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A KINEMATICALLY EXACT

FINITE ELEMENT FORMULATION

OF ELASTIC-PLASTIC CURVED BEAMS

M. SAJE∗, G. TURK, A. KALAGASIDU and B. VRATANAR

University of Ljubljana, Faculty of Civil and Geodetic Engineering,

Jamova 2, SI-1001 Ljubljana, Slovenia, P.O. Box 579

Abstract—A finite element, large displacement formulation of static elastic-

plastic analysis of slender arbitrarily curved planar beams is presented. Non-

conservative and dynamic loads are at present not included. The Bernoulli hy-

pothesis of plane cross-sections is assumed and the effect of shear strains is ne-

glected. Exact nonlinear kinematic equations of curved beams derived by Reissner

[J. appl. Math. Phys. (ZAMP) 23, 795–804 (1972)] are incorporated into a

generalized principle of virtual work through Lagrangian multipliers. The only

function that has to be interpolated in the finite element implementation is the

rotation of the centroid axis of a beam. This is an important advantage over

other classical displacement approaches since the field consistency problem and

related locking phenomena do not arise. Numerical examples, comprising elastic

and elastic-plastic, curved and straight beams, at large displacements and rota-

tions, show very nice computational and accuracy characteristics of the present

family of finite elements. The comparisons to other published results very clearly

show the superior performance of the present elements.

1. INTRODUCTION

A family of new slender beam finite elements with arbitrarily curved centroid axis for the

kinematically exact static analysis of elastic-plastic planar frames based on assumed rotation

variation is presented here. Reissner’s nonlinear beam theory [28] is the basis of our finite
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element formulation. There are no mathematical restrictions regarding the magnitude of

displacements, rotations, and strains. The effect of shear strain is at present not included.

Only for some structures of specific geometrical and loading data, and elastic material

analytical solutions exist in terms of elliptic integrals or infinite series. Such simple examples

of elastic frames are presented in, e.g., [9], [13] and [34]. In a more general context, numerical

methods have to be employed. In the present paper, alike in most publications, the finite

element method is used.

A majority of publications devoted to curved beams is limited to geometrically and ma-

terially linear analyses. In this context, considerable attention has been focused to alleviate

the shear and membrane locking in displacement based curved beam formulations, and a

number of different approaches have been proposed. These are the strain element technique

[5], reduced integration [23], [38], [39], hybrid/mixed formulation [27], [32], mixed formula-

tion in conjunction with collocation [26], shear penalty-parameter modifications [42], field

consistency [1], [19], a hierarchical displacement interpolation concept [15], a separation of

deformation mode for radial displacement [21], and others [47]. Only some of these locking

cures can be applied in the geometrically nonlinear curved beam analysis [16].

The present finite element curved beam formulation may be roughly classified as the one

based on assumed strains. For geometrically nonlinear case and elastic material, its imple-

mentation was described in [29] for straight and in [30] for curved beams. Only the rotation

function has to be approximated in these formulations. Because the curvature is the derivative

of the rotation with respect to the axis coordinate, this is essentially equal to assuming only

the variation of the curvature. The remaining two deformation quantities, i.e., extensional

and shear strains, are obtained from constitutive and equilibrium equations. Furthermore, be-

cause the problem is stated in a variational form of the Hu-Washizu functional, the variation

of displacements along the beam axis is not needed and thus no approximation of displace-

ments is required. A similar concept of basing the formulation on curvature approximation

but otherwise employing standard displacement approach, was later presented by Lee and Sin

[20] in a narrower framework of geometrically and materially linear curved beam analysis. A

pure strain assumed finite element formulation of linear curved beams was proposed by Choi

and Lim [5]. Their formulation indeed alleviate locking and is rather accurate, but assumes

more functions to be approximated than required, i.e., extensional and shear strains in addi-

tion to the curvature, and is therefore computationally less efficient compared to [20]. The

approach in [20] may be considered as being a linearized version of the formulation presented
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in [30].

For geometrically nonlinear curved beams a number of finite element formulations have

been developed recently. Some propose a corotational, kinematically “inexact” formulation,

e.g. Hsiao and Hou [14], using assumptions of small deflection beam theory and constant

extensional strain. Sandhu et al. [33] develop another very efficient and reliable corotational

formulation (see also [10], [24] and [46]). Moreover, a kinematically exact formulations have

also been proposed. For instance, Surana [40], [41] presents the formulation in which the

element displacement field approximation is expressed in terms of nodal translations and

nonlinear functions of nodal rotations. Ibrahimbegović and Frey [16] discuss the locking cures

in geometrically nonlinear analysis of planar analysis of shear flexible Reissner’s beam theory.

Pak and Stauffer [25] reduce equations of curved elastic beam to a single second-order nonlin-

ear ordinary differential equation and a resulting two-point boundary value problem is solved

by a finite element method. As in [30] only the rotation function needs to be interpolated.

Kegl et al. [18], on the basis of Saje’s exact kinematics element [30], propose a modified for-

mulation of this element for shape optimal design, employing the Bezier curves. The Bezier

curves concept is also used in a recent paper by Gontier and Vollmer [12], where Simo’s

[36] geometrically exact formulation is adapted. Three-dimensional arbitrary curved beam

elements employing Reissner’s beam theory are derived by Ibrahimbegović [15]. His finite

elements assume displacement and rotation interpolations, formulate the element matrices

directly in the global coordinate system, and are free from locking. A finite volumes method

in conjunction with a mixed form variational principle is used by Franchi and Montelaghi

[11]. This approach is attractive because it allows to use only one node inside the element

and the weakest continuity for test and trial functions. Locking phenomenon is intrinsically

avoided in their elements.

The extension of an elasticity-based formulation to the analysis of an elastic-plastic beam

is by no means trivial. The literature combining plasticity, curved beams and exact geo-

metrical nonlinearity is scarce. An excellent elastic-visco-plastic formulation employing exact

kinematics, yet for straight beams, is given by Simo et al. [35]. A comprehensive list of other

references on straight beam elastic-plastic, large displacement finite element formulations is

given in [31]. Neither of those, however, employs exact kinematical relationships.

The present paper is an extension of two our previous papers: on nonlinear behavior of

straight slender elastic-plastic planar beams [31], and on nonlinear behavior of curved elastic

beams [30]. The nonlinear, geometrically exact elastic analysis of the curved beam presented
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in [30] is extended to include a general nonlinear material. The formulation can account for

a variety of nonlinear material models, but an elastic-plastic material law is presented here

for the sake of concretness. As in [30] and [31], the only unknown function that has to be

interpolated over the finite element is the rotation of the centroid axis of the beam. This

feature inherently avoids locking, and assures high accuracy and computational efficiency,

which is demonstrated by several numerical examples presented at the end of the paper. An

important difference from the formulation in [31] is that the formulation is given directly in

the global coordinate system of a structure, so that no local-global transformations of element

arrays needs to be done. The effect of shear strains is neglected but can be accounted for

easily along the lines given in [30].

2. KINEMATIC RELATIONS. CONSTITUTIVE EQUATIONS.

An undeformed beam is described by its centroid axis which is an arbitrary smooth curve

in the (x, z) plane of the fixed-in-space coordinate system with the unit base vectors ex, ey

and ez. The centroid axis of the undeformed beam is defined by the parametric representation

(x(s), z(s)), where s ∈ [0, L] is the curvilinear coordinate (the arc length) spanning the axis

of the undeformed beam of length L. The initial curvature of the beam, ϕ′0(s), is an arbitrary

function of s, too. The cross-section, A, is for simplicity assumed to be constant along the

beam, and to lay in a plane perpendicular to the centroid axis. A material point of the

beam, P , is represented by material coordinates (ξ, η, ζ), where ξ coincides with s, coordinate

η coincides with y, and ζ is perpendicular to axes ξ and η (see Fig. 1). It is furthermore

assumed that the cross-section is symmetric with respect to axis ζ. Thus, the variables used

in the formulation are not functions of coordinate y = η.

According to Reissner’s beam theory [28], components u(s) and w(s) of the displacement

vector u(s) of the centroid axis

u(s) = u(s)ex + w(s)ez (1)

are related to extensional strain of the centroid axis, ε(s), and the rotation of the centroid

axis relative to x-axis, ϕ(s), by equations

x′ + u′ − (1 + ε) cos ϕ = 0, (2)

z′ + w′ + (1 + ε) sin ϕ = 0. (3)
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Prime (′) denotes the derivative with respect to s. For a slender curved beam, extensional

strain D(s, ζ) of an arbitrary longitudinal fibre is taken to be

D(s, ζ) = ε(s) + ζ ∆ϕ′(s), (4)

where ∆ϕ′(s), the change of curvature due to deformations, is given by

∆ϕ′(s) = ϕ′(s)− ϕ′0(s); (5)

ϕ0(s) is the rotation of the undeformed centroid axis with respect to x-axis (Fig. 1). In

theoretical considerations, a nonlinear material model of the form σ = f(D) is taken into

account. A bilinear elastic-plastic material model is used in numerical examples, and defined

by the equation

σ =





E D for |D| ≤ DY

E DY sgnD + Ep(D −DY sgnD) for |D| > DY

, (6)

where E, Ep, and DY are elastic modulus, plastic modulus, and extensional yield strain,

respectively. The unloading is considered via kinematic or isotropic hardening rules.

3. PRINCIPLE OF VIRTUAL WORK

The principle of virtual work for a curved beam element of initial length L and initial

curvature ϕ′0(s), subjected to distributed loads px, pz, and my, and end-point loads Sk (k =

1, 2, . . . , 6) states [44]

∫ L

0

∫

A
σ δD dA ds =

∫ L

0
px δu ds +

∫ L

0
pz δw ds +

∫ L

0
my δϕ ds +

6∑

k=1

Sk δUk, (7)

where δD, δu, δw, δϕ, and δUk denote virtual extensional strain, virtual displacements in

x and z directions, a virtual rotation, and virtual displacements of end points, respectively.

A virtual extensional strain is related to virtual deformation quantities δε and δϕ by the

equation

δD = δε + ζδϕ′, (8)

obtained by varying eqns (4) and (5). After eqn (8) has been inserted in (7), the principle of

virtual work reads

∫ L

0
(Nc δε +Mc δϕ′)ds−

∫ L

0
px δu ds−

∫ L

0
pz δw ds−

∫ L

0
my δϕ ds−

6∑

k=1

Sk δUk = 0.(9)
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By Nc(s) and Mc(s) we denote the cross-sectional stress-resultants (the axial force and the

bending moment) defined by equations

Nc(s) =
∫

A
σ(s, ζ) dA, (10)

Mc(s) =
∫

A
ζσ(s, ζ) dA. (11)

In order to account for exact kinematic eqns (2) and (3) the generalized principle of virtual

work is employed by introducing eqns (2) and (3) into the principle of virtual work through

Lagrangian multipliers λ1(s) and λ2(s). Equations
∫ L

0
[x′ + u′ − (1 + ε) cos ϕ]λ1 ds = 0,

∫ L

0
[z′ + w′ + (1 + ε) sin ϕ]λ2 ds = 0

(12)

are varied with respect to u, w, ε, ϕ, λ1, and λ2, and the resulting equations (see [31] for more

details) are added to the principle of virtual work, eqn (9). After the terms Mc δϕ′, λ1 δu′,

and λ2 δw′ are integrated by parts, the extended eqn (9) yields

0 =
∫ L

0
[Nc − λ1 cos ϕ + λ2 sin ϕ] δε ds +

+
∫ L

0
[−M′

c + (1 + ε)(λ1 sin ϕ + λ2 cos ϕ)−my] δϕ ds +

+
∫ L

0
(−px − λ′1) δu ds +

∫ L

0
(−pz − λ′2) δw ds +

+
∫ L

0
[x′ + u′ − (1 + ε) cos ϕ] δλ1 ds +

+
∫ L

0
[z′ + w′ + (1 + ε) sin ϕ] δλ2 ds −

−
6∑

k=1

Sk δUk + λ1(L) δu(L)− λ1(0) δu(0) + λ2(L) δw(L) −

− λ2(0) δw(0) +Mc(L) δϕ(L)−Mc(0) δϕ(0).

(13)

Here, variations δu, δw, δε, δϕ, δλ1, and δλ2 are arbitrary independent functions, while

variations δU1 = δu(0), δU2 = δw(0), δU3 = δϕ(0), δU4 = δu(L), δU5 = δw(L), and δU6 =

δϕ(L) are arbitrary independent parameters. Therefore, the coefficients at the variations

should be zero for eqn (13) to be satisfied, which yields the following set of equilibrium and

kinematic equations, and the related natural boundary conditions:

x ∈ [0, L] : δε → Nc − λ1 cos ϕ + λ2 sin ϕ = 0, (14)

x ∈ (0, L) : δϕ → −M′
c + (λ1 sin ϕ + λ2 cos ϕ)(1 + ε)−my = 0, (15)

δu → λ′1 + px = 0, (16)
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δw → λ′2 + pz = 0, (17)

δλ1 → x′ + u′ − (1 + ε) cos ϕ = 0, (18)

δλ2 → z′ + w′ + (1 + ε) sin ϕ = 0, (19)

x = 0 : δU1 → S1 + λ1(0) = 0, (20)

δU2 → S2 + λ2(0) = 0, (21)

δU3 → S3 +Mc(0) = 0, (22)

x = L : δU4 → S4 − λ1(L) = 0, (23)

δU5 → S5 − λ2(L) = 0, (24)

δU6 → S6 −Mc(L) = 0. (25)

Eqns (14)–(19) build up a system of six algebraic-differential equations for six unknown func-

tions λ1(s), λ2(s), ϕ(s), ε(s), u(s), and w(s) with the related boundary conditions, eqns

(20)–(25). Fortunately, all the equations are not coupled. Eqns (14), (16), and (17) can be

solved separately. In fact, eqns (16) and (17) may easily be integrated to obtain

λ1(s) = λ0
1 −

∫ s

0
px(ξ) dξ, λ0

1 = λ1(0),

λ2(s) = λ0
2 −

∫ s

0
pz(ξ) dξ, λ0

2 = λ2(0).

(26)

Eqn (14) furnishes the value of extensional strain ε as a function of ϕ, λ0
1, and λ0

2, which

can be, for a chosen nonlinear constitutive equation, obtained numerically. Once eqns (14),

(16), and (17) are satisfied, the first, third, and fourth integral in eqn (13) vanish. After

partially integrating the terms u′δλ1, w′δλ2, M′
cδϕ, and considering that δλ1(s) = δλ0

1 and

δλ2(s) = δλ0
2, the generalized principle of virtual work (13) may be rewritten as

0 =
[
−

∫ L

0
(1 + ε) cos ϕds + x(L)− x(0) + U4 − U1

]
δλ0

1 +

+
[ ∫ L

0
(1 + ε) sin ϕ ds + z(L)− z(0) + U5 − U2

]
δλ0

2 +

+
∫ L

0
{Mcδϕ

′ + [(1 + ε)(λ1 sin ϕ + λ2 cos ϕ)−my] δϕ} ds −

− (S1 + λ0
1) δU1 − (S2 + λ0

2) δU2 − S3 δU3 −
− [S4 − λ1(L)] δU4 − [S5 − λ2(L)] δU5 − S6 δU6.

(27)

As a result, there is only one unknown function – rotation ϕ(s) in eqn (27) which needs

to be approximated in the finite element implementation. This is an important advantage

compared to those formulations where more than one function have to be approximated.
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Hence the problem of inconsistent field interpolations does not arise and membrane locking

phenomenon is inherently avoided.

4. FINITE ELEMENT FORMULATION

Using M equidistant points, the finite element is divided into M − 1 sections (Fig. 2).

Therefore, rotation ϕ(s) is approximated by a set of Lagrangian polynomials Ii(s) (i =

1, 2, . . . , M) of order (M − 1) by the expression

ϕ(s) =
M∑

i=1

Ii(s)ϕi, (28)

where ϕi (i = 1, 2, . . . , M) are nodal points rotations. From eqn (28) it follows

ϕ′(s) =
M∑

i=1

I ′i(s)ϕi, δϕ(s) =
M∑

i=1

Ii(s)δϕi, δϕ′(s) =
M∑

i=1

I ′i(s)δϕi. (29)

By using eqns (28) and (29) in eqn (27), and by zeroing factors of independent variations δλ0
1,

δλ0
2, δϕi (i = 1, 2, . . . , M), δU1, δU2, δU4, and δU5, we obtain the system of M + 6 nonlinear

equations for M + 6 unknown parameters λ0
1, λ0

2, ϕi (i = 1, 2, . . . , M), U1, U2, U4, and U5:

f1(λ
0
1, λ

0
2, ϕi, U1, U4) = −

∫ L

0
(1 + ε) cos ϕds + x(L)− x(0) + U4 − U1 = 0, (30)

f2(λ
0
1, λ

0
2, ϕi, U2, U5) =

∫ L

0
(1 + ε) sin ϕ ds + z(L)− z(0) + U5 − U2 = 0, (31)

f2+i(λ
0
1, λ

0
2, ϕi) =

∫ L

0
{McI

′
i + [(1 + ε)(λ1 sin ϕ + λ2 cos ϕ)−my] Ii} ds− S∗i = 0,

(i = 1, 2, . . . ,M),
(32)

f2+M+1(λ
0
1) = −(S1 + λ0

1) = 0, (33)

f2+M+2(λ
0
2) = −(S2 + λ0

2) = 0, (34)

f2+M+3(λ
0
1) = −(S4 − λ1(L)) = 0, (35)

f2+M+4(λ
0
2) = −(S5 − λ2(L)) = 0. (36)

In eqn (32), S∗i are defined as follows: S∗1 = S3, S∗M = S6, S∗i = 0 for i = 2, 3, . . . ,M − 1.

The system of nonlinear eqns (30)–(36) is solved by Newton’s iteration method. In the

iteration step k+1 (k = 0, 1, 2, . . .), eqns (30)–(36) are linearized yielding a symmetric system

of M + 6 linear equations for unknown increments ∆λ0
1, ∆λ0

2, ∆ϕi (i = 1, 2, . . . ,M), ∆U1,

∆U2, ∆U4, and ∆U5:
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


∂f1

∂λ0
1

∂f1

∂λ0
2

∂f1

∂ϕ1

· · · ∂f1

∂ϕM

∂f1

∂U1

0
∂f1

∂U4

0

∂f2

∂λ0
1

∂f2

∂λ0
2

∂f2

∂ϕ1

· · · ∂f2

∂ϕM

0
∂f2

∂U2

0
∂f2

∂U5

∂f3

∂λ0
1

∂f3

∂λ0
2

∂f3

∂ϕ1

· · · ∂f3

∂ϕM

0 0 0 0

...
...

...
. . .

...
...

...
...

...

∂f2+M

∂λ0
1

∂f2+M

∂λ0
2

∂f2+M

∂ϕ1

· · · ∂f2+M

∂ϕM

0 0 0 0

∂f2+M+1

∂λ0
1

0 0 · · · 0 0 0 0 0

0
∂f2+M+2

∂λ0
2

0 · · · 0 0 0 0 0

∂f2+M+3

∂λ0
1

0 0 · · · 0 0 0 0 0

0
∂f2+M+4

∂λ0
2

0 · · · 0 0 0 0 0




[k]





∆λ0
1

∆λ0
2

∆ϕ1

...

∆ϕM

∆U1

∆U2

∆U4

∆U5





= −





f1

f2

f3

...

f2+M

f2+M+1

f2+M+2

f2+M+3

f2+M+4





[k]

. (37)

Subscript [k] indicates that a term is evaluated using values obtained at the k-th iteration step.

From M +6 unknown parameters only six are identified as external: ∆U1, ∆U2, ∆U3 = ∆ϕ1,

∆U4, ∆U5, and ∆U6 = ∆ϕM . Others are considered as being internal degrees of freedom and

are eliminated on the element level by a standard condensation algorithm. In the iteration

step k, the condensed element tangent stiffness matrix, K[k], and the associated unbalanced

nodal force vector, F[k], are thus related by a linear equation

K[k] ∆U[k] = F[k], (38)

where ∆U[k] = 〈∆U1, ∆U2, ∆U3, ∆U4, ∆U5, ∆U6〉 is the vector of external degrees of freedom.

Improved values of the unknowns are obtained from the equation

U[k+1] = U[k] + ∆U[k], k = 0, 1, 2, . . . (39)

The system of eqns (38) corresponds to the global coordinate system (x, z) of a structure,

meaning, that, within the present formulation, there is no need of the coordinate transform-

ation.

The determination of the tangent stiffness matrix and the unbalanced load vector is ex-

plained in detail in [31]. The explicit expressions of the coefficients of the system matrix of

eqn (37) are given in Appendix. As observed in Appendix, integrations along the beam axis
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(eqns (A) of Appendix), and integrations over the cross-section (i.e., cross-sectional stiffnesses

C11, C12, and C22, see eqns (B) of Appendix), are required.

In some specific examples it may indeed be possible to evaluate integrals over the cross-

section analytically. For the linear elastic material law this evaluation is straight-forward. If

the bilinear hyper-elastic type of elastic-plastic law is employed, analytical evaluation can also

be easily performed since the loading history is not important. Otherwise the numerical in-

tegration is needed. Lobatto’s or Gaussian integration rules are usually used. Cross-sectional

integrals C11, C12, and C22 (see eqns (B) of Appendix) assume the integration of the uniax-

ial tangent modulus of material, Et = ∂σ/∂D, over the cross-section. Since Et is generally

not continuous function over the cross-section, the numerical integration may lead to rather

inaccurate results, as it has been shown in [31] by a means of a simple example. The in-

accuracies may be significant and an increased number of integration points may, somewhat

surprisingly, lead to even worse results. This will further be commented upon in numerical

examples. Note, however, that the same problem of integrating discontinuous functions to

obtain cross-sectional stiffnesses arises in any elastic-plastic beam, plate or shell theory. An

extensive overview of numerical integration strategies is given in [4], but an optimal method

has still to be derived.

Because trigonometric functions appear in eqns (A) of Appendix, the integration along the

element axis can not be performed analytically. Therefore, the numerical integration must

be used. Moreover, in a partially plastified beam element for bilinear elastic-plastic material

model, cross-sectional stiffnesses C11, C12, and C22 are no longer differentiable functions of s

(though they are still continuous; see numerical example 6.3); consequently, the integrands in

eqns (A) in a partially plastified element are not differentiable functions of s either. This is in

conflict with a basic assumption of most of common numerical integration algorithms and is

the source of an additional error of numerical integration. Please note that the same problem

arises with other finite element formulations. Furthermore, in the analysis of elastic-perfectly

plastic frames under practically important loads the plastic hinge usually first occurs at the

end points of a beam or a column element. It is important, then, that an integration point

coincides with a possible plastic hinge. Lobatto’s integration scheme satisfies this condition

and is in this regard the preferred option. On the other hand, if material is elastic, C11,

C12, and C22 are constant and the preferred integration method is Gaussian, because it is

more accurate than Lobatto’s. A method that would correctly accounts for these problems

and would work equally well in purely elastic and in plastic regime is not known. In the
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context of an elastic-plastic frame analysis, Lobatto’s integration scheme was probably first

used by Banovec [2]. The order of Lobatto’s integration for straight beam finite element is

theoretically discussed and numerically proved in [31], and is found to be equal to M−1. The

conclusion is also valid for curved beam elements; the arguments will therefore be omitted.

5. DETERMINATION OF INTERNAL FORCES AND DISPLACEMENTS

An analysis of eqns (14) and (26) provides a physical meaning of functions λ1(s) and λ2(s):

these are the cross-sectional internal forces with respect to the global coordinate system

(x, z). Therefore, once ε(s), ϕ(s), λ1(s), and λ2(s) are obtained as solutions of eqns (14), (26)

and (37), the internal axial and shear forces, N (s) and Q(s), respectively, with respect to the

element material coordinate system (ξ, η, ζ) can be evaluated by the coordinate transformation

equations

N (s) = λ1(s) cos ϕ(s)− λ2(s) sin ϕ(s), (40)

Q(s) = λ1(s) sin ϕ(s) + λ2(s) cos ϕ(s). (41)

The internal bending moment is determined from an equilibrium eqn (15)

M(s) = −S3 +
∫ s

0
{[1 + ε(ξ)]Q(ξ)−my(ξ)} dξ. (42)

It is important to notify that the internal forces evaluated by (40)–(42) are determined from

global and local equilibrium conditions and are termed equilibrium internal forces. An al-

ternative is using eqns (10) and (11), which requires the evaluation of extensional strain D

and the integration of stress σ over the cross-section. As already mentioned, these alternative

internal forces are termed cross-sectional stress-resultants. Since eqn (14) is fully satisfied,

cross-sectional axial force Nc equals equilibrium axial force N , i.e., Nc = N . In contrast,

eqn (15) is in the present approach satisfied in an integral sense only, thereby a discrepancy

between cross-sectional bending moment Mc and equilibrium bending moment M along the

axis of the beam usually emerges. For a linear elastic material, the discrepancy is often

negligible. For elastic-plastic material, a small but not negligible difference between the two

moments may develop when a coarse mesh is used, as shown in numerical examples.

Displacements u(s) and w(s) and the corresponding deformed shape of the beam are ob-

tained by the numerical integration of kinematical eqns (3) and (4) only after the iteration
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process has been completed. The displacements are not needed in the formation of the iter-

ation equation (37). They are computed only at those locations where desired, and with a

numerical integration of a chosen accuracy.

6. NUMERICAL EXAMPLES

6.1. A stability of a shallow arch: a theoretical and experimental verification

The stability of planar circular shallow slender arches with a radius of curvature R = 254 cm

was theoretically and experimentally studied by Dickie and Broughton [9]. The arches were

made from thin perspex (polymethylmethacrylate) strip and a series of tests were conducted

[9]. Three cases with different support conditions were considered (Fig. 3): case (1) both

supports are hinged; case (2) one support hinged, one clamped; case (3) both supports are

clamped. Two different rectangular cross-sections were used in analyses: case (a) the height

of the cross-section, h, is 0.95 cm; (b) the height of the cross-section is 1.27 cm. Various types

of radial loading, including a vertical point load at the center of the arch, were applied. Only

the results for the center load are compared in the present paper.

The arch is modeled by the four element finite element mesh. The number of interpolation

points is taken to be M = 6. The integration over the cross-section is analytical. The

integration along the element axis is performed by Lobatto’s rule using five integration points.

In [9] the exact theoretical results for the critical load, considering only elastic material

law, mostly overestimated the critical load obtained by their experiments. This may in part

be due to an experimental error. As reported in [9], the experimental critical loads given in

the paper represent the mean values obtained from two separate tests with the variation being

as high as ± 5 %. Another cause of the discrepancy might be due to inelasticity of material.

Therefore, our numerical analyses have been performed for elastic and elastic-perfectly plastic

material. The stress-strain diagram of material and extensional yield strain DY are not given

in [9]. The latter is taken to be 0.004 in our calculations. The results for critical loads reported

in [9] are compared to our results in Table 1. The results obtained by elastic model compare

well with those reported in [9] as exact theoretical results. In contrast, results obtained by

the experiments differ from elastic-model results. If elastic-perfectly plastic material model is

considered, the discrepancy between the experimental and numerical results decreases. For

example, in cases (2b) and (3b) differences are as high as 10 %, if elastic model is assumed,

and only 1 %, if elastic-plastic model is used. The error decreases in cases (2a) and (3a), too.

For two-hinged arches, cases (1a) and (1b), however, the effect of plasticity is negligible. A
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similar, yet even more pronounced overestimation of the theoretical critical load for an elastic

shallow clamped arch subjected to a point load, when compared to an experimental value,

was reported in [38].

6.2. A stability of a deep circular arch

The elastic stability of a slender clamped-hinged deep arch has been among first studied

by DaDeppo and Schmidt [8] under the assumptions of axial inextensibility and shear rigidity

(Fig. 4). This example is characterized by large pre-buckling asymmetrical displacements.

The numerical solution given in [8] is very accurate and had served as a reference solution

in many papers (e.g. [3], [11], [14], [15], [16], [18], [33], [35], [37], [43], [45]). In [8], and as

explained in [7], a combination of a finite-difference method and a Runge-Kutta procedure

was used, employing a very dense finite difference mesh of 200 intervals. The error of the

critical load determined by their method is estimated to be roughly 0.03 % [7].

In our case, the arch is modeled by the meshes of 2, 4, or 8 finite elements. The number of

interpolation points, M , in each element is taken to be 9. The 8-point Gaussian integration

is employed along the beam axis. The integration over the cross-section is analytical.

Several authors reported the finite element solution of the problem. Their results for the

critical load and the results of the present study are displayed in Table 2. As it can be seen, the

present method gives the most accurate results while employing the least number of degrees

of freedom. The results are accurate even though the number of elements is as low as four.

For four or eight element meshes, the results coincide in five significant figures. It is therefore

assumed that the result for critical load, Pcr = 897.29 kN, is correct to five significant figures.

The relative difference between this result and the one given in [8] is 0.03 % which is just the

error expected in [7, 8]. The relative error of the critical load obtained in works cited in Table

2 ranges from 0.00 % to 4.54 %. The deformed shape of the arch prior to buckling is shown

in Fig. 4; observe that the associated vertical displacement of the apex is roughly 1.137 R.

6.3. Elastic-plastic behavior of a ring under a cyclic force

This problem has thoroughly been examined by Coulter and Miller [6]. A ring of a square

cross-section (1.27 cm × 1.27 cm) shown in Fig. 5 is submitted to two opposite compression

forces. The maximum force applied on the ring is 17.79 kN. The load is at first increased

in ten equal load steps, and then decreased in ten equal steps to zero. Material is taken to

be elastic-plastic. In [6] a three-linear stress-strain model has been applied. In the present

study, the latter is substituted by an approximately equivalent bilinear model. The kinematic
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hardening is assumed. Due to the symmetry of the ring, only a quarter of the ring is modeled

with 1, 2, 4, 8, or 16 curved finite elements. Elements with six interpolation points are used

(M = 6).

Due to the elastic-plastic material model, Lobatto’s integration formulae are taken with

five integration points. Lobatto’s five-point integration is used over the cross-section, too.

The cross-section is modeled by one, two or four equal subsections, respectively.

The load–vertex deflection diagram obtained by one and 16-element meshes is compared to

those obtained in [6] using 200 elements, and shown in Fig. 6. There is a very good agreement

between the results.

The results for the vertex deflection obtained with different numbers of elements and dif-

ferent numbers of subsections are shown in Table 3. The final vertex deflection after the

complete unloading (P = 0) is examined (Fig. 7). The vertex displacement obtained by

using four elements and two sub-sections coincides with the displacement 2.9256 cm obtained

by the most refined mesh (16 elements and 4 sub-sections) in four significant figures. The

relative error is 0.026 %. The error obtained by using one element and one sub-section is only

10.6 %. The vertex deflection reported by Coulter and Miller [6] is 2.8321 cm (the relative

difference is 3.2 %). However, it can be seen from Table 3 that the results do not converge

monotonically to a limiting value. This is because the integrands of the cross-section integrals

are not continuous functions of ζ, and the integrands of the axial integrals are not differen-

tiable functions of s. Consequently, the monotonic convergence of the numerical integration is

not assured (see the relevant discussion in [31]). In Fig. 8 the variation of functions 1/C11 and

C22 − C2
12/C11, which occur in eqn (37) (see also Appendix), along the length of the quarter

of the ring (Fig. 5) for four elements and four sub-sections finite element mesh are shown at

P = 17.79 kN. Observe that the two functions which appear to be the multiplication factors

in integrands of the coefficients of the system of eqn (37) (see Appendix) are not differentiable.

Therefore, the coefficients of the tangential stiffness matrix of a partially plastified element

can not be evaluated with monotonic convergence rate by standard integration methods.

When interpreting results of an elastic-plastic analysis of beams, it is important to notify

the difference between the cross-sectional resultants (Nc and Mc) and the equilibrium axial

force and the bending moment (N and M). The cross-sectional resultants are evaluated by

the integration of eqns (10) and (11), whereas the equilibrium axial force and bending moment

are obtained from eqns (40) and (42). By a comparison of eqns (14) and (40), we observe that

the cross-sectional resultant and equilibrium axial forces are equal: Nc = N . A difference
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arises in the case of the bending moment only. For the sake of error estimation, the bending

moments at points A, B, and C (see Fig. 5) at the maximum load factor are considered.

The values obtained by three different finite element meshes are shown in Table 4. The cross-

sectional resultant bending moment is not continuous over the boundaries of an element,

whereas the equilibrium bending moment is. Therefore, there are two different values of the

cross-sectional bending moment at mid-point C, as shown in Table 4. The results show that

the discrepancy is rather big at point C, yet negligible at points A and B, even though a very

coarse finite element mesh of two elements is used. For refined meshes (4 and 16 elements),

the difference becomes negligible. Furthermore, it can be seen that the equilibrium bending

moment but not the cross-sectional one is an excellent approximation even if a very coarse

mesh is used.

The circular ring has also been modeled by 4 and 16 elements describing the whole ring.

Two types of boundary conditions have been applied: (a) a clamped support at the bottom

of the ring (Fig. 9a), and (b) the same as in (a) but an additional support preventing sway

has been added (Fig. 9b). The results obtained by two supports – full ring model coincide

precisely with the results obtained by the quarter ring model. In case (a) the results coincide

only for first three load increments. Then an asymmetrical buckling takes place at the load

5.713 kN, which is roughly 32 % of the maximum load of case (b). At this point a horizontal

in-plane sway occurs. The same value of the critical load (5.713 kN) has been obtained by

both finite element meshes (4 and 16 elements).

Numerical experimentations prove a quadratic rate of convergence of global Newton’s ite-

ration in elastic and plastic analyses. Four or five iterations are usually required to achieve

the accuracy 10−9 of nodal displacements and rotations.

6.4. A clothoid shaped spring

A clothoid shaped spring of length L is clamped at one end and loaded by a point moment

MB at the other (Fig. 10). The spatial coordinates of its centroid axis are defined by the

parametric equations

x(s) =
∫ s

0
cos

u2

2a2
du, z(s) =

∫ s

0
sin

u2

2a2
du, (43)

where a is chosen to be 1. The clothoid is characterized by a linear dependence of the initial

curvature on s. Material is taken to be bilinear elastic-plastic.

The problem is first solved analytically. It is easy to see that the axial and the shear forces

are equal to zero, whereas the bending moment is constant along the spring and equal to
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applied external moment MB. Therefore, extensional strain ε of the centroid axis is also

equal to zero. The governing differential equation (15) takes a simple form

M′
c(∆ϕ′) = 0, where ∆ϕ′ = ϕ′ − ϕ′0. (44)

The related boundary conditions are

Mc(∆ϕ′(L)) = MB, (45)

ϕ(0) = 0. (46)

Once the constitutive relation σ = σ(D) is assumed, a functional relationship between Mc

and ∆ϕ′ can be derived for different cross-sections. For the case of a rectangular cross-section

(width b and height h), the relationship (11) can be proved to assume the form

Mc(∆ϕ′)=





∆ϕ′
b h3

12
E, |∆ϕ′| ≤ 2

DY

h

DY (E−Ep)

(
h2

4
− D2

Y

3(∆ϕ′)2

)
b sgn∆ϕ′ + ∆ϕ′

b h3

12
Ep, |∆ϕ′| > 2

DY

h

. (47)

By considering boundary conditions (45) and (46) and after solving of eqns (44) and (47), we

obtain

∆ϕ′(MB) = const. (48)

This shows that the change of rotation is a linear function of s and that the deformed shape

of the plastified spring retains the characteristics of the clothoid.

Different finite element meshes (one, two, and three curved elements, with M = 6 inter-

polating points) have been employed and the results compared to analytical result obtained

from eqn (48). The integration over the cross-section has been performed either analytically

or numerically (using one or two sub-sections, Gaussian rule, and 10 integration points). The

integration along the length of the element is Gaussian with 10 integration points. Moment

MB increases from 0 to the final value 2.4 in eight equal increments (∆MB = 0.3). The

descriptive data are given in Fig. 10. All data and results are presented in consistent physical

units.

The plastification occurs first at the outer fibres at MB = 1.225. For MB smaller than

1.225, the rotation as well as tip displacements obtained by FEM analysis coincide with the

analytical results regardless of the finite element mesh used. Results corresponding to a very

large load MB = 2.4 are, however, less accurate. The rotation of the centroid axis at the
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free end of the spring is considered first. When the analytical integration over the cross-

section has been used, the FEM results, regardless of the number of elements, coincide with

analytical ones (see Table 5). Note that the change of the tip rotation is extremely large,

∆ϕB = 60.87 ≈ 19π (see Figs. 11 and 13). The results are less accurate, though, if the tip

displacements are considered (see Table 5). In the present numerical example, displacements

evaluated by FEM are virtually exact, if the three-element mesh in conjunction with the

analytical integration over the cross-section is used. The results in Table 5 further indicate

the importance of an accurate cross-sectional integration.

In Fig. 11 the relation between the change of the tip rotation and the applied moment

is shown. In elastic region, i.e., for the applied moment MB lower than 1.225, the relation

is linear even though displacements and rotations are large (the change of rotation ∆ϕB for

MB = 1.225 is 9.80). After the first plastification occurs, the relation becomes nonlinear.

The relation between tip displacements and the applied moment is shown in Fig. 12. There

is no evident part for which the linear relation may be assumed. Yet it is interesting that

both displacements approach the value of approximately −1.0 for a very large moment. The

deformed shapes of the spring for some characteristic load steps are shown in Fig. 13. The

deformed shape at the maximum load, MB = 2.4, approaches a circle and is not shown for

the sake of clarity.

6.5. A diamond shaped straight-beam frame

Here we want to show that a straight beam can accurately be modeled by the curved

beam element, by simply taking the initial curvature to be zero. A diamond shaped frame,

composed from four equal straight beams, and subjected to a pair of forces at hinged joints

(Fig. 14a), has been solved analytically by means of elliptic integrals for elastic material by

Jenkins et al. [17], whereas Mattiasson [22] presented their solution in tabular form, accurate

to six significant figures. The problem has also been studied by Surana and Sorem [41]. A

finite element model encompasses only a quarter of the structure (Fig. 14b). The elastic

material model and the effect of plastification are considered here. Extensional yield strain

DY is taken to be either 0.10, 0.05, or 0.01, and the plastic modulus of material, Ep, equals

one tenth of the elastic modulus, Ep = E/10. The kinematic hardening is considered during

unloading.

One, two, and four elements with M = 6 have been used. The numerical integration

along the element axis is Gaussian with five integration points, if the elastic material model is

considered. For elastic-plastic analyses, Lobatto’s integration rule with five integration points
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is employed.

Elastic material is considered first. The results obtained by different finite element meshes

for the elastic analysis are presented in Table 6 and compared to exact solutions of Mattiasson

[22] for PL2/EI = 10. One load step is used and typically six iterations are needed to

obtain the results accurate to six significant figures. The results for two and four element

meshes coincide with the exact solution. The maximum relative error of one-element mesh is

approximately 0.05 % for the horizontal displacement of point A. The differences for others

quantities are even smaller.

The effect of the spread of the plastification during loading and unloading on the tip

deflection is shown in Fig. 15. Observe that the behavior of the diamond shaped structure

subjected to the loading-unloading cycle is somehow similar to the behavior of the circular

ring presented in Section 6.3.

In the present example, the straight beam has been modeled by the curved beam element,

setting its initial curvature to zero. The computations show that this not only works theoreti-

cally correct, but that it is also a computationally efficient procedure. The advantage is that

no transformations from local to global coordinate systems need to be done, thus enhancing

the computational efficiency.

7. CONCLUSIONS

In this paper the finite element formulation of the geometrically nonlinear elastic-plastic

static behavior of initially arbitrary curved planar beams has been presented, and a family

of new computationally more efficient finite elements derived as known so far. The main

characteristic of the formulation is that only one function, the rotation of the centroid axis,

needs to be interpolated. Hence, these elements are inherently locking-free and need less

degrees of freedom for a given accuracy. Exact kinematic equations for slender curved beams

given by Reissner [28] have been employed, yet the effect of shear strains is neglected in the

present formulation. However, the effect of shear may relatively easily be incorporated in this

formulation, similarly as done in [30] for elastic material.

Newton’s method has been applied for the solution of equilibrium equations and a quadratic

convergence rate is proved in elastic as well in plastic analyses.

All of the numerical results presented show excellent accuracy and high computational

efficiency of the derived elements even though the finite element mesh is very coarse and the

initial curvature is not a constant. This enables modeling of beams of complicated initial
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curvature with only a few finite elements.

Experience with elastic-plastic beam analyses show that it is difficult to obtain strictly

monotonicaly convergent results. The main problem lies in the numerical integration required

in the tangential stiffness matrix evaluation, which in plastic region has non-differentiable

integrands. When the integrand is not differentiable, standard numerical integration schemes

are not capable of giving monotonicaly convergent results for reasonably low numbers of

integration points. The only means of solution to this problem is to identify the points of

integrand’s slope discontinuity and to integrate by subregions. However, such a solution

scheme would not be easily applicable and is computationally very demanding.

An advantage of our finite elements is also the way the internal forces are determined.

The evaluation of the internal forces does not involve the differentiation of basic variables.

Therefore, the internal forces are obtained with the same degree of accuracy as basic variables,

i.e., displacements and rotations. This is shown in a numerical example. Moreover, it is shown

that an internal force evaluated alternatively by a differentiation of basic variables may differ

considerably in plastic regions compared to the more accurate internal force evaluated from

equilibrium equations. Furthermore, internal forces evaluated from equilibrium equations

satisfy the continuity condition over the beam element border where required, which is not

the case if internal forces are evaluated otherwise.

The essential unknown variables of the finite element correspond to the fixed-in-space co-

ordinate system of a structure. The coordinate transformation from the local to the global

coordinate system is therefore not needed. This feature makes the formulation computation-

ally still more attractive and efficient, especially when compared to the corotational formu-

lations, and greatly facilitate the implementation of the present finite element formulation in

the sensitivity analysis [18].
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APPENDIX

Coefficients of the system of eqn (37)

Using eqns (30)–(36) and expressions derived in [31], and introducing notations gm, hm,

and C̄22

gm =
1

C11

(I ′mC12 + ImQ),

hm = (1 + ε)Im,

C̄22 = C22 − C2
12

C11

,

non-zero coefficients of the system of eqns (37) take the forms:

∂f1

∂λ0
1

= −
∫ L

0

cos2 ϕ

C11

ds

∂f1

∂λ0
2

=
∂f2

∂λ0
1

=
∫ L

0

sin ϕ cos ϕ

C11

ds

∂f1

∂ϕm

=
∂f2+m

∂λ0
1

=
∫ L

0
(gm cos ϕ + hm sin ϕ) ds

∂f1

∂U1

=
∂f2

∂U2

=
∂f2+M+1

∂λ0
1

=
∂f2+M+2

∂λ0
2

= −1

∂f1

∂U4

=
∂f2

∂U5

=
∂f2+M+3

∂λ0
1

=
∂f2+M+4

∂λ0
2

= 1

∂f2

∂λ0
2

= −
∫ L

0

sin2 ϕ

C11

ds

∂f2

∂ϕm

=
∂f2+m

∂λ0
2

=
∫ L

0
(−gm sin ϕ + hm cos ϕ) ds

∂f2+i

∂ϕm

=
∫ L

0

{
I ′i I ′mC̄22 − C12

C11

(ImI ′i + I ′mIi)Q+

[
(1 + ε)N − Q2

C11

]
ImIi

}
ds





(A)

Coefficients C11, C12, and C22 denote tangent stiffnesses of the cross-section, A(s), and are

obtained by integrations over the cross-section:

C11(s) =
∫

A(s)
Et dA

C12(s) =
∫

A(s)
ζEt dA

C22(s) =
∫

A(s)
ζ2Et dA





(B)

Et denotes the uniaxial tangent modulus of material: Et = ∂σ/∂D. In an elastic region it

corresponds to modulus of elasticity (Et = E), whereas in a plastic region it is equal to plastic

hardening modulus Et = Ep. N and Q are given by eqns (40) and (41).

Please observe the simplicity of mathematical form of expressions in these equations.
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Table 1: The critical load for a shallow arch (in N)

Case
Method

(1a) (1b) (2a) (2b) (3a) (3b)

Exact solution (elastic) [9] 36.5 85.5 39.6 93.5 45.4 106.4

Experiment [9] 42.8 87.7 38.3 85.5 43.2 96.2

present (elastic) 36.5 86.0 39.6 94.0 45.9 106.4

present (elastic–plastic) 36.5 85.5 38.7 85.5 44.5 96.9
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Table 2: The comparison between FEM results

Method No. of elements Critical load |Error|
[kN] [%]

Borri, Bottasso [3] 10 907 1.08

DaDeppo, Schmidt [8] 200† 897 0.03

Franchi, Montelaghi [11] 40 898.4 0.12

Hsiao, Hou [14] 30 938 4.54

Ibrahimbegović [15] 20 897.3 0.00

Ibrahimbegović, Frey [16] 20 897.5 0.02

Kegl et al. [18] 4 897.39 0.01

Sandhu et al. [33] 6 897.48 0.05

Simo et al. [35] 20 906 0.97

Simo et al. [37] 20 907 1.08

Wagner [43] 20 927 3.31

Wood, Zienkiewicz [45] 16 924 2.98

present (M = 9) 2 904.53 0.81

4 897.29 0.00

8 897.29 0.00

† 200 refers to the number of finite difference intervals
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Table 3. Vertex deflection after the com-

plete unloading (in cm)

No. of sub-sections
No. of elements

1 2 4

1 2.6462 2.6142 2.6180

2 2.8377 2.9088 2.9088

4 2.8616 2.9263 2.9268

8 2.8529 2.9238 2.9248

16 2.8562 2.9238 2.9256
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Table 4. Equilibrium (M) and cross-sectional (Mc) bending moments (in

kNm) at P = 17.79 kN

A B C
No. of elem.

(M = 6) M Mc M Mc M M1
c M2

c

2 −1.378 −1.381 1.610 1.616 0.0210 0.0075 0.0208

4 −1.376 −1.375 1.610 1.611 0.0224 0.0220 0.0221

16 −1.377 −1.377 1.610 1.610 0.0221 0.0221 0.0221
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Table 5. Tip rotation and displacements at MB = 2.4

No. of Int. over the ∆ϕB |error| uB |error| wB |error|
elements cross-section [%] [m] [%] [m] [%]

1 analytical 60.86994 0.00 −1.052526 3.30 −1.330615 26.71

1 sub-sect. 63.62447 4.53 −2.363520 117.15 −0.132370 87.40

2 sub-sect. 61.02694 0.26 −1.166368 7.16 −1.378778 31.29

2 analytical 60.86994 0.00 −1.076654 1.08 −1.044904 0.50

1 sub-sect. 63.62447 4.53 −1.177811 8.21 −0.921814 12.22

2 sub-sect. 61.02694 0.26 −1.088770 0.03 −1.050793 0.06

3 analytical 60.86994 0.00 −1.088411 0.00 −1.050181 0.00

1 sub-sect. 63.62447 4.53 −1.200054 10.26 −0.919354 12.46

2 sub-sect. 61.02694 0.26 −1.101100 1.17 −1.055811 0.54

exact [eqn (48)] 60.86994 −1.088418 −1.050164
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Table 6. Displacements and internal forces at PL2/EI =

10. Elastic material

No. of elem.
uA

L

wB

L
ϕB

MAL

EI

1 −0.12730 1.30589 1.34277 −5.79810

2 −0.12724 1.30577 1.34277 −5.79867

4 −0.12724 1.30578 1.34277 −5.79866

exact [22] −0.12724 1.30578 1.34277 -5.79867
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Fig. 1. A beam element. Global and material coordinate systems.

Fig. 2. Interpolation points of a finite beam element.

Fig. 3. A shalow circular arch.

Fig. 4. A deep circular arch.

Fig. 5. A circular ring subjected to a cyclic force P .

Fig. 6. A circular ring. Load–deflection relationship.

Fig. 7. Deformed shapes of a circular ring for P = 1.779 f kN (f = 0,±1,±2, . . . ,±10).

Fig. 8. Variation of 1/C11 and C22 − C2
12/C11 along the quarter of the ring at P = 17.79 kN.

Fig. 9. Finite element model of a complete circular ring.

Fig. 10. A clothoid shaped spring.

Fig. 11. A clothoid shaped spring. Moment – tip rotation curve.

Fig. 12. A clothoid shaped spring. Moment – tip displacements curve.

Fig. 13. Deformed shapes of a clothoid shaped spring.

Fig. 14. A diamond shaped frame and a computational model.

Fig. 15. A diamond shaped frame. Force – tip deflection curve.
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Saje, Turk, Kalagasidu, Vratanar, Figure 1.
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Saje, Turk, Kalagasidu, Vratanar, Figure 2.
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Saje, Turk, Kalagasidu, Vratanar, Figure 3.
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Saje, Turk, Kalagasidu, Vratanar, Figure 4.
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Saje, Turk, Kalagasidu, Vratanar, Figure 5.
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Saje, Turk, Kalagasidu, Vratanar, Figure 6.

37



Saje, Turk, Kalagasidu, Vratanar, Figure 7.
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Saje, Turk, Kalagasidu, Vratanar, Figure 8.
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Saje, Turk, Kalagasidu, Vratanar, Figure 9.
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Saje, Turk, Kalagasidu, Vratanar, Figure 10.
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Saje, Turk, Kalagasidu, Vratanar, Figure 11.
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Saje, Turk, Kalagasidu, Vratanar, Figure 12.
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Saje, Turk, Kalagasidu, Vratanar, Figure 13.
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Saje, Turk, Kalagasidu, Vratanar, Figure 14.
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Saje, Turk, Kalagasidu, Vratanar, Figure 15.
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Figure 1: A beam element. Global and material coordinate systems.

Figure 2: Interpolation points of a finite beam element.

Figure 3: A shalow circular arch.

Figure 4: A deep circular arch.

Figure 5: A circular ring subjected to a cyclic force P .

Figure 6: A circular ring. Load–deflection relationship.

Figure 7: Deformed shapes of a circular ring for P = 1.779 f kN (f = 0,±1,±2, . . . ,±10).

Figure 8: Variation of 1/C11 and C22−C2
12/C11 along the quarter of the ring at P = 17.79 kN.

Figure 9: Finite element model of a complete circular ring.

Figure 10: A clothoid shaped spring.

Figure 11: A clothoid shaped spring. Moment – tip rotation curve.

Figure 12: A clothoid shaped spring. Moment – tip displacements curve.

Figure 13: Deformed shapes of a clothoid shaped spring.

Figure 14: A diamond shaped frame and a computational model.

Figure 15: A diamond shaped frame. Force – tip deflection curve.
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