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a b s t r a c t

Combining conductive micro and nanofillers is a newway to improve electrical conductivity. Micrometric

silver flakes and nanometric carbon nanotubes (CNTs) exhibit high electrical conductivity. A new type of

hybrid conductive adhesives filled with silver flakes and carbon nanotubes (DWCNTs or MWCNTs) were

investigated. High electrical conductivity is measured as well as improved mechanical properties at room

temperature. Small agglomerates and free MWCNTs dispersed in the silver/epoxy composites improve

the electrical conductivity and a synergistic effect between MWCNTs and micro sized silver flakes is

observed in hybrid composites. Glassy and rubbery storage moduli of the hybrid composites increase

with increasing silver loading at fixed CNTs volume fraction. High value of the storage modulus, mea-

sured in DWCNTs/lAg hybrid composites at rubbery state, is caused by strong agglomeration of DWCNTs

bundles. The electrical and mechanical properties are consistent with the morphologies of the hybrid

composites characterized by SEM.

1. Introduction

Electrical and thermal conductive adhesives used for the assem-

bly of electronic devices (from digital to microwave applications)

on various substrates (metallic packages, multichip modules,

printed circuit boards) are silver particles filled. Micrometric silver

flakes are dispersed in polymer matrix at very high filler concen-

trations (more than 25 vol%) to obtain sufficiently high electrical

and thermal conductivities but associated with poor mechanical

properties.

Compared to silver flakes, carbon nanotubes (CNTs) are well

known to exhibit very low percolation thresholds in epoxy matrix

[1] and intrinsic electrical [2,3] and thermal [3,4] conductivities at

the same order than metallic nano or microparticles.

Recent literature and patent reviews show the growing interest

of hybrid filler for thermally and/or electrically conductive

adhesives [5–7]. This new type of filler combines the very high elec-

trical and thermal conductivities of both silver flakes (r =

6.107 S mÿ1; k = 426Wmÿ1 Kÿ1) [8] and carbon nanotubes

(r = 1.104–2.105 S mÿ1 [9]; k = 200–3500Wmÿ1 Kÿ1 [3,10–14]).

Moreover CNTs have very high aspect ratio and therefore one can

expect to elaborate hybrid CNTs/silver flakes composites with high

electrical conductivities and lower silver content than usual silver

filled adhesives.

2. Materials

A commercially available epoxy matrix was supplied by SIQ

Company (Germany). The resin SIQ FP 113 was used as prepolymer

and the SIQ FP 403 as hardener. Compared to others commercial

available epoxy matrixes, SIQ resin has a low viscosity of 0.46 Pa s

at room temperature, suitable for highly filled composites.

Two types of CNTs have been used. Double-wall carbon nano-

tubes (DWCNTs) were synthesized by CCVD in CIRIMAT [15]. Sta-

tistical studies on HRTEM images of 206 carbon nanotubes

showed that more than 70% are DWCNTs with an average outer

diameter of 2.4 nm (Fig. 1). The DWCNTs aspect ratio was esti-

mated to be about 3500. CVD multi-wall carbon nanotubes

(MWCNTs) were supplied from Future Carbon (Germany). A

HRTEM study showed that more than 68% of 113 CNTs have be-

tween 5 and 10 walls and an average outer diameter of 11.7 nm

(Fig. 2). The MWCNTs aspect ratio was estimated to be about

170. The main characteristics of both types of CNTs are summa-

rized in Table 1. Density was calculated according to [16]. Specific

surface area was determined from BET method.

Silver flakes AX20LC were supplied by Amepox (Lodz, Poland)

with a purity of 99.99% and an average diameter of 3 lm.
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3. Hybrid composites preparation

Silver flakes and hardener were poured into a first beaker filled

with acetone. The solution was sonicated for 5 min. The dispersion

of CNTs was assisted by palmitic acid as dispersant agent with a

ratio 1:1 by weight. CNTs/ palmitic acid/ epoxy resin suspension

was poured into a second beaker filled with acetone. The solution

was sonicated for 5 min. After sonication, acetone was evaporated

in each beaker. Both beakers were then placed into a vacuum oven

at 100 °C for 5 min for degassing. The filled resin and hardener

were then poured in a mortar and mixed for 5 min until having a

homogenous composite mixture. This mixture was then poured

into suitable Teflon molds and cured at 140 °C for 3 h and then

at 170 °C for 3 h.

Two types of hybrid fillers have been investigated: DWCNTs/

lAg and MWCNTs/lAg. CNT loadings were 0.4 or 1 vol% while

silver flake loading ranged from 5 to 24 vol%. Silver flake filled

composites were taken as reference materials for electrical and

mechanical properties of hybrid composite.

The quality of dispersion of CNTs in epoxy matrix and lAg filled

epoxy composites was checked by using FESEM on cryo-fractured

surface area.

Electrical conductivity was measured at room temperature

using a Novocontrol broadband dielectric spectrometer with two

probes method. The samples were tested with voltage amplitude

of 1 V in the frequency range [10–2–106 Hz]. The value of conduc-

tivity was calculated from the complex impedance Z⁄ according to

r
⁄(x) = [t/Z⁄(x)S], where t and S are the sample thickness and sur-

face area respectively. The dc conductivity rdc was taken as the

independent frequency part of the real part of r⁄ at 10ÿ2 Hz. The

dynamic mechanical measurements were performed using a Rheo-

metrics ARES Scientific strain-controlled rheometer in the torsion

rectangular geometry. The test samples were 1 mm thick, 10 mm

wide and 40 mm long. The applied strain of 0.1% was below the

limit for linear viscoelastic responses. The temperature depen-

dence of the elastic modulus G0 (or storage modulus) in phase with

the applied deformation was measured between ÿ150 and 150 °C

at 3 °C minÿ1 at a fixed angular frequency of 1 sÿ1.

4. Results and discussion

SEM images of hybrid composites filled with DWCNTs and

MWCNTs are reported in Figs. 3 and 4 respectively. The dispersion

of DWCNTs in the hybrid composite leads to the formation of mi-

cron-size (1–2 lm) agglomerates of very long CNT bundles. In con-

trast, MWCNTs are more individualized and well dispersed

between silver flakes. As reported in Table 1, DWCNTs have very

high surface specific areas (almost three times higher than

MWCNTs). The associated intermolecular Van der Waals forces be-

tween DWCNTs lead to their arrangement in bundles and bundle

agglomerates. The presented dispersion process using sonication,

dispersing agent and mechanical mixing is not efficient enough

to obtain a homogenous dispersion of DWCNTs in epoxy network.

The dc electrical conductivity rdc of 0.4 and 1 vol% CNTs filled

lAg/epoxy composites is plotted as the function of the silver flake

volume fraction in Fig. 5. At low lAg flakes loading, the electrical

conductivity decreases slowly with increasing Ag volume fraction

at 0.4% vol of DWCNTs or MWCNTs. In this case, the high intrinsic

electrical conductivity of Ag flakes does not contribute to the elec-

trical conductivity of the hybrid composite. Increasing MWCNTs

content up to 1 vol%, the electrical conductivity increases slowly

with increasing lAg vol%.

Above 15 and 17.5 vol%, i.e., the hybrid electrical percolation

threshold of respectively MWCNT/lAg and DWCNT/lAg hybrid

composites, rdc is increased by three and one orders of magnitude

respectively. Note that the hybrid percolation threshold in

MWCNT/lAg hybrid composites is independent of the MWCNTs

content. Above the hybrid percolation threshold, MWCNT/lAg

hybrid composites are more conductive than DWCNT/lAg hybrid

composites. At 25 vol% of lAg, the electrical conductivity of the

MWCNT filled hybrid composite is three orders of magnitude high-

er than that of the DWCNT filled hybrid composite. This hybrid

composite is also more conductive than the lAg/epoxy composite

indicating a synergistic effect between MWCNTs and lAg inside

Fig. 1. HRTEM image of CNTs from CIRIMAT.

Fig. 2. HRTEM image of MWCNTs from future carbon.

Table 1

Characteristics of DWCNTs and MWCNTs.

DWCNTs MWCNTs

Number of walls 2 5–10

Diameter (nm) 2,8 11,7

Length (lm) �10 1–2

Aspect ratio �3500 85–17

Density (g cmÿ3) 2.06 2.16

%Carbon 90 98

Specific surface (m2 gÿ1) 700 250



the epoxy matrix. These results are consistent with the analysis of

SEM (see Figs. 3 and 4) where micrometer-size DWCNTs agglomer-

ates were observed in DWCNT/lAg hybrid composites in contrast

to the shorter MWCNTs well dispersed in MWCNT/lAg hybrid

composites. TEM analysis has also shown that MWCNTs are more

individualized and shorter than DWCNTs which are organized in

large bundles. The improvement of electrical conductivity in the

MWCNT/lAg hybrid composites can be associated with the pres-

ence of individualized MWCNTs in epoxy matrix forming conduc-

tive bridges between lAg flakes as seen in the SEM images of

Fig. 4. This morphology explains that the percolating hybrid con-

ductive network is formed at lower silver content than composites

filled only with silver flakes. As previously mentioned, the electri-

cal percolation occurs at lower lAg volume fraction in MWCNTs/

lAg hybrid composites than in DWCNTs/lAg hybrid composites.

This difference is explained by the efficiency of the CNTs dispersion

in epoxy matrix: shorter CNTs as MWCNTs are easier to disperse

and for a fixed volume fraction, the number of nanotubes in a

DWCNTs suspension is higher than the one in MWCNTs

suspension.

Similar synergistic effect between silver particles and CNTs

have been reported [17,18] in epoxy and polypropylene matrix

respectively. Combining micro and nanometric silver is also a

way to propose new hybrid filler. Ye et al. [19] showed no improve-

ment of the electrical conductivity in this type of hybrid composite.

Contrarily Chen et al. [20] showed a slight increase of the electrical

conductivity resulting from better hybrid filler dispersion in poly-

mer matrix. Compared to lAg/MWCNT, lAg/nAg has a lower

potential as hybrid filler because of nanopowder aspect ratio near

unity, leading to very high percolation thresholds [21].

Percolation threshold, as low as 0.03 vol%, was also obtained

with high structure carbon black dispersed in PEI resin [22]. The

very long chains of nanosized spherical carbon black particles, kept

together by Van der Waals forces and characteristics of high struc-

ture carbon black, lead to very low percolation thresholds. Accord-

ing to the Balberg model, a high aspect ratio leads to low

percolation threshold. However agglomerates of spherical carbon

black particles are less conductive than CNTs because of the great

interfacial resistances between each sphere. This behavior was

confirmed experimentally by Adohi et al. [23] where CNTs filled

Fig. 3. SEM images of cryo-fractured surface area of 0.4 vol% DWCNTs/20 vol% Ag hybrid composite.

Fig. 4. SEM images of cryo-fractured surface area of 0.4 vol% MWCNTs/20 vol% Ag hybrid composite.

Fig. 5. Dependence of the dc electrical conductivity on the Ag flakes volume

fraction for hybrid composites. Data points are connected to guide the eye.



polymer composite exhibit, above the percolation threshold, high-

er electrical conductivity than carbon black polymer composite.

Fig. 6 shows the temperature dependence of the storage

mechanical modulus G0 of the DWCNTs/lAg hybrid composites.

The drastic drop of G0 is the mechanical manifestation of the glass

transition Tg. At a fixed DWCNTs loading of 0.4 vol%, the increase of

hybrid composite glass transition temperature Tg with increasing

silver flakes content could be explained by increased silver micro-

particle agglomeration [24]. In the vitreous state, the storage mod-

ulus increases with increasing lAg volume fraction. We note that

this increase is moderate above 10 vol% of lAg. It is clear that a

mechanical reinforcement effect of lAg is observed in hybrid com-

posites and attributed to the restriction of the epoxy chain mobility

as other fillers [25]. It is well known in polymer network that the

mechanical modulus of the rubber plateau is generally related to

the crosslinking density of the materials [24]. In the rubbery state

(T > Tg), the storage modulus of hybrid composites steadily in-

creases with increasing lAg volume fraction. This increase, attrib-

uted to the reinforcement effect of DWCNTs and lAg on the epoxy

matrix, is more important in the rubbery state that in the vitreous

state. G0 for 0.4 vol% DWCNTs/20 vol% lAg at T > Tg is clearly higher

than that of neat epoxy, indicative of the higher crosslink density.

In Fig. 7, the temperature dependence of the storage modulus of

DWCNTs/lAg hybrid composites is compared to the MWCNTs/

lAg hybrid composites and CNTs or lAg filled epoxy composites.

In the glassy state, the hybrid composites have a mechanical

modulus higher than CNTs filled epoxy composites and similar to

the lAg flakes filled epoxy composites. It is well know that CNTs

filler improve strength, stiffness and fracture toughness of the poly-

mer matrix [26]. In the rubbery state, the hybrid composites have a

storage modulus higher than CNTs or lAg filled epoxy composites.

We observe also that the rubbery modulus of DWCNTs/lAg hybrid

composite is clearly higher than that of the MWCNTs/lAg hybrid

composite. This result is consistent with the rubbery storagemodu-

lus behavior in DWCNTs and MWCNTs/epoxy composites. Taking

account of themorphologyof composites, the tendencyof clustering

of DWCNTs bundles into agglomerates in hybrid composites results

in an increase of the storage modulus at T > Tg. The MWCNTs filled

lAg composites reveals lower rubbery modulus because of smaller

nanotubes agglomerates, shorter MWCNTs and a better dispersion

in epoxy matrix.

5. Summary

We have developed a method to disperse CNTs and micrometric

silver flakes in a fluid epoxy resin and elaborate hybrid conductive

composites. At high volume fraction of silver flakes, a synergistic

effect between MWCNTs and silver flakes was found on the dc

electrical conductivity. DWCNTs are more difficult to disperse

therefore no beneficial impact in electrical conductivity has been

observed in hybrid DWCNT/lAg composites. Hybrid composites

display also higher mechanical modulus than CNTs or silver filled

epoxy composites. Dispersed DWCNTs and MWCNTs act in epoxy

matrix as efficient filler improving the storage modulus at vitreous

and rubbery state. The highest value of rubbery storage modulus in

hybrid composites is characteristics of the tendency of DWCNTs to

agglomerate in the epoxy matrix as confirmed SEM investigations.

The first approach of electrical and mechanical properties of

CNTs/lAg hybrid epoxy composites shows their potential as con-

ductive adhesives and as reinforcement of the mechanical proper-

ties of the epoxy matrix. Future work will be conducted to

investigate the thermal conductivity of these hybrid adhesives,

their adhesive performance and behavior under thermal ageing.
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