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Minimizing water and energy consumptions in water and heat exchange

networks

Marianne Boix, Luc Pibouleau®, Ludovic Montastruc, Catherine Azzaro-Pantel, Serge Domenech

Laboratoire de Génie Chimique, UM.R. 5503 CNRS/INP/UPS, Université de Toulouse, 4, Allée Emile Monso, 31432 Toulouse Cedex 4, France

This study presents a mathematical programming formulation for the design of water and heat
exchangers networks based on a two-step methodology. First, an MILP (mixed integer linear program-
ming) procedure is used to solve the water and energy allocation problem regarding several objectives.
The first step of the design method involves four criteria to be taken into account., ie, fresh water
consumption (Fy), energy consumption (F), interconnection number (F3) and number of heat exchangers
(F4). The multiobjective optimization Min [Fj, F>] is solved by the so-called e-constraint method and leads
to several Pareto fronts for fixed numbers of connections and heat exchangers. The second step consists
in improving the best results of the first phase with energy integration into the water network. This stage
is solved by an MINLP procedure in order to minimize an objective cost function. Two examples reported
in the dedicated literature serve as test bench cases to apply the proposed two-step approach. The results
show that the simultaneous consideration of the abovementioned objectives is more realistic than the
only minimization of fresh water consumption. Indeed, the optimal network does not necessarily
correspond to the structure that reaches the fresh water target. For a real paper mill plant, energy
consumption decreases of almost 20% as compared with previous studies.
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1. Introduction

Current anthropogenic activities are of great concern due to
their strong impact on environment. During the last thirty years,
industrial activities have increased by 30%, leading to an alarming
depletion of natural resources [1]. Process industries are among the
most important consumers of water in various fields such as
petrochemical plants and refineries, steel industries or food pro-
cessing. In addition, the great majority of involved processes need
water with a given quality at a fixed temperature. Hence, huge
amounts of energy are also used in order to cool and/or heat water
to reach operating temperatures by means of cold and heat utilities.
There is thus a critical need in reducing both rejects of contami-
nants and the consumption of primary resources such as water and
energy. Moreover, the respect of environmental guidelines is
closely associated with a decrease in industry profitability. This
paradoxical situation can typically be tackled by means of multi-
objective optimization where a good solution has to be defined
under a set of constraints. This solution can be approached by an
ecological industrial network, that must be economically viable and

topologically simple as possible with reduced water and energy
consumption. Despite this situation, it must be emphasized that
Water Allocation Networks (WAN) design and Heat Exchanger
Networks (HEN) optimization have been tackled separately for
a long time.

One of the first study of WAN is the innovative work of Takama
et al. [2] introducing the concept of superstructure to solve
a problem applied to a petroleum refinery by means of mathe-
matical programming. Numerous mathematical models have been
developed following their ideas in order to minimize water
consumption in industrial networks [3—10]. This issue has also
been studied with more conceptual design techniques including
“water pinch technology” [11—16] since the application of this
concept by Wang and Smith [17] to the specific problem of water
allocation. Several other techniques such as stochastic methods or
genetic algorithms have also been used recently [18,19].

Generally, the design of HEN is tackled similarly to WAN
with mathematical programming [20—24] and insight-based
approaches [25—28]. Energy consumption or annualized costs are
the two main objective functions to minimize in this kind of
problem. Recently, evolutionary procedures such as genetic algo-
rithms [29—31] or simulating annealing [32] have also been
implemented.



Nomenclature

Cmax}“ Maximal concentration of contaminant at the input of
the process j (ppm)

C max]‘?”t Maximal concentration of contaminant at the output of

the process j (ppm)

User-fixed outlet concentration of contaminant for

regeneration unit m (ppm)

DAF Dissolved Air Flotation

out
Cry

HEN Heat Exchangers Network

MILP Mixed Integer Linear Programming

MINLP  Mixed Integer NonLinear Programming

M; Mass load of contaminant i generated by process j
(gh™")

NLP NonLinear Programming

Qpd, Qnd Energy required for heating (respectively cooling)
before the discharge (kW)

Qp;, Qn; Energy required for heating (respectively cooling) the
process j (kW)

Qrpm, Qrn,, Energy required for heating (respectively cooling)
the regeneration m (kW)

zuc(i), zuh(j) Binary variables for the existence of a heat
exchanger between hot stream i and a cold utility and
between cold stream j and a hot utility

TOPSIS Technique for Order Preference by Similarity to Ideal
Solution

Tw Temperature of fresh water(°C)

Tp; Temperature of process j (°C)

Td Discharge temperature (°C)

WAHEN Water Allocation and Heat Exchange Networks

WdJi Discharged flow rate from process j (T h™1)

wmax; Maxir1na1 water flow rate at the inlet of the process j
(Th™)

ok
wp;
Wp’in,i
wp’outi Total flow rate at the outlet of the process j (T h™1)
wpr,~™ Flow rate going from process j to regeneration unit m
(Th™)
wr""  Flow rate between two regeneration units mand n (T h™1)
wrd}" Discharged flow rate from regeneration unit m (T h™!)
wrmax,, Maximal water flow rate at the inlet of the
regeneration unit m (T h™1)

Flow rate between two processes j and k (T h™1)
Total flow rate at the inlet of the process j (T h™1)

wrp}“ﬁj Flow rate going from regeneration unit m to process j
(Th™)

wrj Total flow rate at the inlet of the regeneration unit m
~ (Th™h)

wrll ;. Total flow rate at the outlet of the regeneration unit m
~ (Th™h

W’1 Fresh water flow rate used by a process (T h™')
yp{ﬁk Binary variable of the existence of the water flow rate

going from the process j to the process k

yc(i, i°k) Binary variable of the existence of the cool stream i at
the stage k.

yh(jji°k) Binary variable of the existence of the cool stream j at
the stage k.

Big-U U is a large number, arbitrarily fixed at 10*

Subscripts and superscripts

i Refers to water when it is equal to 1 and to
contaminants when: i > 1

Jk Indices for process units, with j=k

m, n Indices for regeneration units, with m==n
in Inlet

out Outlet

During the last decade, some studies that deal with both WAN
and HEN have emerged, leading to the design of Water Allocation
and Heat-Exchange Networks (WAHEN). Conceptual design
approaches and mathematical programming remain the main
techniques to design energy efficient water allocation networks.
The former was first introduced by Savulescu and Smith [33], by
considering water and energy consumptions separately and solving
the problem sequentially. They improved their previous work by
setting up the so-called “two dimensional grid diagram” [34,35]
some years later, by simultaneously minimizing water and
energy. However, graphical techniques are restricted to mono-
contaminant networks, and cannot guarantee optimality. Mathe-
matical models have also been developed to optimize WAHEN;
they can be divided into two main types either sequential [36,37] or
simultaneous [38—42]. The former approach aims at finding the
water consumption target to design the water network in a first
step and minimum energy consumption is then achieved for the
network chosen. In this case, the WAN problem is often solved with
a nonlinear programming (NLP) whereas the HEN one is tackled
with a mixed integer nonlinear programming (MINLP). The
simultaneous resolution of both models is carried out with MINLP
[39]: the problem is yet hard to solve due to the large number of
variables. Finally, some hybrid models involving pinch technology
and mathematical programming [43], genetic algorithms coupled
with adaptive simulated annealing (GA/SA) [44] or temper-
ature—concentrations diagrams [45] have also been developed.
Some reviews of process integration tools for water and energy
savings can also be found in Klemes et al. [46,47].

The aim of this study is to design an energy efficient water
network considering several objectives. Indeed, in all the
mentioned previous works, objectives are always water and energy
consumptions. Even if these two objectives are of great environ-
mental concern, other criteria can affect the final decision of an
industrial practitioner. In fact, the number of streams, of heat
exchangers, or the gain provided by regenerating polluted water
represents also relevant objectives. Consequently, we propose to
design an efficient water/energy allocation network regarding
several objectives solved with an MILP procedure. One optimal
network is selected from the Pareto front and improved in term of
energy consumption by heat integration through an MINLP
procedure. The latter is a variant of the work of Yee et al. [20] and
does not take into account stream mixing, as it was already done by
Bogataj and Bagajewicz [39]. A comparison of our results with two
examples from the literature [15,40] is carried out and illustrates
the proposed method. Finally, the effects of mixing streams and the
impact of choosing an optimal network before heat integration are
discussed.

2. Resolution strategy
2.1. Problem statement and superstructure definition
In the superstructure all the connections are possible between:

- any pair of process units, each one requiring a specific water
composition and operating at a fixed temperature,



- any pair of regeneration units, each one operating with fixed
outlet concentration and running temperature,
- any process unit and any regeneration unit

Recycle loops to the same process or regeneration unit are
forbidden.

Cold and heat utilities and heat exchangers are available to
satisfy temperature constraints. The design of the WAHEN consists
in a two-step optimization:

(1) At the first design step, heat exchangers can be placed both at
the inlet of each process and regeneration units and the inlet
of the discharge to environment. The heat exchanger alloca-
tion in the network will be carried out during the second
optimization phase. The first problem can be formulated as
follows: how all units can be linked while respecting their
input requests (on concentrations and temperatures) so as to
minimize several objectives? At the end of this step, a Pareto
front is plotted in order to make a preliminary choice of the
water network.

(2) The second step consists in improving the design of the first
stage by the implementation of heat integration to obtain a cost
optimal network. For this purpose, the addition of cold and
heat utilities, as well as heat exchangers is possible. The
objective of this second step can be expressed as follows: how
utilities and heat exchangers can be located so as to minimize
the total cost of the network?

The first step aims at designing a water and heat allocation

network and is based on the superstructure depicted in Fig. 1. In
order to define a generic formulation, the physical or chemical

From other

operation (reaction, separation ...) performed in each process j is
not taken into account. However, a process j generates a mass of
contaminant due to its operating mode. This contamination is
expressed in g/h and noted:M{ for each contaminant i; this value
imposed by the process itself, has to be fixed by the user. After the
first stage, hot and cold streams are identified in the corre-
sponding network to carry through the heat integration of the
second step. Several classical assumptions are made to simplify
the problem:

- process units operate isothermally,

- no water and heat losses or gains are considered,

- streams have a constant heat capacity (C, = 4.18 kJ/(kg .°C)),

- heat exchangers are of countercurrent type,

- heat integration only concerns stream water and hot/cold
utilities; any other stream is excluded.

The Fig. 1 shows a superstructure including j process units and m
regeneration units:

- the water feeds for a process unit (j) can be: fresh water, water
from other process units (named k, with j # k) and/or water
from regeneration units (m). A regeneration unit (m) is fed by
water going from process units (j) and water from other
regeneration uits (named n, with n = m).

water leaving a process unit (j) can be distributed either to
other process units (named k, with j # k), or to regeneration
units (m) or can be directly discharged. In the same way,
water leaving a regeneration unit can go either to other
regeneration units (named n, with n#m) or to process
units (j).

. To other
process units (k) Energy M/ process :mits (k)
b - ‘ ‘ o
Fresh / \ :
} ‘ } To discharge
we— )€ A ;
# Process unit j
Tp, v
From_ Cn 1ax,"“ Cmax," To regeneration
regeneration units (m)
units (m)
Removed
Energy contamillant load
From process / ' To process
s . »> out =
units (j) TN i Cr., A " units (§)
From other ;-.._M ' g ) +To other
regeneration - Regeneration - regeneration
units (n) unit m units (n)
Energy
From process y
units (j .
0 7 M ./ Discharge \
From R 30°C
regeneration =

units (m)

Fig. 1. Superstructure of the heat and water allocation network. M and S respectively refer

to mixer and splitter, notations in italic represent operating constraints for each unit.



2.2. Multiobjective optimization

In the first step of the optimization phase, several objectives are
taken into account to determine an optimal design for the
considered network. They involve environmental, economical or
topological issues that are likely to influence the final decision of
the practitioner. They are relative to:

- fresh water consumption:

Min (ZJW’J (1

- energy consumption:

Min((Qpd +Qnd) + 3~ (Qp; + Qnj) + >, (Qrpy + QI )
(2)

- water stream interconnections,
- number of heat exchangers.

The methodology for dealing with these four objectives is as
follows. First, mono-objective optimizations are carried out to
identify the different targets for each objective. Objective functions
are represented by equations (1) and (2). Then the methodology
consists in solving the biobjective problem (fresh water
consumption versus energy consumption) parameterized by the
number of interconnections and the number of heat exchangers. A
lexicographic optimization based on the epsilon-constraint
strategy is implemented [48] from which a Pareto front can thus
be generated:

- let us recall that one Pareto front is generated for one value of
the number of heat exchangers. Consequently, in order to build
a front, the number of heat exchangers is fixed at an arbitrary
value (included between its minimal and its maximal values);
then, biobjective optimizations between the other pair of
criteria, namely fresh water and energy consumptions, are
carried out. To reach this step, the objective of energy
consumption is bounded between two values while fresh
water consumption is minimized by the numerical program.
This operation is repeated until the validity domain of the
values for energy consumption has been entirely explored;
Pareto fronts are constructed when all the values of exchanger
numbers have been evaluated.

Pareto fronts lead us to explore several solutions instead of only
minimizing fresh water flow rate. The networks obtained in order
to choose the better compromise for the following step of the
optimization are then ranked according to a TOPSIS procedure.

In the second step of the optimization procedure, when the
network is designed and streams are allocated, a monobjective
optimization is carried out. Only heat exchangers and cold or/and
heat utilities are placed by minimizing a cost objective function.

2.3. MILP formulation for heat and water allocation network

The traditional model [5,40,10] for water allocation network
design usually contains bilinear terms due to products in mass
balances for contaminants. These bilinearities are caused by multi-
plying concentrations and flow rates. However, as it was already
shown by Boix et al. [49], the problem can be expressed in a linear

form by using partial flow rates instead of total flow rates, while
achieving the necessary conditions of optimality [50]. All the flow
rates (either water or contaminant) or expressed with w with an
indexi=1whenitisreferred to water and i > 1 when it is expressed
for a contaminant. As they are partial contaminant flow rates, they
represent contaminant concentration (ppm) multiplied with water
flow rates (T h™!) leading to the same unit as mass loads: gh ™.

2.3.1. Flow rate mass balances

- For a given process j, the inlet water (i = 1) flow rate is equal to
the outlet water flow rate, j#k:

wh + kap’fj + merpqn*f = wd| + kap"l_”‘
+> wpr, " (3)

- For a given regeneration unit m, the inlet water flow rate is
equal to the outlet water flow rate, m=n:

S w3 wpr " = S wipl e 3w (@)

- The overall fresh water flow rate is equal to the total discharged
water flow rate:

S wid] + ijd{ _ ij{ (5)

2.3.2. Contaminant mass load balances

- For a given process j, the inlet contaminant (i > 1) partial flow
rate plus the contaminant mass load is equal to the outlet
contaminant flow rate, j=k:

k—j m—j j j j—k
kapi>1 + merpb] + N’i - Wdi'>] + ka i>1
WPy (6)

- For a given regeneration unit m, the inlet contaminant partial
flow rate is equal to the outlet contaminant partial flow rate,
m#n:

n—-m j—m _ m m-—j
anrbl + Zijri>1 = wrdi2; + ijrpi>1

+ anr?;T” (7)

- As the only source of contaminant in the network is generated
by process units themselves, the total discharged contaminant
partial flow rate is equal to the sum of contaminant mass loads
of each process j:

merdgl + EdeLl = ZjMLl (8)

2.3.3. Energy balances
With equations (9), (10), and (11), the energy necessary to heat
is considered as positive, and negative for cooling. The global



energy consumption is the sum of absolute values of energy (at
processes and discharge), expressed in kW.

- For a given process unit j, inlet energy on the mixer plus

a heating (Qpj) or a cooling (Qn;) utility is equal to the outlet
energy of the splitter:

(w’] x Ty + kap’f_’j < T+ Y wrp]' ™7 x Trm)
+ (- Quy) /6= Ty x (S wpi "
+3 " word ™)) 9)

+ wd]%

- For a given regeneration unit m, inlet energy on the mixer plus
a heating (Qrpm,) or a cooling (Qrng,) utility is equal to the outlet
energy of the splitter:

(ijprfr’m x Tpj+ > wri ™ x Trn) +(Qrpy, — Q) /Gy
= Trm x (ijrp']"”j +wrd] + anr’{‘ﬂ”) (10)

- The energy discharged plus a heating (Qpd) or a cooling (Qnd)
utility is equal to the total energy released into the
environment:

Z}.wd’i x Tpj + merd’f x Trm + (Qpd — Qnd) /Cp
— Td x (ij"l + merdT) (11)

2.3.4. Constraints

Given the set of mass balances equations, constraints on
contaminant concentrations are added to the mathematical
problem. They are represented by inequalities (12), (13) and (14).
Using the condition of optimality proved by Savelski and Bag-
ajewicz [50], the outlet concentrations can be fixed at their
maximum value:

. in .

WP o1 < CmMax;™ x wpy, 4 (12)
j out j

wi out,i>1 < Cmaxj X W out,1 (13)
m __ (yout m

Wrout,i>] - Crm X Wrout,] (14)

2.3.5. Binary variables

At this stage of the modelling process, the problem is linear and
can be solved with a Linear Programming (LP) algorithm. Never-
theless, in order to evaluate the network complexity, a binary
variable is allocated to each flow, thus transforming the problem
into an MILP formulation. These variables yp/ ¥ are added into the
model by using a so-called Big-U constraint (U has to be bigger than
any water flow rate of the plant):

wpi K <ypi kU (15)

Moreover, binary variables are also introduced for representing
the number of exchangers in the network.

2.4. MINLP formulation for superstructure integration

As mentioned above, the design of a WAHEN is carried out by
implementing a two-step procedure:

- the first step consists of the biobjective optimization (fresh
water consumption versus energy consumption) parameter-
ized by the number of interconnections and the number of heat
exchangers, carried out by implementing a MILP procedure.
The main difference with previous works in which mono-
bjective problems were solved giving only a single WAN, is the
generated Pareto front which offers a set of “good” WANSs to the
practitioner.

the selection of the WAN among the solutions proposed in the
Pareto front is carried out with the TOPSIS procedure. After
selecting a WAN among the Pareto front, the heat integration is
carried out in the second step. The network is decomposed into
hot and cold streams characterized by their inlet and outlet
temperatures in the network and also by the water flow rate.

The physical process modelling, based of the work of Yee et al.
[20],, is used to design a HEN while minimizing a given objective
(cost or energy consumption) and satisfying given demands of
heating and cooling. The model is derived from the superstructure
shown in Fig. 2.

Once the WAN to be integrated is defined, the hot and cold
streams must be identified so as to know their inlet and outlet
temperatures as well as the associated calorific flow rate. The
number k of steps of the superstructure is set to the greatest
number of hot or cold streams, plus one. With i hot streams, j cold
streams and k steps in the superstructure, the modelling variables
are the following ones:

- th(i,k) and tc(j,k): temperatures of hot stream i and cold stream
j at the inlet of step k;

-q(ij,k): exchanged energy between i and j at step k;

- gh(j) and qc(i): exchanged energy between the hot stream i and
a cold utility and between the cold stream j and a hot utility;

- dt(ij,k): temperature difference between hot stream i and cold
stream j at step k;

- dtuh(i) and dtuc(j): temperature differences between hot
stream i and a cold utility and between cold stream j and a hot
utility;

- A_int(i,j,k): exchange area for matching streams i and j at step
k;

- A_uhc(i) and A_uch(j): exchange areas for the matching hot
stream i and a cold utility and cold stream j and a hot utility.

Finally binary variables linked to the existence of heat
exchangers are defined:

- z(i,j,k): existence of a heat exchanger between hot stream i and
cold stream j at step k;

- zuc(i) and zuh(j): existence of a heat exchanger between hot
stream i and a cold utility and between cold stream j and a hot
utility.

The data required for integrating a WAN are listed in Table 1. It
represents all the fixed parameters necessary for heat integration
(variables are not represented in this table).

The modelling equations are based on energy balances and heat
exchange area computations:
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Fig. 2. HEN superstructure (from Yee et al. [21],).

- Energy balances for hot streams i and cold streams j are given
by:

Fh(i) x (th(i, k) — th(i,k+ 1)) = qu(i, ik (16)

Fe(j) x (tc(j, k) — te,k+1)) = > _.q(i.j.k) (17)

- In the same way, energy balances of hot stream i and a cold
utility and between a cold stream j and a hot utility are written

- At step k, exchange areas for matching a hot and cold stream i
and j, a hot stream i with a cold utility and a cold stream j with
a hot utility are expressed as follows:)

- Finally, binary variables z are introduced into logical
constraints defining the existence of heat exchangers and
utilities:

. 1 1
q(i,j, k) x (W(I)JFF(J))
dt(i,j, k) + dt(i,j,k + 1))%

Annijr) =

(dt(i, Jo k) dt(i,j,k+1)

as: 2
(22)
. 1 1
ah(j) x (hc(j) + huh)
Auchi) = tuhin — tucout(j)) + dtuh(j)\* (23)
. . . uhin — tucou u
((tuhm — tucout(j)) x dtuh(j) x ( 3 W) + O))
qc(i) x (L + L)
: . ; out(i) — tucin uc(i
((thout(z) — tucin) x dtuc(i) x ( ® 5 )+ ( ))
Table 1
Fh(i) x (th(i, k) — thout(i)) = qc(i) (18) Data for heat integration.
Design parameter Corresponding element  Notation Unit
. . . . Calorific flow-rate Hot and cold streams Fh(i), Fc(j) kw/°C
FC(]) X (tCOUt(]) - tC(], k)) = qh(]) (19) Inlet temperature Hot and cold streams thin(i), tcin(j) °C
Outlet temperature  Hot and cold streams thout(i), tcout(j) °C
Inlet temperature Hot (vapour) and tuhin, tucin °C
- In order to assign inlet temperatures for hot and cold streams, cold (water)
equations (20) and (21) are introduced: Outlet temperature  Hot (vapour) and tuhout, tucout °C
: cold (water)
Heat transfer Hot and cold sides hh(i), hc(j) kW/m? °C
coefficient
thin(i) = th(i, k) (20) Heat transfer Hot (vapour) and huh, huc kW/m? °C
coefficient cold (water)
Amount of heat Hot and cold streams Qtot_h(i), kw
tcin(j) = tc(j, k) (21) exchanged Qtot_c(j)




- Finally, binary variables z are introduced into logical
constraints defining the existence of heat exchangers and
utilities:

qij, k) — mm(Qtot,1 Qtotcu> x 2(i,j,k) < 0 (25)

qc(i) — Qtotyy x zuc(i) < 0 (26)

3. Illustrative examples
3.1. Example of Dong et al. [40]

This example used to validate the two-step approach was first
proposed by Bagajewicz et al. [36] and more recently by Dong et al.

Table 3
Results for mono-objective optimizations.
Objective Fresh water Connection Total energy
(kg/s) number (MW)
Minimal value 77.27 3 46.93

3.1.2. Improvement of solutions by heat integration

In order to select the best solution among the three networks,
a cost objective function related to heat integration is introduced.
Each network is characterized by a set of hot (cold) streams with
given calorific flow rates and fixed inlet and outlet temperatures.
For comparison purposes the total cost function for the network
already defined in the papers of Bogataj and Bagajewicz [39], and
Dong et al. [40], is used. This nonlinear cost function is expressed by
equation (27).

Cost = 3> > Xk:CHE(l J) < z(i,4, k) +ZCHE( ) x zuc(i) + ZCHEO) x zuh(j) + 3 3 3 Cali.f) x Ame(i.ji k)°
i

i j ok

+ 32 Cali) % Ayen (i)’ + 3 Cali) % Auhcci)hfa(zcuc(z) < acli) + 32 Cunl) qh@)) + Y W x Cew 27)
i J J

+CCon <Z Z Z yc(

i #i k

SR+ 3 th(ll k))

J oJ#i

[40]. It involves three process units without any regeneration
process. Fresh water feeds the network at a temperature of 20 °C
and pollute water is discharged to the waste at 30 °C. The corre-
sponding data are listed in Table 2, where Wmax; refers to the
maximum flow rate for process j.

3.1.1. Water network optimization without energy integration

As abovementioned, in a first step each one of the three objec-
tives listed in Table 3 was optimized separately (monobjective
optimization) to provide problem targets represented by bold
numbers in Table 3. Then considering the pair [Fresh water, Energy
consumption], the corresponding MILP problem parameterized by
the number of connections (3 and 5), provides only three (one for
three connections and two for five connections) non dominated
solutions shown in Fig. 3. Only three objectives are taken into
account for this first case study because the number of solutions is
very limited and thus, adding another objective would have con-
strained the problem too much. Note that in this study the
connections going to the waste are not taken into account.

For three connections (network 1), the water consumption is
87.5 kg/s, for an energy requirement of 47,025 kW/h. By adding two
connections, either the minimum of fresh water consumption is
reached (77.27 kg/s) for the network 2, or the minimum for energy
(46,930 kW/h) is obtained for the network 3. In all the previous
works [39,40,51], only the network corresponding to the minimum
of fresh water consumption is obtained. However, as it is shown on
this example, this solution does not lead necessarily to the
minimum of energy consumption.

Table 2
Date for the example of Dong et al. [40].
Process Cmaxji.“ (ppm) Cmaxj‘?'-‘t (ppm) M;j(kg/s) Tp(°C) Wmaxj(Kg/s)
1 50 100 5000 100 100
2 50 800 30,000 75 40
3 800 1000 50,000 100 166.7

This complex function takes into account of the following items:
- The investment cost of heat exchangers:
DY ;CHE(I J) < z2(i.j. k) + ZCHE( i) x zuc(i)
i j k
+ZCHE(I x zuh(j) +Z Z ECA i.j) % Ame(i.j. k)’
J

(28)
+ZCA +ZCA0 x Aunc(i)°

% Aycn (i)

- The investment cost of connections:

CCOH(EZZyC(i,i" k) +ZZth0] k) (29)

i =ik j o+ k

- The annual cost for energy consumption:

fa(zcuc(i) x qc(i) + Zcuh(j) X qh(j)) (30)
i J

- Consumed fresh water cost:

S°W x Crw (31)
J
The notations and the values used in equations (27)—(31) are

defined in Table 4. These values are taken from Dong et al. [40] and
the cost of connection is extracted from the study of Bogataj and
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Fig. 3. Representation of the three networks Flow rate are in kg/s; energy, written in italic, in kW/h; a cooling (heating) corresponds to a negative (positive) energy; the connection

number is in brackets.

Bagajewicz [39]. The plant is assumed to operate continuously
8000 h per year. Furthermore, the cost is calculated annualy on the
base of a life time of 10 years.

For the three networks identified in the previous sub-
section, heat integration is carried out by means of the MINLP
solver COIN-COUENNE of the GAMS package. The initialization
phase is automatically performed by the solver. For analysis
purposes, the total cost of equation (27) is decomposed into two
terms: the investment cost (IC) and the annual operating cost
(AOC).

- The investment cost is obtained by merging equations (28)

and (29):

IC = _ Z Xk:CHE(i,j) x z(1,], k) + ZCHE(i) x zuc(i)
i j i
Cue() x zuh() + 3 3" " Cali.j) x Aume(ij, k)’
j i j k
+ > Call) x Auen ()’ + 3~ Cal) x Aunc ()’

2
i j
+Ceon (Z SN oy itk +> > th(i,j",k))
i j

=ik i K
(34)

- The annual operating cost is given by adding equations (30)
and (31):

AOC = fa (Zcuc(i) xqc(i)+ > Cun()) x qh(j)) +ZW{ x Crw
i j Jj
(35)

3.1.3. Discussion

Table 5 gives the main characteristics and the optimization
results for the three networks. The Table contains also the results
published by Dong et al. [40]. Let us recall that in this last study, the
heat integration was performed only on the network giving the
minimum of fresh water consumption. However, the heat inte-
gration of network 2 (giving also the minimum of fresh water
consumption) leads to a total cost of 4.31 M$, while Dong et al. [40]
obtained 2.94 M$ for the same network. The difference comes from
the initial MINLP formulation which excludes stream splitting for
simplification purposes; consequently a MINLP optimization was
also performed on this network by allowing stream splitting; the
same value (2.94 M$) for the total cost as in the paper of Dong et al.
[40] is found again. In the two last lines of Table 5, investment and
operating costs are different because the networks of this study and
the one of Dong et al. [40] are structurally different, but they give



Table 4

Notations and numerical parameters used in cost functions (27) to (31).

Symbol Meaning Value Unit

CHE Investment cost of a heat 8000 $ly
exchanger

Ca Pre-exponent term for area cost 1200 $ly

Cuc Cost of cold utility 189 $/kW

Cun Cost of hot utility 377 $/kw

Crw Cost of fresh water 0.45 $/T

Ceon Investment cost of a connection 3000 $

B Exponent for area cost 0.6

fa Annual operating time ratio 0.91

tuhin, tuhout Inlet and outlet vapour 120 °C
temperatures for heating

tucin, tucout Inlet and outlet water 10, 20 °C
temperatures for cooling

huh, huc, hh, hc Heat transfer coefficients 0.5 kW/m? °C

Tmapp Minimal approach temperature 10 °C

Table 5
Results for heat integration.
Network Characteristics IC (M$) AOC Total
(M$) cost (M$)

Network 1 - 2 cold streams 0.46 2.40 2.86

(Min connections) - 2 hot streams

Network 2 - 3 cold streams 0.57 3.74 431

(Min fresh water) - 2 hot streams

Network 3 - 3 cold streams 0.60 3.15 3.75

(Min energy) - 3 hot streams

Dong et al. (2008) - 4 cold streams 0.31 2.63 2.94

- 3 hot streams
Network 2 - 4 cold streams 0.57 2.37 2.94

(stream splitting)

- 3 hot streams

the same minimal total cost. So it can be noted that the same
optimal solution in terms of total cost may correspond to several
solutions in terms of network internal structures.

From Table 5, the best total cost is provided by network 1, which
was ranked in an intermediate position concerning as well as water
consumption and energy in the first design study without energy
integration. This shows all the interest of the first step multi-
objective approach, which provides several solutions among which
that of minimal total cost can be identified; this solution does not
necessarily corresponds to the one giving the minimum of water

consumption (i.e. network 2) in the preliminary optimization

phase.

3.2. Example of Manan et al. [43]

3.2.1. Problem formulation

This new example is related to an existing Malaysian paper mill
plant shown in Fig. 4. Manan et al. [43] optimized this plant by
means of the pinch method; in a first step they minimized the fresh
water consumption and energy integration was carried out in
a second step.

In this plant, the paper machine involves forming and pressing
sections. The pulp, also called stock, is treated in the forming
section in order to elaborate the paper sheet which is then sent
towards the pressing station. The paper machine can receive water
either from regeneration units, or from clarified water tower, or
from the deculator process. This water is used for eliminating
remaining fibres in the forming and pressing sections, then the
water is removed from the stock and sent towards the saveall disc
filters to remove wood fibres. It may also be sent towards the de-
inking process or the DAF (dissolved air flotation). The deculator,
used for removing pollutants heavier than fibres, needs also fresh
water as well as the unit of chemical preparation. The four regen-
eration units are constituted by the three saveall disc filters for
trapping the solid pollutant and the DAF to remove the suspending
particles.

Some pieces of the plant are decomposed into several units (see
Fig. 5): for example the pressing station is made up of three
processes having each one particular characteristic. After this
decomposition the plant is constituted of 12 process units and four
regeneration ones. In Fig. 5, four mixers have been added in order to
obtain more realistic temperatures. For example, the two outlet
streams of forming units with their respective flow rates and
temperatures are mixed. However, these mixers can only receive
water from their immediate predecessors.

The pollutant is the total quantity of suspending solids
expressed in ppm and includes different pollutant types trans-
ported by the water; however the problem is assumed to be
reduced to a mono-pollutant one. Furthermore some outlet
concentrations resulting from stream mixing are given. For
example the five outlet streams of forming and pressing stations
are mixed to produce a stream of concentration 3750 ppm. The
contaminant mass load Mf of each unit is deduced from this global
concentration value by means of the relation:
M, = Cmax?"* x Wp/, | — Cmax" x wWpl, | (36)

The optimization procedure needs some data related to each
process and concerning the maximal inlet/outlet concentrations,
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201.6 T/h »| DAF S
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Fig. 4. Paper mill plant (modified from Manan et al. [41]).
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Table 6
Data for the paper mill plant.
Process Type Wmax; (T/h) Cmax}" (ppm) M{ (kg/s) Tp; (°C)
1 Forming [ 54 20 201,420 50
2 Forming Il 155 160 556,450 43
3 Pressing | 126 20 469,980 50
4 Pressing II 169 100 616,850 43
5 Pressing III 677 160 2,430,430 43
6 Deculator [ 18 20 2826 38
7 Deculator II 104 160 1775 46
8 Deculator III 68 250 —4993 40
9 Chemical preparation 36 20 0 81
10 De-inking process 432 148 756,720 49
11 Clarified water I 202 20 28,224 38
12 Clarified water II 1130 150 11,304 46
Regeneration unit Type Wrmax;(T/h) Cr‘,}“‘(ppm) Trm(°C)
1 Saveall disc filter I 169 250 — 40
2 Saveall disc filter II 436 100 - 43
3 Saveall disc III 1130 150 - 46
4 DAF 832 150 — 48




Table 7
Results for mono-objective optimizations.

Objective  Fresh water Total energy ~ Number of heat ~ Number of
Flow rate (T/h) (kW) exchangers connections
Minimal 3775 36,621 8 27

value

operating temperature and the maximal water flow rate; these data
are listed in Table 6. According to Manan et al. [43], fresh water
temperature is set at 30 °C and water must be discharged to the
waste at 35 °C maximum.

3.2.2. Water network optimization without energy integration

As it can be observed in Fig. 4, the industrial process involves six
heat exchangers. In this study a heat exchanger can be placed at the
inlet of each unit for cooling or heating its inlet stream, that is to say
17 potential exchangers (12 for process units, four for regeneration
units, and one for the waste). However for investment purposes,
the number of heat exchangers has to be minimized, requiring new
binary variables. The set of objectives is then the fresh water flow
rate, the energy consumption, the number of connections and the
number of heat exchangers.

3.2.2.1. Preliminary monobjective optimizations. The bounds for the
problem are deduced from the monobjective optimization of each
one of the four criteria (see Table 7). For fresh water flow rate, the
same value (377.5 T/h) as in Manan et al. [43] is found. The number
of connections depends on the number of heat exchangers in the
process and increases when the number of heat exchangers
decreases. The minimum number of connections vs. the number of
heat exchangers is plotted in Fig. 6. For simplifying purposes in the
following studies, when the number of heat exchangers is fixed, the
number of connections is assumed to vary between the minimum
value and the minimum value plus 2 (arbitrarily chosen in order to
obtain networks with a reduced number of connections).

3.2.2.2. Multiobjective optimization. For fixed numbers of heat
exchangers the biobjective optimization [Fresh water, Energy
consumption] gives the Pareto front of Fig. 7 involving only 8 non
dominated solutions. With 8 exchangers, the minimum of fresh
water is 406.8 T/h, while 13 exchangers give 377.5 T/h. The minimal
energy consumption is obtained for 10 exchangers, and it increases
for 9, 8, 11, 12 and 13 exchangers. The following trends can be
deduced from Fig. 7:

- fresh water consumption decreases when the number of
exchangers increases.
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Fig. 6. Minimal number of connections vs. The number of heat exchangers.
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Fig. 7. Pareto fronts for fixed numbers of heat exchangers.

the variations of energy consumption are quite different: the
minimum is reached for 10 exchangers and this value increases
when exchangers are added or suppressed.

for a given number of heat exchangers, the minimum fresh
water and minimum energy vary in opposite sense, showing
their antagonist nature.

3.2.3. Network selection

The selection of a given network among the solutions of the
Pareto front can be performed by implementing the TOPSIS
procedure [52]. TOPSIS is a classical MCDM method (Multiple
Criteria Decision Making) and, its fundamental concept is the
comparison of Euclidian distances to choose the best alternative.
The TOPSIS procedure calculates the distance between available
solutions and the optimized ideal reference point (here, it is the
point where all the objectives are at their minimal values).
Assuming the same weight for the three objectives (equal to 1 for
each one), the solution ranking is displayed in Table 8 and repre-
sented by the numbers in Fig. 7.

The network with 10 exchangers is ranked in first position;
hence, this solution is retained for further considerations. The
GAMS solver indicates that heat exchangers must be located before
units 1, 2, 3, 5, 6, 7, 8, 10 and 12, and before the waste. In order to
minimize exchange area, it must be decided on what inlet stream
the exchangers must be placed. For example, considering unit 1,
two inlet streams with different temperatures and flow rates arrive
at the process mixer as it is shown in Fig. 8. The heat exchanger area
is computed from the temperature difference between its inlet and
outlet streams according to classical relations (37)—(38). In order to
minimize heat exchanger area, the heat exchanger must be placed
on the stream corresponding to the most important difference

Table 8
TOPSIS ranking of the solutions reported in Fig. 7.

TOPSIS Number of Energy Fresh water
ranking exchangers consumption (MW) consumption (T/h)
1 10 36.62 389.3

2 11 37.49 383.5

3 9 37.36 398.5

4 12 37.93 379.3

5 8 37.90 406.9

6 11 38.38 383.8

7 13 38.57 377.5

8 8 37.76 411.0
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Fig. 9. Process 1 with its heat exchanger.

between its temperature and the target one; the fresh water stream
is chosen in Fig. 8.

. Q
AiATXU

(37)

Q — mxCpx AT (38)

where A is the exchange area (m?), Q, the amount of heat provided
(), U, the mass transfer coefficient equal to 5678 W/m?K from
Manan et al. [43], Cp, the specific heat of water (1 cal/kg°C) and 4T
is the difference of temperatures.

The first step of the computational procedure consists in
calculating the temperature T of the colder stream submitted to the
amount Q of heat from Equation (38) and using Equation (40). The
heat exchanger area is then computed in the second step by means
of Equation (37). For the example shown in Fig. 8, we obtain
T = 50.31 °C and A = 6.4 m?. The heat exchanger is now designed
and placed on process 1 as indicated in Fig. 9.

= T 40
mx¢G N (40)

Once units involving heat exchangers have been identified, this
simple procedure allows choosing the inlet stream to position the
heat exchanger in order to minimize its area. This method can also

Table 9
Results for the heat integration of the eight networks.

Network FW Number of  Hot Cold Energy Energy Cost

(T/h)  connections streams streams before after (M$)
(MW)  (MW)

1 3893 34 1 5 36.6 14.19 3.82
2 3835 31 2 5 375 14.49 3.77
3 3985 39 2 7 374 14.47 3.95
4 3793 29 2 5 37.9 14.69 3.72
5 406.9 40 1 6 379 14.33 4,01
6 3838 30 2 5 384 14.15 3.64
7 3775 27 2 4 38.6 14.74 3.72
8 411.0 40 1 7 37.8 14.07 4.07

be implemented for retrofitting existing networks. As in the
previous example, another approach for choosing an efficient
network among the eight ones of the Pareto front is to perform heat
integration based on economic objective.

3.2.4. Heat integration

In this section, heat integration is performed on the eight
networks identified in part 3.2.2 and shown in Fig. 7. The same
procedure as in the previous example is implemented, and the cost
function presented in Equation (29) with the data of Table 4 are
used. The minimization of this cost function gives the results dis-
played in Fig. 10, where the solution given by Manan et al. [43] is
also reported. The energy consumption lies in the range [14.07,
14.74]1 MW, while without energy integration (Fig. 7) this range was
[36.5, 38.5] MW, demonstrating the efficiency of energy integra-
tion. Considering energy consumption, the solutions displayed in
Fig. 10 are better than the one (17.22 MW) proposed by Manan et al.
[43].

The main features of the eight networks optimized with the
MINLP procedure of the GAMS package are displayed in Table 9,
where a bold value represents the minimal value for the considered
item. For example, network 1 was ranked first before energy inte-
gration, whereas network 8 became the best one regarding energy
consumption after energy integration. According to previous
studies which always propose to choose the network giving the
minimum fresh water consumption for performing energy inte-
gration, network 7 would be selected, while network 8 would be
chosen after energy integration in order to minimize energy
consumption. However, this network involves an important
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Fig. 10. Heat integration of the eight networks.
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Fig. 12. Heat exchanger network for the solution of Fig. 11. Numbers in italic represent
temperatures in °C whereas underlined numbers are enthalpy utilities expressed in
kw.

number of connections leading to an increase in cost. Considering
the cost including all items (fresh water, energy, heat exchangers
and connections), network 6 turns out to be the most efficient. The
corresponding water network is shown in Fig. 11 and the heat
exchanger network is displayed in Fig. 12. Fig. 11 shows the water
network with 5 heat exchangers noted a, b, ¢, d, e. These exchangers
were not taken into account in the integration step because the
difference between the temperature of inlet and outlet flows is
smaller than 10 °C (minimal temperature approach). The enthalpy
values associated with each heat exchanger of Fig. 11 are presented
in Table 10 and the five flows considered for heat integration are
represented in the Fig. 12. The total energy consumption in MW can
be calculated by adding the enthalpy utilities of the five exchangers
of Fig. 11 and the different utilities of Fig. 12. This sum reaches
a total energy consumption of 14.07 MW for the network
considered.

Table 10
Cold or hot utility for each heat exchanger of Fig. 11 (a to e).

Heat exchangers (cf. Fig. 11) a b c d e
Hot (+) or cold (—) utilities (kW) —-217 -1211 +114 +1129 +1844

4. Conclusion

In this study, industrial water networks involving only one
contaminant are optimized according to several objectives. This
multiobjective optimization method is innovative when compared
to previous works because different and better solutions with
regard to the chosen objectives can be identified. To our knowledge,
the works reported in the dedicated literature consider only one
solution (generally corresponding to the minimum of fresh water
consumption) for performing heat integration: by generating
several non dominated solutions, the multiobjective approach
proposed in this work provides several good compromise solutions
for heat exchanger network design.

Considering the pair of criteria (fresh water, energy consump-
tion) to be minimized, the corresponding MILP problem parame-
terized by the number of heat exchangers and connections,
provides a set of non dominated solutions (trade-off solutions) with
very reduced CPU times. A first procedure allows the allocation and
design of heat exchangers on the various networks of the Pareto
front. Finally, energy consumption is improved by performing heat
integration on these networks, by minimizing a cost function by
means of an MINLP procedure. This procedure was applied to an
existing Malaysian paper mill plant and heat integration provides
a gain of 21% as compared to the recent study of Manan et al. [43].
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