Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si

Visokošolski program Gradbeništvo, Konstrukcijska smer

Kandidat: Žiga Stepišnik

Eksperimentalne preiskave nosilnosti kotnih sider pri sidranju lesenih masivnih stenastih elementov

Diplomska naloga št.: 203

Mentor: prof. dr. Roko Žarnić

Somentor: asist. dr. Bruno Dujič

IZJAVA O AVTORSTVU

Podpisani ŽIGA STEPIŠNIK izjavljam, da sem avtor diplomske naloge z naslovom: EKSPERIMENTALNE PREISKAVE NOSILNOSTI KOTNIH SIDER PRI SIDRANJU LESENIH MASIVNIH STENSKIH ELEMENTOV.

Izjavljam, da se odpovedujem vsem materialnim pravicam iz dela za potrebe elektronske separatoteke FGG.

Medvode, 10.11.2005

STRAN ZA POPRAVKE, ERRATA

Stran z napako

Vrstica z napako

Namesto

Naj bo

IZJAVE O PREGLEDU NALOGE

Nalogo so si ogledali učitelji konstrukcijske smeri:

BIBLIOGRAFSKO – DOKUMENTACIJSKA STRAN IN POVZETEK

UDK:	624.011.1:691.11(043.2)
Avtor:	Žiga Stepišnik
Mentor:	izr. prof. dr. Roko Žarnić
Somentor:	asist. dr. Bruno Dujič
Naslov:	Eksperimentalne preiskave nosilnosti kotnih sider pri sidranju lesenih masivnih stenskih elementov
Obseg in oprema:	77 str., 11 pregl., 48 sl., 53 dia.
Ključne besede:	lesene konstrukcije, sidra sten, eksperimentalne preiskave, ciklična obtežba

Povzetek

V sklopu naloge smo preizkušali različna sidra za lesene masivne lepljene stenske elemente z namenom, da bi določili njihov odziv in osnovne mehanske lastnosti sider pri obtežbi, ki deluje v dveh pravokotnih smereh. Pri predhodnih preiskavah je bilo namreč ugotovljeno, da se stenski elementi pri vodoravni obtežbi lahko deformirajo na dva značilna načina. Prvi mejni način je, da se zavrtijo okoli tlačenega roba, in drugi da deloma drsijo v stiku s temeljno konstrukcijo in se po višini strižno deformirajo v obliko paralelograma. Na podlagi teh ugotovitev smo določili preiskave, ki simulirajo takšen obnašanja pri prenosu obtežbe na sidra. Preiskave sider, ki so simulirajo rotacijo stenskega elementa okoli tlačenega roba, smo poimenovali dvižne preiskave, medtem ko smo preiskave, ki simulirajo strižno obnašanje panela, poimenovali prečne preiskave. Eksperimentalne preiskave smo opravili na segmentih lesenih navzkrižno in enosmerno lepljenih panelov ter kotnih sidrih proizvajalcev BMF in WÜRTH. Za določitev mehanskih lastnosti sidrišč smo preizkušance obremenjevali z enakomerno naraščajočo monotno obtežbo, monotono obtežbo z razbremenjevanjem po standardu EN 26981 in ciklično oziroma pol-ciklično obtežbo po standardu prEN 12512. Rezultati preiskav so pokazali, da na obnašanje stika bolj vpliva dolžina žebljev, kot pa število le teh v stiku. Rezultati so tudi pokazali, da ima nazvkrižno lepljen panel boljše možnosti za uporabo in izvedbo močnejših sider od enosmerno lepljenih panelov.

BIBLIOGRAPHIC – DOCUMENTALISTIC INFORMATION AND ABSTRACT

UDC:	624.011.1:691.11(043.2)
Author:	Žiga Stepišnik
Supervisior:	Prof. Dr. Roko Žarnić
Co-supervisior:	Assist. Dr. Bruno Dujič
Title:	Experimental testing of load capacity of angle brackets for anchoring of solid wooden panels
Notes:	77 p., 11 tab., 48 fig., 53 graph.
Key words:	timber structures, wall anchors, experimental research, cyclic analysis

Abstract

Different angle brackets for anchoring solid wooden panels were tested to learn about their response and basic mechanical properties on the acting load in two perpendicular directions. Namely, previous tests showed two distinct cases of panel deformation. In one case the panel mainly rotates around its compressed corner. In the other case the panel slips along foundation and deforms into parallelogram shape. Based on this knowledge, the tests were designed to simulate these two cases of deformation. The two tests were named »up-lift test« and »slip test«. The tests were carried out on cross laminated and unidirectional laminated wooden panels segments anchored by BMF and WÜRTH angle brackets. To obtain reliable mechanical characteristics three different loading protocols were applied. Loading protocols to simulate realistic loads on angle brackets were monotonous, according to standard EN 26891, and cyclic or semi-cyclic according to standard prEN 12512. The tests showed that the length of nails has greater influence on the results that their number. The test results show that cross laminated panel has better possibility for strong fixation than unidirectional laminated panel.

ZAHVALA

Za pomoč pri nastajanju diplomske naloge se iskreno zahvaljujem mentorju izr.prof.dr. Roku Žarniću, somentorju asist.dr. Brunu Dujiču in gradb.inž. Franciju Čeponu.

Prav tako se zahvaljujem družini za potrpežljivost pri mojem študiju.

KAZALO VSEBINE

1	UVOD	1
2	STENSKI ELEMENT V KONSTRUKCIJI	2
3	PREDHODNE UGOTOVITVE	5
4	PREISKAVE	8
4.1	Upoštevani standardi pri izvedbi preiskav	8
4.2	Opis preiskav	13
4.3	Rezultati preiskav	15
4.3.1	Rezultati dvižnih preiskav	15
4.3.1.1	Rezultati dvižnih preiskav RIKO panelov in BMF sider z žeblji dolžine 40 mm	15
4.3.1.2	Rezultati dvižnih preiskav RIKO panelov in WÜRTH sider z žeblji dolžine 60 mm	18
4.3.1.3	Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 40 mm	20
4.3.1.4	Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 60 mm	23
4.3.2	Rezultati prečnih preiskav	26
4.3.2.1	Rezultati dvižnih preiskav RIKO panelov in BMF sider z žeblji dolžine 40 mm	26
4.3.2.2	Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 40 mm	28

4.3.2.3	Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji	
	dolžine 60 mm	31
4.4	Analiza rezultatov preiskav	34
4.4.1	Analiza odzivov dvižnih preiskav	41
4.4.1.1	RIKO paneli in BMF sidra z žeblji dolžine 40 mm	41
4.4.1.2	RIKO paneli in WÜRTH sidra z žeblji dolžine 60 mm	44
4.4.1.3	KLH paneli in BMF sidra z žeblji dolžine 40 mm	47
4.4.1.4	KLH paneli in BMF sidra z žeblji dolžine 60 mm	51
4.4.2	Analiza odzivov prečnih preiskav	54
4.4.2.1	RIKO paneli in BMF sidra z žeblji dolžine 40 mm	54
4.4.2.2	KLH paneli in BMF sidra z žeblji dolžine 40 mm	57
4.4.2.3	KLH paneli in BMF sidra z žeblji dolžine 60 mm	60
5	PRIMERJAVE REZULTATOV PREISKAV	63
5.1	Primerjava rezultatov dvižnih preiskav	63
5.2	Primerjava rezultatov prečnih preiskav	66
5	ZAKLJUČEK	68

KAZALO PREGLEDNIC

Preglednica 1:	Matrika opravljenih preiskav.
Preglednica 2:	Primerjava doseženih rezultatov dvižnih preiskav (k_y , F_y ter F_{max} s pripadajočimi pomiki).
Preglednica 3:	Primerjava doseženih rezultatov prečnih preiskav (ky, Fy ter F_{Max} s pripadajočimi pomiki).
Preglednica 4:	Primerjava doseženih rezultatov dvižnih preiskav (F_u s pripadajočimi pomiki, površina pod grafom, 0,95 F_{Max} s pripadajočimi pomiki, 0.8 F_{Max} s pripadajočimi pomiki).
Preglednica 5:	Primerjava doseženih rezultatov prečnih preiskav (F_u s pripadajočimi pomiki, površina pod grafom, 0,95 F_{Max} s pripadajočimi pomiki, 0,8 F_{Max} s pripadajočimi pomiki).
Preglednica 6:	Primerjava doseženih rezultatov dvižnih preiskav (0,95F, 0,8F, $0,1F_{Max}$ in $0,4F_{Max}$ s pripadajočimi pomiki).
Preglednica 7:	Primerjava doseženih rezultatov dvižnih preiskav (0,95F, 0,8F, 0,1F _{Max} in 0,4F _{Max} s pripadajočimi pomiki).
Preglednica 8:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave RIKO2-C-S, RIKO2-C-L, RIKO3-C-S.
Preglednica 9:	Prikaz disipirane energije, razpoložljive potencialne energije, velikost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskavi RIKOW3-C-S in RIKOW4-C-S.
Preglednica 10:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH1-C-S, KLH1-C-L in KLH1-C-D.
Preglednica 11:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskavi KLH2-C-S in KLH2-C-D.
Preglednica 12:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekv. viskoznega dušenja po posameznih amplitudah za preiskave RIKO-P-C-1, RIKO-P-C-2 in RIKO-P-C-2.
Preglednica 13:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH-P-C-1, KLH-P-C-2 in KLH-P-C-3.
Preglednica 14:	Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH-P60-C-1, KLH-P60-C-2 in KLH-P60-C-3.

KAZALO DIAGRAMOV

- Diagram 1: Odziv monotone dvižne preiskave RIKO1-A-S.
- Diagram 2: Odziv monotonih dvižnih preiskav RIKO1-B-S in RIKO2-B-S po protokolu EN 26891.
- Diagram 3: Ciklični odziv dvižne preiskave RIKO2-C-S.
- Diagram 4: Ciklični odziv dvižne preiskave RIKO2-C-L.
- Diagram 5: Ciklični odziv dvižne preiskave RIKO3-C-S.
- Diagram 6: Odziv monotone dvižne preiskave RIKOW-A-S.
- Diagram 7: Odziv monotonih dvižnih preiskav RIKOW-B-S in RIKOW2-B-S po protokolu EN 26891.
- Diagram 8: Ciklični odziv dvižne preiskave RIKOW3-C-S.
- Diagram 9: Ciklični odziv dvižne preiskave RIKOW4-C-S.
- Diagram 10: Odziv monotone dvižne preiskave KLH1-A-S.
- Diagram 11: Odziv monotonih dvižnih preiskav KLH1-B-D in KLH1-B-L po protokolu EN 26891.
- Diagram 12: Ciklični odziv dvižne preiskave KLH1-C-S.
- Diagram 13: Ciklični odziv dvižne preiskave KLH1-C-L.
- Diagram 14: Ciklični odziv dvižne preiskave KLH1-C-D.
- Diagram 15: Odziv monotone dvižne preiskave KLH2-A-S.
- Diagram 16: Odziv monotonih dvižnih preiskav KLH2-B-L in KLH2-B-D po protokolu EN 26891.
- Diagram 17: Ciklični odziv dvižne preiskave KLH2-C-S.
- Diagram 18: Ciklični odziv dvižne preiskave KLH2-C-D.
- Diagram 19: Odziv monotone prečne preiskave RIKO-P-A.
- Diagram 20: Ciklični odziv prečne preiskave RIKO-P-C-1.
- Diagram 21: Ciklični odziv prečne preiskave RIKO-P-C-2.
- Diagram 22: Ciklični odziv prečne preiskave RIKO-P-C-3.
- Diagram 23: Odziv monotone prečne preiskave KLH-P-A.
- Diagram 24: Ciklični odziv prečne preiskave KLH-P-C-1.
- Diagram 25: Ciklični odziv prečne preiskave KLH-P-C-2.
- Diagram 26: Ciklični odziv prečne preiskave KLH-P-C-3.
- Diagram 27: Odziv monotone prečne preiskave KLH-P60-A.

Diagram 28:	Ciklični odziv prečne preiskave KLH-P60-C-1.
Diagram 29:	Ciklični odziv prečne preiskave KLH-P60-C-2.
Diagram 30:	Ciklični odziv prečne preiskave KLH-P60-C-3.
Diagram 31:	Primerjava monotonih preiskav RIKO1-A-S, RIKO1-B-S, RIKO2-B-S in povprečje obeh preiskav po protokolu EN26891 (B).
Diagram 32:	Primerjava pol-cikličnih preiskav RIKO2-C-S, RIKO2-C-L, RIKO3-C-S in njihovo povprečje.
Diagram 33:	Primerjava faktorja ekvivalentnega viskoznega dušenja v odvisnosti od
	amplitude pol-cikličnih preiskav RIKO2-C-S, RIKO2-C-L in RIKO3-C-S.
Diagram 34:	Primerjava monotonih dvižnih preiskav RIKOW-A-S, RIKOW-B-S, RIKOW2-B-S in povprečje obeh preiskav po protokolu EN26891 (B).
Diagram 35:	Primerjava pol-cikličnih preiskav preizkušancev RIKOW3-C-S, RIKOW4-
	C-S ter njuno povprečje.
Diagram 36:	Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude
	dviga za preiskavi RIKOW3-C-S in RIKOW4-C-S.
Diagram 37:	Primerjava monotonih preiskav KLH1-A-S, KLH1-B-D, KLH1-B-L in povprečje obeh preiskav po protokolu EN26891 (B).
Diagram 38:	Primerjava pol-cikličnih preiskav KLH1-C-S, KLH1-C-L, KLH1-C-D in njuno povprečje.
Diagram 39:	Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude
	dviga za preiskave KLH1-C-S, KLH1-C-L, KLH1-C-D.
Diagram 40:	Primerjava monotonih preiskav KLH2-A-S, KLH2-B-L, KLH2-B-D in povprečje obeh preiskav po protokolu EN 26891 (B).
Diagram 41:	Primerjava pol-cikličnih preiskav KLH2-C-S in KLH2-C-D ter njuno povprečje.
Diagram 42:	Primeriava faktoria ekv. viskoznega dušenia v odvisnosti od amplitude
Brugrunn 121	dviga za preiskavi KLH2-C-S, KLH2-C-D.
Diagram 43:	Primerjava cikličnih preiskav RIKO-P-C-1, RIKO-P-C-2, RIKO-P-C-2 in njihovo povprečje.
Diagram 44:	Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude
	zdrsa za preiskave RIKO-P-C-1,RIKO-P-C-2, RIKO-P-C-2.
Diagram 45:	Primerjava cikličnih preiskav KLH-P-C-1, KLH-P-C-2, KLH-P-C-3 in
	njihovo povprečje.
Diagram 46:	Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude
	zdrsa za preiskave KLH-P-C-1, KLH-P-C-2, KLH-P-C-3.
Diagram 47:	Primerjava cikličnih preiskav KLH-P60-C-1, KLH-P60-C-2, KLH-P60-C-3 in njihovo povprečje.
Diagram 48:	Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude
	zdrsa za preiskave KLH-P60-C-1, KLH-P60-C-2, KLH-P60-C-3.

Diagram 49:	Primerjava monotonih dvižnih preiskav RIKO1-A-S, RIKOW-A-S, KLH1- A-S in KLH2-A-S.
Diagram 50:	Primerjava monotonih dvižnih preiskav RIKO1, RIKOW, KLH1 in KLH2 po protokolu EN 26891.
Diagram 51:	Primerjava povprečnih ovojnic pol-cikličnih dvižnih preiskav RIKO1, RIKOW, KLH1 in KLH2 z upadom sile v tretjem ciklu.
Diagram 52:	Primerjava monotonih prečnih preiskav RIKO-P-A, KLH-P-A in KLH-P60-A.
Diagram 53:	Primerjava cikličnih prečnih preiskav RIKO1, KLH1 in KLH2 z upadom

sile v tretjem ciklu.

KAZALO SLIK

- Slika 1: Panel RIKO levo v pogledu.
- Slika 2: Panel RIKO desno v prerezu.
- Slika 3: Panel KLH levo v pogledu.
- Slika 4: Panel KLH desno aksonometričen pogled.
- Slika 5: Panel KLH stranski pogled.
- Slika 6: Kotna sidra levo BMF 105.
- Slika 7: Kotna sidra na sredini BMF 6191.
- Slika 8: Kotna sidra desno Würth W-VAD M12 s podložko.
- Slika 9: Deformacija panela levo rotacija panela pri vnosu vodoravne obtežbe in desno strižna deformacija panela v obliko paralelograma.
- Slika 10: Vpetje panela za dvižne preiskave.
- Slika 11: Vpetje panela za dvižne preiskave.
- Slika 12: Horizontalna plošča vpetja kotnikov, prikaz lukenj za vpenjanje kotnikov.
- Slika 13: Vpetje panela za prečne preiskave.
- Slika 14: Vpetje panela za prečne preiskave.
- Slika 15: Diagram monotono naraščajočega obremenjevanja stika.
- Slika 16: Prikaz obremenjevanja in razbremenjevanja po EN26891.
- Slika 17: Polcikličen protokol.
- Slika 18: Cikličen protokol obremenjevanja.
- Slika 19: RIKO panel s kotnim sidrom BMF in žeblji 40 mm , levo porušitev lesa.
- Slika 20: RIKO panel s kotnim sidrom BMF in žeblji 40 mm, desno zdrs sidernega vijaka skozi utor v sidru.
- Slika 21: RIKO panel s kotnim sidrom Würth in žeblji dolžine 60 mm, levo prušitev lesa v spodnjem pasu žebljev.
- Slika 22: RIKO panel s kotnim sidrom Würth in žeblji dolžine 60 mm, desno deformacija sidra pri dvižnih preiskavah.
- Slika 23: KLH panel s kotnimi sidri BMF in žeblji dolžine 40 mm, levo izvlek žebljev med preiskavo.
- Slika 24: KLH panel s kotnimi sidri BMF in žeblji dolžine 40 mm, iztrganje lesa pa vlaknih.

Slika 25:	KLH panel s kotnimi sidri BMF in žeblji dolžine 60 mm, levo
	deformacija lesa.

- Slika 26: KLH panel s kotnimi sidri BMF in žeblji dolžine 60 mm, desno razkol lesa po vlaknih.
- Slika 27: Panel RIKO s BMF kotnim sidrom in 40mm žeblji pri prečni preiskavi, levo deformiranje sidra med preiskavo.
- Slika 28: Panel RIKO s BMF kotnim sidrom in 40mm žeblji pri prečni preiskavi, desno porušitev žebljev med preiskavo.
- Slika 29: KLH panel in BMF kotno sidro z žeblji dolžine 40 mm pri prečni preiskavi, levo deformacija sidra med preiskavo.
- Slika 30: KLH panel in BMF kotno sidro z žeblji dolžine 40 mm pri prečni preiskavi, desno iztrg znanje lamele lesa.
- Slika 31: KLH panel in BMF sidro z žeblji dolžine 60 mm pri prečni preiskavi, levo deformacija sidra po preiskavi.
- Slika 32: KLH panel in BMF sidro z žeblji dolžine 60 mm pri prečni preiskavi, desno deformacija žebljev med preiskavo.
- Slika 33: Določitev F_u.
- Slika 34 RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo pred preiskavo.
- Slika 35 RIKO panel in BMF sidro z žeblji dolžine 40 mm, desno ena izmed porušitev razkol panela vzdolž lesenih vlaken.
- Slika 36 RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo porušitev panela vzdolž vlaken.
- Slika 37 RIKO panel in BMF sidro z žeblji dolžine 40 mm, desno značilna deformacija kotnega sidra po ciklični preiskavi.
- Slika 38 RIKO panel in WÜRTH sidro z žeblji dolžine 60 mm, levo deformacija lesa in iztrgani kapici žebljev.
- Slika 39 RIKO panel in WÜRTH sidro z žeblji dolžine 60 mm, desno gnetenje lesenih vlaken.
- Slika 40 KLH panel in BMF sidro z žeblji dolžine 40mm, levo izvlek žebljev pri ciklični obtežbi.
- Slika 41 KLH panel in BMF sidro z žeblji dolžine 40mm, desno iztrganje lesa po vlaknih.
- Slika 42 KLH panel in BMF sidro z žeblji dolžine 60 mm po ciklični preiskavi, levo izvlek žebljev in iztrg lesa po vlaknih.
- Slika 43 KLH panel in BMF sidro z žeblji dolžine 60 mm po ciklični preiskavi, desno strižna porušitev žebljev.
- Slika 44 RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo obnašanje sidra med prečno preiskavo in porušitev žebljev.

Slika 45	RIKO panel in BMF sidro z žeblji dolžine 40 mm, desno odtis kotnika
	v panel.

- Slika 46 KLH panel in BMF sidro z žeblji dolžine 40 mm, levo izvlek in pretrg žebljev ter kotnika.
- Slika 47 KLH panel in BMF sidro z žeblji dolžine 40 mm, desno panel po preiskavi.
- Slika 48 Panel KLH sidran s kotnimi sidri BMF in 60mm žeblji, levo kotno sidro med preiskavo.
- Slika 49 Panel KLH sidran s kotnimi sidri BMF in 60mm žeblji, desno kotno sidro proti koncu preiskve.

XVI Stepišnik, Ž. 2005. Eksperimentalne preiskave nosilnosti kotnih sider pri sidranju lesenih masivnih stenskih elementov. Dipl. Nal.- VSŠ. Ljubljana, UL, FGG, Odd. za gradbeništvo, Konstrukcijska smer

1 UVOD

Masivne lesene zgradbe se pri nas in v svetu čedalje bolj uveljavljajo. Predstavljajo nekako vmesno fazo med klasičnimi montažnimi zgradbami in pa zidanimi zgradbami. Uveljavljajo se predvsem zaradi lesa kot naravnega materiala in ker združujejo prednosti tako montažnih kot zidanih zgradb. Prednosti montažnih zgradb so: hitra gradnja, lahka konstrukcija, dobra toplotna izolativnost. Možna je velika natančnost izdelka, ker je narejen v delavnici, medtem ko je prednost zidanih zgradb v zelo dobri zvočni izolativnosti. Masivne lesene zgradbe zelo dobro združujejo vse te lastnosti. Gradnja takšnih objektov je bolj uveljavljena v krajih severno od nas (Avstrija, Nemčija, predvsem pa Skandinavija). Predvsem v Skandinaviji se je gradnja lesenih zgradb dobro obdržala, pa čeprav je bila v 19. stoletju pri oblasteh nezaželena, predvsem zaradi požarne varnosti ^[Vir 1]. So pa lesene zgradbe lahko tudi zelo trajne, saj je cerkev v Miskolcu na Madžarskem stala od leta 1724 do leta 1937 ^[Vir 2], kar je dobrih dvesto let, nekatere cerkeve v Romuniji in Rusiji pa po nepreverjenih podatkih skoraj štiristo let. Zato je tudi področje lesene gradnje v teh deželah dobro raziskano. V preteklosti je bila uporaba masivnega lesa v praksi pogosto omejena, ker je les večjih dimenzij rad pokal in se zvijal, hkrati pa so bili njegovi preseki in dolžine omejeni. Te težave so bile odpravljene z uvedbo lepljenega lesa. To so tanjši in krajši kosi masivnega lesa, ki so dolžinsko in ploskovno zlepljeni v izdelek želenih dimenzij. Slabše pa je raziskano obnašanje takšnih objektov na horizontalno nezgodno obtežbo (veter, potres). To izhaja predvsem iz dejstva, da je potresna aktivnost v teh deželah zanemarljiva oziroma je praktično ni. Drugi razlog zato pa je, da se je večinoma gradilo pritlične in enoetažne objekte, če ne upoštevamo cerkva. V zadnjem času pa se vse bolj uveljavlja gradnja večetažnih in poslovnih objektov. V teoriji bi se morale masivne lesene hiše ob potresu obnašati bolje kot zidane, saj je konstrukcija lažja, s tem povezane pa so tudi manjše vztrajnostne sile zaradi vzbujane mase. Problem pa nastopi pri sidranju in povezovanju elementov. Zato smo pri tej diplomski nalogi opazovali predvsem obnašanje sider, s katerimi se stenske elemente povezuje na temelj. Predhodne preiskave na celotnih panelih so pokazale dve značilni obliki deformacije panela. Na podlagi teh podatkov smo potem zasnovali značilni preiskavi za sidra. Ena preiskava je obteževanje sidra v dvižni smeri glede na panel in temeljno konstrukcijo, druga pa je obteževanje sidra v prečni oziroma vodoravni smeri glede na stik stene in temelja.

2 STENSKI ELEMENT V KONSTRUKCIJI

Les kot gradbeni material se uporablja že od samega začetka gradnje objektov, saj je konstrukcijo relativno lahko postaviti v primerjavi z drugimi gradbenimi materiali, kot sta kamen in zemlja, če se omejimo le na materiale, ki so se v preteklosti uporabljali pri gradnji objektov. Kamen je problematičen, ker ga je potrebno klesati, za kar pa je potrebno kovinsko orodje. Zemlja je sicer lažja za vgrajevanje od lesa, vendar postane nestabilna v stiku z vodo. Zato večkrat vidimo takšne objekte v suhih, puščavskih krajih, kjer je majhna verjetnost dežja. So pa les v 19. stoletju začeli izpodrivati drugi materiali, kot so beton, opeka, kamen, železo in jeklo, vendar pa se les počasi vrača, predvsem zaradi drugačnih tehnik obdelave in priprave. Velika slabost lesa je njegova geometrijska omejenost in delovanje. Oba problema sta v veliki meri rešena z lepljenjem lesa v panele, ki so sestavljeni in različnih kosov lesa, kar pa pomeni, da je manjša verjetnost, da bo velik delež lesa v konstrukciji deloval enako intenzivno. Prednost lesa je tudi njegova nosilnost v razmerju z lastno težo in ob pravilni uporabi tudi trajnost. Za gradbenike zanimiv podatek je tudi modul elastičnosti v smeri vlaken, ki po EC5 znaša med 800 in 1700kN/cm^{2 [Vir 3]}, v radialni smeri okoli 6% vrednosti glede na vzdolžno smer ter v tangencialni smeri med 3 in 6% vrednosti glede na vzdolžno smer, kar pove, da je les izrazito anizotropen material. Tlačna trdnost v smeri vlaken znaša med 3 in 7 kN/cm², v prečni smeri pa ta znaša le okoli 20% vrednosti v vzdolžni smeri. Natezna trdnost v smeri vlaken znaša med 0,4 in 1,5 kN/cm^{2 [Vir 4]}, v prečni smeri pa znaša le okoli 3% vrednosti v vzdolžni smeri. Pri snovanju konstrukcije je zato nujno upoštevati, da je les izrazito anizotropen material, ter temu prilagoditi konstrukcijo in predvsem način stikovanja.

Stenski element oziroma panel v konstrukciji je lahko en element, ki "teče" vzdolž celotne stranice objekta in s tem predstavlja več sten posameznih prostorov v objektu. Lahko pa stenski element predstavlja le posamezni segment stene objekta. Stenski elementi imajo večinoma že izdelane okenske in vratne odprtine, nekateri proizvajalci predhodno izdelajo tudi kanale za inštalacije. S tem ni potrebno lesene površine oblagati oziroma dodatno obdelovati, ampak je lahko lesena stenska konstrukcija tudi vidna.

Sliki I in II: Paneli v konstrukciji, levo panel RIKO(<u>http://www.riko-hise.si/riko-hise/slo/hisaRiko/images/varnaInTrajna3.jpg</u>)^[Vir 5], desno panel KLH (<u>http://www.klh.at/de/pages/4/referenz_bilder/EFH_Klagenfurt_9_72dpi.jpg</u>)^[Vir 6]

V tej diplomski nalogi prikazujemo preiskave panelov proizvajalca RIKO Hiše (v nadaljevanju RIKO) in proizvajalca KLH Massivholz (v nadaljevanju KLH). Vsak izmed proizvajalcev ima svoj pristop k izdelavi panelov oziroma konstrukcije panela. Konstrukcija panelov RIKO je podobna konstrukciji lepljenih nosilcev, tako da imajo lesena vlakna vseh lamel isto - horizontalno smer. Debelina panela je 10 cm.

Sliki 1 in 2: Panel RIKO - levo v pogledu in desno v prerezu.

Konstrukcija panelov KLH pa je na videz podobna vezani plošči, saj imamo v prerezu tri palsti lamel, ki so navzkrižno zlepljene. Zunanje lamele imajo potek vlaken v navpični smeri, medtem ko imajo lamele v osrednji palsti vlakna orientirana v vodoravni smeri. Debelina panela pa je 94 mm.

Sliki 3 in 4: Panel KLH - levo v pogledu in desno aksonometričen pogled.

Slika 5: Panel KLH - stranski pogled.

Panel se v temelj ali v talno konstrukcijo sidra s preko kovinskih sider. Na tržišču je več proizvajalcev sider za lesene elemente. Proizvajalca panelov uporabljata različna sidra za sidranje panelov. RIKO uporablja kotno sidro BMF-Simpson StrogTie (v nadaljevanju BMF) model 6191 v kombinaciji z žeblji dolžine 40 mm in Würth sidro oznake W-VAD M12 s podložko v kombinaciji z žeblji dolžine 60 mm, medtem ko KLH uporablja le en tip kotnih sider in sicer BMF kotnik 105 z rebrom. Za pritrditev kotnika na leseni panel se uporabljajo žeblji dolžine 40 mm oziroma 60 mm.

Oba proizvajalca uporabljata obročaste žeblje premera 4,0 mm. Različno pa je število uporabljenih žebljev na kotno sidro, saj imajo različna kotna sidra različno število pripravljenih lukenj za žeblje. RIKO uporablja le po štiri žeblje na sidro, medtem ko KLH uporablja deset žebljev na sidro.

Slike 6, 7 in 8: Kotna sidra - levo BMF 105, na sredini BMF 6191, desno Würth W-VAD M12 s podložko.

3 PREDHODNE UGOTOVITVE

Pri predhodnih preiskavah stenskih elementov na vodoravno obtežbo je bilo ugotovljeno, da prihaja do dveh značilnih načinov deformacij. V prvem primeru pride do rotacije panela, v drugem pa panel zdrsne in se iz pravokotne oblike deformira v obliko paralelograma.

Slika 9: Deformacija panela - levo rotacija panela pri vnosu vodoravne obtežbe in desno strižna deformacija panela v obliko paralelograma.

Rotacija panela je posledica velike togosti panela glede na nosilnost sider in relativno majhne navpične obtežbe panela. Do zdrsa pride pri manjši sili trenja, ki se vpostavi v kontaktu med temeljem in panelom. Zdrs panela je lahko tudi posledica izvedbenih rešitev, saj proizvajalci podlagajo panele s plastičnimi podložkami, ki imajo majhen koeficent trenja. Vendar je uporaba

podložk sprejemljiva predvsem iz dveh razlogov. Prvi je, da kompenzirajo neravnine betonske temeljne konstrukcije. Drugi pa je, da ločijo leseno konstrukcijo od betonske, kar precej vpliva na trajnosti lesa. To je sicer dobro s stališča sipanja energije, saj prihaja do zdrsa med betonsko in leseno konstrukcijo. Vendar pri tem pride do velikih deformacij kotnih sider, kar pa je v nasprotju z načelom o uporabnosti objekta, saj naj bi bil objekt po potresu primeren za uporabo. Velike deformacije objekta lahko namreč povzročijo veliko škode na nekonstrukcijskih elementih, veliki zdrsi pa so predvsem problematični v vidika vođenja inštalacijskih kanalov preko stikov med elementi. Sprva so predpisi zahtevali, da je konstrukcija takšna, da v primeru močnega potresa omogoča varen umik uporabnikov, torej ne ogroža življenj. Današnji predpisi pa že zahtevajo omejevanje poškodb in s tem tudi deformacij objekta pri potresnem vzbujanju.

Na podlagi teh omejitev smo določili program preiskav in razdelili obtežbo na sidru v dveh pravokotnih smereh. Tako smo po komponentah obtežbe izvedli na sidriščih stenskih elementov dvižne ter prečne oziroma strižne preiskave. Z dvižnimi preiskavami smo simulirali obnašanje, čko pride do rotacije panela, pri čemer smo se osredotočili na sidra, ki so najbolj dvižno obremenjena. Ker gre v tem primeru za majhno razliko med dvigom enega in drugega robu sidra, smo se odločili, da bomo vgrajeno sidro v konstrukcijski sklop stene in temelja preprosto centrično obteževali v natezni oziroma dvižni smeri stene glede na temelj. Ker je obtežbo možno vsiljevati le v eni – dvižni smeri, smo ciklično preiskavo izvajali le kot pol-ciklično. Izvajanje simetrične ciklične preiskave glede na velikost vsiljevane sile ne bi imelo smisla, saj bi v tem primeru tlačno obteževali le panel ne pa tudi stika. Da ne bi pri preizkusu prihajalo poleg dvižnih sil še do vpliva upogibne obremenitve stika, smo se odločili, da bomo preizkus izvajali hkrati na dveh simetrično vpetih sidrih z obeh strani stene. Ko sta bili obe sidri pritrjeni na sredini panela, smo os obeh sider zamaknili iz sredine za 24 mm, da se žeblji niso mogli prekrivati (Slika 12).

Preizkušanec smo v preizkuševalno napravo vpeli preko vzdolžnih robov segmenta lesene stene, sidro pa smo preko vijaka pritrdili na togo jekleno podlago, ki je predstavljala temeljno konstrukcijo (Slika 10). Leseno steno smo v preizkuševalni okvir pritrdili z ježevkami, saj le te omogočajo dokaj togo zvezo pri prenosu obtežbe. Ježevki sta bili privarjeni in hkrati privijačeni na bočni jekleni plošči. Ti dve plošči sta bili preko navojnih palic premera 10 mm obešeni na dva U – profila, s katerima smo objeli togo zgornjo ploščo, ki je bila pripeta na preizkuševalni okvir (Slika 11).

Na spodnji strani segmenta lesene stene smo z obročastimi žeblji pritrdili z vsake strani po en kovinski kotnik simetrično glede na sredinsko prečno os panela. Nato smo kotnike s sidrnimi vijaki, ki jih uporablja proizvajalec za sidranje v temeljno konstrukcijo, privijačili na spodnjo jekleno ploščo, ki je predstavljala temeljno konstrukcijo stene. Pri tem smo predpostavili, da je stik med temeljem in kovinskim kotnikom, ki ga povezuje sidrni vijak, mnogo močnejši od pregiba kotnika in stika med njim ter leseno steno.

Sliki 10 in 11: Vpetje panela za dvižne preiskave.

Slika 12: Horizontalna plošča vpetja kotnikov, prikaz lukenj za vpenjanje kotnikov.

Za prečne oziroma strižne preiskave pa smo panel obrnili za 90°. Preiskava je sicer potekala v vertikalni smeri, a je simulirala horizontalen pomik panela. Takšno vpetje smo morali izvesti zato, ker servo-hidravlični bat omogoča vsiljevanje obtežbe v preizkuševalnem okviju le v vertikalni smeri. Pri tem nismo obtežili segmenta stene s silo, ki bi povzročila trenje v stiku stene s podlago,

saj smo želeli iz rezultatov izločiti vpliv trenja. S tem smo simulirali le obnašanje sidra pri obtežbi vzdolž stika med panelom in podlago. V tem primeru smo izvedli ciklične preiskave z obteževanjem v obeh smereh z enakimi amplitudami zdrsov v stiku.

Sliki 13 in 14: Vpetje panela za prečne preiskave.

4 **PREISKAVE**

4.1 Upoštevani standardi pri izvedbi preiskav

a) Monotono naraščajoča obtežba

Pri monotoni preiskavi se le-to vodi po pomiku. Hitrost vsiljevanega pomika je 0,07 mm/sek, preiskava pa traja dokler sila ne pade za 20% vrednosti maksimalno izmerjene sile (Slika IV). Na podlagi te preiskave smo določili pomik na meji elastičnosti oziroma pričetek plastičnosti in maksimalno silo. Maksimalno silo smo potrebovali za določitev obremenjevanja in razbremenjevanja pri preiskavi po EN 26981, medtem ko smo potrebovali pomik na meji plastičnosti zaradi določitve amplitude pomika pri cikličnih preiskavah po prEN 12512.

Slika 15: Diagram monotono naraščajočega obremenjevanja stika.

V primeru odziva, ko je krivulja sila-zdrs povsem nelinearna, je določen postopek za konstruiranje točke v diagramu, ki predstavlja zdrs na meji plastičnosti. Postopek je določen tako, da je potrebno najprej povleči linijo skozi točki, ki sta na krivulji sila-zdrs pri sili 0,1 F_{max} ter 0,4 F_{max} s pripadajočim zdrsom, druga linija pa je tangenta na krivuljo z naklonom 1/6 vrednosti naklona prve linije (Slika III). Faktor 1/6 je bil izbran kot kompromis med različnimi ekstremnimi vrednostmi, ki so bile ugotovljene pri odzivih različnih stikov v katerih so uporabljena mehanska vezna sredstva.

Slika IV: Določitev mejnega pomika v stiku v_u (prEN 12512:1996, str.5)^[Vir 8].

Mejni pomik v_u lahko določimo na tri načine. V prvem načinu dobimo mejni pomik v_u , ko pride do porušitve preizkušanca (primer a). V drugem načinu se stik ne poruši, vendar mu pade nosilnost za več kot 20% in je mejni pomik v_u definiran kot pomik pri padcu sile na 80% največje dosežene nosilnosti (primer b). V tretjem načinu pa je dosežen pomik velikosti 30 mm (primer c).

b) Monotono obremenjevanje in razbremenjevanje po EN 26891

Pred izvedbo cikličnih preiskav stikov iz mehanskih veznih sredstev je potrebno predhodno poznati njihov odziv pri monotono naraščajoči obtežbi. Rezultati teh preiskav nam dajo vrednosti pomikov na meji plastičnosti v_y, na podlagi katerih določimo potek obteževanja pri cikličnih preiskavah, saj temeljijo amplitude posameznih ciklov na večkratniku zdrsa na meji plastičnosti.

Pri tem protokolu najprej obremenimo panel tako, da v dveh minutah dosežemo 0.4 F_y . To silo držimo 30 sek nato pa v minuti in pol spustimo silo na 0.1 F_y . To silo držimo 30 sek. Hitrost obteževanja do sile velikosti 0,7 F_y naj bi bila konstantna in naj bi naraščala s hitrostjo 0,2 F_y na minuto s toleranco $\pm 25\%$. Ko dosežemo 70% maksimalne pričakovane sile, naj bi obteževanje nadaljevali s konstantnim prirastkom pomikov vse do porušitve oziroma do pomika 15 mm, kar naj bi dosegli v času od 3 do 5 minut. Skupni čas za izvedbo preiskave pa naj bi znašal od 10 do 15 minut.

Slika 16: Prikaz obremenjevanja in razbremenjevanja po EN 26891.

c) Ciklični oz. polciklični protokol prEN 12512

Ta protokol smo morali prilagoditi pri izvedbi dvižnih preiskav. Omenjeni protokol namreč protokolu narekuje simetrično obteževanje v pozitivni in negativni smeri. Takšen način preiskušanja v našem primeru ni prišel v upoštev saj preizkušanec leži na "togi" podlagi. V primeru ismetričnega obteževanja v obeh smereh, bi pri tlačni napetosti v stiku obremenjevali le leseni panel, vezna sredstva v stiku pa ne bi bila obremenjena. Zato smo ciklični protokol pri dvižnih preiskavah izvajali le kot polciklični le v natezni smeri glede na stik. Struktura protokola je razvidna iz slike 17. Velikost amplitude smo določili kot mnogokratnik pomika na meji plastičnosti v_y v skladu z EN 26891. Obtežne cikle z enako amplitudo smo ponovili trikrat z namenom, da smo določili upadanje nosilnosti pri ponavljajoči se obtežbi. Pri večini konstrukcijskih elementov se smatra, da v večjem številu ponovitev padec ni več tako očiten. Površina histerezne zanke nam pove, koliko energije se je disipiralo v enem obtežnem ciklu. Mehanska energija se pri tem pretvarja predvsem v toploto energijo. Razmerje med disipirano energijo E_d v polovici cikla in razpoložljivo potencialno energijo E_p imenujemo kvocient ekvivalentnega viskoznega dušenja v_{eq} in ga določimo po naslednji enačbi:

$$V_{eq} = \frac{E_d}{2\pi E_p}$$

Slika V: Disipirana in razpoložljiva potencialna energija, površini s pomočjo katerih določimo kvocient ekvivalentnega viskoznega dušenja (prEN 12512:1996, str.6)^[Vir 9].

Za posamezne stike so vrednosti predvsem odvisne od razmerja med premerom veznega sredstva ter debelino lesa. Tanjša vezna sredstva so bolj primerna, saj so disipirajo več energije zaradi nastanka plastičnih členkov v veznih sredstvih, medtem ko se debelejša vezna sredstva obnašajo elastično brez disipacije energije v jeklu. Pri izbiri tanjših veznih sredstev je potrebno paziti, da izberemo zadostno število veznih sredstev, saj morajo le-ta zagotavljati zadostno strižno nosilnost.

Sliki 17 in 18: Pol-ciklični in ciklični protokol obremenjevanja stika, levo je prikazan polcikličen protokol, desno cikličen protokol obremenjevanja.

V primeru žebljanega stika se lesena vlakna okoli žeblja mečkajo. Ker se vlakna mečkajo le-ta ne nudijo več opore žeblju. Žebelj v tem primeru nosi zaradi konzolne vpetosti v les. Takšno obnašanje se kaže vse dotlej, dokler se amplituda zdrsa v stiku ne poveča, vendar je žebelj bočno podprt z lesenim medijem le v prvem cikli pri večji amplitudi. Se pa pri večjih amplitudah pojavi še en

problem. Ker je žebelj že zelo nagnjen le-ta ni več obremenjen le strižno pač pa tudi natezno, zaradi česar prihaja do izvleka žeblja.

4.2 Opis preiskav

	Tip preiskave	Tip obremenjevanja	Panel	Kotno sidro	Št. žebljev na sidro	Dolžina žebljev [mm]	Št. vijakov na sidro	Izmerjena maksimalna sila [kN]	Pomik pri maksimalni sili [mm]
Riko1-A-S	Dvižna	Monotono	RIKO	BMF 6191	4	40	1	12,344	11,984
Riko1-B-S	Dvižna	Po EN 26891	RIKO	BMF 6191	4	40	1	10,060	11,877
Riko2-B-S	Dvižna	Po EN 26891	RIKO	BMF 6191	4	40	1	10,996	7,076
Riko2-C-S	Dvižna	Ciklično	RIKO	BMF 6191	4	40	1	9,938	7,492
Riko2-C-L	Dvižna	Ciklično	RIKO	BMF 6191	4	40	1	8,454	5,993
Riko3-C-S	Dvižna	Ciklično	RIKO	BMF 6191	4	40	1	9,764	6,494
RikoW-A-S	Dvižna	Monotono	RIKO	Würth *	4	60	1	14,264	9,671
RikoW-B-S	Dvižna	Po EN 26891	RIKO	Würth *	4	60	1	12,014	11,000
RikoW2-B-S	Dvižna	Po EN 26891	RIKO	Würth *	4	60	1	14,096	11,503
RikoW3-C-S	Dvižna	Ciklično	RIKO	Würth *	4	60	1	12,982	11,992
RikoW4-C-S	Dvižna	Ciklično	RIKO	Würth *	4	60	1	14,264	12,998
KLH1-A-S	Dvižna	Monotono	KLH	BMF 105	10	40	2	17,408	7,919
KLH1-B-D	Dvižna	Po EN 26891	KLH	BMF 105	10	40	2	16,416	8,009
KLH1-B-L	Dvižna	Po EN 26891	KLH	BMF 105	10	40	2	21,502	6,500
KLH1-C-S	Dvižna	Ciklično	KLH	BMF 105	10	40	2	17,536	8,439
KLH1-C-L	Dvižna	Ciklično	KLH	BMF 105	10	40	2	15,476	5,467
KLH1-C-D	Dvižna	Ciklično	KLH	BMF 105	10	40	2	19,654	8,990
-									
KLH2-A-S	Dvižna	Monotono	KLH	BMF 105	10	60	2	26,274	10,284
KLH2-B-L	Dvižna	Po EN 26891	KLH	BMF 105	10	60	2	24,848	11,493
KLH2-B-D	Dvižna	Po EN 26891	KLH	BMF 105	10	60	2	27,320	12,492
KLH2-C-S	Dvižna	Ciklično	KLH	BMF 105	10	60	2	27,246	9,495
KLH2-C-D	Dvižna	Ciklično	KLH	BMF 105	10	60	2	26,276	9,990
				-					
Riko-P-A	Prečna	Monotono	RIKO	BMF 6191	4	40	1	11,934	39,130
Riko-P-C-1	Prečna	Ciklično	RIKO	BMF 6191	4	40	1	10,564	20,092
Riko-P-C-2	Prečna	Ciklično	RIKO	BMF 6191	4	40	1	7,598	9,736
Riko-P-C-3	Prečna	Ciklično	RIKO	BMF 6191	4	40	1	7,206	13,253
							-		
KLH-P-A	Prečna	Monotono	KLH	BMF 105	10	40	2	9,745	19,646
KLH-P-C-1	Prečna	Ciklično	KLH	BMF 105	10	40	2	14,620	18,303
KLH-P-C-2	Prečna	Ciklično	KLH	BMF 105	10	40	2	15,026	19,225
KLH-P-C-3	Prečna	Ciklično	KLH	BMF 105	10	40	2	15,986	19,585
	Des Xes s	Manatana			40	00	0	00.004	00.040
KLH-P60-A	Prečna		KLH	BIVIE 105	10	60	2	23,964	22,812
	Prečna		KLH	BIVIE 105	10	00	2	22,916	19,341
	Prečna		KLH	BIVIE 105	10	00	2	21,500	19,001
KLH-P60-C-3	Precha	Ciklicno	KLH	BIVIF 105	10	60	2	21,858	19,982

Preglednica 1: Matrika opravljenih preiskav

Würth * = Würth W-VAD M12

Legenda simbolov

Riko()-X-X	Panel RIKO, pritrjen z kotnim sidrom BMF 6191 in 40mm dolgimi žeblji				
RikoW()-X-X	Panel RIKO, pritrjen z kotnim sidrom Würth W-VAD M12 in 60mm dolgimi žeblji				
_					
KLH1-X-X	Panel KLH, pritrjen z kotnim sidrom BMF 105 in 40mm dolgimi žeblji				
KLH2-X-X	Panel KLH, pritrjen z kotnim sidrom BMF 105 in 60mm dolgimi žeblji				
-					
XXX-P-X-X	Preiskava v prečni smeri				
XXX-A-X	Monotono paraščajoče obremenjevanje prejskušanca				
XXX-P-A					
XXX-B-X	Monotono obremenjevanje in razbremenjevanje po EN 26891				
XXX-C-X	Pol-ciklično ali ciklično obremenjevanje po prEN 12512				
XXX-X-S	V pogledu je kotno sidro pritrjeno na sredini panela				
XXX-X-L	V pogledu je kotno sidro pritrjeno na levi strani panela				
XXX-X-D	V pogledu je kotno sidro pritrjeno na desni strani panela				
XXX-P60-X-X	Prečna preiskava z 60 mm dolgimi žeblji				

4.3 Rezultati preiskav

4.3.1 Rezultati dvižnih preiskav

4.3.1.1 Rezultati dvižnih preiskav RIKO panelov in BMF sider z žeblji dolžine 40 mm

Diagram 1: Odziv monotone dvižne preiskave RIKO1-A-S.

Diagram 2: Odziv monotonih dvižnih preiskav RIKO1-B-S in RIKO2-B-S po protokolu EN 26891.

Diagram 3: Ciklični odziv dvižne preiskave RIKO2-C-S.

Diagram 4: Ciklični odziv dvižne preiskave RIKO2-C-L.

Diagram 5: Ciklični odziv dvižne preiskave RIKO3-C-S.

Sliki 19 in 20: RIKO panel s kotnim sidrom BMF 6191in žeblji dolžine 40 mm, levo porušitev lesa, desno zdrs sidernega vijaka skozi utor v sidru.

4.3.1.2 Rezultati dvižnih preiskav RIKO panelov in WÜRTH sider z žeblji dolžine 60 mm

Diagram 6: Odziv monotone dvižne preiskave RIKOW-A-S.

Diagram 7: Odziv monotonih dvižnih preiskav RIKOW-B-S in RIKOW2-B-S po protokolu EN 26891.

Diagram 8: Ciklični odziv dvižne preiskave RIKOW3-C-S.

Diagram 9: Ciklični odziv dvižne preiskave RIKOW4-C-S.

Sliki 21 in 22: RIKO panel s kotnim sidrom Würth in žeblji dolžine 60 mm, levo prušitev lesa v spodnjem pasu žebljev, desno deformacija sidra pri dvižnih preiskavah.

4.3.1.3 Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 40 mm

Diagram 10: Odziv monotone dvižne preiskave KLH1-A-S.

Diagram 11: Odziv monotonih dvižnih preiskav KLH1-B-D in KLH1-B-L po protokolu EN 26891.

Diagram 12: Ciklični odziv dvižne preiskave KLH1-C-S.

Diagram 13: Ciklični odziv dvižne preiskave KLH1-C-L.

Diagram 14: Ciklični odziv dvižne preiskave KLH1-C-D.

Sliki 23 in 24: KLH panel s kotnimi sidri BMF in žeblji dolžine 40 mm, levo izvlek žebljev med preiskavo in desno iztrganje lesa pa vlaknih.

4.3.1.4 Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 60 mm

Diagram 15: Odziv monotone dvižne preiskave KLH2-A-S.

Diagram 16: Odziv monotonih dvižnih preiskav KLH2-B-L in KLH2-B-D po protokolu EN 26891.

Diagram 17: Ciklični odziv dvižne preiskave KLH2-C-S.

Diagram 18: Ciklični odziv dvižne preiskave KLH2-C-D.

Sliki 25 in 26: KLH panel s kotnimi sidri BMF in žeblji dolžine 60 mm, levo deformacija lesa in desno razkol lesa po vlaknih.

4.3.2 Rezultati prečnih preiskav

4.3.2.1 Rezultati dvižnih preiskav RIKO panelov in BMF sider z žeblji dolžine 40 mm

Diagram 19: Odziv monotone prečne preiskave RIKO-P-A.

Diagram 20: Ciklični odziv prečne preiskave RIKO-P-C-1.

Diagram 21: Ciklični odziv prečne preiskave RIKO-P-C-2.

Diagram 22: Ciklični odziv prečne preiskave RIKO-P-C-3.

Sliki 27 in 28: Panel RIKO s BMF kotnim sidrom in 40mm žeblji pri prečni preiskavi, levo deformiranje sidra med preiskavo, desno porušitev žebljev med preiskavo

4.3.2.2 Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 40 mm

Diagram 23: Odziv monotone prečne preiskave KLH-P-A.

Diagram 24: Ciklični odziv prečne preiskave KLH-P-C-1.

Diagram 25: Ciklični odziv prečne preiskave KLH-P-C-2.

Diagram 26: Ciklični odziv prečne preiskave KLH-P-C-3.

Sliki 29 in 30: KLH panel in BMF kotno sidro z žeblji dolžine 40 mm pri prečni preiskavi, levo deformacija sidra med preiskavo, desno iztrg znanje lamele lesa.

4.3.2.3 Rezultati dvižnih preiskav KLH panelov in BMF sider z žeblji dolžine 60 mm

Diagram 27: Odziv monotone prečne preiskave KLH-P60-A.

Diagram 28: Ciklični odziv prečne preiskave KLH-P60-C-1.

Diagram 29: Ciklični odziv prečne preiskave KLH-P60-C-2.

Diagram 30: Ciklični odziv prečne preiskave KLH-P60-C-3.

Sliki 31 in 32: KLH panel in BMF sidro z žeblji dolžine 60 mm pri prečni preiskavi, levo deformacija sidra po preiskavi, desno deformacija žebljev med preiskavo.

4.4 Analiza rezultatov preiskav

Preglednica 2: Primerjava doseženih rezultatov dvižnih preiskav (k_y, F_y ter F_{max} s pripadajočimi pomiki).

	k _y	F _y [kN]	d _y [mm]	F _{Max} [kN]	d(_{Fmax}) [mm]
Riko1-A-S	2,273	6,270	2,660	12,344	11,984
Riko1-B-S	3,869	5,150	1,690	10,060	11,877
Riko2-B-S	3,999	5,530	1,560	10,996	7,076
Riko-B-P	4,092	5,190	1,550	10,231	6,992
Riko2-C-S	2,735	4,610	2,000	9,938	7,492
Riko2-C-L	3,093	4,190	1,720	8,454	5,993
Riko3_C-S	3,051	4,250	2,710	9,764	6,494
Riko1-C-P	2,854	4,450	1,830	9,513	9,990
St. Dev	0,196	0,227	0,510	0,811	0,763
COV		-0,009		0,339	
	k _v	F _y [kN]	d _y [mm]	F _{Max} [kN]	d(_{Fmax}) [mm]
RikoW-A-S	3,292	5,710	2,800	14,264	9,671
RikoW-B-S	1,676	5,230	3,310	12,014	11,000
RikoW2-B-S	1,463	7,350	4,570	14,096	11,503
RikoW-B-P	1,423	5,700	3,530	13,047	11,501
RikoW3-C-S	2,762	5,320	2,100	12,982	11,992
RikoW4-C-S	1,919	7,000	3,620	14,264	12,998
RikoW-C-P	2,544	5,520	2,430	13,567	11,994
	k _v	F _v [kN]	d _v [mm]	F _{Max} [kN]	d(_{Fmax}) [mm]
KLH1-A-S	6,872	9,000	1,570	17,408	7,919
KLH1-B-D	6,156	8,950	1,890	16,416	8,009
KLH1-B-L	7,330	10,810	1,780	21,502	6,500
KLH1-B-P	6,992	9,620	1,790	18,645	6,503
KLH1-C-S	5,845	9,710	2,020	17,536	8,439
KLH1-C-L	8,441	7,190	1,180	15,476	5,467
KLH-C-D	5,896	9,770	2,030	19,654	8,990
KLH1-C-P	6,826	7,730	1,440	17,065	7,494
St. Dev	1,484	1,473	0,488	2,089	1,895
COV		0,479		2,445	
	k _y	F _y [kN]	d _y [mm]	F _{Max} [kN]	d(_{Fmax}) [mm]
KLH2-A-S	4,238	12,350	2,780	26,274	10,284
KLH2-B-L	4,630	10,470	2,250	24,848	11,493
KLH2-B-D	5 091	13 370	2 680	27 320	12 492

KLH2-B-L	4,630	10,470	2,250	24,848	11,493
KLH2-B-D	5,091	13,370	2,680	27,320	12,492
KLH2-B-P	4,788	13,020	2,790	26,015	11,494
KLH2-C-S	7,499	14,230	2,120	27,246	9,495
KLH2-C-D	5,754	11,670	2,210	26,276	9,990
KLH2-C-P	6,354	13,300	2,280	26,897	9,994

Opomba - razlaga oznak v preglednici z doseženimi rezultati:

Standardna deviacija in kovarianca je bila računana le pri preiskavah, kjer so bili opravljeni vsaj trije preizkusi. V primeru te diplomske naloge to pomeni, da je bilo to izračunano kvečjemu pri cikličnih oziroma pol-cikličnih preiskavah. Če je polje v preglednici rdeče barve, to pomeni, da rezultat ni bil dosežen. Za pomik sta uporabljeni dve različni oznaki in sicer pri dvižnih preiskavah je uporabljena oznaka **d**, kar predstavlja dvig panela. Pri prečnih preiskavah je uporabljena oznaka **z**, kar predstavlja zdrs panela. Posamezni tipi preiskav so ločeni z dvojno črto. V primeru izračuna povprečnih vrednosti je dvojna črta pod temi vrednostmi za posamezen tip preiskav.

Preglednica 3: Primerjava doseženih rezultatov prečnih preiskav (k_y , F_y ter F_{max} s pripadajočimi pomiki).

	k _v	F _v [kN]	z _v [mm]	F _{Max} [kN]	z(_{Fmax}) [mm]
Riko-P-A	0,749	5,700	6,700	11,934	39,130
Riko-P-C-1	1,474	5,270	3,560	10,564	20,092
Riko-P-C-2	3,454	3,390	0,950	7,598	9,736
Riko-P-C-3	1,758	3,570	2,120	7,206	13,253
Riko-P-C-P	1,769	3,870	1,890	7,844	13,426
St. Dev	1,071	1,037	1,307	1,836	5,266
COV		0,841		5,812	
	k _v	F _y [kN]	z _v [mm]	F _{Max} [kN]	z(_{Fmax}) [mm]
KLH-P-A	1,606	4,580	3,820	9,745	19,646
KLH-P-C-1	2,003	7,520	3,380	14,620	18,303
KLH-P-C-2	2,003	8,260	3,750	15,026	19,225
KLH-P-C-3	3,307	8,550	2,500	15,986	19,585
KLH-P-C-P	2,343	7,920	3,070	15,073	18,303
St. Dev	0,753	0,531	0,642	0,701	0,661
COV		-0,111		0,275	
	k _v	F _v [kN]	z _v [mm]	F _{Max} [kN]	z(_{Fmax}) [mm]
KLH-P60-A	1,762	13,480	6,870	23,964	22,812
KLH-P60-C-1	2,644	11,410	4,030	22,916	19,341
KLH-P60-C-2	3,241	10,250	2,980	21,500	19,601
KLH-P60-C-3	2,317	11,270	4,240	21,858	19,982
KLH-P60-C-P	2,767	10,990	3,760	22,044	19,341
St. Dev	0,469	0,633	0,675	0,736	0,322
COV		0,275		-0,101	

Preglednica 4	: Primerjava	doseženih	rezultatov	dvižnih	preiskav	$(F_u \ s$	pripadajočimi	pomiki,
površina pod g	grafom, 0,95 F	_{max} s pripac	lajočimi pol	miki, 0,8	F _{max} s pri	padajod	žimi pomiki).	

	F _u [kN]	d _u [mm]	A [kNmm]	0,95F _{Max} [kN]	d(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	d(0,8F _{Max}) [mm]
Riko1-A-S	11,477	15,470	148,261	11,727	14,420	9,875	15,470
Riko1-B-S	8,706	13,070	104,826	9,557	12,620	8,048	13,070
Riko2-B-S	8,597	7,220	52,344	10,446	7,030	8,797	7,220
Riko-B-P	8,594	7,450	53,386	9,719	7,100	8,185	7,450
Riko2-C-S	8,753	19,670	157,171	9,441	12,150	7,950	19,670
Riko2-C-L	6,186	6,390	33,357	8,031	6,240	6,763	6,390
Riko3_C-S	8,544	19,250	152,809	9,276	12,050	7,811	19,250
Riko1-C-P	6,564	6,810	37,146	9,037	6,430	7,610	6,810
St. Dev	1,425	7,549	70,258	0,771	3,384	0,649	7,549
COV	7,166			1,731		3,256	
-							
	F _u [kN]	d _u [mm]	A [kNmm]	0,95F _{Max} [kN]	d(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	d(0,8F _{Max}) [mm]
RikoW-A-S	11,356	10,060	94,013	13,551	9,920	11,411	10,060
RikoW-B-S	9,974	14,680	116,665	11,413	11,680	9,611	14,680
RikoW2-B-S	12,803	12,350	101,998	13,391	12,070	11,277	12,350
RikoW-B-P	12,525	13,515	101,429	12,395	11,900	10,438	13,515
RikoW3-C-S	9,667	11,560	94,592	12,333	10,270	10,386	11,560
RikoW4-C-S	12,281	15,290	148,641	13,551	13,790	11,411	15,290
RikoW-C-P	10,684	13,425	126,879	12,889	12,970	10,854	13,425
	F _u [kN]	d _u [mm]	A [kNmm]	0,95F _{Max} [kN]	d(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	d(0,8F _{Max}) [mm]
KLH1-A-S	F _u [kN] 9,620	d _u [mm] 15,700	A [kNmm] 142,719	0,95F _{Max} [kN] 16,538	d(0,95F _{Max}) [mm] 8,070	0,8F _{Max} [kN] 13,926	d(0,8F _{Max}) [mm] 15,700
KLH1-A-S KLH1-B-D	F _u [kN] 9,620 14,159	d _u [mm] 15,700 15,720	A [kNmm] 142,719 205,295	0,95F _{Max} [kN] <u>16,538</u> 15,595	d(0,95F _{Max}) [mm] 8,070 8,890	0,8F _{Max} [kN] 13,926 13,133	d(0,8F _{Max}) [mm] 15,700 15,720
KLH1-A-S KLH1-B-D KLH1-B-L	F _u [kN] 9,620 14,159 16,860	d _u [mm] 15,700 15,720 0,000	A [kNmm] 142,719 205,295 90,167	0,95F _{Max} [kN] 16,538 15,595 20,427	d(0,95F _{Max}) [mm] 8,070 8,890 6,500	0,8F _{Max} [kN] 13,926 13,133 17,202	d(0,8F _{Max}) [mm] 15,700 15,720 6,500
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P	F _u [kN] 9,620 14,159 16,860 14,683	d _u [mm] 15,700 15,720 0,000 0,000	A [kNmm] 142,719 205,295 90,167 79,384	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S	F _u [kN] 9,620 14,159 16,860 14,683 15,782	d _u [mm] 15,700 15,720 0,000 0,000 0,000	A [kNmm] 142,719 205,295 90,167 79,384 142,797	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-L	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084	d _u [mm] 15,700 15,720 0,000 0,000 0,000 13,450	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-L KLH-C-D	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723	d(0,8F _{Max}) [mm] 15,700 6,500 11,110 8,439 13,450 8,990
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-S KLH1-C-L KLH-C-D KLH1-C-P	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-C-S KLH1-C-S KLH1-C-L KLH1-C-D KLH1-C-P St. Dev	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000 7,765	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 2,564	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 2,172	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000 7,765	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000 7,765 d [mm]	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,055	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0.05E) [mm]	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0.8E_) [mm]
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-L KLH1-C-D KLH1-C-P St. Dev COV	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN]	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 7,765 d _u [mm] 24,520	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 A [kNmm]	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN]	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm]	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN]	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 24,520
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000 7,765 d _u [mm] 21,530	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 A [kNmm] 436,750	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-C-S KLH1-C-L KLH1-C-D KLH1-C-P St. Dev COV KLH2-A-S KLH2-B-L	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308 21,530	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 7,765 d _u [mm] 21,530 22,080 40,222	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 23,264 A [kNmm] 436,750 426,611	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960 23,606 25,054	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850 12,210 45,020	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019 19,878 24,250	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530 21,510 40,222
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV KLH2-A-S KLH2-A-S KLH2-B-L KLH2-B-D	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308 21,530 24,944 22,222	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 7,765 d _u [mm] 21,530 22,080 19,200 20,222	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 23,264 A [kNmm] 436,750 426,611 417,656 411,277	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960 23,606 25,954 24,714	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850 12,210 15,680 45,510	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019 19,878 21,856 20,212	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530 21,510 19,200 20,220
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-C-S KLH1-C-L KLH1-C-D KLH1-C-D St. Dev COV COV KLH2-A-S KLH2-B-L KLH2-B-D KLH2-B-P	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308 21,530 24,944 22,983	d _u [mm] 15,720 0,000 0,000 13,450 0,000 0,000 7,765 d _u [mm] 21,530 22,080 19,200 20,280 44,000	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 23,264 411,377 208,407	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960 23,606 25,954 24,714	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850 12,210 15,680 15,510	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019 19,878 21,856 20,812 24,707	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530 21,510 19,200 20,280 44,000
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV KLH2-A-S KLH2-B-L KLH2-B-L KLH2-B-D KLH2-C-S	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308 21,530 24,944 22,983 22,872 23,222	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 13,450 0,000 7,765 d _u [mm] 21,530 22,080 19,200 20,280 14,990 40,025	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 23,264 411,377 308,197 416,040	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960 23,606 25,954 24,714 25,884 24,962	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850 12,210 15,680 15,510 11,420	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019 19,878 21,856 20,812 21,797 24,024	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530 21,510 19,200 20,280 14,990 10,225
KLH1-A-S KLH1-B-D KLH1-B-L KLH1-B-P KLH1-C-S KLH1-C-D KLH1-C-D KLH1-C-P St. Dev COV KLH2-A-S KLH2-B-L KLH2-B-D KLH2-B-D KLH2-C-S KLH2-C-D	F _u [kN] 9,620 14,159 16,860 14,683 15,782 13,084 15,625 14,676 1,514 -7,829 F _u [kN] 23,308 21,530 24,944 22,983 22,872 23,303 20,555	d _u [mm] 15,700 15,720 0,000 0,000 13,450 0,000 0,000 7,765 d _u [mm] 21,530 22,080 19,200 20,280 14,990 19,985 47,455	A [kNmm] 142,719 205,295 90,167 79,384 142,797 165,776 119,249 115,581 23,264 23,264 411,581 436,750 426,611 417,656 411,377 308,197 416,842	0,95F _{Max} [kN] 16,538 15,595 20,427 17,713 16,659 14,702 18,671 16,212 1,985 0,781 0,95F _{Max} [kN] 24,960 23,606 25,954 24,714 25,884 24,962 25,552	d(0,95F _{Max}) [mm] 8,070 8,890 6,500 7,695 9,360 7,800 8,990 8,717 0,815 d(0,95F _{Max}) [mm] 11,850 12,210 15,680 15,510 11,420 13,270	0,8F _{Max} [kN] 13,926 13,133 17,202 14,916 14,029 12,381 15,723 13,652 1,671 -2,470 0,8F _{Max} [kN] 21,019 19,878 21,856 20,812 21,797 21,021 24,021	d(0,8F _{Max}) [mm] 15,700 15,720 6,500 11,110 8,439 13,450 8,990 10,293 2,748 d(0,8F _{Max}) [mm] 21,530 21,510 19,200 20,280 14,990 19,985 47,420

Opomba - razlaga simbolov v preglednicah 4 in 5:

 $\mathbf{F}_{\mathbf{u}}$ je sila, ki je določena iz površine pod odzivom preizkušanca. Določiti je potrebno površino pod grafom preiskave. Največja vrednost pomika je vrednost, ko maksimalna dosežena sila pade za

20%. Elasto-plastičen odziv oziroma trapez, ki je določen s k_y , F_u , d $\approx z(0.8F_{Max})$ in horizontalno osjo mora imeti enako površino, kot površina pod grafom preiskave. Grafičen prikaz določitve je prikazan na sliki 33.

Oznake:

 $0,95 \; F_{max}$ pomeni padec sile za 5% pod vrednost dosežene največje sile

d≈z_(0,95 Fmax) je pripadajoči pomik pri 0,95 F_{max}

 $0.8 F_{max}$ je padec sile za 20% pod vrednost dosežene največje sile

d≈z_(0,8 Fmax) je pripadajoči pomik pri 0,8 F_{max}

Slika 33: Določitev Fu.

Preglednica	5:	Primerjava	doseženih	rezultatov	prečnih	preiskav	$(F_u \ s$	pripadajočimi	pomiki,
površina pod	d gr	afom, 0,95 F	max s pripad	lajočimi poi	miki, 0,8	F _{max} s prij	padajo	čimi pomiki).	

	F _u [kN]	z _u [mm]	A [kNmm]	0,95F _{Max} [kN]	z(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	z(0,8F _{Max}) [mm]
Riko-P-A	10,411	55,460	505,847	11,337	44,680	9,547	55,460
Riko-P-C-1	8,918	29,630	237,687	10,036	22,480	8,451	29,630
Riko-P-C-2	6,562	36,662	235,870	7,218	13,190	6,078	36,662
Riko-P-C-3	5,361	22,240	111,537	6,846	15,090	5,765	22,240
Riko-P-C-P	6,104	29,511	170,109	7,452	22,820	6,275	29,420
St. Dev	1,810	7,212	72,314	1,744	4,908	1,469	
COV	3,005			5,449		0,854	
	F _u [kN]	z _u [mm]	A [kNmm]	0,95F _{Max} [kN]	z(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	z(0,8F _{Max}) [mm]
KLH-P-A	8,112	25,710	188,219	9,258	22,320	7,796	25,710
KLH-P-C-1	13,518	14,812	201,876	13,889	14,812	11,696	14,812
KLH-P-C-2	11,720	21,210	214,652	14,275	19,740	12,021	21,210
KLH-P-C-3	109,807	22,750	244,791	15,187	20,410	12,789	22,750
KLH-P-C-P	13,472	19,591	207,254	14,320	18,321	12,059	19,591
St. Dev	56,119	4,209	22,035	0,666	3,057	0,561	4,209
COV	100,432			1,086		1,326	
	F _u [kN]	z _u [mm]	A [kNmm]	0,95F _{Max} [kN]	z(0,95F _{Max}) [mm]	0,8F _{Max} [kN]	z(0,8F _{Max}) [mm]
KLH-P60-A	22,907	32,280	591,182	22,766	27,720	19,171	32,280
KLH-P60-C-1	15,601	23,500	321,192	21,770	20,320	18,333	23,500
KLH-P60-C-2	14,423	24,450	320,632	20,425	20,800	17,200	24,450
KLH-P60-C-3	15,061	24,270	317,576	20,765	21,030	17,486	24,270
KLH-P60-C-P	14,942	24,070	319,763	20,942	20,730	17,635	24,070
St. Dev	0,589	0,505	1,946	0,699	0,362	0,589	0,505
COV	-0,183			-0,142		-0,198	

Preglednica 6: Primerjava doseženih rezultatov dvižnih preiskav (0,95 F, 0,8 F, 0,1 F_{Max} in 0,4 F_{Max} s pripadajočimi pomiki).

	0,95F [kN]	d(_{0,95F}) [mm]	0,8F [kN]	d(_{0,8F}) [mm]	0,1F _{Max} [kN]	d(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	d(0,4F _{Max}) [mm]
Riko1-A-S					1,200	0,400	4,950	2,050
Riko1-B-S					1,006	0,490	4,024	1,270
Riko2-B-S					1,100	0,420	4,398	1,245
Riko-B-P					1,023	0,460	4,092	1,210
Riko2-C-S	4,160	2,000	5,620	4,070	0,994	0,460	3,975	1,550
Riko2-C-L	3,820	1,720			0,845	0,500	3,382	1,320
Riko3_C-S	4,030	1,620	4,560	2,670	0,976	0,480	3,906	1,440
Riko1-C-P	5,030	3,380	3,990	1,790	0,951	0,480	3,805	1,480
St. Dev	0,172	0,197			0,081	0,020	0,324	0,115
COV	0,014				-0,001		0,023	
	0,95F [kN]	d(_{0,95F}) [mm]	0,8F [kN]	d(_{0,8F}) [mm]	0,1F _{Max} [kN]	d(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	d(0,4F _{Max}) [mm]
RikoW-A-S					1,426	1,510	5,706	2,810
RikoW-B-S					1,201	0,930	4,806	3,080
RikoW2-B-S					1,410	0,550	5,638	3,440
RikoW-B-P					1,305	0,500	5,219	3,250
RikoW3-C-S	4,920	2,210	8,000	6,950	1,298	0,460	5,193	1,870
RikoW4-C-S	4,450	2,000	8,780	7,420	1,426	0,590	5,706	2,820
RikoW-C-P	8,370	7,170	4,520	1,920	1,357	0,500	5,427	2,100
	0,95F [kN]	d(_{0,95F}) [mm]	0,8F [kN]	d(_{0,8F}) [mm]	0,1F _{Max} [kN]	d(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	d(0,4F _{Max}) [mm]
KLH1-A-S					1,741	0,560	6,963	1,320
KLH1-B-D					1,642	0,520	6,566	1,320
KLH1-B-L					2,150	0,530	8,601	1,410
KLH1-B-P					1,865	0,520	7,458	1,320
KLH1-C-S	7,390	1,680	8,370	2,350	1,754	0,530	7,014	1,430
KLH1-C-L	6,320	1,170	10,360	3,610	1,548	0,440	6,190	0,990
KLH-C-D	5,750	1,150			1,965	0,590	7,862	1,590
KLH1-C-P	6,020	1,190	8,840	2,750	1,707	0,500	6,826	1,250
St. Dev	0,833	0,300			0,209	0,075	0,836	0,311
COV	0,158				0,010		0,167	
-	0,95F [kN]	d(_{0.95F}) [mm]	0,8F [kN]	d(_{0,8F}) [mm]	0,1F _{Max} [kN]	d(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	d(0,4F _{Max}) [mm]
KLH2-A-S					2,627	0,420	10,510	2,280
KLH2-B-L					2,485	0,420	9,939	2,030
KLH2-B-D					2,732	0,510	10,928	2,120
KLH2-B-P					2,602	0,580	10,406	2,210

Opomba - razlaga simbolov v preglednicah 6 in 7:

1,270

1,770

1,660

20,380

14,250

15,480

0,95 F vrednost sile, pri kateri v tretjem ponovitvenem ciklu nosilnost pade za 5% glede na vrednost sile, ki je bila dosežena v prvem ciklu

2,725

2,628

2,690

7,240

4,370

4,300

d≈z(0,95 F) je pripadajoči pomik

9,000

9,250

9,460

KLH2-C-S

KLH2-C-D

KLH2-C-P

0,8 F vrednost sile, pri kateri v tretjem ponovitvenem ciklu nosilnost pade za 20% glede na vrednost sile, ki je bila dosežena v prvem ciklu

10,898

10,510

10,759

1,570

1,960

1,780

0,480

0,590

0,510

d≈z(0,8F) je pripadajoči pomik

0,1F_{max} je 10% maksimalne dosežene sile

d≈z_(0,1Fmax) je pripadajoči pomik

0,4F_{max} je 40% maksimalne dosežene sile

d≈z(0,4Fmax) je pripadajoči pomik

 $0,\!1F_{max},\,0,\!4F_{max}$ in $\,0,\!9F_{max}$ so vrednosti, ki so potrebne za določitev $k_{\rm y}$

Preglednica 7: Primerjava doseženih rezultatov dvižnih preiskav (0,95F, 0,8F, 0,1F_{Max} in 0,4F_{Max} s pripadajočimi pomiki)

	0,95F [kN]	z(_{0.95F}) [mm]	0,8F [kN]	z(_{0,8F}) [mm]	0,1F _{Max} [kN]	z(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	z(0,4F _{Max}) [mm]
Riko-P-A					1,193	0,520	4,774	5,300
Riko-P-C-1	3,690	2,290	7,960	17,060	1,056	0,530	4,226	2,680
Riko-P-C-2	3,090	0,950	5,540	15,770	0,760	0,120	3,039	0,780
Riko-P-C-3	3,750	3,250			0,721	0,450	2,882	1,680
Riko-P-C-P	3,450	2,040	6,220	18,420	0,784	0,110	3,138	1,440
St. Dev	0,365	1,155			0,184	0,217	0,734	0,950
COV	0,264				0,015		0,384	

	0,95F [kN]	z(_{0,95F}) [mm]	0,8F [kN]	z(_{0,8F}) [mm]	0,1F _{Max} [kN]	z(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	z(0,4F _{Max}) [mm]
KLH-P-A					0,975	0,370	3,898	2,190
KLH-P-C-1	8,080	4,500	11,220	12,580	1,462	0,320	5,848	2,510
KLH-P-C-2	6,110	3,000	11,290	15,420	1,503	0,250	6,010	2,500
KLH-P-C-3	7,310	2,500	12,020	13,420	1,599	0,330	6,394	1,780
KLH-P-C-P	11,250	12,530	7,500	3,610	1,507	0,290	6,029	2,220
St. Dev	0,993	1,041	0,443	1,459	0,070	0,044	0,281	0,419
COV	0,433		-0,065		0,001		-0,075	

	0,95F [kN]	z(_{0,95F}) [mm]	0,8F [kN]	z(_{0,8F}) [mm]	0,1F _{Max} [kN]	z(0,1F _{Max}) [mm]	0,4F _{Max} [kN]	z(0,4F _{Max}) [mm]
KLH-P60-A					2,396	0,680	9,586	4,760
KLH-P60-C-1	9,940	3,920	17,480	16,500	2,292	0,590	9,166	3,190
KLH-P60-C-2	9,870	3,790	16,710	15,480	2,150	0,470	8,600	2,460
KLH-P60-C-3	10,070	4,240	16,960	14,910	2,186	0,480	8,743	3,310
KLH-P60-C-P	10,030	4,090	16,990	15,630	2,204	0,490	8,818	2,880
St. Dev	0,101	0,232	0,393	0,806	0,074	0,067	0,295	0,460
COV	0,016		0,163		0,003		0,054	

4.4.1 Analiza odzivov dvižnih preiskav

4.4.1.1 RIKO paneli in BMF sidra z žeblji dolžine 40 mm

Diagram 32: Primerjava pol-cikličnih preiskav RIKO2-C-S, RIKO2-C-L, RIKO3-C-S in njihovo povprečje.

Sliki 34 in 35: RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo pred preiskavo, desno ena izmed porušitev – razkol panela vzdolž lesenih vlaken.

Sliki 36 in 37: RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo porušitev panela vzdolž vlaken in desno značilna deformacija kotnega sidra po ciklični preiskavi.

Pri preiskavah enosmerno lepljenih panelov z BMF-ovimi kotniki in 40 mm dolgimi žeblji smo opazili, da je večinoma presežena natezna trdnost lesa pravokotno na vlakna, saj je pri monotonih preiskavah in pri preiskavah po protokolu EN 26891 cepilno odpovedal les ali na višini žebljov ali pa malo nad kotnikom. Pri cikličnih preiskavah pa je prišlo do deformiranja kotnikov v območju sidrnih vijakov. V nekaterih primerih se je kotnik tako močno deformiral, da je zdrsnil preko podložke in matice vijaka. Da bi preprečili takšen zdrs, je priporočljivo namestiti nad kotnik večje podložke ali toge podložne ploščice – podobno kot pri sistemu sidranja z Würthovimi kotniki.

Iz primerjave posameznih odzivov je razviden velik raztros rezultatov. Vprašanje je, ali je to le zaradi vpliva heterogenosti lesa ali pa na to vplivajo tudi drugi faktorji. Med preiskavami je bilo namreč ugotovljeno, da na rezultat znatno vpliva tudi lega kotnika na preiskušancu, zato smo se

odločili, da pri panelih RIKO pritrjujemo kotnike le na sredino panela. Možen dodaten vpliv na odziv sidra je tudi kot in način zabijanja žebljev - ali s pištolo ali kladivom.

Diagram 33: Primerjava faktorja ekvivalentnega viskoznega dušenja v odvisnosti od amplitude dviga pri pol-cikličnih preiskavah RIKO2-C-S, RIKO2-C-L in RIKO3-C-S.

Na diagramu 32 je prikazana velikost faktorja ekvivalentnega viskoznega dušenja v_{eq} v odvisnosti od amplitude dviga v stiku. Na diagramu je prikazana tudi preiskava RIKO2-C-L, pri kateri je dokaj hitro prišlo do porušitve zaradi razkola lesa vzdolž vlaken. Če iz sklepa izvzamemo ta rezultat, lahko zaključimo, da faktor ekvivalentnega viskoznega dušenja z večanjem amplitude dviga narašča in pri pomiku okoli 17 mm doseže vrednost med 30 in 40%. Zanimivo je, da faktor v_{eq} pri večjih dvigih med prvo in tretjo amplitudo precej upade. Pri manjših amplitudah padec znaša okoli 6%, medtem ko pri večjih amplitudah znaša tudi do 13%.

Preglednica 8: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave RIKO2-C-S, RIKO2-C-L, RIKO3-C-S.

RIKO1 C1					RIKO1 C2				RIK	(O1 C3			
Ed	Ep	[mm]	ν _{eq}		Ed	Ep	[mm]	ν _{eq}		Ed	Ep	[mm]	ν _{eq}
0,862	1,166	0,824	0,1176		0,520	0,656	0,664	0,1263		1,060	1,308	0,918	0,1289
3,290	3,914	1,844	0,1338	[2,275	3,178	1,640	0,1140		3,509	4,257	1,926	0,1312
5,576	7,986	2,868	0,1111		4,890	6,934	2,668	0,1122		6,073	8,777	2,947	0,1101
2,650	7,712	2,879	0,0547		2,437	6,765	2,686	0,0573		3,257	8,565	2,958	0,0605
2,392	7,473	2,886	0,0509		2,229	6,669	2,694	0,0532		2,985	8,251	2,958	0,0576
7,370	13,441	3,895	0,0873		6,683	11,682	3,720	0,0910		8,366	15,109	3,973	0,0881
3,993	13,064	3,906	0,0487		3,734	11,158	3,734	0,0533		5,053	14,721	3,983	0,0546
3,636	12,837	3,913	0,0451		3,426	10,991	3,746	0,0496		4,742	14,519	4,010	0,0520
43,089	39,462	8,130	0,1738							51,336	39,466	8,267	0,2070
17,018	37,277	8,182	0,0727							24,164	37,883	8,322	0,1015
15,112	36,171	8,200	0,0665							21,933	36,988	8,332	0,0944
146,466	69,107	17,118	0,3373						1	65,375	67,479	17,356	0,3901
88,607	66,750	17,230	0,2113						1	18,428	66,085	17,405	0,2852
77,543	66,317	17,239	0,1861						1	09,971	66,445	17,412	0,2634
197,660	88,809	26,151	0,3542						2	32,232	74,278	26,265	0,4976
107,788	72,288	26,210	0,2373										
59,921	34,900	26,480	0,2733										

4.4.1.2 RIKO paneli in WÜRTH sidra z žeblji dolžine 60 mm

Diagram 34: Primerjava monotonih dvižnih preiskav RIKOW-A-S, RIKOW-B-S, RIKOW2-B-S in povprečje obeh preiskav po protokolu EN26891 (B).

Diagram 35: Primerjava pol-cikličnih preiskav preizkušancev RIKOW3-C-S, RIKOW4-C-S, ter njuno povprečje.

Diagram 36: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude dviga za preiskavi RIKOW3-C-S in RIKOW4-C-S.

46

Sliki 38 in 39: RIKO panel in WÜRTH sidro z žeblji dolžine 60 mm, levo deformacija lesa in iztrgani kapici žebljev, desno gnetenje lesenih vlaken.

Pri preiskavah z Würthovimi kotniki in žeblji dolžine 60 mm smo dobili porušitev po žebljih. Zaradi dolžine se žeblji ne rotirajo in izvlečejo, pač pa na začetku gnetejo lesena vlakna. Ko se vlakna zgnetejo do te mere, da nudijo večji odpor, pride do strižne porušitve žebljev. Zgornji del kotnika se zaradi svoje dolžine pri natezni sili rahlo ukrivi predvsem zaradi stabilizacije pregiba z močno jekleno ploščico.

Iz diagrama 36 lahko vidimo, da je maksimalna vrednost faktorja ekvivalentnega viskoznega dušenja v_{eq} tik pred porušitvijo okoli 24%. Sklepamo, da je tako visoka vrednost predvsem posledica velikih pomikov zaradi gnetenja lesenih vlaken. Iz diagrama 9 je razvidno, da je pri tej amplitudi dviga dosežena maksimalna sila okoli 12 kN, ki v istem ciklu pade za več kot 50 % na okoli 6 kN, kar je posledica prestriga dve zgornjih žebljev od skupno štirih. Glede na odziv sidra je bolj realna vrednost med 13 in 15%, ki je bila dosežena pri amplitudih dviga med 7 in 14 mm. Zanimivo je, da se vrednost ekvivalentenga viskoznega dušenja v tretjem ponovitvenem ciklu pri enaki amplitudi giblje okoli 4%. Največji padec je zaznati med prvim in tretjim ciklom, padec med drugim in tretjim ciklom pa ni velik. Iz tega lahko sklepamo, da bi se pri večkratnih ponovitvah obteževanja pri istih amplitudi dviga vrednost stabilizirala blizu te vrednosti.

Preglednica 9: Prikaz disipirane energije, razpoložljive potencialne energije, velikost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskavi RIKOW3-C-S in RIKOW4-C-S.

RIKO2 C1			
Ed	Ep	[mm]	ν _{eq}
0,617	1,109	0,707	0,0885
2,270	3,480	1,565	0,1038
4,005	6,519	2,433	0,0978
1,798	6,325	2,440	0,0452
1,603	6,302	2,443	0,0405
5,225	10,439	3,296	0,0797
2,594	10,049	3,309	0,0411
2,331	9,920	3,314	0,0374
25,373	33,022	6,711	0,1223
7,300	31,455	6,736	0,0369
6,140	30,404	6,750	0,0321
87,409	60,426	14,052	0,2302
15,065	54,589	14,153	0,0439
14,096	49,517	14,213	0,0453

111102 02			
Ed	Ep	[mm]	ν _{eq}
0,584	0,993	0,782	0,0937
1,881	3,351	1,627	0,0893
3,547	6,604	2,487	0,0855
1,610	6,434	2,501	0,0398
1,415	6,359	2,509	0,0354
4,801	10,533	3,357	0,0725
2,303	10,152	3,366	0,0361
2,030	10,066	3,375	0,0321
24,335	34,359	6,659	0,1127
7,696	32,665	6,695	0,0375
6,463	31,731	6,715	0,0324
91,066	94,467	13,636	0,1534
23,260	83,799	13,774	0,0442
19,132	76,274	13,866	0,0399
92,819	62,008	21,598	0,2382
23,140	54,702	21,733	0,0673
20,414	48,704	21,801	0,0667

4.4.1.3 KLH paneli in BMF sidra z žeblji dolžine 40 mm

Diagram 37: Primerjava monotonih preiskav KLH1-A-S, KLH1-B-D, KLH1-B-L in povprečje obeh preiskav po protokolu EN26891 (B).

Diagram 38: Primerjava pol-cikličnih preiskav KLH1-C-S, KLH1-C-L, KLH1-C-D in njuno povprečje.

Diagram 39: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude dviga za preiskave KLH1-C-S, KLH1-C-L, KLH1-C-D.

Sliki 40 in 41: KLH panel in BMF sidro z žeblji dolžine 40 mm, levo izvlek žebljev pri ciklični obtežbi, desno iztrganje lesa po vlaknih.

Pri preiskavah z uporabo žebljev dolžine 40 mm smo ugotovili, da se žeblji lahko zelo zasučejo v lesenem mediju, saj jim vlakna ne nudijo velike opore, hkrati pa žeblji niso dovolj globoko sidrani v leseni medij, da jih ne bi počasi izvleklo iz panela. Zaradi zasuka žebljev je posledično prihajalo poleg strižne sile tudi do natezne sile na žeblje in izvleka le-teh. Prestriga žebljev pri tej dolžini nismo opazili. Do iztrganja oziroma razcepa lesa po vlaknih je prihajalo le v spodnji vrsti žebljev, kar je lahko tudi vpliv majhne razdalje žebljev v spodnji vrsti od spodnjega roba panela, ki znaša le 32,5mm.

Pri preiskavi smo opazili, da se kotno sidro z močnejšim rebrom nekoliko usloči na delu, kjer ni več ojačitvenega rebra. To predvsem vpliva na večjo izvlečno silo na žebelj, ko panel dvigujemo. Pri razbremenjevanju oziroma spuščanju panela pa je sila trenja med žebljem in lesom po obodu luknje ravno dovolj velika, da prepreči pomik žebelja nazaj v luknjo. To še dodatno vpliva na odmik sidra od panela, kar pa povzroči večji zasuk žeblja in s tem večjo izvlečno silo na žebelj. Na spodnjem robu pa je kotno sidro blizu pregiba močno vpeto v podlago, kar skupaj z ojačilnim rebrom prispeva k zelo majhni rotaciji in defomaciji kotnega sidra na tem delu. Ker so odmiki kotnega sidra od panela manjši je tudi rotacija žebljev manjša. S tem so ti žeblji obremenjeni bolj strižno kot pa natezno. Posledica je iztrganje lesa v tem predelu zaradi večjega bočnega pritiska žeblja na leseni medij. Zaradi tega je iztrgan le les pod zadnjo vrsto žebljev in to v zunanji lameli, v kateri vlakna potekajo vzporedno s smerjo obtežbe na stik. Pri žebljih v višjih vrstah smo opazili, da so večinoma ukrivljeni blizu kapice v zelo majhnih radijih.

Iz diagrama 39 je razvidno, da se vrednost ekvivalentenga viskoznega dušenja v tretjem ciklu giblje okoli 4%, pa tudi padec med drugim in tretjim ciklom ni velik. Sklepamo lahko, da bi pri večkratnih ponovitvah pri istih amplitudah dviga vrednost ostala približno enaka.

Preglednica 10: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH1-C-S, KLH1-C-L in KLH1-C-D.

KLH1 C1 KLH1 C2					I	KLH1 C3						
Ed	Ep	[mm]	ν _{eq}	Ed	Ep	[mm]	ν _{eq}		Ed	Ep	[mm]	ν _{eq}
2,826	3,440	1,181	0,1307	2,865	3,319	1,058	0,1374		0,576	0,726	0,526	0,1263
4,180	6,992	1,780	0,0951	4,463	6,860	1,641	0,1036		2,139	3,223	1,094	0,1056
1,900	6,897	1,790	0,0439	1,971	6,702	1,657	0,0468		4,272	6,679	1,656	0,1018
5,998	11,300	2,387	0,0845	1,766	6,610	1,667	0,0425		2,322	6,582	1,677	0,0562
0,880	5,358	2,387	0,0262	5,999	10,649	2,234	0,0897		2,144	6,391	1,686	0,0534
22,930	26,062	4,739	0,1400	3,029	10,471	2,255	0,0460		5,916	10,434	2,213	0,0902
7,224	24,944	4,765	0,0461	2,731	10,376	2,268	0,0419		3,544	10,285	2,235	0,0548
62,311	58,769	10,130	0,1687	29,762	33,829	4,585	0,1400		3,304	10,219	2,248	0,0515
14,204	55,871	10,189	0,0405	8,687	32,785	4,634	0,0422		30,580	33,419	4,584	0,1456
68,021	79,009	15,732	0,1370	7,343	32,239	4,662	0,0362		11,279	32,336	4,635	0,0555
				87,086	65,886	10,237	0,2104		9,856	31,575	4,656	0,0497
				20,523	59,120	10,445	0,0552		94,754	91,871	9,419	0,1641
				15,412	54,871	10,528	0,0447					
				80,332	93,135	15,992	0,1373					
				31,326	80,804	16,132	0,0617					
				25,128	78,138	16,194	0,0512					

Diagram 40: Primerjava monotonih preiskav KLH2-A-S, KLH2-B-L, KLH2-B-D in povprečje obeh preiskav po protokolu EN 26891 (B).

4.4.1.4 KLH paneli in BMF sidra z žeblji dolžine 60 mm

Diagram 41: Primerjava pol-cikličnih preiskav KLH2-C-S in KLH2-C-D ter njuno povprečje.

Diagram 42: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude dviga za preiskavi KLH2-C-S in KLH2-C-D.

Sliki 42 in 43: KLH panel in BMF sidro z žeblji dolžine 60 mm po ciklični preiskavi, levo izvlek žebljev in iztrg lesa po vlaknih, desno strižna porušitev žebljev.

Opažanja pri sidranju preiskušancev KLH z BMF sidri in žeblji dolžine 60 mm so podobne kot pri žebljih dolžine 40 mm. Les in žeblji se deformirajo in porušijo zelo podobno kot pri predhodnih preiskavah. Bistvana razlika zaradi večje dolžine žebljev pa je v tem, da žeblji prodrejo globje v

srednjo lamelo, kar zmanjša možnost razcepa lesa po vlaknih v spodnjem območju sidranja. Hkrati prihaja do manjšega izvleka žebljev v zgornjih vrstah, zaradi česar se poveča bočni pritisk žebljev na zunanjo lamelo. Tako pride do razcepa vlaken lesa zunanje lamele v celotnem območju pod kotnikom. Ker je onemogočen izvlek žebljev, to pomeni, da le ti postanejo natezno oziroma upogibno obremenjeni. Posledica tega je, da je v veliko primerih žeblje v spodnjih vrstah potrgalo. Da so bili žeblji zelo obremenjeni, smo videli med preiskavami, ko so glavice žebljev leteli po zraku tudi več metrov. Na sliki 43 so prikazane glavice žebljev, ki smo jih pobrali po preiskavi s tal v laboratoriju. Tudi žeblji, ki se niso pretrgali niso bili več zelo nosilni, saj nismo imeli večjih težav pri ločevanju kotnega sidra od panela.

Faktor evkivalentenega viskoznega dušenja se pri prvi amplitudi giblje med 9 in 24%, vendar pa v drugem in tretjem ciklu izgubi okoli 75 % te vrednosti in pade na vrednost okoli 5%. Maksimalne vrednosti so dosežene pri dvigu sidra med 15 in 20 mm.

Preglednica 11: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude dviga in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskavi KLH2-C-S in KLH2-C-D.

KLH2 C1						
Ed	Ep	[mm]	ν _{eq}			
1,154	1,707	0,569	0,1076			
4,846	6,467	1,824	0,1193			
8,616	12,956	2,958	0,1058			
3,481	12,720	2,972	0,0435			
3,136	12,442	2,977	0,0401			
6,903	74,009	3,831	0,1048			
5,769	20,923	3,850	0,0439			
5,243	20,618	3,861	0,0405			
67,023	72,042	8,759	0,1481			
22,141	68,670	8,731	0,0513			
19,473	67,300	8,762	0,0461			
242,685	163,578	20,060	0,2361			
63,963	140,950	20,345	0,0722			
48,629	130,025	20,500	0,0595			
206,532	128,776	30,869	0,2553			
91,324	112,314	31,067	0,1294			
74,259	97,639	31,165	0,1210			

KLH2 C2						
Ed	Ep	[mm]	ν _{eq}			
1,237	1,498	0,688	0,1314			
6,879	8,931	1,817	0,1226			
14,610	20,086	2,983	0,1158			
6,091	19,412	3,005	0,0499			
5,492	19,243	3,016	0,0454			
19,788	34,424	4,138	0,0915			
9,984	33,303	4,180	0,0477			
9,045	32,934	4,200	0,0437			
108,851	112,667	8,801	0,1538			
35,522	108,787	8,897	0,0520			
31,251	106,776	8,941	0,0466			
320,035	210,475	20,099	0,2420			
83,542	203,293	20,321	0,0654			
67,985	191,017	20,403	0,0566			
287,249	227,141	31,521	0,2013			
116,253	202,850	31,676	0,0912			
94,174	191,222	31,733	0,0784			

4.4.2 Analiza odzivov prečnih preiskav

4.4.2.1 RIKO paneli in BMF sidra z žeblji dolžine 40 mm

ZDRS [mm]

Diagram 43: Primerjava cikličnih preiskav RIKO-P-C-1, RIKO-P-C-2, RIKO-P-C-2 in njihovo povprečje.

Diagram 44: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude zdrsa za preiskave RIKO-P-C-1, RIKO-P-C-2, RIKO-P-C-2.

Sliki 44 in 45: RIKO panel in BMF sidro z žeblji dolžine 40 mm, levo obnašanje sidra med prečno preiskavo in porušitev žebljev, desno odtis kotnika v panel.

S preiskavami smo ugotovili, da sam kotnik ni zelo obremenjen. Ker je bil sidran le z enim vijakom, se je lahko vrtel okoli osi le-tega. Zaradi tega so večino obremenitve prevzeli žeblji, ki so bili pri vseh cikličnih preiskavah potrgani, medtem ko jih je pri monotoni preiskavi počasi z rotacijo kotnika izvleklo. Maksimalna dosežena sila je znašala okoli 8 kN pri zdrsu okoli 14 mm. Povprečna vrednost maksimalnega doseženega pomika je bila veliko večja kot pri dvižni preiskavi in je znašala slabih 30 mm. Na sliki 44 so vidne sledi drsanja pretrganih žebljev po lesu. Vrednosti faktorja ekvivalentenega viskoznega dušenja so pri srednjih amplitudah zdrsa (10 mm) dokaj blizu skupaj in se gibljejo okoli 15%. Minimalni faktor je razbrati pri amplitudi zdrsa okoli 7 mm nato pa ponovno počasi raste. Minimalna vrednost faktorja v tretjem ciklu je okoli 12%. Vrednosti tretjih ciklov so tako dosti višje kot pri dvižnih preiskavah. Iz tega sledi, da takšna kompozicija sidra dosti bolje sipa energijo v prečni smeri kot pa v dvižni.
Preglednica 12: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave RIKO-P-C-1, RIKO-P-C-2 in RIKO-P-C-2.

RIKO P1 C1									
Ed	Ep	[mm]	ν _{eq}						
2,359	1,071	0,668	0,3506						
3,972	2,049	1,036	0,3085						
3,679	2,009	1,042	0,2914						
3,615	1,997	1,045	0,2881						
5,536	3,422	1,403	0,2575						
5,217	3,052	1,409	0,2720						
5,116	3,483	1,409	0,2338						
6,838	3,880	1,692	0,2805						
6,556	4,359	1,707	0,2394						
6,490	4,083	1,704	0,2530						
9,376	5,843	2,144	0,2554						
8,810	6,194	2,162	0,2264						
8,653	5,539	2,190	0,2486						
13,982	9,326	2,906	0,2386						
12,655	8,805	2,944	0,2287						
12,501	9,117	2,959	0,2182						
26,234	17,087	4,450	0,2444						
22,160	15,697	4,463	0,2247						
21,920	14,217	4,463	0,2454						
49,631	34,112	6,698	0,2316						
41,046	31,862	6,695	0,2050						
40,238	31,171	6,714	0,2055						
83,738	36,169	10,119	0,3685						
84,121	42,296	10,126	0,3165						
85,220	49,004	10,132	0,2768						
136,523	67,392	13,431	0,3224						
134,009	73,959	13,453	0,2884						
131,572	83,071	13,469	0,2521						
191,523	104,634	20,151	0,2913						
174,919	107,179	20,158	0,2597						
165,972	108,736	20,176	0,2429						

RIKO P1 C2EdEp[mm] v_{eq} 1,1470,7370,6910,24782,1401,4401,0550,23651,9921,4561,0550,21771,9161,4691,0550,20763,1792,6021,4160,19442,9612,6661,4250,17682,8732,4791,4280,18444,1013,7731,7170,17303,8423,8551,7140,15863,7863,3801,7260,17835,9645,0892,1720,18655,4185,0602,1690,17045,2995,4752,1750,15449,6507,7762,9030,19758,5927,7272,9310,172019,09115,9054,4190,191014,75114,0364,4380,167314,24715,0304,4530,150535,73830,6066,7350,185626,66327,5596,7570,154025,10726,8836,7510,148644,72350,33410,1380,141444,26651,67010,1090,136344,05939,83710,1000,176670,39062,18113,4660,180265,33464,25213,4720,161861,75455,38813,4470,1774111,84495,99820,0990,1854106,30286,24620,0710,1965<				
EdEp[mm] v_{eq} 1,1470,7370,6910,24782,1401,4401,0550,23651,9921,4561,0550,21771,9161,4691,0550,20763,1792,6021,4160,19442,9612,6661,4250,17682,8732,4791,4280,18444,1013,7731,7170,17303,8423,8551,7140,15863,7863,3801,7260,17835,9645,0892,1720,18655,4185,0602,1690,17045,2995,4752,1750,15449,6507,7762,9030,19758,5927,7272,9310,172019,09115,9054,4190,191014,75114,0364,4380,167314,24715,0304,4530,150535,73830,6066,7350,185626,66327,5596,7570,154025,10726,8836,7510,148644,72350,33410,1380,141444,26651,67010,1090,136344,05939,83710,1000,176670,39062,18113,4660,180265,33464,25213,4720,161861,75455,38813,4470,1774111,84495,99820,0990,1854106,30286,24620,0710,1965	RIKO P1 C	2		
1,147 $0,737$ $0,691$ $0,2478$ $2,140$ $1,440$ $1,055$ $0,2365$ $1,992$ $1,456$ $1,055$ $0,2177$ $1,916$ $1,469$ $1,055$ $0,2076$ $3,179$ $2,602$ $1,416$ $0,1944$ $2,961$ $2,666$ $1,425$ $0,1768$ $2,873$ $2,479$ $1,428$ $0,1844$ $4,101$ $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1544$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1720$ $8,342$ $7,717$ $2,931$ $0,1720$ $14,247$ $15,030$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1509$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1546$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ 11	Ed	Ep	[mm]	ν _{eq}
2,1401,4401,0550,23651,9921,4561,0550,21771,9161,4691,0550,20763,1792,6021,4160,19442,9612,6661,4250,17682,8732,4791,4280,18444,1013,7731,7170,17303,8423,8551,7140,15863,7863,3801,7260,17835,9645,0892,1720,18655,4185,0602,1690,17045,2995,4752,1750,15419,6507,7762,9030,19758,5927,7272,9310,172019,09115,9054,4190,191014,75114,0364,4380,167314,24715,0304,4530,150535,73830,6066,7350,185626,66327,5596,7570,154025,10726,8836,7510,148644,72350,33410,1380,141444,26651,67010,1090,136344,05939,83710,1000,176670,39062,18113,4660,180265,33464,25213,4720,161861,75455,38813,4470,1774111,84495,99820,0990,1854106,30286,24620,0710,1965	1,147	0,737	0,691	0,2478
1,992 $1,456$ $1,055$ $0,2177$ $1,916$ $1,469$ $1,055$ $0,2076$ $3,179$ $2,602$ $1,416$ $0,1944$ $2,961$ $2,666$ $1,425$ $0,1768$ $2,873$ $2,479$ $1,428$ $0,1844$ $4,101$ $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1541$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1720$ $8,342$ $7,717$ $2,931$ $0,1720$ $19,091$ $15,905$ $4,419$ $0,1910$ $14,751$ $14,036$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1509$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1546$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ $111,844$ $95,998$ $20,099$ $0,1854$ <	2,140	1,440	1,055	0,2365
1,916 $1,469$ $1,055$ $0,2076$ $3,179$ $2,602$ $1,416$ $0,1944$ $2,961$ $2,666$ $1,425$ $0,1768$ $2,873$ $2,479$ $1,428$ $0,1844$ $4,101$ $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1541$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1770$ $8,342$ $7,717$ $2,931$ $0,1720$ $19,091$ $15,905$ $4,419$ $0,1910$ $14,751$ $14,036$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1509$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1546$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ $111,844$ $95,998$ $20,099$ $0,1854$ $106,302$ $86,246$ $20,071$ $0,19657$	1,992	1,456	1,055	0,2177
3,179 $2,602$ $1,416$ $0,1944$ $2,961$ $2,666$ $1,425$ $0,1768$ $2,873$ $2,479$ $1,428$ $0,1844$ $4,101$ $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1541$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1770$ $8,342$ $7,717$ $2,931$ $0,1720$ $19,091$ $15,905$ $4,419$ $0,1910$ $14,751$ $14,036$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1505$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1546$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ $111,844$ $95,998$ $20,099$ $0,1854$ $106,302$ $86,246$ $20,071$ $0,1962$	1,916	1,469	1,055	0,2076
2,9612,6661,4250,17682,8732,4791,4280,18444,1013,7731,7170,17303,8423,8551,7140,15863,7863,3801,7260,17835,9645,0892,1720,18655,4185,0602,1690,17045,2995,4752,1750,15419,6507,7762,9030,19758,5927,7272,9310,17708,3427,7172,9310,172019,09115,9054,4190,191014,75114,0364,4380,167314,24715,0304,4530,150935,73830,6066,7350,185626,66327,5596,7570,154025,10726,8836,7510,148644,72350,33410,1380,141444,26651,67010,1090,136344,05939,83710,1000,176670,39062,18113,4660,180265,33464,25213,4720,161861,75455,38813,4470,1774111,84495,99820,0990,1854106,30286,24620,0710,1962	3,179	2,602	1,416	0,1944
2,873 $2,479$ $1,428$ $0,1844$ $4,101$ $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1541$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1770$ $8,342$ $7,717$ $2,931$ $0,1720$ $19,091$ $15,905$ $4,419$ $0,1910$ $14,751$ $14,036$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1509$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1546$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ $111,844$ $95,998$ $20,099$ $0,1854$ $106,302$ $86,246$ $20,071$ $0,1962$	2,961	2,666	1,425	0,1768
4,101 $3,773$ $1,717$ $0,1730$ $3,842$ $3,855$ $1,714$ $0,1586$ $3,786$ $3,380$ $1,726$ $0,1783$ $5,964$ $5,089$ $2,172$ $0,1865$ $5,418$ $5,060$ $2,169$ $0,1704$ $5,299$ $5,475$ $2,175$ $0,1541$ $9,650$ $7,776$ $2,903$ $0,1975$ $8,592$ $7,727$ $2,931$ $0,1770$ $8,342$ $7,717$ $2,931$ $0,1720$ $19,091$ $15,905$ $4,419$ $0,1910$ $14,751$ $14,036$ $4,438$ $0,1673$ $14,247$ $15,030$ $4,453$ $0,1509$ $35,738$ $30,606$ $6,735$ $0,1856$ $26,663$ $27,559$ $6,757$ $0,1540$ $25,107$ $26,883$ $6,751$ $0,1486$ $44,723$ $50,334$ $10,138$ $0,1414$ $44,266$ $51,670$ $10,109$ $0,1363$ $44,059$ $39,837$ $10,100$ $0,1766$ $70,390$ $62,181$ $13,466$ $0,1802$ $65,334$ $64,252$ $13,472$ $0,1618$ $61,754$ $55,388$ $13,447$ $0,1774$ $111,844$ $95,998$ $20,099$ $0,1854$ $106,302$ $86,246$ $20,071$ $0,1962$	2,873	2,479	1,428	0,1844
3,842 3,855 1,714 0,1586 3,786 3,380 1,726 0,1783 5,964 5,089 2,172 0,1865 5,418 5,060 2,169 0,1704 5,299 5,475 2,175 0,1541 9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1720 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1856 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1766 70,390 62,181 13,466 0,1802	4,101	3,773	1,717	0,1730
3,786 3,380 1,726 0,1783 5,964 5,089 2,172 0,1865 5,418 5,060 2,169 0,1704 5,299 5,475 2,175 0,1541 9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1720 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1856 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1766 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618	3,842	3,855	1,714	0,1586
5,964 5,089 2,172 0,1865 5,418 5,060 2,169 0,1704 5,299 5,475 2,175 0,1541 9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1770 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1856 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1766 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 <th>3,786</th> <th>3,380</th> <th>1,726</th> <th>0,1783</th>	3,786	3,380	1,726	0,1783
5,418 5,060 2,169 0,1704 5,299 5,475 2,175 0,1541 9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1770 8,342 7,717 2,931 0,1770 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854	5,964	5,089	2,172	0,1865
5,299 5,475 2,175 0,1541 9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1770 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	5,418	5,060	2,169	0,1704
9,650 7,776 2,903 0,1975 8,592 7,727 2,931 0,1770 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	5,299	5,475	2,175	0,1541
8,592 7,727 2,931 0,1770 8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	9,650	7,776	2,903	0,1975
8,342 7,717 2,931 0,1720 19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	8,592	7,727	2,931	0,1770
19,091 15,905 4,419 0,1910 14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	8,342	7,717	2,931	0,1720
14,751 14,036 4,438 0,1673 14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	19,091	15,905	4,419	0,1910
14,247 15,030 4,453 0,1509 35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,302 86,246 20,071 0,1962	14,751	14,036	4,438	0,1673
35,738 30,606 6,735 0,1858 26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	14,247	15,030	4,453	0,1509
26,663 27,559 6,757 0,1540 25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	35,738	30,606	6,735	0,1858
25,107 26,883 6,751 0,1486 44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	26,663	27,559	6,757	0,1540
44,723 50,334 10,138 0,1414 44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	25,107	26,883	6,751	0,1486
44,266 51,670 10,109 0,1363 44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	44,723	50,334	10,138	0,1414
44,059 39,837 10,100 0,1760 70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	44,266	51,670	10,109	0,1363
70,390 62,181 13,466 0,1802 65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	44,059	39,837	10,100	0,1760
65,334 64,252 13,472 0,1618 61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	70,390	62,181	13,466	0,1802
61,754 55,388 13,447 0,1774 111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	65,334	64,252	13,472	0,1618
111,844 95,998 20,099 0,1854 106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	61,754	55,388	13,447	0,1774
106,345 97,106 20,058 0,1743 106,302 86,246 20,071 0,1962	111,844	95,998	20,099	0,1854
106,302 86,246 20,071 0,1962	106,345	97,106	20,058	0,1743
	106,302	86,246	20,071	0,1962

RIKO P1 C3									
Ed	Ep	[mm]	ν _{eq}						
1,525	0,352	0,323	0,6899						
2,491	1,292	0,684	0,3068						
3,233	1,682	1,045	0,3058						
3,124	1,688	1,045	0,2946						
3,987	2,303	1,042	0,2755						
4,856	2,766	1,406	0,2794						
4,665	2,813	1,400	0,2639						
5,421	3,364	1,403	0,2565						
6,147	4,283	1,682	0,2285						
5,897	3,301	1,685	0,2843						
7,182	4,313	1,692	0,2650						
8,479	5,438	2,125	0,2482						
7,978	5,332	2,134	0,2381						
10,239	7,379	2,134	0,2208						
12,588	8,620	2,856	0,2324						
11,453	8,960	2,875	0,2034						
16,921	10,995	2,866	0,2449						
21,729	16,448	4,372	0,2103						
18,285	15,741	4,369	0,1849						
28,654	22,752	4,369	0,2004						
36,775	27,792	6,654	0,2106						
30,283	30,874	6,679	0,1561						
57,006	41,955	10,045	0,2162						
57,256	52,161	10,020	0,1747						
57,755	44,300	10,033	0,2075						
94,112	69,220	13,341	0,2164						
90,459	72,867	13,363	0,1976						
86,013	65,424	13,385	0,2092						
146,703	99,400	20,109	0,2349						
143,723	99,682	20,099	0,2295						
142,778	88,782	20,108	0,2559						

4.4.2.2 KLH paneli in BMF sidra z žeblji dolžine 40 mm

Diagram 45: Primerjava cikličnih preiskav KLH-P-C-1, KLH-P-C-2, KLH-P-C-3 in njihovo povprečje.

Diagram 46: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude zdrsa za preiskave KLH-P-C-1, KLH-P-C-2, KLH-P-C-3.

58

Sliki 46 in 47: KLH panel in BMF sidro z žeblji dolžine 40 mm, levo izvlek in pretrg žebljev ter kotnika, desno panel po preiskavi.

Iz odziva sidrišča smo ugotovili, da so žeblji in kotno sidro zelo obremenjeni. Ker je kotnik v temeljno konstrukcijo pritrjen z dvema vijakoma, mu je onemogočena rotacija. Zaradi tega pride do velikih napetosti na robu sidra in posledično do pretrganja sidra v pregibu. Razpoki v pregibu sidra z večanjem amplitude zdrsa naraščata. Ko se sidro natrga izgubi rotacijsko stabilnost, zato se prične vedno bolj rotirati in odmikati od panela. To dodatno prispeva k izvleku žebljev na zgornjem robu sidra. Ker pa ob spodnjem robu rebro še vedno v določeni meri preprečuje odmike sidra od panela, se v tej višini sidra žeblji največkrat pretrgajo. Faktor ekvivalentnega viskoznega dušenja ima vrednosti v prvih ciklih med 15 in 18% pri velikostih amplitud zdrsa nad 3 mm. Vrednosti faktorja v tretjih ponovitvenih ciklih pa upadejo na 12 do 13%. Tudi tu se izkaže, da sidra dosti bolje sipajo energijo pri obtežbi v vodoravni smeri kakor pri dvižni obtežbi, saj je vrednost v prvih ciklih več kot dvakrat višja.

Preglednica 13: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH-P-C-1, KLH-P-C-2 in KLH-P-C-3.

KLH1 P C1	KLH1 P C2					KLH1 P C3							
Ed	Ep	[mm]	ν _{eq}		Ed	Ер	[mm]	ν _{eq}		Ed	Ep	[mm]	ν _{eq}
0,863	0,987	0,459	0,1392		0,705	0,780	0,324	0,1439		1,437	1,709	0,647	0,1338
2,256	2,474	0,802	0,1452		1,850	1,697	0,650	0,1735		3,252	3,432	0,973	0,1508
2,024	2,457	0,808	0,1311		1,592	1,694	0,647	0,1496		2,979	3,446	0,964	0,1376
1,930	2,445	0,811	0,1257		1,435	1,702	0,650	0,1342		2,810	3,431	0,958	0,1303
3,932	4,333	1,159	0,1444		3,528	3,052	1,002	0,1840		5,579	5,411	1,287	0,1641
3,626	4,173	1,162	0,1383		3,327	3,315	1,014	0,1597		5,489	5,753	1,290	0,1518
3,444	4,177	1,166	0,1312		3,058	3,266	1,014	0,1490		5,328	5,545	1,287	0,1529
5,065	5,781	1,435	0,1395		4,627	4,940	1,278	0,1491		7,875	7,897	1,551	0,1587
4,755	5,996	1,448	0,1262		4,392	4,405	1,265	0,1587		7,572	6,977	1,547	0,1727
4,580	5,749	1,435	0,1268		4,179	4,783	1,274	0,1391		7,392	7,479	1,560	0,1573
7,779	8,880	1,872	0,1394		7,571	7,182	1,695	0,1678		11,820	10,968	1,977	0,1715
6,930	9,028	1,881	0,1222		7,003	6,739	1,682	0,1654		11,212	9,957	1,983	0,1792
6,580	8,722	1,887	0,1201	_	6,644	7,341	1,673	0,1441		10,652	10,921	1,971	0,1552
13,192	14,891	2,590	0,1410		13,224	11,824	2,388	0,1780		18,641	17,386	2,671	0,1706
11,438	14,545	2,587	0,1252		12,080	12,057	2,401	0,1595		15,836	17,350	2,686	0,1453
10,791	14,693	2,603	0,1169		11,411	11,755	2,394	0,1545		15,034	17,069	2,686	0,1402
28,943	30,205	4,034	0,1525	-	27,498	25,914	3,870	0,1689		35,399	35,667	4,090	0,1580
24,288	29,210	4,056	0,1323		22,234	23,954	3,870	0,1477		26,838	33,892	4,096	0,1260
22,697	29,571	4,056	0,1222		20,629	24,332	3,889	0,1349		24,651	34,302	4,118	0,1144
58,514	60,667	6,209	0,1535		51,733	52,788	6,133	0,1560		67,524	64,987	6,256	0,1558
43,980	57,783	6,210	0,1211		39,103	20,872	6,143	0,1223		50,020	62,120	6,293	0,1223
39,309	20,970	0,222	0,1119		30,985	49,542	0,149	0,1150		45,329	120 540	0,309	0,1143
00 691	100.205	9,308	0,1074		105,637	00,490	9,429	0,1512		130,001	138,348	9,342	0,1007
70,001	00,002	9,400	0,1440		75,000	90,400	9,445	0,1450		90,201	104 762	9,570	0,1371
74,662	100 375	9,430	0,1271	- E	72,767	91,300	9,407	0,1300	- F	81 506	104,703	9,013	0,1320
74,002	03.646	9,429	0,1104		71 120	03 868	9,479	0,1240		77 944	105,404	9,654	0,1230
68 859	88 790	9 474	0,1203	- E	68 083	93 777	9 435	0,1200	L 17	74 789	103,000	9 648	0 1137
166,305	164 507	12 729	0 1609		147 557	158 203	12 722	0 1484		169 106	185 172	12 896	0 1453
143.038	146.645	12,599	0.1552	- 5	123,552	136,731	12.715	0.1438	L 17	138,204	158,424	12,946	0.1388
127.759	143.443	12,564	0.1418		109.757	133.821	12.734	0.1305		123.081	151.252	13.003	0.1295
117.726	131.642	12.576	0.1423	- E	102.018	132.655	12.762	0.1224		114.236	151,210	13.037	0.1202
110,538	131,649	12,557	0,1336		97,401	124,214	12,759	0,1248		107,152	139,729	13,043	0,1220
105,388	132,204	12,573	0,1269	- E	94,180	114,925	12,746	0,1304		100,929	137,824	13,040	0,1166
307,834	238,297	18,312	0,2056		272,954	273,022	19,325	0,1591		307,931	298,816	19,689	0,1640
			· · ·		205,642	218,987	19,366	0,1495		209,990	238,462	19,820	0,1402
					175,155	198,845	19,406	0,1402		159,872	186,271	19,899	0,1366
				Γ	154,874	184,952	19,428	0,1333		133,933	162,800	19,959	0,1309
					139,410	171,763	19,457	0,1292		111,968	145,545	19,978	0,1224
					123,360	154,429	19,478	0,1271	ΙΓ	99,209	136,491	19,975	0,1157
					273,697	193,924	26,333	0,2246		223,508	198,050	26,629	0,1796
										147,484	121,988	26,836	0,1924
									_				

Diagram 47: Primerjava cikličnih preiskav KLH-P60-C-1, KLH-P60-C-2, KLH-P60-C-3 in njihovo povprečje.

Diagram 48: Primerjava faktorja ekv. viskoznega dušenja v odvisnosti od amplitude zdrsa za preiskave KLH-P60-C-1, KLH-P60-C-2 in KLH-P60-C-3.

Sliki 48 in 49 Panel KLH sidran s kotnimi sidri BMF in 60mm žeblji, levo kotno sidro med preiskavo, desno kotno sidro proti koncu preiskve.

S cikličnimi preiskavami smo ugotovili, da je nosilnost sidra okoli 22 kN in je dosežena pri zdrsu okoli 20 mm, medtem ko je bila pri monotoni obtežbi vrednost najvišje sile 24 kN dosežena pri zdrsu okoli 23 mm. Tudi pri tej kompoziciji sidrišča je prišlo do pretrga sidra v pregibu. Zanimivo je, da je med preiskavami potrgalo le žeblje v zadnji - spodnji vrsti, ostale žebljev pa je večinoma izvleklo. Do največjega izvleka žebljev je prihajalo na zgornjem robu sidra.

Pri zdrsih manjših od 3 mm je raztros rezultatov faktorja ekvivalentnega viskoznega dušenja precejšen, pri zdrsih večjih od 3 mm pa so rezultati bližje skupaj. Vrednosti faktorja v prvem ciklu se gibljejo med 15 in 18%, medtem ko se vrednosti faktorja v tretjem cilku gibljejo med 12 in 15%. Kar pomeni, da upad faktorja pri ponavljajoči se obtežbi ni tolikšen, saj je znašal le okoli 2%. Iz tega lahko sklepamo, da tovrstna kompozicija sidrišča sipa energijo precej konstantno.

Preglednica 14: Prikaz disipirane energije, razpoložljive potencialne energije, vrednost amplitude zdrsa in koeficient ekvivalentenga viskoznega dušenja po posameznih amplitudah za preiskave KLH-P60-C-1, KLH-P60-C-2 in KLH-P60-C-3.

KLH2 P C1					KLH2 P C2				KLH2 P C3			
Ed	Ep	[mm]	ν _{eq}		Ed	Ep	[mm]	ν _{eq}	Ed	Ер	[mm]	ν _{eq}
1,067	1,617	0,666	0,1051		1,173	1,797	0,665	0,1040	2,901	2,762	0,669	0,1672
2,084	3,918	1,014	0,0847		2,402	3,789	0,998	0,1009	2,739	3,847	1,024	0,1133
2,067	3,909	1,011	0,0842		2,130	3,941	0,992	0,0860	2,449	3,808	1,024	0,1023
2,052	3,902	1,008	0,0837		2,046	3,930	0,992	0,0829	3,697	4,867	1,027	0,1209
3,893	6,792	1,340	0,0912		4,005	6,413	1,328	0,0994	5,609	5,801	1,384	0,1539
3,710	6,705	1,328	0,0881		3,729	6,543	1,328	0,0907	5,188	5,905	1,403	0,1398
3,612	6,671	1,318	0,0862		3,577	6,327	1,318	0,0900	6,024	6,723	1,403	0,1426
5,533	9,386	1,569	0,0938		5,619	8,982	1,591	0,0996	7,121	8,340	1,695	0,1359
5,362	9,557	1,563	0,0893		5,374	8,985	1,579	0,0952	6,372	8,192	1,695	0,1238
5,224	8,991	1,553	0,0925		5,159	8,657	1,579	0,0949	8,102	9,762	1,692	0,1321
9,774	12,988	1,983	0,1198		9,448	12,624	2,021	0,1191	10,546	12,128	2,116	0,1384
9,544	13,742	1,961	0,1105		9,121	12,580	2,008	0,1154	9,674	12,742	2,135	0,1208
9,507	13,405	1,964	0,1129		8,701	12,938	2,015	0,1070	14,406	15,979	2,132	0,1435
20,007	21,313	2,652	0,1494		18,241	20,136	2,708	0,1442	20,850	19,519	2,854	0,1700
19,951	21,256	2,658	0,1494		17,388	19,240	2,733	0,1438	19,028	20,483	2,844	0,1478
19,767	21,742	2,648	0,1447		16,751	19,258	2,723	0,1384	31,620	28,019	2,863	0,1796
45,587	41,544	4,095	0,1746		37,512	38,364	4,180	0,1556	44,271	39,468	4,301	0,1785
40,131	40,259	4,115	0,1586		31,143	38,282	4,183	0,1295	38,926	36,706	4,325	0,1688
37,920	39,402	4,111	0,1532		29,939	37,518	4,192	0,1270	61,435	54,828	4,335	0,1783
86,712	83,052	6,303	0,1662		72,992	77,089	6,336	0,1507	85,900	75,784	6,536	0,1804
66,741	78,816	6,325	0,1348		56,456	74,058	6,361	0,1213	72,800	73,551	6,545	0,1575
63,556	77,379	6,338	0,1307		54,095	72,810	6,371	0,1182	115,767	111,627	6,554	0,1651
164,630	159,229	9,528	0,1646		150,727	146,981	9,504	0,1632	167,552	151,269	9,885	0,1763
130,317	153,959	9,588	0,1347		116,278	143,338	9,558	0,1291	137,824	137,465	9,907	0,1596
119,836	151,602	9,604	0,1258		108,174	142,516	9,586	0,1208	131,422	139,701	9,951	0,1497
115,220	148,827	9,600	0,1232		104,869	141,341	9,586	0,1181	128,319	141,517	9,973	0,1443
112,698	139,650	9,629	0,1284		103,045	128,389	9,576	0,1277	125,824	134,662	9,970	0,1487
110,517	141,921	9,657	0,1239		101,844	131,428	9,605	0,1233	179,090	190,843	9,957	0,1494
241,433	253,313	12,768	0,1517		224,033	233,375	12,813	0,1528	245,406	242,296	13,379	0,1612
210,627	245,133	12,834	0,1368		185,584	226,873	12,870	0,1302	207,179	228,880	13,419	0,1441
188,495	231,487	12,878	0,1296		170,587	210,835	12,889	0,1288	194,975	211,968	13,422	0,1464
178,833	218,345	12,897	0,1304		162,425	204,619	12,917	0,1263	186,207	211,291	13,435	0,1403
172,159	215,100	12,919	0,1274		156,080	205,071	12,961	0,1211	179,314	199,243	13,463	0,1432
164,158	213,571	12,953	0,1223		150,697	196,757	12,980	0,1219	307,001	306,498	13,469	0,1594
470,022	427,569	19,370	0,1750		447,556	401,082	19,649	0,1776	441,434	389,914	20,201	0,1802
354,019	347,179	19,488	0,1623		306,788	341,659	19,777	0,1429	298,409	312,035	20,295	0,1522
273,696	305,219	19,629	0,1427		230,686	284,278	19,858	0,1292	250,736	264,500	20,329	0,1509
229,022	278,495	19,732	0,1309		194,467	234,536	19,933	0,1320	220,910	238,402	20,326	0,1475
207,364	256,959	19,801	0,1284		165,053	213,382	19,980	0,1231	201,991	220,404	20,335	0,1459
187,402	243,069	19,848	0,1227		150,379	200,271	20,031	0,1195	288,349	325,337	20,323	0,1411
398,419	401,288	26,549	0,1580		330,294	378,052	26,605	0,1390	352,371	337,573	27,113	0,1661
270,983	311,259	26,708	0,1386		233,270	289,685	26,724	0,1282	257,727	284,386	27,110	0,1442
226,141	268,229	26,715	0,1342		201,447	256,757	26,742	0,1249	122,140	116,123	27,097	0,1674

5 PRIMERJAVE REZULTATOV PREISKAV

5.1 Primerjava rezultatov dvižnih preiskav

Diagram 49: Primerjava monotonih dvižnih preiskav RIKO1-A-S, RIKOW-A-S, KLH1-A-S in KLH2-A-S.

Iz primerjave odzivov monotonih dvižnih preiskav (Diagram 49) se je najbolje izkazal panel KLH sidran z BMF kotnim sidrom in žeblji dolžine 60 mm (KLH2-A-S). Najnižja nosilnost je bila dobljena na panelu RIKO, ki je bil sidran z BMF kotnim sidrom in štirimi žeblji dolžine 40 mm (RIKO1-A-S). Razpon med obema mejnima vrednostima je velikosti faktorja dva, saj je bila najnižja nosilnost 12,3 kN, najvišja pa 26,3 kN. Če primerjamo vrednosti mejne sile F_u pri monotono naraščajoči obtežbi, je bila najnižja vrednost dobljena pri KLH panelu, ki je bil sidran z BMF sidrom in žeblji dolžine 40 mm (KLH1-A-S). Najnižja vrednost mejne sile je znašala 9,6kN medtem ko je bila najvišja mejna sila določena pri preiskavi KLH2-A-S in sicer 23,3 kN. Zanimivo je obnašanje pri preizkušanca RIKO1-A-S, saj je sila padla pod 95% maksimalne vrednosti šele pri dvigu 14,4 mm, maksimalna vrednost sile pa je bila dosežena pri dvigu 12,0 mm.

Diagram 50: Primerjava monotonih dvižnih preiskav RIKO1, RIKOW, KLH1 in KLH2 po protokolu EN 26891.

Na diagramu 50 so prikazane povprečne vrednosti preiskav po protokolu EN 26891 in sicer kot povprečje odzivov posameznih sklopov sidrišč. Najvišja sila 24,7 kN je bila dosežena na panelu KLH, ki je bil sidranim z BMF kotnim sidrom in žeblji dolžine 60 mm (KLH2). Najnižja vrednost sile 9,7 kN je bila pa je bila dosežena na panelu RIKO, ki je bil sidranim z BMF kotnikom in žeblji dolžine 40 mm (RIKO1). To znaša okoli 40% sile kot pri KLH2, vendar je potrebn upoštevati razliko v sestavi sklopa sidranja. KLH2 je sidran z 10 žeblji dolžine 60 mm, medtem ko je RIKO1 sidran le s štirimi žeblji dolžine 40 mm.

Iz diagrama 50 se vidi, da pri manj nosilnih sistemih sidrišč sila kar hitro upade po doseženi maksimalni sili. Vrednost maksimalne sile pri RIKOW je znašala 13,0 kN, medtem ko je pri KLH2 znašala 24,7 kN. To pa je le enkrat več za 2,5 krat večje število enakih žebljev na stik. Dvig pri 0,95 F_{max} je pri RIKOW znašal 11,9 mm in pri KLH2 15,5 mm. Za obe preiskavi je bila maksimalna vrednosti dosežena pri dvigu okoli 11,5 mm.

Diagram 51: Primerjava povprečnih ovojnic pol-cikličnih dvižnih preiskav RIKO1, RIKOW, KLH1 in KLH2 z upadom sile v tretjem ciklu.

Na diagramu 51 so prikazane ovojnice povprečnih vrednosti preiskav posameznih kompozicijskih sklopov sidrišč. Polna debela črta prikazuje vrednosti v prvem ciklu, tanka črtkana črta pa vrednosti v tretjem ciklu. Iz diagrama lahko ocenimo, da so bili doseženi največji dvigi in sila pri preiskavi na panelu KLH, ki je bil sidranim z BMF sidri in žeblji dolžine 60 mm (KLH2), najnižje vrednosti pa na panelu RIKO, ki je bil sidran z BMF kotnikom in žeblji dolžine 40 mm (RIKO1). Pri preiskavi KLH2 smo ugotovili, da sila po doseženi maksimalni vrednosti počasi upada.

Predvsem se pozna razlika v nosilnosti glede na uporabljeno dolžino žebljev, ki spajajo kompozicijo stika. Razlika med največjo doseženo silo za KLH panel znašala 9,8 kN, za RIKO panel pa okoli 4,0 kN, pri čemer je kotno sidro pri panelu KLH vedno istega tipa.

5.2 Primerjava rezultatov prečnih preiskav

Diagram 52: Primerjava monotonih prečnih preiskav RIKO-P-A, KLH-P-A in KLH-P60-A.

Na diagramu 52 so prikazani odzivi monotonih prečnih preiskav. Največja maksimalna sila je bila tudi pri teh preiskavah dosežena na panelu KLH, ki je bil sidran z BMF sidri in žeblji dolžine 60 mm (KLH2). Zanimivo je, da je RIKO panel, ki je bil sidran z BMF 6191 kotnimi sidri in s štirimi žeblji dolžine 40 mm, dosegel višjo vrednost kot pa KLH panel sidran z BMF 105 sidrom z rebrom in desetimi žeblji dolžine 40 mm. Vrednost zdrsa pri porušitvi je pri obeh KLH panelih zelo podobna in znaša okoli 27 mm, največja nosilnost pa je pri KLH2 dosežena pri polovico manjšem zdrsu (10 mm) kot pri KLH1 (20 mm). Nosilnost pri uporabi 50% daljših žebljev je za okoli 2,6 krat višja in znaša pri KLH2 okoli 26 kN, medtem ko je nosilnost pri KLH1 le okoli 10 kN. RIKO panel se je porušil pri zdrsu okoli 56 mm, kar je več kot sama dolžina žebljev. Do tako velikega zdrsa lahko pride zaradi rotacije sidra okoli sidrnega vijaka.

Na osnovi rezultatov lahko zaključimo, da je smiselno uporabiti nekoliko daljše žeblje za veliko povečanje nosilnost stika. Glede duktilnosti bi lahko dejali, da je RIKO sestava zelo duktilna, a je to predvsem posledica rotacije sidra in ne deformacije veznih sredstev.

Diagram 53: Primerjava cikličnih prečnih preiskav RIKO1, KLH1 in KLH2 z upadom sile v tretjem ciklu.

Na diagramu 53 so prikazane ovojnice cikličnih prečnih preiskav. Z debelo črto je označen prvi cikel, s tanko črtkano črto pa dosežena sila v tretjem ponovitvenem ciklu. Iz razhajanja obeh črt lahko določimo upadanje nosilnosti stika pri ponavljajoči se obtežbi in pri povečevanju zdrsa v stiku. Najvišja nosilnost je bila tako kot pri ostalih preiskavah dosežena pri sestavu stika KLH2. Zanimiv je relativno majhen upad sile v tretjem ciklu in da so vrednosti ekvivalentnega dušenja pri preiskavah na panelih RIKO nekoliko višje od tistih na panelih KLH.

6 ZAKLJUČEK

Pri vseh preiskavah je bilo ugotovljeno, da ima dolžina žebljev pomemben vpliv na nosilnost stika. Tako pri dvižnih kot pri prečnih preiskavah je bila najvišja nosilnost dosežena na KLH panelu, ki je bil sidran z BMF kotnimi sidri in žeblji dolžine 60 mm. Direktne primerjave med vsemi konfiguracijami stikov ni mogoče narediti, saj je že iz sestave stika razvidno, kateri preizkušanci bodo imeli višjo nosilnost od ostalih. S preiskavami smo želeli natančno raziskavi obnašanje stikov pri različnih obtežbah in vpliv določenih variacij na njihovo nosilnost in togost.

Pri prečnih preiskavah na RIKO panelih nismo preizkusili sidranja z Würth-ovimi sidri, saj je sidro zasnovano tako, da dobro prenaša le dvižno obtežbo. Prečna obtežba pa je problematična zaradi konfiguracije sidra in je zaradi tega uporaba tega sidra pri stenskih elementih priporočljiva z uporabo sider, ki dobro prenašajo prečno obtežbo med steno in temeljem (strižni trni oziroma vijaki ali blok elementi). Vendar je princip Würth-ovih sider s podložno ploščičo dobro zasnovan za dvižne sile, saj ploščica preprečuje tako deformacijo v pregibu sidra kakor tudi rotacijo sidra pri prečnih preiskavah. Tako bi bilo zanimivo BMF 6191 sidro nadgraditi s togo jekleno ploščico, kar bi zelo vplivalo na povečanje nosilnosti in zmanjšanje deformabilnosti sidra tako pri dvižnih preiskavah kakor tudi pri prečnih preiskavah.

Pri dvižnih preiskavah na RIKO panelih se je pokazalo, da pri močnejših in bolj togih sidrih prihaja do prekoračitve cepilne natezne trdnosti lesa, zato je v primeru teh enosmerno lepljenih elementov nesmotrna uporaba močnejših sider. Hkrati s tem vplivamo na način porušitve, saj je razkol vlaken lesa zelo krhka porušitev.

Pri izvedbi optimalnega sidrišča lesene stene bi bilo smiselno kombinirati prednosti vseh različnih tipov uporabljenih sider – BMF 6191, BMF 105 z rebrom in Würth s togo podložno ploščico. Obtežba na sidro je kombinirana in sestavljena iz vplivov v dveh pravokotnih smereh, zato bi v dvižni smeri uporabili prednosti toge podložne plošče, kar zmanjša potrebo po dveh sidrnih vijakih v primeru BMF 105 z rebrom in preprečuje deformacijo v vogalu pri BMF 6191. Pri prečni obtežbi pa bi bilo potrebno ojačati pregib na konceh, da pri izmenjujoči prečni obtežbi ne bi prišlo do pretrga kotnika.

V obdobju eksperimentalnih preiskav v okviru te diplomske naloge smo na tržišču zasledili novost pri proizvajalcu sider BMF, ki ga je prevzelo ameriško podjetje za izdelavo kovinskih pritrdil Simpson Strong-Tie, ki je kot novost pri gradji lesenih konstrukcij ponudilo sidro oznake KR, ki bi lahko odpravilo nekatere probleme, ki smo jih zasledili med preiskavami (Slika VI). Sidro ima ojačilni rebri na konceh pregiba, kar bi verjetno izboljšalo obnašanje pri prečni obtežbi. Zaradi reber na robovih je lahko sidrni vijak bližje pregibu, kar pri dvižnih preiskavah zelo zmanjša navpično deformacijo in dvig stene v stiku.

Slika VI: Kotno sidro BMF: KR 95 L in KR 95 (<u>http://produkte.simpsonstrongtie.de/emne/e1022.gif</u>)^[Vir 10]

VIRI

- Vir 1: *Timber construction on the Helsinki Peninsula* <u>http://www.hel.fi/kaumuseo/kavely/puutalot/english/puuintro.html</u> (10.11.05)
- Vir 2: Bautabelen für Ingeniure mit Berechnungshinweisen und Beispilen, 15. Auflage, Werner Verlag, stran 9.2, preglednica Tafel 9.2a
- Vir 3: Bautabelen für Ingeniure mit Berechnungshinweisen und Beispilen, 15. Auflage, Werner Verlag, stran 9.4, preglednica Tafel 9.4a
- Vir 4: Lesena cerkev v Miskolcu na Madžarskem http://en.wikipedia.org/wiki/Wooden_Church_%28Miskolc%29 (10.11.05)
- Vir 5: Domača spletna stran podjetja Riko Hiše http://www.riko-hise.si/riko-hise/slo/hisaRiko/images/varnaInTrajna3.jpg (10.11.05)
- Vir 6: *Domača spletna stran podjetja KLH Massivholz* <u>http://www.klh.at/de/pages/4/referenz_bilder/EFH_Klagenfurt_9_72dpi.jpg</u> (10.11.05)
- Vir 7: predstandard prEN12512:1996 stran 5 na sredini
- Vir 8: predstandard prEN12512:1996 stran 5 spodaj
- Vir 9: predstandard prEN12512:1996 stran 6 spodaj
- Vir 10: Domača spletna stran podjetja BMF-Simpson Strong-Tie; tehnični podatki so dosegljivi na naslovu <u>http://www.simpsonstrongtie.de/pdf/winkelverbinder_kr95951_1351351_285_2851.pdf</u> <u>http://produkte.simpsonstrongtie.de/emne/e1022.gif</u> (10.11.05)