer-slip mod-

ulus, flexural-to-shear ratios, column slenderness ratios, and boundary

conditions dependent.

(2) In is observed that the difference between the methods increases with

the increasing of interlayer slip modulus, K, and flexural-to-shear ratios,

E/G, for all types of boundary conditions. The difference is always the

largest for C-C composite column. In this case it is considerable and it is

in case of a very stiff connection between the layers up to approximately

2.6 %, 7.2 %, 12 %, 22 % for E/G = 2.68, 8.67, 16, and 50, respectively.

(3) As anticipated, the effect of pre-buckling shortening on the critical buck-

ling loads of composite columns with interlayer slip can be neglected. On

the other hand, the effect of transverse shear deformation is proved to be

significant and interlayer-slip modulus, flexural-to-shear ratios, column

slenderness ratios, and boundary conditions dependent.

(4) As expected, the critical buckling loads decrease if transverse shear defor-
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mation is taken into account. The inclusion of pre-buckling shortening has

the opposite effect. The latter effect is proved to be insignificant in most

cases. It is also seen that the effect of shear deformation on the critical

buckling loads increases in magnitude as the column end conditions vary

from C-F to C-C case and as the interlayer modulus, K, and flexural-

to-shear ratios, E/G, increase. In case of timber composite columns with

E/G = 16, this effect could be for C-F, P-P, C-P, and C-C column from

up to approximately 0.43 %, 1.68 %, 3.65 %, and 6.20 % for very flexible

connections to about 1.69 %, 6.28 %, 12.74 %, and 19.84 % for very stiff

connections between the layers, respectively. It is also observed that the

effect of transverse shear is considerable for C-C composite columns with

E/G ≥ 16. Moreover, the effect is also pronounced for materials with

E/G = 8.67 if interlayer modulus K > 10 kN/cm2. In this case, the

difference ranges from 7.27 % for K = 10 kN/cm2 to 12.27 % for a stiff

connection between the layers. This suggests, that for purposes of C-C

composite column design, the effect of shear deformation on the buckling

loading should be taken into account when E/G ≥ 16 or E/G ≥ 8.67 and

K > 10 kN/cm2. Additionally, it is shown that the transverse shear effect

becomes important for short (stocky) columns with low values of λ (for λ

up to 60) and high values of K. For example, the critical load predicted

by the present theory is for the values of λ = 40 and K = 1000 kN/cm2

about 16.5 % lower than that predicted without transverse shear effects.

On the other hand, this effect may become much less pronounced for

slender columns (λ > 60). In this case it may be neglected.
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[6] Čas, B., Saje, M., Planinc, I., 2007. Buckling of layered wood columns.

Advances in Engineering Software 38 586–597.

[7] Chen, W.Q., Wu, Y.F., Xu, R.Q, 2007. State space formulation for com-

posite beam-columns with partial interaction. Composites Science and

Technology 67 2500–2512.

34



[8] Xu, R.Q, Wu, Y.F., 2009. Analytical study of beams strengthened by ad-

hesively bonded reinforcement with variable properties using state space

method. Composites Science and Technology 69 1912–1918.

[9] Foraboschi, P., 2009. Analytical solution of two-layer beam taking into ac-

count nonlinear interlayer slip. Journal of Engineering Mechanics 135(10)

1129–1146.

[10] Silva, A.R., Sousa, J.B.M., 2009. A family of interface elements for the

analysis of composite beams with interlayer slip. Finite Elements in Anal-

ysis and Design 45(5) 305–314.

[11] Heuer, R., Adam, C., 2000. Piezoelectric vibrations of composite beams

with interlayer slip. Acta Mechanica 140 247–263.

[12] Heuer, R., 2004. Equivalence of the analyses of sandwich beams with or

without interlayer slip. Mechanics of Advanced Materials and Structures

11 425–432.

[13] Challamel, N., 2009. On lateral-torsional vibrations of elastic compos-

ite beams with interlayer slip. Journal of Sound and Vibration 325(4–5)

1012–1022.

[14] Ranzi, G., Bradford, M.A., 2007a. Direct stiffness analysis of a composite

beam-column element with partial interaction Computers and Structures

85(15–16) 1206–1214.

[15] Ranzi, G., Zona, A., 2007b. A steel-concrete composite beam model with

partial interaction including the shear deformability of the steel compo-

nent. Engineering Structures 29(11) 3026–3041.

[16] Ranzi, G., 2008. Locking problems in the partial interaction analysis

of multi-layered composite beams. Engineering Structures 30(10) 2900–

2911.

[17] Ranzi, G., Dall’Asta, A., Ragini, L., Zona, A., 2010. A geometric non-

35



linear model for composite beams with partial interaction. Engineering

Structures 32(5) 1384–1396.

[18] Schnabl, S., Planinc, I., Saje, M., Čas, B. and Turk, G., 2006. An analyti-
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[29] Kryžanowski, A., Schnabl, S., Turk, G., Planinc, I., 2009. Exact slip-

buckling analysis of two-layer composite columns. International Journal

of Solids and Structures 46 2929–2938.

[30] Ziegler, H., 1982. Arguments For and Against Engesser’s Buckling For-

mulas. Ingenieur-Archiv 52 105–113.

[31] Reissner, E., 1982. Some Remarks on the Problem of Column Buckling.

Ingenieur-Archiv 52 115–119.

[32] Wang, C.M., Kitipornchai, S., Al-Bermani, F.G., 1991. Buckling of

columns: allowance for axial shortening. International Journal of Mechan-

ical Sciences 33(8) 613–622.

[33] Banerjee, J.R., Williams, F.W., 1994. The effect of shear deformation on

the critical buckling of columns. Journal of Sound and Vibration 174(5)

607–616.

[34] Timoshenko, S.P, Gere, J.M., 1961. Theory of Elastic Stability, McGraw-

Hill Book Company, 2nd Ed. 1961.
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[36] Bažant, ZP., Beghini, A., 2004. Sandwich buckling formulas and applica-

bility of standard computational algorithm for finite strain. Composites:

Part B 35 573–581.

37



[37] Bažant, ZP., Beghini, A., 2006. Stability and strain of homogenized struc-

tures soft in shear: Sandwich or fiber composites, and layered bodies.

International Journal of Solids and Structures 43 1571–1593.

[38] Attard, MM., Hunt, GW., 2008. Sandwich column buckling - A hyperelas-

tic formulation. International Journal of Solids and Structures 45 5540–

5555.

[39] Kardomateas, GA., Dancila, DS., 1997. Buckling of moderately thick or-

thotropic columns: comparison of an elasticity solution with the Euler and

Engesser/Haringx/Timoshenko formulae. International Journal of Solids

and Structures 34(3) 341–357.

[40] Blaauwendraad, J., 2010. Shear in Structural Stability: On the Engesser-

Haringx Discord. Journal of Applied Mechanics 77(3) 031005 (8 pages)

doi:10.1115/1.3197142.

[41] Engesser, F., 1891. Die Knickfestigkeit gerader Stabe. Zentralblatt der

Bauverwaltung 11 483–486 [in Germain].

[42] Haringx, JA., 1942. On the buckling and the lateral rigidity of helical com-

pression springs. Proceedings of the section of sciences of the Koninklijke

Nederlandse Academie van Wetenschappen, Royal Academy of Sciences

in the Netherlans 45 pp. 533.

[43] Xu, R., Wu, Y., 2007. Static, dynamic, and buckling analysis of partial

interaction composite members using Timoshenko’s beam theory. Inter-

national Journal of Mechanical Sciences 49(10) 1139–1155.

[44] Krawczyk, P., Frey, F., Zielinski, A.P., 2007. Large deflections of lami-

nated beams with interlayer slips: Part 1: model development. Engineer-

ing Computations 24(1) 17–32.

[45] Krawczyk, P., Rebora, B., 2007. Large deflections of laminated beams

with interlayer slips: Part 2: finite element development. Engineering

38



Computations 24(1) 33–51.

[46] Vratanar, B., Saje, M., 1999. A consistent equilibrium in a cross-section

of an elastic-plastic beam. International Journal of Solids and Structures

36 311–337.

[47] Reissner, E., 1972. On one-dimensional finite-strain beam theory: The

plane problem. Journal of Applied Mechanics and Physics (ZAMP) 23

795–804.

[48] Keller, H.B., 1970. Nonlinear bifurcation. Journal of Differential Equa-

tions 7 417–434.

[49] Planinc, I., Saje, M., 1999. A quadratically convergent algorithm for the

computation of stability points: The application of the determinant of the

tangent stiffness matrix. Computer Methods in Applied Mechanics and

Engineering 169 89–105.

[50] Cowper, G.R., 1966. The shear coefficient in Timoshenko’s beam theory.

Journal of Applied Mechanics 33(2) 335–340.
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