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a b s t r a c t

Computer-Aided Manufacturing (CAM) occupies an increasingly important role in engineering with all it
has to offer in terms of new possibilities and improving designer/manufacturer productivity. The present
study addresses machining of free-form surfaces on a 3-axis NCmachine tool. There have recently been a
large number of studies devoted to planning tool paths on free-form surfaceswith various strategies being
adopted. These strategies are intended to increase efficiency by reducing the overall length of machining.
Often, the choice of the cutter is arbitrary and thework focuses on planning. In order to boost productivity,
the present work offers assistance in choosing the cutting tool, the machining direction and cutting by
surface zones, adopting a milling strategy by parallel planes. To do so, a comparison is made between
milling using a spherical end milling cutter and a torus end milling cutter with the same outer radius.
This comparison relates to the radius of curvature of the trace left by the cutter at the point of contact
between the tool and the workpiece in relation to the direction of feed motion.

1. Introduction

Free-form parts have become a regular feature of our daily
lives. These harmonious shapes answer to criteria of style or are
of a functional nature and require an ever higher level of quality.
Moulds and dies are examples of parts that are mainly made up
from free-form surfaces. They require good surface conditions and
extremely reduced shape defects.

Machining moulds or dies is a long and costly process.
Considering the time needed for finishing and polishing operations
for free-form surfaces it can be seen that the latter can represent
a considerable part of the overall machining time. One of the goals
with automatic path generation is to obtain planning that will
tend tominimise finishing and polishing operations over the entire
surface while maintaining reasonable productivity.

Until now, methods for automatic generation of paths as cur-
rently used have included milling using guide surfaces [1], paral-
lel plane milling [2] and iso-parametric milling [3]. Parallel plane
milling has the advantage of generating paths that do not over-
lap, which limits the appearance of non-machined areas. But this
strategy is not optimal in terms of cutter paths and scallop height.
For example, if you mill a work-piece with considerable variations
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from the normal, youwill see a contraction of the successive passes
due to the need to respect the scallop height. The loss of time
and thus of productivity arises from poor control over the scallop
height along the paths: only themaximumscallop height produced
is known [4]. This observation led to the notion of ‘‘generation of
paths with constant scallop height’’.

A considerable number of works have been devoted to calcu-
lating the scallop height within the scope of free-form surfaces.
Warkentin et al. [5] stated the problem for a spherical end milling
cutter, [6] addressed the issue for a flat end milling cutter tilted
by an angle in the direction of milling, and [7] concentrated on
torus end milling cutters for 5-axis machining. These studies were
conducted in an algebraic manner from simplified hypotheses:
constant curvature, approximated cutter geometry and planar
studies. Using such approximations within the framework of alge-
braic methods leads some authors to implement numerical meth-
ods for scallop height calculation [8]. For a spherical end milling
cutter, various methods [9–12] have been studied to work from
each point of a path and then compute the position of the points
for the following path and so respect an imposed scallop height.

Another idea developed in the literature that also uses numer-
ical resolution is that involving the ‘‘swept surface’’ [13



whose centre moves on the path of the CL cutter location points.
However, finding the surface envelope generated by a torus end
milling cutter is a much more awkward problem. In [14,15], a cal-
culationmethod is adopted to give an approximation of the surface
swept by the cutter during 5-axis machining with a torus mill.

Several types of milling cutters are currently used in 3-axis
milling: spherical end cutters, flat end or torus end cutters. The
commonest choice is the spherical end cutter and a number of
researchworks have been conducted into the choice of dimensions
for such a tool. Thus, Lo [16] presents an extremely widely
used method to address milling using a spherical end milling
cutter: firstly a cutter whose diameter is as large as possible is
used to remove as much material as possible. The cutter leaves
un-machined areas behind it that correspond to zones of local
interference. A tool whose diameter is defined in relation to the
curvature of the un-machined zones is then used. The criterion
of choice for the large diameter tool is based on minimisation of
the ‘‘overall length of the paths covered by the two cutters’’. Lai
et al. [17] propose a different approach suited to pocket machining
and sizes the large cutter in relation to the minimum dimension
of the pocket. Meanwhile, Vickers and Quan [6] addresses the
comparison of flat end or spherical end milling cutters in relation
to the effective radii of the tools. This study was only conducted
for the case of milling a plane surface. In the studies concerned,
the choice of cutter (often spherical) is only stated to eliminate
collisions. In the article by Lasemi et al. [18], it is clearly stated
that the choice of cutter in 3-axis machining of free-form surfaces
is only calculated to avoid local interference between the tool
and the surface. The cutter choice (geometry and size) for convex
surfaces is never proposed as all types can be used. This is
clearly a shortcoming as when you analyse the performance
of CAM programs various strategies are implemented with no
accompanying assistance in the choice of cutter. Taking a look, for
example, at the possibilities formilling a surface in 3 axes on a Catia
V5R19 or Topsolid, various strategies are on offer but the choice of
cutter and themachining direction are left for the user to decide on.

Often the studies presented focus on a single tool geometry.
Reducing machining time on a 3-axis machine involves diminish-
ing the overall path to be covered while respecting a maximum
scallop height. When the toolpath is made up of small, line seg-
ments, the milling time is not proportional to the distance cov-
ered [19], but a reduction of the overall lengthwill allow for shorter
machining time. To reduce the length of milling, the distance be-
tween the passesmust be as big as possible to reduce their number.
With this aim, a series of works was based on initial tool paths in
the direction of the largest slope [20–23]. The authors show that
such paths can quickly lead to looping between successive passes.
To avoid this, they mill by zones, eliminating loops. Working from
a first path, the following paths are calculated to respect the
scallop height. The next paths gradually deviate and lose their ori-
entation along the steepest slope. The machining strategy’s valid-
ity becomes questionable as the step-over distance ceases to be
optimal. The purpose of the present work is neither to seek to de-
termine locally an optimum direction at a given point nor a max-
imum permissible scallop height but rather to contribute a global
improved solution using an indicator λ. λ represents the ratio be-
tween the step-over distance of a torus cutter and the step-over
distance of a spherical cutter.

The present article focuses on the choice of milling cutters and
the machining directions to be favoured in 3-axis machining of a
free-form surface using a strategy of parallel planes. The method
for choosing the cutter is not based on local sizing for it to be
outside interference in the concave areas of the workpiece. Where
the cutter chosen cannot reach all the areas of the workpiece to
be machined due to problems of interference, those left behind
will then be reworked by smaller-sized cutters [24]. The method

described allows the cutter geometry to be correlated with the
milling directions by computing the radius of curvature for the
trace left by the cutter at a point.

In order to generalise the study, a torus end milling cutter was
chosen. A flat end mill or a spherical end milling cutter are just
specific instances of the toroidal cutter.

The article is organised as follows: in Section 2, computation of
the envelope curve of a cutter, computation of the effective radius
and calculation of the step-over distance in relation to the cutter
geometry and the surface and direction of milling are introduced.
Section 3 is devoted to the study of parameters having an influence
on the step-over distance. In this section, an essential relation is
established in order to define the angular domain for which a torus
milling cutter is more effective than a spherical cutter. The surface
can be broken down into zones based on this angular domain
combined with a representation of all directions of steepest slope
of a surface. Applying appropriatemilling directions to these zones
allows machining times to be reduced considerably. Section 4
covers an application to validate the method and help in choosing
the cutter. Having considered this example, themethod’s potential
in studying machining strategies is demonstrated.

2. Envelope curve, effective radius and step-over distance

The present section proposes to compute the effective radius
Reff for each cutter geometry. The reasoning is pursued for a torus
end milling cutter with torus radius r and cutter radius R. By
extension, the effective radius Reff of a flat end cutter will be
determined taking r = 0 and that of a spherical end cutter taking
R = r . Computation of the effective radius requires knowledge of
the cutting tool envelope curve. Themain stages in determining an
envelope curve are recalled below.

2.1. Determining the swept curve

In this subsection, the principle of the swept curve for a torus
end milling cutter on a 3-axis NC machine tool is introduced. Let
S(u, v) be the surface to be machined. The global reference in
which the surface is expressed (Fig. 1) is called ℜs(O, xs, ys, zs).
The axis zs of this reference is the machine spindle axis. Cutter po-
sitioning in the machine tool space is performed by programming
the tool centre point denoted CL. For each point CC of S(u, v), the
cutter is positioned tangential to the surface S(u, v) through point
CL defined by:

OCL = OCC + rnCC + (R− r)
zs ∧ (nCC ∧ zs)

‖zs ∧ (nCC ∧ zs)‖
(1)

with nCC the normal to the surface at point CC.

Let ℜα (CL, xα, yα, zα) be a reference such that the direction of
feed motion V(α) belongs to the plane (xα, zα).

V(α) inℜα is defined by:

V(α) =

(

1
0

a(α)

)

ℜα

. (2)

a(α) is calculated for the cutter to move tangentially to the
surface S(u, v) at the point. The tangent plane is defined by nCC;
this translates by:

V(α) · nCC = 0. (3)

As the cutter moves, it will generate a surface called the ‘‘sweep
surface’’. This is the surface envelope for the set of successive cutter
positions. The sweep surface is thus the convergence of the set of
profile generators for the cutter obtained for each position.



Fig. 1. Definition of parameters for positioning of the torus end milling cutter.

In order to determine the sweep curve of the cutter tool, the
normal to the cutter is called nt(θ, ϕ). The set of points belonging
to the cutter profile generator is defined by the following equation:

nt(θ, ϕ) · V(α) = 0. (4)

At point CC,nt(θ, ϕ) is colinear with nCC (cf. Eq. (1)). Since the
point CC verifies Eq. (4), it belongs to the envelope curve.

A pointM of the cutting tool is defined inℜα by (Fig. 1):

CLM = T(θ, ϕ) =

(

(R− r (1− cos θ)) cos (ϕ − α)
(R− r (1− cos θ)) sin (ϕ − α)

r sin θ

)

Rα

with θ ∈
[

−
π

2
, 0
]

and ϕ ∈ [0, 2π ] . (5)

The normal to the tool inℜα is deduced:

nt(θ, ϕ) =

(

cos (ϕ − α) cos θ
sin (ϕ − α) cos θ

sin θ

)

Rα

. (6)

Whence the expression of the condition for a point to belong to
the cutter profile generator:

cos (ϕ − α) cos θ + a(α) sin θ = 0. (7)

Inwhat follows it will be considered that a(α) ≥ 0, correspond-
ing to the case where the cutter has an upwardmovement, but the
downward moving cutter can be treated in the same way.

Let angle ϕCC characterise the point of contact CC (Fig. 1).
For a(α) to be positive, the direction of xα varies by ±π

2
in

relation to CLCC in the plane (CL, xs, ys). α ∈
[

ϕcc − π
2
, π

2
+ ϕcc

]

is obtained. When α = ϕcc the cutter moves along the steepest
slope. When α = ϕcc − π

2
or α = π

2
+ ϕcc , resolution of Eq. (3)

gives a(α) = 0 representing a horizontal movement of the cutter.
Computation of the envelope curve is a function of the

direction of feed motion that the cutter follows. This direction is
parametrised by the angle α as previously defined. At a point of
contact CC, for each direction xα, the corresponding envelope curve
can be defined.

Carrying over cos(θ) and sin(θ), resolved from Eq. (7), into

Eq. (5) gives the envelope curve Ce (ϕ, α) in referenceℜα:

Ce (ϕ, α)

=





















(

R− r

(

1−
a(α)

√

cos2 (ϕ − α)+ a(α)2

))

cos (ϕ − α)

(

R− r

(

1−
a(α)

√

cos2 (ϕ − α)+ a(α)2

))

sin (ϕ − α)

−r · cos (ϕ − α)
√

cos2 (ϕ − α)+ a(α)2





















Rα

(8)

with a(α) > 0, ϕ ∈ [0, 2π ] and α ∈
[

ϕcc − π
2
, π

2
+ ϕcc

]

.

A number of envelope curves are shown on an inclined plane
(30° slope) machined in different directions α (Fig. 2). With no
loss in generality, in the example ϕcc = 0. The angle α = 0°
corresponds to the direction with the steepest slope (up milling or
down milling), the angle α = 90° is perpendicular to the direction
of the steepest slope (horizontal machining) and an intermediate
angle α = 45°. The milling cutter chosen (R = 5 and r = 2)
was modelled by its torus. The thick-lined curve represents the
envelope curve. The point of contact CC and the tool centre point
CL are also shown.

2.2. Computation of the effective radius

The effective radius of the envelope curve at point of contact
CC is sought. The effective radius corresponds to the radius of
curvature onCC of the envelope curveCe (ϕ, α) projected in a plane
normal to the direction of feed motion along a direction parallel to
the direction of feed motion.

Note Ce_proj (ϕ, α), the envelope curve Ce (ϕ, α) projected on
the plane normal to the direction of feed motion. The effective
radius Reff(ϕ, α) can be calculated as follows:

Reff(ϕ, α) =

∥

∥

∥

∂Ce_proj (ϕ,α)

∂ϕ

∥

∥

∥

3

∥

∥

∥

∂Ce_proj (ϕ,α)

∂ϕ
∧ ∂2Ce_proj (ϕ,α)

∂ϕ2

∥

∥

∥

. (9)

Computation of the effective radius needs to be done at point of
contact CC, that is for the angleϕ = ϕcc . Carrying over the valueϕCC

of angle ϕ into the effective radius Eq. (9), the value of the effective
radius at the point of contact CC can be calculated, whatever the
angle α. It should be noted that the effective radius of a spherical
cutter is equal to R.

2.3. Step-over distance calculation

This subsection established a relation expressing step-over
distance AB (cf. Fig. 3) as a function of the workpiece’s geometry
(ρ: radius of curvature), the cutter geometry (Reff: effective radius)
and the scallop height hc . To compute this, consider a convex curve
at point of contact CC. This curve corresponds to the intersection
between the surface of the workpiece and the plane perpendicular
to the direction of feed motion. In the zone studied, the radius of
curvature is assumed to be constant.

In the triangles (OBC) or (OAC) and (OAB), the step-over distance
AB can be calculated as follows:

AB =
(

hc (2Reff − hc) (2ρ + hc) (2ρ + 2Reff + hc)

(ρ + hc)
2

)0.5

. (10)



Fig. 2. Sweep curves for various angles α.

Fig. 3. Calculating step-over distance on a convex curve.

By assuming that hc ≪ R and hc ≪ ρ, the following is obtained:

AB =
(

8hcReff (ρ + Reff)

ρ

)0.5

. (11)

It can readily be seen fromEq. (11) that the effective radiusReff is
the most influential parameter for step-over distance calculation.

In order to quantify the gain on the step-over distance between
a torus mill and a spherical cutter, the gain λ is defined by:

λ =

(

8hcReff(ρ+Reff)

ρ

)0.5

(

8hcR(ρ+R)

ρ

)0.5
=

√

Reff (ρ + Reff)

R (ρ + R)
. (12)

For a plane with null curvature, it can be postulated that ρ ≫
Reff. Eq. (12) giving the gain becomes:

λ =
√

Reff

R
. (13)

λ represents the ratio between the step-over distance of a torus
cutter and the step-over distance of a spherical cutter. The torus
cutter starts to become advantageous when λ is greater than 1.

3. Parameters influencing the step-over distance

Analysis of parameters having an influence on the step-over
distance is intended to propose a cutter geometry appropriate
to the surface to be machined and improve productivity. Many
articles address the choice of the spherical end milling cutter
dimensions, focusing on local interference problems (analysis of
local curves). However, there is no complete study covering the
choice between different cutter geometries used in 3-axis milling.

3.1. Influence of direction of feed motion α and the slope angle

Fig. 4 shows the gainλ in relation to the direction of feedmotion
α and the slope angle Sa of the plane surface S(u, v) defined as
follows:

S(u, v) =







100u
100v

100u tan

(

πSa

180

)






with (u, v) ∈ [0, 1]2 . (14)

The milling cutter chosen is defined by R = 5 and r = 2.
Whatever the slope angle Sa of the plane, the point of contact is
defined at ϕCC = 0. The plane shown in black is gain equal to 1.
The domain over which the gain is greater than 1 is dependent



Fig. 4. Gain λ in relation to the direction of feed motion and slope angle Sa .

Fig. 5. Relation between direction of feed motion and slope angle.

on the slope. Over zones with a slight slope, use of a torus milling
cutter will be recommended and the range for use of the direction
of feedmotionwill be significant. However, over zoneswith a steep
slope, use of a torus cutter can rapidly lead to having gain λ lower
than 1.When the cutter advances along the steepest slope (α = 0),
the gain λ will always be greater than 1. λ ≥ 1. The gain λ tends

towards
√

r
R
when the direction of feedmotion is horizontal. It can

start to be seen from this example that for steeply sloped surfaces,
use of a spherical end cutter may be preferable as the gain λ can be
less than 1.

As the surface is parametrised by the angle of the slope Sa, the
gain λ given by Eq. (12) is a function of the direction of feedmotion
α and the angle of the slope Sa. By resolving:

λ(α, Sa) = 1 (15)

the angular intervals inside which the gain λ is greater than 1 can
be determined. This is translated graphically by Fig. 5.

3.2. Influence of the torus radius on the gain λ

Regardless of the cutter, a relation is sought that allows the
efficiency of a torus milling cutter to be determined in relation to
that of a ball-end cutter. The following equation was resolved:

λ(α, Sa, r, R) = 1. (16)

Resolution of Eq. (16) achieved using the Maple program leads
to the following result:

α = ±a tan

(

1
√
sin(Sa) (1+ sin(Sa))

)

. (17)

This result is somewhat surprising but of considerable interest
as it is independent of R and r . Fig. 5 is thus valid whatever the
cutter dimensions.

A relation is obtained between the slope angle Sa at the point of
contact and the direction α such that λ = 1. At a point of a free-
form surface, the slope angle is characterised by the angle between
the cutter axis and the normal to the surface at that point. For each
point of a surface, the value of α can be determined translating the
fact that the step-over distance of a torus milling cutter is equal to
the step-over distance of a spherical milling cutter. The closer this
value comes to 90°, themore it will be advantageous to take a torus
milling cutter.

Where the slope is steep, the angle α tends towards α0 =
±a tan

(

1√
2

)

≈ ±35°. This means that the gain λ will always be

greater than 1 in an interval greater than [−35°, 35°]. This interval
grows as the slope diminishes.

Using this indicator, it will be possible to identify the milling
directions to be chosen to reduce the length of machining.

3.3. Determining machining zones

This resultwill also be used to determinemachining parameters
for the surface in different zones. Initially, the maximum slope
denoted Samax of the surface is calculated. Samax can be applied in
Eq. (17) to determine the angle αmax. At any point on the surface,
this angle characterises an interval Imax = 2 ∗ αmax around the
direction of the steepest slope (denoted Sd), such that λ ≥ 1.
Any portion of the surface having an interval with variation in
direction of steepest slope (denoted ISd) less than Imax will have
at least one machining direction that ensures that at any point
λ ≥ 1. Eq. (17) is fundamental. It expresses a connection between
the effectiveness of a torus cutter to an interval Imax around the
direction with the steepest slope Sd. Determining surface zones
verifying Imax > ISd validates the choice of a torus cutter and
allows a machining direction to be determined. All these aspects
are applied to an example in the following section.

4. Application to an example

The present examplewill showhow the previous developments
allow a milling direction to be chosen. Assume a Bezier surface
S(u, v) (cf. Eq. (18)) of degree 2 × 2 defined by Fig. 6. This surface
is symmetrical in relation to the plane X = 20:

S(u, v) =
2
∑

i=0

2
∑

j=0

B2
j (u)B

2
i (v)OPijavec(u, v) ∈ [0, 1]2 . (18)

B2
j (u) and B2

j (u) are Bernstein polynomials:

P00 = (0, 0, 0), P01 = (20, 0, 10), P02 = (40, 0, 0)

P10 = (0, 40, 5), P11 = (20, 40, 15), P12 = (40, 40, 5)

P20 = (0, 80, 20), P21 = (20, 80, 35), P22 = (40, 80, 20).

For a set of points (cross-hatched with 640 points), Fig. 7 shows
the directions of the steepest slope Sd of the surface shown above.
This surface, that seems to be relatively elementary, has extremely
pronounced variations in direction of the steepest slope going from
14° to 166°. For the same set of points, Fig. 8 shows the angles
of slopes Sa for the surface shown in Fig. 6. For each point of the
surface, the angular interval over which the gain λ is greater than



Fig. 6. Bezier surface.

Fig. 7. Direction of steepest slope Sd .

Fig. 8. Slope angles Sa .

1 is calculated. For all machining directions (between −180° and
180°), Fig. 9 plots the percentage of points with gain λ greater
than 1. It can be seen that initially there is the same percentage
of points for all values of αi and αi + 180°. This is normal as the
envelope curve is identical at a point for diametrically opposed

directions. It can be observed that whatever the direction of feed
motion chosen, 50%–70% of points have a gain λ greater than 1. The
maximum is reached for α = 0 or ±180°. No favoured direction
can be identified for the torus milling cutter to be more efficient.
This result can be explained in relation to Eq. (17). In this surface
Samax = 40°. This enables the interval Imax equal to 86° to be
determined. Fig. 7 shows that the directionswith the steepest slope
Sd vary over an interval of [14°, 166°] that is on ISd = 152°. As
ISd > Imax, it is impossible to find a machining direction such that
at any point λ ≥ 1. Breakdown of the surfaces into zones has to be
performed from Fig. 7. The surface is to be broken down such that
the intervals ISd in each zone are smaller than the intervals Imax for
each zone. Breaking down along the planes Y = constant would
not be effective as the intervals ISd in each zone would remain
practically unchanged. Rather, zones need to be defined by planes
X = constant. The breakdown into 2 zones on X = 20 would lead
to having for the 2 zones values for Sd of between [14°, 90°] and
[90°, 166°] that is ISd = 76°. The intervals Imax would remain at 86°
as in each zone Samax = 40°. A situation would then obtain where
for each zone Imax > ISd but practically equal. The machining
directions chosen would be respectively 52° ((90 + 14)/2) and
128°((90 + 166)/2). This situation leads to having points where
λ ≈ 1. However, choosing a torus cutter remains preferable from
a cutting speed perspective, but the width between passes will be
equivalent to that calculated for a spherical cutter.

It was then decided to address the problem in three surface
portions. The first portion called ‘‘left lateral’’ (left side) goes from
X = 0 to X = 13. By symmetry, the ‘‘right lateral’’ (right side) is
considered as going from X = 27 to X = 40. The third portion,
called ‘‘central’’ includes the surface of X = 13 to X = 27. A
regular breakdownwas soughtwithout attempting to optimise the
zones. This issue will be pursued further in future works. The same
study as above was applied to the 3 portions of the surface. The
result over the percentage of points is given in Fig. 10. Analysis
of the ‘‘central’’ part shows that using a torus milling cutter will
be truly advantageous in the interval α ∈ [70°, 110°] (modulo
180°) with 100% of points that have λ > 1. Outside this interval
the percentage of points drops rapidly and can become extremely
small (for the direction α = 0°).

The two ‘‘left lateral’’ and ‘‘right lateral’’ portions are symmet-
rical in relation to the direction α = 0°. For the ‘‘left lateral’’ por-
tion, the interval having 100% of points with λ > 1 is located for
α ∈ [10°, 60°] (modulo 180°). However, some directions are to be
totally rejected as no point (or extremely few of them) has λ > 1
(between 110° and 150°). For the ‘‘right lateral’’ portion, the in-
terval with 100% of points is located between α ∈ [120°, 170°]
(modulo 180°). As for the ‘‘left lateral’’ portion, some directions are
to be totally proscribed (between 30° and 70°). It can be seen that
intervals that are advantageous for some zones are intervals to be
proscribed for others.

In order to confirm the method’s usefulness, the overall length
covered by the centre of the cutter was calculated for different
strategies. First of all, a strategy involving parallel planes along 3
directions (0°, 45° and 90°) using 5 different cutters was applied to
the entire surface. The maximum scallop height between 2 passes
was 0.01 mm. The lengths covered in the different cases are given
in Table 1.

Arbitrary choices of cutter and machining direction can lead
to a considerable increase in machining lengths. The results from
Fig. 10 can then be applied taking a directionwith λ > 1 for each of
the elementary surfaces (left lateral, right lateral and central). The
‘‘left lateral’’, ‘‘central’’ and ‘‘right lateral’’ surfaces are respectively
milled in the directions at 45°, 90° and 135°. The directions for
each zone are chosen in the interval where λ > 1. As for the
breakdown into zones, work to optimise the direction is now to be
pursued. The lengths covered are given in Table 2. This example



Fig. 9. Percentage of points with λ > 1.

Fig. 10. Percentage of points with λ > 1 for 3 parts of the surface.

Table 1

Machining lengths with any cutter and direction for the entire surface.

Direction

0° (mm)

Direction

45° (mm)

Direction

90° (mm)

Cutter R = 5 r = 5 6173 6808 6310

Cutter R = 5 r = 4 7005 7420 6243

Cutter R = 5 r = 3 8237 8260 6334

Cutter R = 5 r = 2 10247 9937 6636

Cutter R = 5 r = 1 14712 13758 7084

shows that study of the gain λ offers advantages in helping to
choose a cutter and a milling direction. In the above example,
the machining lengths vary from 14 712 mm (arbitrary choice)
to 5 078 mm (privileged choice). Table 2 shows that choosing a
torus milling cutter (R = 5, r = 1) associated with appropriate
machining directions allows for savings of 18% as compared with a
ball-end cutter on this workpiece.

In order to validate the method concretely, two workpieces
were milled (Fig. 11) using the same cutter (torus milling cutter
with 4 teeth R = 5 and r = 2 Fig. 12) and applying the strategy
by 3 zones (45°, 90° and 135°) and the strategy in a single zone

Table 2

Machining length with privileged directions for the partitioned surface.

Left lateral

(45°) (mm)

Central

(90°) (mm)

Right lateral

(135°) (mm)

Total (mm)

R = 5 r = 5 2086 2018 2086 6190

R = 5 r = 4 1950 1935 1950 5835

R = 5 r = 3 1839 1835 1839 5513

R = 5 r = 2 1745 1830 1745 5320

R = 5 r = 1 1666 1746 1666 5078

with amilling direction at 0°. Each region is milled under a parallel
planes strategy following the recommended machining direction.
The chosen cutting speed was 470 m/min (with spindle rotation
speed of 15,000 r.p.m.) and feed rate of 1200 mm/min. Table 3
summarises the calculated lengths, the milling times measured
and the gains obtained:

The time-saving is extremely close to the gains in lengths and
confirms the method’s advantage in concrete terms.

A roughness meter was used to perform 6 measurements per
workpiece in the zones identified on Fig. 13. The results are given
in Table 4.



Fig. 11. Bezier surfaces machined.

Table 3

Comparison between the 2 machining strategies.

Single zone (0°) 3 zones Gain

Length Real time Length Real time Length Real time

Cutter R = 5 r = 2 10247 mm 10 min 5 s 5320 mm 5 min 32 s 48% 45%

Fig. 12. Torus milling cutter (R = 5 r = 2).

Table 4

Roughness measurements on 2 workpieces.

Entire surface Partitioned surface

Ra (µm) Rt (µm) Ra (µm) Rt (µm)

Measurement n°1 1.28 6.1 1.08 6.15

Measurement n°2 1.91 8.64 1.38 7.83

Measurement n°3 2.2 8.9 1.44 8.94

Measurement n°4 0.64 3.93 1.82 8.69

Measurement n°5 0.41 2.66 1.2 6.49

Measurement n°6 0.49 3.05 1.25 7.84

Two roughness profiles were shown in Figs. 14 and 15
corresponding to measurement n°2 of the entire surface and
measurement n°5 of the partitioned surface. The scallop height
profiles are clearly represented. For the same length of evaluation
(4 mm), different profiles can be seen leading, for the partitioned
surface, to a greater step-over distance than that for the entire
surface. For the entire surface, maximum roughness is obtained in
the central part of the workpiece. Measurements n°4, n°5 and n°6

Fig. 13. Locations of roughness measurements on the 2 workpieces.



Fig. 14. Measurement n°2 of the entire surface.

Fig. 15. Measurement n°5 of the partitioned surface.

show profiles with very low scallop heights. For the partitioned
surface, the breakdown enabled a more regular scallop height to
be obtained close to the maximum authorised value (h max =
0.01 mm) over the entire workpiece. The above study shows that
choosing a torus milling cutter is appropriate when milling by
zones.

Conclusion

An indicator was sought to assist in making the best choice of
milling cutter. Many works relate to the strategies to be applied
(iso-parametric, parallel planes iso-scallop) for milling of free-
form surfaces. In these various strategies, the initial set-up, first
tool paths and cutters are often imposed from the start. For the
parallel plane strategy, the present inquiry focused on offering
help in choosing the appropriate cutters for end milling of free-
form surfaces. For the purposes of the study, it was assumed that
the surfaces are machinable at any point without interference.
With this concern to select a tool, the effective radius of a torus
milling cutter was calculated. The effective radius was computed
by the radius of curvature of the envelope curve projected onto
a plane perpendicular to the direction of feed motion. Thus, the
effective radius and the step-over distance were calculated, at any
point, for any direction of feed motion. A relation was established

enabling the angular interval for which the step-over distance of
a torus mill is greater than the step-over distance of a spherical
mill to be determined. Using this interval and the representation
of directions with the steepest slope, it can be readily determined
whether the surface needs to be broken down into a number of
zones. Such a breakdown is then performed in order to reduce the
intervals of variation of the steepest slope in each zone. Thismeans
that for any point, the milling directions to be chosen for a torus
milling cutter to be more productive than a spherical cutter can be
determined.

An example was taken showing that when the surface is milled
in totality, it is not essential to choose a torus milling cutter.
Furthermore, no feed rate directions to be favoured emerge. The
surface was then divided up (arbitrarily into 3 parts). Application
of the method shows clearly that a torus milling cutter proves to
be the best choice for the 3 zones but that different directions are
to be favoured for each surface. This study opens up interesting
perspectives in planning tool paths for the milling of free-
form surfaces. It provides an indicator to assist in choosing the
appropriate cutters and the preferred machining directions and
also in how to break down a surface into a number of zones. These
works open up a range of perspectives to reduce machining time
by optimising machining zones and associated directions.
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