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Determination of point displacements in the geodetic network  
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Ms. No. SU/2004/022302 

 

Abstract 

 

The article describes the procedure for testing the statistical significance of point 

displacements in the geodetic network as the intermediate stage between the 

adjustment of respective epochs measurements and an in-depth deformation analysis. 

The cumulative distribution function of the test statistic, presenting the relation 

between the displacement and the displacement accuracy, is determined by 

simulations. On the basis of this cumulative distribution function a critical value of 

the test statistic for a selected significance level is determined. In the null hypothesis 

it is assumed that the point is stable. A comparison of the critical value to the test 

statistic value is made and the actual risk level for rejecting the null hypothesis is 

estimated. Further on, a practical example of implementing the test in a simulated 

network is given. The test statistic proved to be simple and applicable: the points with 

significant displacements were identified successfully.  

KEYWORDS: deformation analysis, simulations, hypothesis testing, significant 

displacements. 
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1  Introduction 

 

Basically, deformation analysis is the procedure for determining displacements of 

assumed stable points and determining significant displacements in geodetic 

networks. Inaccurate presumptions about assumed stable points in a geodetic network 

can bring about grave consequences in interpretation of established displacements or 

when predicting the downfall of buildings. In the process of identification of 

displacements, the test statistic is very important. A detailed knowledge of 

deformation analysis methods as well as practical experience are essential for an 

appropriate interpretation of the estimated point displacements.  

 

In everyday use, the test for determining the statistical significance of a displacement 

is a function of the point displacement and the respective accuracy. The calculated 

value is then usually increased by a factor of safety of 3 or 5 or more, which makes 

the estimation of significant displacements too gross. For the proposed method, 

simulations of an actual probability distribution function are determined, providing 

the basis for calculating the right critical value at a chosen significance level. In this 

way, statistically significant point displacements may be determined far more 

accurately.  

 

When assessing point displacements, the information on the actual risk of making the 

error when rejecting the true null hypothesis is very useful and a calculation of this 

value is advisable. Based on the assumption that the distribution function is 

established in detail, the suggested test statistic is simple and fit for day-to-day use 

and refers to the first estimation of the geodetic network. Therefore, it can be carried 
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out right after a two-epoch adjustment and accordingly, the need for carrying out the 

deformation analysis is identified.  

 

 

2  Single epoch analysis 

 

For identification of point displacement by way of geodetic observations, the 

reference points need to be chosen. Characteristic points on the object are tested for 

displacements. According to the required accuracy of point displacement 

determination, the execution of observations must be carried out carefully with proper 

tools while following standard observational approaches. The observations in the 

geodetic network are adjusted and the network quality estimated.  

 

Importantly, in networks for displacement identification a network quality estimation 

is carried out prior to the measurements examining the accuracy, reliability, 

sensitivity and the cost effectiveness of setting up a network (Caspary 2000). In 

identification of displacements, network reliability and sensitivity are of primary 

importance, thus great effort must be made in detecting the presence of undisclosed 

gross errors. In the planning and optimization phase, the sensitivity of observations 

needs to be enabled, thereby increasing the probability of detecting outliers.  

 

A well projected network for displacement detection should enable a high degree of 

detection and elimination of gross errors in observations as well as minimize the 

effect of potentially undetected outliers influencing the unknowns. Testing the 

relation between the a posteriori variance 2
0σ̂  and the a priori reference variance 2

0σ  is 
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called the global model hypothesis testing. At the same time, the presence of gross 

error observations in the network is tested, which is in turn possible only by having a 

reliable knowledge of the a priori reference variance. In case of incongruence between 

the observations and the model in the course of the global testing, the Baarda’s Data 

Snooping method for examination, detection and elimination of outliers in 

observations is introduced. The Pope’s Data Screening approach or the Danish 

approach is used when the a priori reference variance is not reliably known.  

 

After a careful analysis and quality estimation of single epochs, the displacements are 

estimated and the accuracy of estimating the two-epoch displacements is calculated. 

In everyday engineering work the difference estimation of point positions between 

two epochs provides a sufficient amount of information on displacements. This is 

applicable with a sufficient number of stable points and with displacement that are 

several times the size of the displacements standard deviations. However, in specific 

and precise geodynamic research the implementation of a detailed deformation 

analysis according to one of the several known approaches is essential (i. e. the Delft, 

Fredericton, Hannover, Karlsruhe, München method etc.). 

 

 

3  Testing the significance of displacements 

 

The basis for displacement determination of a man-made object or any given object 

on the surface of the earth is to identify the displacements of characteristic points of 

an object. The points comprise networks, which are monitored in time intervals called 

epochs that are set out in advance. The point displacements between two epochs can 



5 

be inferred only from identical points, measured in two epochs. However the points 

are often damaged or they have to be included into the network due to changes of 

circumstances. Non-identical points are eliminated in the adjustment procedure or 

with S-transformation, respectively (Mierlo 1978). After the two-epoch adjustment 

the point displacements and its standard deviations are estimated.  

 

3.1  Displacement estimation and displacement accuracy estimation  

 

In geodetic networks set up for determining displacements, the requirement that 

standard deviations for displacements of geodetic points be provided is very essential. 

If the estimated displacements are several times the size of the displacement standard 

deviations, the most probable displacements can be inferred from the differences in 

point positions. In addition to determining the magnitude and direction of the 

displacements, the hypothesis testing for the displacemrnt is also necessary. 

Consequently, these corresponding calculations must be performed. 

 

Point displacements are determined on the basis of comparing point coordinates in 

two epochs. Let us assume the point coordinates ),( xyT  in a plane and time t  and 

tt Δ+ . In order to calculate the estimation accuracy of point displacements the 

covariance matrix of point coordinates for respective epochs must be known. 

),( ttt xyT  represents the position of point T  in time t , and tΣ  is the corresponding 

covariance matrix, and ),( tttttt xyT Δ+Δ+Δ+ represents the coordinates of point T  in time 

tt Δ+  with the corresponding covariance matrix tt Δ+Σ . This can be expressed as 
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We assume that the coordinates in time t  are not correlated with the coordinates in 

time tt Δ+ .  Thus, the covariance matrix of coordinates of identical points tt xy  , , 

tttt xy Δ+Δ+  ,  can be written as 
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The displacement of point T  may be evaluated as 

 

( ) ( )2222
tttttt xxyyxyd −+−=Δ+Δ= Δ+Δ+ . (2) 

 

Further on the displacement variance is determined by 
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By inserting the equations (1) and (4) into equation (3) we get the representation for 

displacement variance of point T  
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that is used for testing displacements by a test statistic given in equation (6) described 

in the next section. 

 

3.2 Determining the distribution function of test statistic with simulations  

 

In deformation analysis single epochs are usually adjusted as free networks. In this 

way the best linear unbiased estimation of the unknowns and independence of test 

statistic regarding the chosen network datum is enabled. After adjusting at least two 

epochs it is possible to determine the displacement of point d  according to equation 

(2) and standard deviation of displacement dσ  according to equation (5). Since these 

two parameters can be calculated prior to a detailed deformation analysis, they are 

rightly used in the statistical testing.  

 

When estimating displacements the test statistic is often calculated as: 

 

 
d

dT
σ

=   (6) 
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and compared to the critical value according to the chosen significance level α . Point 

displacements are established with an appropriate probability only when the 

displacements are significantly larger than the estimation accuracy of displacements.  

 

Assuming that the errors of observations are distributed normally ),0(~ 2σε N , then 

the parameters being the linear functions of the observations ),(~ˆ 2
ˆˆ xxx σμN  are 

distributed normally as well. The point displacement is calculated with equation (2). 

Since yΔ  and xΔ  are calculated as the difference of two normally distributed random 

unknowns, the yΔ  and xΔ  are distributed normally, too. This, however, is not the 

case with point displacement d , which is a nonlinear function of yΔ  and xΔ . 

Consequently, it is difficult to analytically determine the form and the type of the 

distribution of the test statistic (6). The distribution function for the discussed test 

statistic is therefore determined by simulations (Rubinstein 1981; Savšek-Safić 2002). 

 

The coordinates differences yΔ  and xΔ  are normally distributed random variables 

with variance-covariance matrix as follows: 
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The standard deviations of coordinates differences in two epochs are calculated as 
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where 2222 ,,,
tttttt xxyy Δ+Δ+

σσσσ  are coordinate variances of tttttt xxyy Δ+Δ+ ,,, . The 

covariance is calculated as: 

 

 
tttttt xyxyxy Δ+Δ+

+=ΔΔ σσσ ,   (9) 

 

where 
tt xyσ  and 

tttt xy Δ+Δ+
σ  are covariances of the coordinates in both epochs.  

 

The basic idea for generating a sample of dependent normally distributed random 

variables is to generate a sample of independent normally distributed random 

variables and then use a linear transformation to obtain a sample of dependent random 

variables. 

 

For generating the sample of the normally distributed random variables the Box and 

Müller approach was applied (Box et al., 1958; Press et al., 1992). Let us assume that 

iu1  and niu i ,...,1  ,2 =  are samples of two independent and uniformly distributed 

random variables 1U  and 2U , and n is the number of simulations. The sample of two 

independent normally distributed random variables 1Z  and 2Z  is calculated as 

follows: 
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For generating a sample of dependent normally distributed random variables a linear 

transformation is needed. The variance-covariance matrix Σ  is decomposed by 

Cholesky decomposition  

 

UUΣ T= . (11) 

 

In our case U  takes the following form 
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For transformation of a sample of independent normally distributed random variables 

to a sample of dependent random variables the linear transformation  

i
T

i zUy = , ni ,...,1 =  (13) 

is used. 

 

In our case the coordinate differences are generated by the following equations 
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where it is assumed that the means of yΔ  and xΔ  are zero ( 0== ΔΔ xy μμ ) and 

ni ,...,1 = . 

 

The standard deviations of point coordinates in respective epochs vary from point to 

point. Therefore the distribution function of the test statistic (6) takes on a different 

form for each point in each two epochs. By using the simulated normally distributed 

random variables (14), d  is calculated using equation (2) and dσ  using equation (5). 

Consequently in n simulations, this procedure allows us to determine the empirical 

cumulative probability distribution function of the test statistic (6) for individual 

points.  

 

Critical value critT  and actual risk Tα  are determined from obtained empirical 

cumulative distribution function by the following procedure (see Figure 1): 

1. generate coordinate differences ii xy ΔΔ   , ; ni ,...,1=  (Equation 14) 

2. calculate displacement id  (Equation 2), its standard deviation 
idσ  (Equation 5) 

and test statistic iT ; ni ,...,1=  (Equation 6) 

3. form empirical cumulative probability distribution function *
TF  by sorting iT ; 

n
iTF iT =)(* ; 1+≤ ii TT  

4. determinate critical value critT  from *
TF : ( )⎡ ⎤nicrit TT  1 α−−=  

 or 

 determinate actual risk Tα  from *
TF : 

n
i

T −=1α  for such i that TTi >min . 
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Figure 1: Empirical cumulative distribution function of the test statistic ddT σ/=  

 
The test statistic is then tested according to the given null hypothesis and its 

alternative hypothesis: 

  

0  :0 =dH ; the point is stable between two epochs, and 

0 : ≠ dH a ; the point has changed its position. 

 

The test statistic (6) is compared to critical value acquired from empirical cumulative 

distribution function. If the test statistic value is smaller than the critical value at a 

chosen significance level α , then the risk of rejecting the true null hypothesis is too 

high. Accordingly, it is established that the displacement is not statistically 

significant. If the test statistic value exceeds the critical value, the risk of rejecting the 

true null hypothesis is lower than the chosen significance level α . Therefore, the null 

hypothesis is rightly rejected and the statistical significance of the displacement is 

thereby confirmed.  

 

This decision is supported by calculating the actual risk Tα  of rejecting the true null 

hypothesis (the probability of committing Type I Error). Two possibilities are 

examined: 

• critTT >  i.e. αα <T : the null hypothesis is rejected; the point displacement is 

statistically significant and 

• critTT <  i.e. αα >T : the null hypothesis is not rejected; the point displacement is 

statistically non-significant. 
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Regarding the actual risk and the consequences of making the wrong decision, it is up 

to the user to decide upon the risk level of acceptability. As a consequence, a point is 

thereupon considered as stationary or displaced.  

 

 

4 Case example of significant displacement testing in a test network 

 

In this case a simple test network is established. The displacements of points 1, 2, 3 

and 7 are assumed as known. The observations are generated as independent normally 

distributed with standard deviation of 1′′=ασ  for angle observations and mms  5=σ  

for distance observations (see Table 1). The geodetic datum of the network is 

determined as a free network datum. Two epochs are examined with identical types 

and number of observations (see Figure 2). In the procedure of testing the null 

hypothesis 0:0 =dH  and significance level %5=α  are chosen. The empirical 

cumulative distribution functions are generated by the Premik software (Ambrožič et 

al 2002) for each point, where the number of simulation is set to 100000. The 

simulation is carried out on the basis of 100000 iterations. The existing Premik 

software was enhanced by adding hypothesis testing which enables the user to 

determine the statistical significance of the displacement of a particular point. The 

calculated displacements are compared to the known values. In the following section 

all the necessary input data for adjustments as well as the adjusted values of point 

coordinates in single epochs are given.  

 

Table 1: Simulated observations of two epochs 
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Table 2: Known displacements of points 1, 2, 3 and 7 between two epochs 

 

Figure 2: Test network and displacements  

 

Table 3: Approximate coordinates equal in both epochs 

 

Table 4: Point coordinates adjustment in a free network adjustment of single epochs  

 

The empirical cumulative distribution function is determined by simulations for the 

test statistic (6) for each point. Figure 3 shows the cumulative distribution function 

calculated for Point 2 in a test network. The cumulative distribution function is 

different for each network point. Regarding Point 2, Figure 3 illustrates the critical 

value 384.2=critT  at the chosen significance level %5=α . If the values of critT  are 

taken to be 3 or 5 as are generally used as a “rule of thumb”, the actual risk is 

%18.1)3( =Tα  and %00.0)5( =Tα , respectively. Thus the actual risk Tα  at rejecting 

the true null hypothesis is set to minimum.  

 

Figure 3: Distribution function of test statistic for Point 2: 724.4/ == ddT σ   

 

Importantly, in the testing procedure one must compare the calculated value of the test 

statistic to the critical value, critT  of the test statistic (6) at a chosen significance level. 

In the test network presented in this paper (Figure 2) the critical values calculated at 

the significance level of %5=α  ranged from 2.376 to 2.894 (Table 5).  
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Table 5: Significance displacement testing in a test network 

 

As inferred from Table 5, the displacements of statistical significance are undoubtedly 

present at Points 1 and 7, since 10>T . The test statistic value is considerably higher 

than its critical value, therefore the actual risk Tα  of rejecting the true null hypothesis 

is minimal. The suggested test statistic reveals a displacement at Point 2, since 4>T  

with minimal actual risk of rejecting the true null hypothesis. The actual displacement 

at Point 3 is not big enough to be statistically significant, since 2<T . The actual risk 

of rejecting the true null hypothesis at Point 3 is %66.24=Tα , thus the displacement 

is not revealed, owing to statistical non-significance. The actual risks for rejecting the 

true null hypothesis at assumingly stable points 4, 5 and 6 exceed 30% which is 

substantially more than the chosen significance level %5=α . Thus, it is not possible 

to claim that the points had moved.  

 

As illustrated, the critical values for individual points are not equal. Therefore, it is of 

great importance to determine the distribution function of the test statistic accurately 

for each network point and to avoid the indiscriminate use of those critical values that 

are used most frequently.  

 

5  Conclusion 

 

A contractor of geodetic works is expected to present not only data on point 

displacements, but also to provide insurance in terms of the quality of displacement 

estimation. In addition to the assumed null hypothesis 0:0 =dH  and the chosen 

significance level %5=α , the actual risk of rejecting the true null hypothesis is 
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crucial. The participation of the commissioning party in the process evaluating the 

estimated displacements is highly recommended. The decision upon risk acceptability 

is then in the hands of the commissioner.  

 

As has been shown, test statistic (6) along with the empirical cumulative distribution 

function are appropriate tools for testing the significance of point displacements in a 

geodetic network. Since the displacement and its respective accuracy are acquired by 

a simple method, the suggested procedure is appropriate and provides good results 

that furnish a good first estimate of the situation in the discussed network. The test 

example illustrates that the estimation of displacement significance is directly 

dependent upon the critical value at a chosen significance level α . An accurate 

displacement estimation is achieved only if the critical value is determined according 

to the actual distribution function of the test statistic. This is a considerable advance 

with respect to the “rule of thumb” values for 5    to3=critT  which were generally 

used in practical analyses. Having in mind the difficulty level of the assignment and 

its consequences, the decision must be made whether there is the need for a detailed 

deformation analysis carried out by one of the known approaches.  
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Notation 

The following symbols are used in this paper: 

 
d  = displacement of point T between two epochs 

aH  = alternative hypothesis 

0H  = null hypothesis 

T  = actual value of test statistic 

critT  = critical value of test statistic 

*
TF  = empirical cumulative distribution function 

n  = number of simulation repetitions 

i  = simulation index 

),( ttt xyT  = coordinates of point T in time t  

),( tttttt xyT Δ+Δ+Δ+  = coordinates of point T in time tt Δ+  

 t  = time index of 1st epoch 

tt Δ+  = time index of 2nd epoch 

1U , 2U  = sample of two independent uniformly distributed random 

variables 

1Z , 2Z  = sample of two normally distributed random variables 

α  = significance level 

Tα  = actual risk of rejecting the true null hypothesis 

yΔ , xΔ  = coordinates differences between two epochs 

iyΔ , ixΔ  = simulated coordinates differences between two epochs 

tΣ  = variance-covariance matrix of point coordinates in time t  

tt Δ+Σ  = variance-covariance matrix of point coordinates in time tt Δ+  
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tttTT Δ+
Σ   = variance-covariance matrix of coordinates of identical points in 

time t  and tt Δ+  

Σ   = variance-covariance matrix of coordinates differences yΔ , xΔ  

2
0σ  = a priori reference variance 

2
0σ̂   = a posteriori reference variance 

2
dσ  = displacement variance of point T between two epochs 
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Figure captions 

 

Figure 1: Empirical cumulative distribution function of the test statistic ddT σ/=  

Figure 2: Test network and displacements  

Figure 3: Distribution function of test statistic for point 2: 724.4/ == ddT σ   
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NETWORK SCALE

 

 

Figure 2: Test network and displacements  
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Table 1: Simulated observations of two epochs 

 
Point Null epoch  Epoch 2 

From To Direction Length Direction Length 

 

(1)        (2)  

 

0 

(3) 

' 

(4) 

'' 

(5) 

[m] 

(6) 

0 

(7) 

' 

(8) 

'' 

(9) 

[m] 

(10) 

1 6 314 59 58.6 848.5203 315 00 08.3 848.5437 

1 7 32 00 18.4 943.4058 32 00 18.0 943.4930 

1 2 90 00 00.6 1000.0017 89 59 48.8 1000.010 

2 1 269 59 58.1 1000.0077 269 59 50.2 1000.003 

2 7 327 59 41.6 943.3963 327 59 50.8 943.4170 

2 3 33 41 24.9 1081.6692 33 41 27.8 1081.660 

3 2 213 41 23.2 1081.6572 213 41 27.7 1081.666 

3 7 264 48 19.6 1104.5400 264 48 28.5 1104.507 

3 4 326 18 35.0 721.1132 326 18 35.0 721.1192 

4 3 146 18 33.4 721.1152 146 18 34.9 721.1152 

4 7 224 59 59.9 989.9525 225 00 00.3 989.9073 

4 5 275 42 39.1 1004.9917 275 42 37.1 1004.999 

5 4 95 42 37.9 1004.9861 95 42 36.1 1004.986 

5 7 159 26 39.7 854.4009 159 26 29.0 854.3696 

5 6 218 39 36.1 1280.6231 218 39 35.9 1280.621 

6 5 38 39 35.0 1280.6242 38 39 34.6 1280.626 

6 7 79 41 43.7 1118.0403 79 41 36.3 1118.074 

6 1 134 59 59.5 848.5338 135 00 10.4 848.5325 
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7 6 259 41 42.2 1118.0366 259 41 36.6 1118.068 

7 5 339 26 38.3 854.4000 339 26 28.6 854.3591 

7 4 45 00 00.9 989.9507 45 00 03.6 989.8993 

7 3 84 48 21.1 1104.5387 84 48 29.6 1104.505 

7 2 147 59 40.6 943.3984 147 59 50.6 943.4008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



25 

Table 2: Known displacements of points 1, 2, 3 and 7 between two epochs 

 
Point 

 

(1) 

Displacement - d 

[mm] 

(2) 

Azimuth - ν 

[0] 

(3) 

1    40 210 

2    12 330 

3      5 150 

7    50   30 
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Table 3: Approximate coordinates equal in both epochs 

 
Point Approximate 

coordinates 

 

(1) 

0y  

(2) 

0x  

(3) 

1 1000.0000 1000.0000 

2 2000.0000 1000.0000 

3 2600.0000 1900.0000 

4 2200.0000 2500.0000 

5 1200.0000 2600.0000 

6   400.0000 1600.0000 

7 1500.0000 1800.0000 
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Table 4: Point coordinates adjustment in a free network adjustment of single epochs 

Null epoch Epoch 2 Coordinate difference Point  

 

(1) 

1ŷ [m] 

(2) 

1x̂ [m] 

(3) 

2ŷ [m] 

(4) 

2x̂ [m] 

(5) 

yd ˆ [m] 

(6) 

xd ˆ [m] 

(7) 

1 999.9988 999.9995 999.9821 999.9599 -0.0167 -0.0396

2 2000.0013 1000.0012 1999.9899 1000.0085 -0.0114 +0.0073

3 2600.0037 1899.9984 2600.0039 1899.9942 +0.0002 -0.0042

4 2200.0004 2500.0000 2200.0015 2500.0007 +0.0011 +0.0007

5 1199.9988 2600.0007 1199.9983 2599.9966 -0.0005 -0.0041

6 399.9973 1599.9989 399.9991 1599.9972 +0.0018 -0.0017

7 1499.9997 1800.0013 1500.0252 1800.0429 +0.0255 +0.0416
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Table 5: Significance displacement testing in a test network 

 
 

Simulated displacement 
Point 

 

 

(1) 

simd [mm] 

 

(2) 

Displacement 

 

(3) 

Actual 

displacement 

d [mm] 

(4) 

dσ  

[mm] 

(5) 

T   

 

(6) 

critT  

 

(7) 

Tα (%) 

 

(8) 

1 40.0 yes 43.0 2.7 15.931 2.382 0.00

2 12.0 yes 13.5 2.9 4.724 2.384 0.00

3 5.0 yes 4.2 2.6 1.646 2.391 24.66

4 0.0 no 1.3 2.6 0.499 2.894 88.22

5 0.0 no 4.1 2.8 1.466 2.376 32.66

6 0.0 no 2.5 2.7 0.903 2.384 65.55

7 50.0 yes 48.8 1.9 25.838 2.387 0.00

 

 

 

 

 

 

 

 

 


