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Abstract - The modelling of radionuclide transport through the geosphere is necessary in the
safety assessment of repositories for radioactive waste. A number of key geosphere processes
need to be considered when predicting the movement of radionuclides through the geosphere.
The most important input data are obtained from field measurement, which are not available
for all regions of interest. For example, the hydraulic conductivity as input parameter varies
from place to place. In such case geostatistical science offers a variety of spatial estimation
procedures. To assess a long term safety of radioactive waste disposal system, mathematical
models are used to describe the complicated groundwater flow, chemistry and potential radionu-
clide migration through geological formations. The numerical solution of partial differential
equations (PDEs) has been usually obtained by either finite difference methods (FDM), finite
element methods (FEM), or finite volume methods (FVM). Kansa introduced the concept of
solving PDEs using radial basis functions (RBFs) for hyperbolic, parabolic and elliptic PDEs.
The aim of this study was to present a relatively new approach to modelling of radionuclide
migration through geosphere using radial basis functions method (RBFs) and to determine the
average and sample variance of radionuclide concentration with regard to spatial variability of
hydraulic conductivity modelled by geostatistical approach. We will also explore the residual
errors and their influence on optimal shape parameter.

Keywords - Radionuclide migration, Porous media, Partial differential equation, Radial basis
function, Numerical solution, Kansa method, Geostatistics.
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1. INTRODUCTION

Waste disposal has become a key issue in these environmentally conscious time [1]. The ob-
jective of geological disposal of radioactive waste is to remove it from man’s environment and
ensure than any releases, remain within accepted limits. Extensive research and development
in the field of management and disposal of radioactive waste is conducted in many countries.
To improve the understanding of various strategies for radionuclide transport modelling, an in-
ternational cooperation project was set up with the participation of a number of organisations
active in the waste management research. Within the project INTRACOIN [2], a comparison
has been made between different computational codes describing transport of radionuclides in
geologic media. In Slovenia, the two disposal concepts/siting options are currently being con-
sidered for the facility: a surface vault disposal facility; and an underground (tunnel) disposal
facility [3].

The modelling of radionuclide transport through the geosphere is necessary in the safety as-
sessment of repositories for radioactive waste. Confidence in a model my be gained from its
ability to fit dynamic laboratory and field experiments, which can differ in scale from a few
centimetres to tens of metres. Assessment of the release and the transport of long - lived ra-
dioactive nuclides from the repository to the biological environment is an important part of the
safety analysis of repository concepts. In this assessment mathematical models describing the
mechanisms involved in the nuclide transport from the repository to the biosphere are essential
tools.

When modelling flow and contaminant transport in geosphere, it is important to consider both
internal processes (e.g. advection, dispersion, retardation) within the geosphere, and external
processes associated with the near-field and the biosphere. For example, near-field processes
can influence water flow and chemistry in the geosphere surrounding the disposal facility, whilst
biosphere processes such as flooding, erosion, weathering, recharge, environmental change all
can have an impact on the geosphere [15].

The general reliability and accuracy of transport modelling depend predominantly on input data
like hydraulic conductivity, water velocity, radioactive inventory, hydrodynamic dispersion, etc.
The output data are concentration, pressure, etc. The most important input data are obtained
from field measurement, which are not available for all regions of interest. For example, the
hydraulic conductivity as input parameter varies from place to place. In such case geostatistical
science offers a variety of spatial estimation procedures [8].

The numerical solution of partial differential equations has been usually obtained by either finite
difference methods (FDM), finite element methods (FEM), finite volume methods (FVM), and
boundary elements methods (BEM) [11]. These methods require a mesh to support the localized
approximations. The construction of a mesh in two or more dimensions is a nontrivial problem.
Usually, in practice, only low-order approximations are employed resulting in a continuous
approximation of the function across the mesh but not its partial derivatives. The discontinuity
of the approximation of the derivative can adversely effect the stability of the solution. While
higher-order schemes are necessary for more accurate approximations of the spatial derivatives,
they usually involve additional computational cost [11].
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A fairly new approach for solving PDEs is through radial basis functions (RBFs). Kansa [4], [5]
introduced the concept of solving PDEs using radial basis functions for hyperbolic, parabolic
and elliptic PDEs. A key feature of the RBF method is that does not require a grid. The only ge-
ometric properties that are used in the RBF approximation are the pair wise distances between
points. Distances are easy to compute in any number of space dimensions, so working in higher
dimensions does not increase the difficulty.

The numerical methods are developed both with regard to efficiency and ability to solve a wider
variety of problems. A high efficiency is necessary to be able to solve physically complicated
problems in two or three dimensions. The most common present methods often suffer the draw-
back that they require fine discriminations to solve predominantly advective problems. In the
conclusions of INTRACOIN project was told that there are two complementary lines of devel-
opment in field of radionuclide transport modelling. The first is towards more sophisticated and
detailed models for deterministic analyses and the second towards simpler models for proba-
bilistic analyses.

The aim of this study was to focus to simpler model and present a relatively new approach
to modelling of radionuclide migration through geosphere using radial basic functions method
(RBFs) and to determine the average and sample variance of radionuclide concentration with
regard to spatial variability of hydraulic conductivity modelled by geostatistical approach. We
will also explore the residual errors and their influence on optimal shape parameter.

2. GEOSTATISTICS

The term geostatistics is employed here as a generic term, meaning the application of the theory
of random fields in the earth sciences [9]. The parameters are distributed in space and can thus
be called regionalized variables. The parameters of a given geologic formation can conveniently
be represented as realisations of random variables which form random fields.

Stochastic simulation is a widely accepted tool in various areas of geostatistics. The goal of
stochastic simulation is to reproduce geological texture in a set of equiprobable simulated re-
alizations. Simulations are termed globally accurate through the reproduction of one-, two-, or
multiple-point statistics representative for the area under study. In mathematical terms, the most
convenient method for simulation is sequential Gaussian simulation [8] because all successive
conditional distributions from which simulated values are drawn are Gaussian with parameters
determined by the solution of a simple kriging system.

Sequential Gaussian simulation transform the data into a normal distribution. Then perform
variogram modelling on the data. Select one grid node at random, then krige the value at that
location. This will also give us the kriged variance. Draw a random number from a normal
distribution that has a variance equivalent to the kriged variance and a mean equivalent to the
kriged value. This number will be the simulated number for that grid node. Select another
grid node at random and repeat. For the kriging, include all the previously simulated nodes to
preserve the spatial variability as modelled in the variogram. When all nodes have been simu-
lated, back transform to the original distribution. This gives us first realization using a different
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random number sequence to generate multiple realizations of the map.

Kriging (named after D. G. Krige, a South African mining engineer and pioneer in the applica-
tion of statistical techniques to mine evaluation) is a collection of generalized liner regression
techniques for minimizing an estimation variance defined from a prior model for a covariance
(semivariogram) [8]. Since the semivariogram is a function of distance, the weights change
according to the geographic arrangement of the samples. Kriging can be used to make con-
tour maps, but unlike conventional contouring algorithms, it has certain statistically optimal
properties.

3. A RADIAL BASIS FUNCTION METHOD

Radial basis functions method for interpolation, as a high accurate approximation are not ap-
propriate only for the functions or values, but also for their derivatives. The method is available
for scattered data or irregular grid, and can easily be extended to high-dimensional problems
[12]. The RBFs method will be shown to provide an alternative choice with respect to FDM or
FEM, which require a mesh to support the localized approximations.

Since Kansa [4], [5] successfully modified the radial basis functions for solving PDEs of el-
liptic, parabolic, and hyperbolic types, more and more computational tests showed that this
method is feasible to solve various PDEs.

A radial basis function [12] is a functionφj(x) = φ(‖x−xj‖), which depends only on distance
betweenx ∈ Rd and a fixed pointxj ∈ Rd. Here,φ is continuous and bounded on any bounded
sub-domainΩ ⊆ Rd.

The commonly used radial basis functions are:

φ(r) = r, linear,

φ(r) = r3, cubic,

φ(r) = r2 log r, thin-plate spline,

φ(r) = e−αr2

, Gaussian,

φ(r) = (r2 + c2)
1
2 , multiquadric,

φ(r) = (r2 + c2)−
1
2 , inverse multiquadric,

In our case we used multiquadric (MQ) and inverse multiquadric. MQ method was first intro-
duced by Hardy [13]. The parameterc > 0 is a positive shape parameter controlling the fitting
of a smoothing surface to the data.



Modelling of Radionuclide Migration 5

4. MODELLING OF THE RADIONUCLIDE MIGRATION

The central issue in modelling is on the one hand consistency between conceptual and mathe-
matical models and, on the other hand between conceptual models and scenarios. A conceptual
model is a qualitative description of the functioning of the system in form which is amenable
to mathematical representation. It should make explicit all the assumptions and interpretations
which are necessary to bridge the gap between the real system and mathematical equations.
Each scenario is a set of features, processes and events which has to be considered together to
assess the impact of the disposal in the future. It is convenient to distinguish between process
and model structure identification. The number of processes that may affect flow and transport
is very large. Model structure identification refers to the definition of parameter variability,
boundary conditions, etc. The most important processes affecting the movement of water and
solutes underground are advection, dispersion, and sorption.

The movement of solutes is mostly simulated with advection-dispersion equation [10]. Accord-
ing to this equation, mass transport is controlled by two mechanisms: advection and dispersion.
Advection accounts for the movement of the solute, linked to the fluid, with the average water
velocity. Average water velocity can be assessed through the Darcy’s law. Dispersion accounts
for mixing caused by diffusion and by random flow from the mean stream. The dispersive com-
ponent is evaluated by assuming the dispersive mass flux to be proportional to the concentration
gradient, similar to Fick’s law of molecular diffusion. Without fundamental modifications, the
advection-dispersion equation can treat other processes such as sorption, radioactive decay,
chemical reactions, sink sources, ion exchange and matrix diffusion.

4.1 LAPLACE EQUATION

The first step of radionuclide transport modelling is to solve the Laplace equation to obtain the
Darcy velocity. In this case the Neumann and Dirichlet boundary conditions will be defined
along the boundary. Anisotropic porous media and incompressible fluid were assumed in this
analysis. The equation has the following form [10]:

Kx
∂2p

∂x2
+ Ky

∂2p

∂y2
= 0, (1)

wherep is the pressure of the fluid andKx andKy are the components of hydraulic conductivity
tensor. The corresponding boundary condition is

∂p

∂x
sx +

∂p

∂y
sy = g(x, y), (2)

wheresx in sy are the components of the unit vector normal to the boundary.

The Laplace equation was solved by RBF and direct collocation [6]. We add an additional set of
nodes (outside of the domain) adjacent to the boundary and, correspondingly, add an additional
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set of collocation equations.

The approximate solution can be expressed as :

p(x, y) =

N+Nb∑
j=1

cjϕj(x, y) (3)

wherecj, j = 1, ..., N + Nb are the unknown coefficients to be determined. By substituting (3)
into (1) and (2), we have:

N+Nb∑
j=1

(
Kxi

∂2ϕj

∂x2
+ Kyi

∂2ϕj

∂y2

)
cj = 0, i = 1, 2, ...., Ni + Nb, (4)

N+Nb∑
j=1

(
∂ϕj(xi, yi)

∂x
sx +

∂ϕj(xi, yi)

∂y
sy

)
cj = g(xi, yi), i = 1, ...., Nb, (5)

Let N = Ni + Nb be the number of collocation points,Ni is the number of interior points and
Nb is the number of boundary points.

The pressure gradient is evaluated by:

∂pi

∂x
=

N+Nb∑
j=1

cn
j

∂ϕj(xi, yi)

∂x
, (6)

∂pi

∂y
=

N+Nb∑
j=1

cn
j

∂ϕj(xi, yi)

∂y
. (7)

For the calculation of velocity in principal directions we use Darcy’s law [10]:

vxi
= −

(
Kxi

nρg

)
∂pi

∂x
, (8)

vyi
= −

(
Kyi

nρg

) (
∂pi

∂y
+ ρg

)
. (9)

whereρ is the density of the fluid,n is porosity, andg gravitational acceleration.
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4.2 ADVECTION-DISPERSION EQUATION

In the next step, the velocities obtained from Laplace equation are used in the advection-
dispersion equation.

The advection-dispersion equation for transport through the saturated porous media zone with
retardation and decay is [10]:

R
∂u

∂t
=

(
Dx

ωe

∂2u

∂x2
+

Dy

ωe

∂2u

∂y2

)
− vxi

∂u

∂x
−Rλu, (x, y) ∈ Ω , 0 ≤ t ≤ T,

u|(x,y)∈∂Ω = g(x, y, t), 0 ≤ t ≤ T

u|t=0 = h(x, y), (x, y) ∈ Ω,

(10)

wherex is the groundwater flow axis,y is the transverse axis,u is the concentration of contam-
inant in the groundwater[Bqm−3], Dx andDy are the components of dispersion tensor[m2y−1]
in saturated zone,ωe is the effective porosity of the saturated zone[−], vxi

is Darcy velocity
[my−1] at interior points, R is the retardation factor in saturated zone[−] andλ is the radioac-
tive decay constant[y−1].

For the parabolic problem, we consider the implicit scheme:

R
un+1 − un

δt
=

(
Dx

ωe

∂2un+1

∂x2
+

Dy

ωe

∂2un+1

∂y2

)
− vxi

∂un+1

∂x
−Rλun+1, (11)

whereδt is the time step,un andun+1 are the contaminant concentration at the timetn andtn+1.

The approximate solution is expressed as :

u(x, y, tn+1) =
N∑

j=1

cn+1
j ϕj(x, y) (12)

wherecn+1
j , j = 1, ..., N are the unknown coefficients to be determined.ϕj(x, y) is the Hardy’s

multiquadrics function [7]:

ϕj(x, y) =
√

(x− xj)2 + (y − yj)2 + c2 (13)

wherec is shape parameter.

By substituting (12) into (11), we have:

N∑
j=1

(
R

ϕj

δt
− Dx

ωe

∂2ϕj

∂x2
− Dy

ωe

∂2ϕj

∂y2
+ vxi

∂ϕj

∂x
+ Rλϕj

)
cn+1
j = R

un(xi, yi)

δt
, (14)



8 L. Vrankar, G. Turk, F. Runovc

where i = 1, 2, ...., Ni. By substituting (12) into the second of equations (10) we obtain

N∑
j=1

ϕj(xi, yi)c
n+1
j = g(xi, yi, tn+1), i = Ni + 1, N, (15)

where:

∂ϕj

∂x
=

(xi − xj)

ϕj(xi, yi)
, (16)

∂ϕj

∂y
=

(yi − yj)

ϕj(xi, yi)
, (17)

∂2ϕj

∂x2
=

[
1− (xi − xj)

2

ϕ2
j(xi, yi)

]
1

ϕj(xi, yi)
, (18)

∂2ϕj

∂y2
=

[
1− (yi − yj)

2

ϕ2
j(xi, yi)

]
1

ϕj(xi, yi)
, (19)

from which we can solve theN×N linear system of ((14)-(15)) for the unknowncn+1
j , j = 1, ..., N .

Let N = Ni + Nb be the number of collocation points,Ni is the number of interior points and
Nb is the number of boundary points. Then (12) can give us the approximate solution at any
point in the domainΩ

5. NUMERICAL EXAMPLE

The simulation was implemented for rectangular area which was 600 m long and 300 m high.
The source was Thorium(Th− 230) with activity 1 · 106Bq and half-life of 77000 years. The
source was located on left side of the area. The groundwater flow field is presented for a steady-
state condition. Except for the inflow (left side) and outflow (right side), all boundaries have
no-flow condition∂p

∂s
= 0 (s taken normal to the boundary). The inflow rate was 1 m/y. At the

outflow side, time-constant pressures at the boundaries were set. The location of the radioactive
source is presented with symbol♦.

The components of dispersion tensor are approximated byDx = aLv andDy = aT v. Longi-
tudinal dispersivity,aL is 500 m and transversal dispersivity,aT is 2 m,v is Darcy’s velocity.
Porosity is 0.25 whereas hydraulic conductivity was generated in different points with geo-
statistics [8] based on two different sets of input data. In the first one hydraulic conductivity at
8 different points is given (values are: 66.00, 71.00, 73.00, 75.00, 76.52, 77.02, 79.74, 83.41
[m

y
]). Positive variance contribution or sill is size 1.0 and nugget effect size 0.0 as variogram

parameter are chosen. Simple kriging is chosen as a type of kriging.

In the second case the data base of 16 different points is used (values are: 66.00, 71.00, 73.00,
75.00, 76.52, 77.02, 79.74, 83.41, 36.00, 21.00, 173.00, 275.00, 96.52, 57.02, 97.74, 63.41[m

y
]).
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Positive variance contribution or sill size 0.7 and nugget effect size 0.3 as variogram parameters
are chosen. Ordinary kriging is chosen as a type of kriging.

Distribution of hydraulic conductivity and velocities based on 8-point data set are shown on fig.
1, distribution of hydraulic conductivity and velocities based on 16-point data set are shown on
fig. 2. Distribution of average of contaminant concentrations (8 points) and standard deviation
of contaminant concentrations (8 points) are shown on fig. 3 and fig. 5. Distribution of average
of contaminant concentrations (16 points) and standard deviation of contaminant concentrations
(16 points) are shown on fig. 4 and fig. 6.

The distribution of the average value of contaminant concentration after 100 000 years is given.
These values were obtained after repeating 100 simulations. Distribution of contaminant con-
centration after100 000 years at 8 points and 16 points data set of hydraulic conductivity are
shown on fig. 7 and fig. 8

6. OPTIMAL SHAPE PARAMETER

In our problem we used multiquadric (MQ) and inverse multiquadric RBFs. MQ’s performance
depends on the choice of a user-specified parameter c, which is often referred as the shape
parameter. The shape parameter controls the effective number of collocation points used in the
interpolation at any location.

When c is small, the surface fitted to the data contains sharp corners at the collocation points. As
c increases, more collocation points are effectively involved in the interpolation and the sharp
corners spread out to form a smooth surface. When c is too large and reaches a critical value,
the resulting matrix becomes ill-conditioned and the solution is smeared.

In the past, there have been several numerical experiments and empirical formulas that suggest
how to chose the optimal value of such parameters, which in general depend on the density
of the interpolation centres [4]. In practice, the optimal value of the shape parameter can be
determined by numerical experiments. The optimal shape parameter depends on the properties
of numerical solution, number and locations of the collocations points. So, It appears always a
question how to find the optimal shape parameter for arbitrary real problem given by geometry
and hydrological parameters of continuum.

In our case, we always try to answer to the question how to find good optimal shape parameter,
which fulfils the equation in more points. Many realizations of the equations were made using
different shape parameters at different points. Course of residual errors from the equation at
Kansa (basic mesh of the problem) and additional points are shown on fig. 9. We can see
that as shape parameter gets larger, the residuals get larger. By increasing the shape parameter
the residual errors from the PDEs showed in Kansa points tends to a minimum value and then
grows.

We set shape parameter to 4.5 and compare results with the test method (the finite difference
method). The results were very similar.
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From the fig. 1 and fig. 2 we can see that the conductivity of porous media has influence on
magnitude of velocities of the fluid. Different standard deviations of contaminant concentrations
are due to different input data sets of the conductivity and geostatistics.

7. CONCLUSION

This work presents modelling of radionuclide migration through geosphere using radial basis
functions method and geostatistics.

In the case of radionuclide migration two steps of evaluations were performed. In the first step
the velocities in principal directions were determined from pressure of the fluidp obtained from
Laplace differential equation. In the second steps the advection- dispersion equation was solved
to find a concentration of the contaminant. In this case the method of evaluation was verified by
comparing results with the one obtained from finite difference method (Fig. 10 and 11). Both
methods give very similar results.

Due to different types of conductivity, variogram input parameters and different type of kriging
was necessary to find appropriate shape parameter which can give us comparable results to the
test method.

A good parameter assessment was obtained from graphic presentations. So, we explore the
residual errors from the equation as an error indicator which provides a road map to the optimal
selection of the shape parameter value.
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Fig. 1: Conductivity and velocities based on 8-point data set, shape parameter: 4.5
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Fig. 2: Conductivity and velocities based on 16-point data set, shape parameter: 4.9
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Fig. 3: Average of concentrations (8 points), shape parameter: 140
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Fig. 4: Average of concentrations (16 points), shape parameter: 120
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Fig. 5: Standard deviation of concentrations (8 points), shape parameter: 140
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Fig. 6: Standard deviation of concentrations (16 points), shape parameter: 120
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Fig. 7: Concentrations based on 8 points data set for one simulation, shape parameter: 140
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Fig. 8: Concentrations based on 16 points data set for one simulation, shape parameter: 120
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Fig. 9: Residuals
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Fig. 10: Concentrations based on 8 points data set for one simulation, finite difference method
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Fig. 11: Concentrations based on 16 points data set for one simulation, finite difference method


