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ABSTRACT

Ochratoxin A (OTA) is a potential nephrotoxic, teratogenic, immunogenic, hepatotoxic and carcinogenic
mycotoxin, produced by Aspergillus westerdijkiae NRRL 3174. Herein we describe the characterization of a
putative OTA-polyketide synthase gene “aoks1”, cloned by using gene walking approach. The predicted
amino acid sequence of the 2 kb clone display 34-60% similarities to different polyketide synthase genes
including lovastatine biosynthesis gene “lovb” in A. terreus, compactin biosynthesis gene “mlicA” in Peni-
cillium citrinum and OTA biosynthesis gene “otapksPN” in P. nordicum. Based on the reverse transcription
PCR and kinetic secondary metabolites production studies, aoks1 expression was found to be associated
with OTA biosynthesis. Further a mutant, in which the aoksl gene was inactivated by Escherichia coli
hygromycin B phosphotransferase gene, lost the capacity to produce OTA, but still producing mellein.
To our knowledge this report describes for the first time characterization of a gene involved in OTA bio-
synthesis, with the information about mellein which was proposed in the literature to be an intermediate
OTA. This study also suggests that aoks1 may be the second polyketide synthase gene required for OTA

biosynthesis in A. westerdijkiae NRRL 3174.

1. Introduction

Ochratoxin A (OTA) is a polyketide secondary metabolite pro-
duced by many Penicillium and Aspergillus species (Abarca et al.,
1994; Dalcero et al., 2002; Teren et al., 1996; Varga et al., 2003).
This mycotoxin consisting of a polyketide derived from a dihydro-
iso-coumarin moiety linked through the 12-carboxyl group to
phenylalanine, via an amide linkage (Fig. 1a). It is a nephrotoxin
which also displays hepatotoxic, teratogenic, and immunosuppres-
sive properties; and has been classified by The International
Agency for Research on Cancer as a possible human carcinogen
(category 2B) (Kuiper-Goodman and Scott, 1989; Petzinger and
Ziegler, 2000).

Ochratoxin A is a common contaminant of grains such as barley,
corn, rye, wheat and oats, with cereal-based products typically
accounting for 50-80% of the average consumer intake of the
mycotoxin (Jorgensen and Jacobsen, 2002). OTA has also been re-
ported in other plant products including coffee beans, spices, nuts,
olives, grapes, beans and figs (Batista et al., 2003; Battilani et al.,
2003; Bayman et al., 2002; Jorgensen, 1998). The presence of
OTA has been detected in a range of beverages (Zimmerli and Dick,
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1996) and has also been reported in body fluids and kidneys of ani-
mals and humans (Magan and Olsen, 2004).

Aspergillus westerdijkiae NRRL 3174 which is recently dismem-
bered from A. ochraceus (Frisvad et al., 2004), is considered to be
the main OTA producer in tropical region. It can produce other
important polyketide metabolites including; penicillic acid, asper-
lactone, isoasperlactone, mellein and hydroxymellein (Atoui et al.,
2006; Gaucher and Shepherd, 1968). To the present day not much
information are available about the biosynthetic pathway of OTA in
any fungal species. Based on a mechanistical model according to
the structure of OTA a biosynthetic pathway has been previously
proposed, according to which the heterocyclic portion of OTA is
structurally similar to mellein (Fig. 1b) (Huff and Hamilton,
1979). Thus mellein has been proposed as a precursor of OTA. In
contrary, Harris and Mantle (2001) described in experiments with
labeled precursors of OTA that mellein does not seem to play a role
in OTA biosynthetic pathway.

In spite of a remarkable variety of end products, the individual
polyketide biosynthetic pathways apparently follow a common ba-
sic reaction scheme. The key chain-building step of this reaction
scheme is a decarboxylative condensation analogous to the chain
elongation step of classical fatty acid biosynthesis (Birch and Dono-
van, 1953; Kao et al., 1994). In the biosynthesis of most polyketide
metabolites, the successive condensation step of small carbon pre-
cursor acid is catalyzed by a group of multifunction enzyme system
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Fig. 1. Chemical structures of ochratoxin A (a) and mellein (b).

called polyketide synthases (PKSs), (Metz et al., 2001). A typical fun-
gal PKS is composed of principal domains including ketosynthetase
(KS), acyltransferase (AT) and acyl carrier protein (ACP) and optional
domains including dehydratase (DH), enoyl reductase (ER), ketore-
ductase (KR) and thioesterase (TE) (Graziani et al., 2004). Presence
or absence of optional domains in a PKS decides about the type of
polyketide formed. PKSs producing highly reduced polyketides con-
tain KR, DH and ER optional domains; PKSs producing partially re-
duced polyketides contain KR and DH optional domains, while
PKSs producing non-reduced polyketides contain none of these do-
mains (Fujii et al., 2001; Yu and Leonard, 1995).

Untill now different techniques like genomic DNA bank, cDNA
bank and subtractive PCR has been utilized to identify various
PKS genes responsible for the biosynthesis of various polyketides
(Bridge et al., 1998). Pairs of degenerated primers targeting KS do-
main; which is the most conserved domain among different PKSs,
have been previously designed. These primers were found to have
the capability to amplify KS domain fragment from different types
of PKS genes (Bingle et al., 1999; Lee et al., 2001; Liou and Khosla,
2003; Nicholson et al., 2001). In our laboratory these degenerated
primers were used to identify nine different KS domains in A. west-
erdijkiae NRRL 3174 (= A. ochraceus) (Atoui et al., 2006), including
the KS domain sequence of aolc35-12 gene (Genbank Accession
No. AY583208). aolc35-12 gene overlaps the AT domain of the
pks gene characterized by O’Callaghan et al. (2003). The authors
demonstrated that disruption of pks gene stop the biosynthesis of
OTA, without any information about mellein.

In this study, we report the characterization of a PKS gene
(aoks1) required for the biosynthesis OTA in A. westerdijkiae NRRL
3174. Disruption of this gene stop the biosynthesis of OTA but
did not affect the biosynthesis of mellein. This gene is different
from the pks gene reported by O’Callaghan et al. (2003).

2. Materials and methods
2.1. Fungal strain and culture conditions

Aspergillus westerdijkiae NRRL 3174 strain provided by Dr. Oliv-
ier Puel (Laboratoire de Pharmacologie-Toxicologie, Toulouse
France) was grown for sporulation at 25 °C on potato dextrose agar
for 7 days. Spores were collected using a solution of 0.01% (v/v)
Tween 80, counted by using Thoma Bright line counting chamber
(Optick labor), and stored at —20 °C in 25% (v/v) glycerol before
use. Conidia were inoculated (density ~10°/mL) into 250 mL Erlen-
meyer flasks containing 100 mL synthetic medium (SAM) at 25 °C
for 2-18 days, without shaking. The composition of SAM (per liter
of distilled water) was: 3 g NH4NOs, 26 g K;HPOy, 1g KCl, 1g
MgS04.7H,0, 10 mL mineral solution (composition per liter of dis-
tilled water: 70 mg Na,B40,.10H,0, 50 mg (NH4)s Mo70,4.4H,0,
1000 mg FeS0,4.7H,0, 30mg CuS04.5H,0, 11 mg MnSO4.H50,
1760 mg ZnS04.7H,0), and 50 g glucose. The pH of the medium
was adjusted to 6.5 by the addition of 2 N HCl. Mycelium was har-
vested by filtration through a 0.45 uM filter, grounded in liquid
nitrogen and then stored at —80 °C before nucleic acid extraction.
Secondary metabolites were extracted from filtrates of 2 to 18 days
old cultures medium. Three replications of each sample were
analyzed.

2.2. Nucleic acid extraction

Rapid method of genomic DNA extraction (Lui et al., 2000) was
used for transformants screening by PCR. Large quantity genomic
DNA was extracted by CTAB extraction method (Gardes and Bruns,
1993). The quality and quantity of DNA were estimated by measur-
ing OD 260 nm/OD 280 nm and OD 260 nm respectively.

Total RNA was extracted from A. westerdijkiae NRRL 3174 using
the Tri-reagent (Euromedex France) DNA/RNA/Protein extraction
kit. The quality and quantity of RNA was checked by the OD
260 nm/OD 280 nm ratio and agarose gel electrophoresis according
to standard protocols (Sambrook et al., 1989).

2.3. Cloning of aoks1 gene in A. westerdijkiae NRRL 3174

Degenerated primers were used to extend aoks1 gene by gene
walking approach. Table 1 list all the primers used in this study.
Fig. 2 marks position of specific primer AoKS1 (designed from the
KS domain fragment of aoks1 gene) and the two degenerated prim-
ers ATR1, ATR2 (designed from the most conserved regions of AT
domains of different fungal PKSs). In two consective PCRs; first a
700 bp fragment was amplified using primers AoKS1 and ATR1
and then a 1400 bp fragment was amplified using primers AoKS1
and ATR2. The PCR products were cloned in pCR2.1 plasmid and se-
quenced. Alignment of the sequenced fragments was performed to
search for consensus.

2.4. PCR reaction and sequencing

PCR was performed with the Taq recombinant polymerase
(Invitrogen, USA). Amplification was carried out in a 50 pl reaction
mixture containing: 5 pl of Taq polymerase 10x buffer, 1-5 pl of
50 mM MgCl,, 1 pl of ANTP 10 mM of each (Promega), 1 uM of each
primer, 1-5U of Taq, about 200 ng of DNA genomic, H,O up to
50 pl. Reaction conditions were: 94 °C for 4 min, (94 °C for 45 s,
53 °C for 45 s and 72 °C for 1 min) x30 cycles followed by an incu-
bation at 72 °C for 10 min. The amplified products were examined
by 1% (w/v) agarose (Promega) gel. The PCR products were cloned
into pCR2.1-Topo vector (Invitrogen) according to the supplier’s
instructions. Sequencing of the fragments was performed by
Genomexpress (Grenoble, France).

2.5. Data analysis

The deduced amino acid sequence was determined using the
http://www.expasy.org/tools/dna.html site while protein-protein
Blast (Blastp) searches were conducted at the GenBank database:
http://www.ncbi.nlm.nih.gov. The alignments were conducted
using CLC Main WorkBench (CLC Bio, Denmark).

Table 1
Primers used in this study.

Primer name Sequence (5'-3')

ATR1 YTG5GC5CCYTG5CC5GTDAA
ATR2 CATRTGRTGIGARTGRTAIGC
AoKS1 CGGAAGGCCGGCCTAGATCCAGCC
AOKSTF GAAGCCGTCGAGGCCGCCGGTCTG
AOKS1R CAATGCGAATTGCCTCTATTTC
AOKSF CGGCCAATCTGGGAGATTTGGC
hph2F CGGGGGCAATGAGATATGAAAAAG
hph2R GAACCCGCTCGTCTGGCTAAG
LC12F CTATGACTTACGCGGGACAAG
LC12R AAGGCAGATACAATGGCCTGC
TubF CTCGAGCGTATGAACGTCTAC
TubR AAACCCTGGAGGCAGTCGC
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Fig. 2. Alignment of the deduced amino acid sequence of A. westerdijkiae aoks1 with other PKSs: lovB (Accession No. AAD39830, lovastatin nonaketide synthase in A. terreus);
micA (Accession No. BAC20564, compactin nonaketide synthase in P. citrinum); otapksPN gene (Accession No. AY557343, OTA biosynthesis gene in P. nordicum); aolc35-12
(Accession No. AY583208) and pks (Accession No. AY272043, OTA biosynthesis gene characterized by O’Callaghan et al. (2003)) in A. ochraceus. Red box indicates KS domain
while green box indicates AT domain. Flash arrows indicate positions of different primers used in extanding aoks1 gene. (For interpretation of color mentioned in this figure
the reader is referred to the web version of the article.)



2.6. RT-PCR reaction

The expression of aoks1 and aolc35-12 genes in A. westerdijkiae
NRRL 3174 were examined by using RT-PCR with specific pairs of
primers AoKSF/AoKS1R designed from the AT domain of aoks1 gene
and LC12F/LC12R designed from the KS domain of aolc35-12 gene
(Table 1). For RT-PCR, total RNA was treated with DNase I (Promega)
to remove DNA contamination. cDNA was synthesized from each
sample with Advantage RT- for-PCR Kit (BD Biosciences) according
to the supplier’s manual. cDNA amplification were performed using

<# Digestion by Sall ¥

hph
Ligation
TopoKShph
vector
b TopoKShph vector
Nt
599 bp
Nt @

HP  KP

AcKSIF
>

629 bp lPCR

Taq recombinant polymerase (Invitrogen,USA). Beta tubulin was
used as positive control using primers TubF and TubR (Table 1).

2.7. Disruption of aoks1 gene in A. westerdijkiae NRRL 3174

The aoks1 gene was disrupted by inserting the Escherichia coli
hygromycin B phosphotransferase gene (hph) flanked by A. nidu-
lans trpC promoter and terminator sequences (Cullen et al., 1987)
from plasmid pID2.1 (Tang et al., 1992). The transformation vector
construction is schematically represented in Fig. 3a. A 1690 bp

aoksl (2kb) ——

-—
AoKSIR

- 1690 bp aoks! fragment

l Cloning into pCR2.1 Topo

TopoKS

m =KS5 mm =AT Ex® =lacZo gene

E=8 = Ampiciline Resistance gene

Ct A Westerdijkiae (Wild type)

Ct  wodksl

Fig. 3. Schematic representation of transformation vector formation and aoks1 gene disruption. (a) Using primer pair AoKS1F/AoKS1R (Table 1), 1690 bp aoks1 fragment
containing Sal1 restriction site (indicated by triangle) was amplified from a 2 kb aoks1 gene. PCR product was cloned into pCR2.1-Topo plasmid to generate plasmid TopoKS.
pID2.1 plasmid vector was restricted with Sall (indicated by triangle) to obtain hph cassette (2.4 kb). TopoKS was restricted with Sall and ligated with hph cassette to
genarate TopoKShph transformation vector. Different colors on the aoks1 gene indicate different functional domains i.e. p-ketoacyl synthase (KS) and acyltransferase (AT). (b)
Protoplasts of A. westerdijkiae was prepared and aoks1 gene was disrupted using TopoKShph vector to obtain ao4ks1 mutant. The small red lines below aoA4ks1 indicate
position of radioactively labeled probes i.e. KP: aoks gene specific probe amplified by using primer pair AoKSF/AoKS1R and, HP: hph gene specific probe amplified by using
primer pair hph2F/hph2R. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)



fragment of the aoks1 gene containing the Sall restriction site was
amplified by PCR, using the primer pair AoKS1F/AoKS1R (Table 1).
This fragment was ligated into pCR2.1-Topo plasmid (Invitrogen)
generating the TopoKS plasmid. TopoKS and pID2.1 plasmids were
restricted using Sall enzyme. The hph cassette (2.4 kb) obtained
was ligated with restricted TopoKS plasmid to produce TopoKShph
vector, in which the 5 and 3’-ends of hph cassette are flancked by
aoks1 gene fragments. A. westerdijkiae protoplasts were prepared
and transformed with TopoKShph vector as previously described
(O’Callaghan et al., 2003) (Fig. 3b). Lysing enzyme (40 mg/mL) (Sig-
ma) was used for the preparation of protoplasts.

2.8. Screening of the transformants

Hygromycin-resistant transformants were selected on YES
medium (20 g/l of yeast extract, 1 M sucrose) supplemented with
150 pg/mL of hygromycin B. Transformant plates were incubated
at room temperature for 24 h and then transferred to 30 °C for 4
days. Hygromycin-resistant transformants were further screened
through a PCR, using hph gene specific primers hph2F and hph2R
(Table 1). Positive transformants were then subjected to a second
PCR using aoks1 gene specific primer AoKS1F and hph2R. Finally
the disruption was confirmed through southern hybridization
(Southern, 1975), in which total genomic DNA from both wild type
and aoAks1 mutant strains were digested with restriction enzyme
Bts1. This restriction enzyme was choosen because it cut only once
in the 5'-flanking region of the 1690 bp aoks1 fragment (position
599 bp) but does not cut the hph cassette or 3’-flanking end of
the aoks1 fragment (Fig. 3b). The digested DNA was then trans-
ferred to nylon membrane (Amersham, France) and probed with
radioactively labeled DNA fragments of aoks1 gene “KP” and hph
gene “HP” amplified through primer pair AoKSF/AoKS1R and
hph2F/hph2R, respectively (probes positions are shown in Fig. 3b).

2.9. Fluoresence study

In order to check the loss of OTA production by the aoAks1 mu-
tant, Czapek Yeast extract Agar (CYA) plates of both wild type A.
westerdijkiae NRRL 3174 and aoAks1 mutant were incubated for
10 days at 25 °C and then illuminated with UV light (265 nm). Pro-
duction of OTA is characterized by a blue fluorescent halo under
Uv.

2.10. Extraction of secondary metabolites

For secondary metabolites extraction, 30 mL filtrate sample of
the culture medium was acidified with 200 pL of 12 N HCl, mixed
with 30 mL chloroform and vigorously shaken for 10 min. The sol-
vent phase was then decanted, dried under vacuum and re-dis-
solved in 0.5 mL Methanol. 20 pL of the sample was then further
analysed by HPLC.

2.11. High-performance liquid-chromatography (HPLC) analysis

The HPLC apparatus consisted of a solvent delivery system, with
both fluorescence (Zex =332 nm; Jem =466 nm) and UV detectors
(BIO-TEK, Milan, Italy). The analytical column used was a
150 x 4.6 mm Uptisphere 5 um C18 ODB fitted with a guard col-
umn of 10 x 4 mm. The column temperature was 30 °C. Kroma
3000 (BIO-TEK) was the data acquisition system. Injections were
done with an auto-injector (BIO-TEK, Milan, Italy) and the injection
volume was 20 pL. The samples were analyzed by linear gradient
elution using 0.2% glacial acetic acid in 99.8% water (v/v) (A) and
100% acetonitrile (HPLC grade) (B). The crude extract was analyzed
using a linear elution gradient over 45 min at a flow rate of 1 ml/
min, starting from 10 to 50% solvent B over the first 30 min, contin-

ued by a linear gradient to 90% of B in 5 min, followed by an iso-
cratic flow of 90% solvent B for 8 min, and a return to initial
conditions over the last 2 min of the run.

Secondary metabolites of A. westerdijkiae NRRL 3174 were de-
tected by comparing the elution time and maximum absorption
of UV with the standards (Sigma Aldrich France). All the standards
were used at a concentration of 10 pg/mL. Mellein (/max = 214; 245
and 314 nm) and ochratoxin A (Amax = 216; 250 and 332 nm) were
released at 27 min and 34 min, respectively.

2.12. Sequence accession number

The sequence obtained was deposited in Genbank under the
Accession No. AY5832009.

3. Results and discussion
3.1. Cloning part of aoks1 gene in A. westerdijkiae NRRL 3174

A 700 bp KS domain fragment of aoksl gene was previously
identified in A. westerdijkiae NRRL 3174 (Atoui et al., 2006). With
the aim of extending this fragment of aoks1 gene, two conserved
regions FTGQGAQ and AYHSSHM in the AT domains of different
fungal PKSs were used to design two degenerated primers i.e.
ATR1 and ATR2 (Fig. 2). These degenerated primers with a specific
primer AoKS1 i.e. designed from the KS domain of aoks1 (Fig. 2), al-
lowed to clone an additional 1300 bp fragment of aoks1 gene. Atoui
et al. (2006) further used the degenerated primers of Bingle et al.
(1999) and Nicholson etal. (2001) and identified eight other KS do-
mains of different PKSs in same fungi. The phylogenetic analysis of
all the nine KS domain fragments identified in A. westerdijkiae,
clustured aoks1 gene with four other PKSs producing reduced poly-
ketides (Atoui et al., 2006). Several mycotoxins such as OTA, vio-
mellein, and xanthomegnin and others polyketides derived
secondary metabolites such as mellein produced by A. westerdijkiae
NRRL 3174 belong to the reduced polyketide groups. Therefore, we
focused on the 5 reducing PKS genes including aoks1 and assumed
that these genes could be potential candidates for the biosynthesis
of one or more of the reduced polyketides produce by
A.westerdijkiae.

The predicted amino acid sequence of the 2 kb aoks1 gene dis-
played about 60% identity to nonaketide synthases gene “lovB” in-
volved in lovastatin biosynthesis in A. terreus (Hendrickson et al.,
1999), and compactin biosynthesis gene micA in Penicillium citri-
num (Abe et al., 2002) and 34% identity to OTA biosynthesis gene
otapksPN in P. nordicum (Farber and Geisen, 2004; Karolewiez
and Geisen, 2005) (Fig. 2). The AT domain of aoks1 displayed about
39% identity to the AT domain of pks gene involved in OTA biosyn-
thesis in A. ochraceus (O’Callaghan et al., 2003). Alignment study
also revealed that the pks gene characterized by O’Callaghan
et al. (2003) overlaps (share more than 98% identity) a PKS gene
aolc35-12, previously identified in A. westerdijkiae (Fig. 2) (Atoui
et al., 2006; Dao et al., 2005). This finding confirms that A. ochrac-
eus strain used by O’Callaghan et al. (2003) and A. westerdijkiae
strain used in our study contain similar gene.

3.2. Kinetic production of secondary metabolites in A. westerdijkiae
NRRL 3174 and expression of aoks1 and aolc35-12 genes

Production of secondary metabolites was followed during the
growth of A. westerdijkiae NRRL 3174 in synthetic medium
(SAM). We observed that biosynthesis of secondary metabolites
seemed to be associated with the delayed log phase of fungal
mycelial growth (Fig. 4a). This fact has also been realized previ-
ously, where biosynthesis of various secondary metabolites were
found to be associated with fungal growth and development
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Fig. 4. Kinetic production of secondary metabolites and comparison of two PKS
genes expression, in A. westerdijkiaze NRRL 3174. (a) Kinetic production of mellein
and OTA in a growing culture of A. westerdijkiae NRRL 3174 at 25 °C in synthetic
medium during a time course of 2-18 days. (b) Profile of aoks1 gene expression
(upper panel) and aolc35-12 gene expression (middle panel) by RT-PCR. Beta
tubulin was used as loading control (bottom panel).

(Bu'Lock et al., 1968; Calvo et al., 2001, 2002; Hopwood, 1988).
HPLC traces revealed that the two structurally related metabolites
mellein  (Amax=214; 245 and 314nm) and ochratoxin A
(Amax =216; 250 and 332 nm) are released at 27 and 34 min,
respectively (Fig. 6b). Both these metabolites were detected from
day 4 of fungal growth. Thereafter these metabolites were simulta-
neously produced to reach a maximum level at day 7 for mellein,
and day 12 for OTA (Fig. 4a). Later, mellein constantly decreased
with time and reached a minimum level at day 16. Small decrease
in the production OTA was observed up to day 17 (Fig. 4a).

Expression study of aoks1 gene showed that the transcriptional
signal started from day 3 of A. westerdijkiae growth in synthetic
(SAM) medium (Fig. 4b). The signal reached its maximum level
at day 5 and remained high up to day 10. From expression of aoks1
gene and kinetic production of secondary metabolites we observed
that, the low level expression of aoks1 gene at day 3 and 4 could
correspond to the limited production of OTA in the initial few days
of fungal growth. During the high transcriptional signal period of
aoks1 gene i.e. day 5 to day 10, production of OTA continuously in-
creased and reached its maximum limit just after the end of this
period (Fig. 4a and b). These results suggest that production pat-
tern of OTA seems to be associated with expression pattern of
aoks1 gene. On the basis of expression studies several other PKS
genes producing reduced type polyketides were found to be impor-
tant for OTA biosynthesis in other organisms like P. nordicum (Far-
ber and Geisen, 2004; Karolewiez and Geisen, 2005) and P.
verrucosum (Schmidt-Heydt et al., 2008).

We also studied the expression pattern of aolc35-12 gene (sim-
ilar to pks gene involved in OTA biosynthesis, characterized by
O’Callaghan et al. (2003)) in A. westerdijkiae. Transcriptional signal
of aolc35-12 gene started on day 3 and reached a maximum at day
4 of fungal growth (Fig. 4b). The signals then gradually decreased
and disappeared at day 10. O’Callaghan et al. (2003) also stated
that expression of pks gene appeared strongly at the early fungal
growth stage and occurred to a lesser extent at later time points.
This suggests that the pks gene characterized by O’Callaghan
et al. (2003) and aolc35-12 not only overlap at amino acid level
(Fig. 2) but also produce similar expression patterns. We further
observed that, although both aoks1 and aolc35-12 genes are ex-
pressed within the production period of OTA but both produced
different expression patterns (Fig. 4b).

3.3. Disruption of aoks1 gene in A. westerdijkiae NRRL 3174 and
secondary metabolites production in aoAks1 mutant

After transformation of A. westerdijkiae with TopoKShph vector
(Fig. 3b), 27 transformants were obtained. These transformants
were subsequently screend by two consective PCRs to moniter
integration of hph cassette in the genome of A. westerdijkiae. A frag-
ment of 0.6 kb corresponds to hph cassette is amplified using pri-
mer pair hph2F/hph2R in only two out of the 27 transformants
(Fig. 5a, lane 1). Similarly a 1.2 kb aoks1/hph shared fragment
was amplified when the two positive transformants were sub-
jected to a second PCR using primers AoKS1F and hph2R (Fig. 5a,
lane 4). No amplification was observed in the wild type A. wester-
dijkiae with any of the primers combination (Fig. 5a, lane 2 and 3).

a M 1 2 3 4

12kbh ——>»

0.6 kb —>»

b

1 2 3 4
I I I I :
Fig. 5. PCR screening and southern blot hybridization of the transformants. (a) the
PCR product of 0.6 kb (lane 1) obtained with primers hph2F/hph2R and the 1.2 kb
product (lane 4) obtained with AoKS1F/hph2R confirmed the integration of the hph
gene cassette into the genome of A. westerdijkiae NRRL 3174 (aoAks1 transfor-
mants). No product was amplified in A. westerdijkiae wild type with hph2F/hph2R
(lane 2) and AoKS1F/hph2R (lane3). Lane M: size markers (Promega). (b) Southern
blot screening of transformants: Genomic DNA of wild type A. westerdijkiae and
aoAks1 transformants were extracted and digested with Bts1 restriction enzyme
(indicated by triangle). The products were analyzed through electrophoresis and
then transferred to nylon membrane. Probing of the membrane with radioactively
labeled hph fragment (HP) resulted into; lane 1: wild type A. westerdijkiae and lane
2: aoAks1 mutant. Probing of the membrane with radioactively labeled aoks1

fragment (KP) resulted into; lane 3: wild type A. westerdijkiae and lane 4: aoAks1
mutant.
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Genomic DNA from wild type A. westerdijkiae and the two positive
aoAks1 transformants were analyzed by southern blotting. No sig-
nal was detected when digested DNA of wild type A. westerdijkiae
was probed HP (Fig. 5b, lane 1), while a signal corresponding to
2.2 kb was observed when the wild type DNA was probed KP
(Fig. 5b, lane 3). On the other hand probing the digested DNA of
aoAks1 transformants with KP and HP probes resulted into an ex-
pected signal of 4.6 kb i.e 2.2 kb aoks1 fragment + 2.4 kb hph frag-
ment (Fig. 5b, lane 2 and 4 respectively).

Both aoAks1 mutant and wild type A. westerdijkiae NRRL 3174
were inoculated in solid CYA medium and incubated for 10 days
at 25 °C. After the incubation period we observed no difference
in fungal growth, sporulation, or pigment production. In contrary,
aoAks1 mutant lost the characheristic fluorescence of OTA, when
observed under UV light (Fig. 6a). This method has been usefully

A. westerdijkiae (wild type) aolksl

Cc —— Log Dry Weight

used by O’Callaghan et al. (2003) in order to identify OTA negative
mutants.

Further, the two positive aoAks1 mutants were inoculated into
liquid SAM medium to check kinetic production of secondary
metabolites by using HPLC traces and UV spectra. Disruption of
aoks1 abolished OTA production in the ao4ks1 mutant but did
not affect the production of an important metabolite mellein
(Fig. 6b). Mellein was previously thought to be an intermediate
in the biosynthesis of OTA (Huff and Hamilton, 1979). Recently this
hypothesis has been dissented by Harris and Mantle (2001) using
labbeled precursors of OTA. They found no evidence for the inter-
mediate role of mellein in OTA biosynthetic pathway. This is in
agreement with our results, where the disruption of aoks1 gene
has been shown to interrupt the biosynthesis of OTA without
affecting the mellein production. Indeed, during the kinetic
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Fig. 6. Tracking secondary metabolites production in wild type A. westerdijkiae NRRL 3174 and aoAks1 mutant. (a) Characteristic fluorescence of OTA under UV light observed
in wild type A. westerdijkiae NRRL 3174 CYA culture, and the absence of fluorescence in ao4ks1 mutant culture. (b) HPLC traces and UV spectra of mellein (eluted at 27 min)
and OTA (eluted at 34 min) in wild type A. westerdijkiae NRRL 3174 (black line) and aoAks1 mutant (pink color line). (c) Kinetic production of mellein in aoAks1 mutant during
a time course of 2-18 days. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)



production study of secondary metabolites by aoAks1 mutant, we
observed that mellein accumulation increased after disruption of
aoks1 gene and when OTA production was halted (Figs. 4a and
6¢). This could be explained by the fact that mellein and OTA use
the same precursor (such as acetyl-CoA), so possibly deletion of
one pathway resulted in an increase in the flow of second path-
away. In contrary, the study reported by O’Callaghan et al. (2003)
about OTA biosynthesis and pks gene provides no information con-
cerning the presence or absence of some metabolites like mellein.

We concluded that two different PKS may be involved in the
biosynthesis of OTA and that mellein has no role in OTA biosynthe-
sis in A. westerdijkiae NRRL 3174. To date, only three cases have
been reported that involve two different fungal PKSs essential for
a single polyketide: a set of two unusual type I multifunctional
PKSs for the biosynthesis of lovastatin and compactin in A. terreus
and P. citrinum, respectively (Abe et al., 2002; Hendrickson et al.,
1999; Kennedy et al., 1999) and two PKS have been reported to
be involved in the biosysnthesis of the mycotoxins zearaleone in
Gibberella zea (Kim et al., 2005) and T toxin in Cochliobolus heteros-
phorus (Baker et al., 2006).
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