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Direction detector for distributed targets
in unknown noise and interference

F. Bandiera, O. Besson and G. Ricci

Adaptive detection of distributed radar targets in homogeneous
Gaussian noise plus subspace interference is addressed. It is assumed
that the actual steering vectors lie along a fixed and unknown direction
of a preassigned and known subspace, while interfering signals are
supposed to belong to an unknown subspace, with directions possibly
varying from one resolution cell to another. The resulting detection
problem is formulated in the framework of statistical hypothesis
testing and solved using an ad hoc algorithm strongly related to the
generalised likelihood ratio test. A performance analysis, carried out
also in comparison to natural benchmarks, is presented.

Introduction: Adaptive radar detection of distributed targets requires
proper strategies taking into account the nature of the targets as
shown in [1,2]. In those papers returns from the target are modelled
as signals known up to multiplicative factors, namely they are supposed
to belong to a one-dimensional subspace of the observables. The case of
returns modelled in terms of signals having the same direction which is
not a priori known, but for the fact that it belongs to a given subspace of
the observables, has also been considered [3,4]. Subsequently, in [5] it
has been assumed that the target is also buried by interference belonging
to a known subspace linearly independent of the signal subspace. In this
Letter, we attack the detection problem addressed in [5], but assuming
that the interference subspace is unknown (but for its rank). Since a
closed form of the generalised likelihood ratio test (GLRT) is not avail-
able, we derive an ad hoc algorithm capable of effectively dealing with
the considered scenario.

Problem formulation: Assume that an array of N (possibly space-time)
sensors probes KP range cells. Denote by rk , k [ VP ; {1, . . . ,KP}, the
N -dimensional vector containing returns from the kth cell. We want to
decide between the H0 hypothesis that the rks contain disturbance
only and the H1 hypothesis that they also contain signals backscattered
from target scattering centres. We also assume that the overall disturb-
ance is the sum of coloured noise and deterministic interference. In
symbols, the detection problem to be solved can be formulated in
terms of the following binary hypothesis test:

H0 : rk = J qk + nk , k [ VP, rk = nk , k [ VS

H1 : rk = akHp+ J qk + nk , k [ VP, rk = nk , k [ VS

{
(1)

where the useful signals akHp and the interference signals Jqk are
assumed to belong to the range spaces of the full-column-rank matrices
H [ CN×r and J [ CN×q, respectively, with p [ Cr×1, qk [ Cq×1, and
q+ r1 , N . In the following we assume that the space spanned by H is
known while that spanned by J is not (but for its rank q). The noise
vectors nks, k [ VP, are modelled as N -dimensional complex normal
random vectors, i.e. nk � CNN (0,M), k [ VP, with M being in turn
a positive-definite matrix; we assume that M is unknown. We suppose
that KS ≥ N secondary data, rk, k [ VS ; {KP + 1, . . . ,KP + KS},
containing noise only, are available and that these returns share the
same statistical characterisation of the noise components in the
primary data. Finally, we assume that the nks, k [ VP <VS , are inde-
pendent random vectors.

Detector design: Denote by R = [RP RS] [ CN×K the overall data
matrix, with RP = [r1 . . . rKP ] [ CN×KP being the primary data matrix,
RS = [rKP+1 . . . rKP+KS ] [ CN×KS the secondary data matrix, and
K = KP + KS . Let us also introduce the following matrices
Q = [q1 · · · qKP

] [ Cq×KP and a = [a1 · · ·aKP ] [ CKP×1. The GLRT
for the above hypothesis testing problem can be written as

max
p

max
a

max
J

max
Q

max
M

f1(R; p,a, J,Q,M)

max
J

max
Q

max
M

f0(R; J,Q,M) H0

,
.
H1

g (2)

where fj(R; ·) is the probability density function of R under the Hj ,
j = 0, 1, hypothesis and g the threshold value to be set in order to
ensure the desired probability of false alarm (Pfa). The denominator
of (2) has been computed in [6] and it is given by

[K/ep]NK

‖ S ‖K
∏N

i=q+1

[1+ li(S−1/2 RP R
†
P S

−1/2)]−K (3)

where S = RS R
†
S , ‖ · ‖ is the determinant of the matrix argument, li(·)

are the eigenvalues of the matrix argument arranged in decreasing order,
and † denotes conjugate transpose. As to the numerator of (2), it is pos-
sible to reach the following intermediate step [5]

max
p,J

[K/ep]NK

‖ S ‖K IKP +R
†
P S

−1/2(IN −PWS
) S−1/2 RP

∥∥∥ ∥∥∥−K
(4)

where In denotes the identity matrix of dimension n [ N and PWS is the
projector onto the span of WS = S−1/2[Hp J] = [HSp JS] which is
assumed to be full rank (i.e. q+ 1). Combining (3) and (4) into (2) pro-
vides the following equivalent decision rule

∏N
i=q+1 [1+ li(S−1/2 RP R

†
P S

−1/2)]
min
p

min
J

IKP +R
†
P S

−1/2(IN −PWS ) S−1/2 RP

∥∥∥ ∥∥∥ H0

,
.
H1

g (5)

Observe now that the optimisation problem at the denominator of (5)
requires finding a projector onto the span of WS which, in turn, is con-
strained to have one direction belonging to the span of HS while the
remaining ones are unconstrained (provided that WS has rank q+ 1).
Since we do not know how to jointly solve such a problem, we herein
propose a heuristic technique based upon the following rationale.
Given that we know that one direction of WS must lie in the span of
HS , we start by finding a set of possible candidates as estimates of the
vector HS p. Subsequently, for each of these candidates, we solve
problem (5) with respect to J. In order to find the candidates, we
observe that, in the absence of interference, the optimum (in the
maximum-likelihood sense) choice for the vector HS p is given by the
dominant eigenvector of the matrix

E = PHS S
−1/2 RP A

−1 R†
P S

−1/2 PHS (6)
where A = IKP +R†

P S
−1 RP and PHS is the projector onto the span of

HS [5]. For this reason, we choose to construct the set of candidate esti-
mates of the vector HS p as the r eigenvectors of E corresponding to the
greatest eigenvalues. To be quantitative, let v1, . . . , vr be the eigenvec-
tors corresponding to the greatest eigenvalues of E; for each vℓ,
ℓ = 1, . . . , r, we solve the problem

min
J

IKP +R
†
P S

−1/2(IN −PWS
)S−1/2 RP

∥∥∥ ∥∥∥ (7)

with the matrixWS that is now given byWS = [vℓ JS]. The solution to
such problem is known (see [6]) and it is given by

∏N
i=q+1

[1+ li(P⊥
vℓ
S−1/2 RP R

†
P S

−1/2 P⊥
vℓ
)] (8)

where P⊥
vℓ
is the projector onto the orthogonal complement of the span of

vℓ. Summarising, we propose to replace the statistic in (2) with the one
computed as follows. First: extract the r eigenvectors corresponding to
the greatest eigenvalues of E (given by (6)) and denote them by
v1, . . . , vr; secondly, for each vℓ, ℓ = 1, . . . , r, construct the statistic

Lℓ(R) =
∏N

i=q+1 [1+ li(S−1/2 RP R
†
P S

−1/2)]∏N
i=q+1 [1+ li(P⊥

vℓ S
−1/2 RP R

†
P S

−1/2 P⊥
vℓ
)] (9)

thirdly, compute the maximum of Lℓ(R) with respect to ℓ = 1, . . . , r.
The resulting direction detector for unknown J will be denoted by
DD-uJ.

Performance assessment: We carry out a Monte Carlo simulation to
evaluate the performance of the proposed algorithm, also in comparison
to the direction detector that assumes perfect knowledge of the interfer-
ence subspace J [5] (denoted by DD-kJ) and the subspace detector for
unknown J [6] (denoted by SD-uJ). In order to evaluate the thresholds
necessary to ensure a preassigned value of Pfa and the probabilities of
detection (Pds) we resort to 100/Pfa and 104 independent trials, respect-
ively. We assume N = 16, KS = 32, r = 6, q = 2, Pfa = 10−4.
Matrices H and J are randomly generated at each Monte Carlo run as
matrices whose entries are independent and identically distributed



(I.I.D) random variables taking on values +1/
���
N

√
with equal prob-

ability. Vector p is generated as p � CNr(0, Ir). Moreover, at each
run of the Monte Carlo simulation, we check the condition that the
matrix [Hp J] is full rank (i.e. q+ 1). We also assume |ak | = |a|,
k [ VP, (| · | being the modulus of a complex number). The
signal-to-noise ratio (SNR) is defined as SNR = KP|a|2 r

Ntr(M−1)
where tr(·) is the trace of the matrix argument. In addition, the interfer-
ence coefficients qk , k = 1, . . . ,KP, are I.I.D and qk � CNq(0,s2

J Iq).
The noise vectors nk , k = 1, . . . ,K, are I.I.D and nk � CNN (0,M)
with the (i, j)th element of M given by s2

n0.95
|i−j|, s2

n = 1. Finally,
the interference-to-noise ratio (INR), defined as s2

J /s
2
n, is set to

INR = 20 dB. Figs. 1 and 2 report Pd against SNR for DD-uJ,
DD-kJ, and SD-uJ for KP = 9 and KP = 32, respectively. From the
Figures it is seen that, on one hand, the proposed DD-uJ can provide
a performance better than that of the SD-uJ and, on the other hand,
that its loss with respect to its non-adaptive counterpart (i.e. the
DD-kJ) is limited. Such relations are emphasised as KP increases; in
fact, a higher value of KP means that more data are available to estimate
Hp and J.
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Fig. 1 Pd against SNR for considered detectors, Kp = 9
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Fig. 2 Pd against SNR for considered detectors, Kp = 32
Conclusion: We have addressed adaptive detection of distributed
targets in Gaussian noise plus interference, proposing a heuristic pro-
cedure to approximate the GLRT for the case that the interference sub-
space is unknown. The analysis has shown that the DD-uJ can guarantee
a better performance than the more conventional SD-uJ and that it ‘con-
verges’ to its non-adaptive counterpart, the DD-kJ, as the number of
data increases.
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