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Blind Deconvolution of Sparse Pulse Sequences
Under a Minimum Distance Constraint: A Partially

Collapsed Gibbs Sampler Method
Georg Kail, Jean-Yves Tourneret, Senior Member, IEEE, Franz Hlawatsch, Fellow, IEEE, and

Nicolas Dobigeon, Member, IEEE

Abstract—For blind deconvolution of an unknown sparse se-
quence convolved with an unknown pulse, a powerful Bayesian
method employs the Gibbs sampler in combination with a
Bernoulli–Gaussian prior modeling sparsity. In this paper, we
extend this method by introducing a minimum distance constraint
for the pulses in the sequence. This is physically relevant in ap-
plications including layer detection, medical imaging, seismology,
and multipath parameter estimation. We propose a Bayesian
method for blind deconvolution that is based on a modified
Bernoulli–Gaussian prior including a minimum distance con-
straint factor. The core of our method is a partially collapsed Gibbs
sampler (PCGS) that tolerates and even exploits the strong local
dependencies introduced by the minimum distance constraint.
Simulation results demonstrate significant performance gains
compared to a recently proposed PCGS. The main advantages
of the minimum distance constraint are a substantial reduction
of computational complexity and of the number of spurious
components in the deconvolution result.

Index Terms—Bernoulli–Gaussian prior, blind deconvolution,
Markov chain Monte Carlo method, partially collapsed Gibbs
sampler, sparse deconvolution.

I. INTRODUCTION

T HE problem of blind deconvolution (BD) arises in many
applications where some desired signal is to be recovered

from a distorted observation, e.g., in digital communications
[1]–[5], seismology [6]–[9], biomedical signal processing
[10]–[13], and astronomy [14], [15]. The BD problem is
ill-posed since different input sequences and impulse responses
can provide the same observation. As a consequence, additional
assumptions or constraints have to be considered in order to re-
duce the number of solutions. Examples of constraints that have
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been considered are monotonicity [16], positivity [17]–[19],
and sparsity [20]–[22]. In the Bayesian setting, which will be
adopted here, constraints can be modeled through appropriate
prior distributions.

In this paper, we propose a Bayesian BD method that is based
on a novel combined sparsity and minimum distance constraint.
We consider a sparse, random sequence

convolved with a pulse of unknown shape. For a conve-
nient modeling of the sparsity of , we use a random binary in-
dicator sequence , where at
each temporal position where is nonzero and else.
The binary indicators thus mark the positions of the weighted
replicas of the pulse in the observed sequence. Our goal is to
detect the positions of the nonzero (equivalently, to detect
the indicators ) and to estimate their amplitudes (the values
of the nonzero ) as well as the pulse shape.

Most Bayesian BD approaches exploiting sparsity use a
Bernoulli–Gaussian prior for the sparse sequence , i.e., the
are independent and Bernoulli distributed and the nonzero
are Gaussian distributed [7], [8], [23]–[26]. However, here we
will use a modified Bernoulli–Gaussian prior incorporating a
hard minimum distance constraint that requires the temporal
distance between any two nonzero (or two nonzero indica-
tors ) to be not smaller than some prescribed minimum
distance. This is physically relevant in many applications,
including layer detection [12], biomedical signal processing
[11], [13], seismology, and multipath parameter estimation
[27], [28]. We will demonstrate that the minimum distance
constraint provides a computationally efficient way to ensure
sparsity, avoid overfitting, and improve resolution. To the best
of our knowledge, a minimum distance constraint has not been
considered previously for BD (prior to our work in [12]).

The proposed BD method is based on a Bayesian strategy
using a Markov chain Monte Carlo (MCMC) algorithm, which
is a powerful approach for complex problems with a large
number of parameters [29], [30]. The Gibbs sampler is a simple
and widely used MCMC method with interesting properties for
BD [9], [24], [26], [31]; however, it is computationally ineffi-
cient when there are strong dependencies among the parameters
[23], [32]. Such dependencies are caused by our minimum dis-
tance constraint, since a nonzero indicator determines all
indicators within a certain neighborhood to be zero. There-
fore, we will use a partially collapsed Gibbs sampler (PCGS)
[33], which is a recently proposed generalization of the Gibbs
sampler with significantly faster convergence for strongly



dependent parameters. The PCGS has been applied to various
estimation problems [34] including blind Bernoulli–Gaussian
deconvolution [23], [35]. Here, elaborating on our work in
[36], we develop a PCGS for BD subject to a minimum dis-
tance constraint. Our method tolerates and even exploits the
challenging probabilistic structure imposed by the minimum
distance constraint.

This paper is organized as follows. In Section II, we describe
the signal model, our choice of prior distributions, and the
minimum distance constraint. Section III discusses the esti-
mators and detectors underlying the proposed PCGS method.
The PCGS is then presented in Section IV. In Section V, the
proposed method is extended in order to resolve a scale and
shift ambiguity. Finally, simulation results assessing the per-
formance of the proposed method are presented in Section VI.

II. SIGNAL MODEL AND PARAMETER PRIORS

A. Signal Model

We consider a sparse sequence of length , which is con-
volved with an unknown pulse and corrupted by additive
noise , yielding the observed sequence . All sequences are
complex-valued. The pulse is defined for ,
where typically . The observed sequence can be ex-
pressed as

(1)

where for convenience we have set for
. Like , is defined for ;

thus, nonzero values of for near 1 or correspond to
copies of the pulse in that are cut off at the edges. Defining
the vectors , ,

, and , the signal model (1) can be
written as

(2)

with the Toeplitz matrix toep that has
as its first column and

as its first row.
Our goal is to estimate the sparse sequence along with the

pulse shape and noise variance from the observation .
For this, following [23], [25], [32], [37], it will be convenient to
introduce the binary indicator sequence

if
if ,

(3)

Let denote the corresponding
vector. The number of nonzero (equivalently, nonzero )
will be denoted as ; note that

. We can rewrite (2) as

(4)

where denotes the matrix of size that is obtained from
by removing all columns such that and denotes

the vector of length that contains the corresponding , i.e.,
all nonzero entries of .

The indicator sequence is subject to a hard minimum dis-
tance constraint , where the “constraint set”
is the set of all such that the temporal distance between any
two nonzero entries and (equivalently, any

) satisfies , with a given .
Thereby, the set of possible hypotheses for is significantly re-
duced ( rather than ). This reduction of the
number of hypotheses results in large complexity savings in the
deconvolution algorithms to be presented later.

For estimation of the pulse shape vector , it is convenient to
represent by a basis expansion

(5)

where is a random coefficient vector and
is a known matrix containing the

basis vectors . The basis vectors are fixed; their number
and their shapes (viewed as time-domain signals) express some
prior information about the pulse , e.g., regarding its maximum
possible time and frequency supports. Here, we choose the basis
functions as the first Hermite functions [12], [38], [39],
centered at the th entry. The first Hermite functions
cover an elliptic region in the time-frequency plane whose area
is roughly equal to [40], [41, p. 26]. Using (5), we can rewrite
the signal model in (2) as

(6)

where is the Toeplitz matrix with
first column and first row

. Because of (5), estimation of the
length- pulse vector reduces to estimation of the
length- coefficient vector . Typically, , so that
a parsimonious parametric representation of is obtained.

B. Parameter Priors

Our goal is to estimate the sparse sequence , along with
the unknown pulse coefficients and noise variance . The
Bayesian methodology adopted in this study requires the
specification of prior distributions for all unknown quantities
[42, p. 9]. The priors we will use are described in what follows.

Sparse Sequence: Rather than specifying the prior prob-
ability density function (pdf) directly, we will specify

and , as previously done in [23], [25], and [32]. To
ensure consistency with Section II-A, must be chosen
such that (3) is true and must be chosen such that
is guaranteed. Assuming that different random transitions

(i.e., for different ) are statistically independent, we
have

(7)

Furthermore, we assume (note that implies )

if
if

(8)



where is the Dirac delta function, is a fixed hyperparam-
eter, and denotes the circularly symmetric com-
plex Gaussian pdf with mean and variance . Consequently,
the conditional prior of is

(9)

Here, denotes the multivariate circularly sym-
metric complex Gaussian pdf with mean and covariance
matrix . Note that depends on because its dimension is

.
Indicator Sequence: For a compact formulation of the prior

of , we will use the indicator function

if
if .

We then define , up to an irrelevant normalization factor, as
the product of —expressing the minimum distance con-
straint—and an independent and identically distributed (i.i.d.)
Bernoulli pdf , i.e.,

(10)

Here, means “proportional to,” and the “1-probability”
is a fixed hyperparameter. Together, and determine1

, i.e., the a priori mean rate of 1’s in . For ,
the priors (7)–(10) simplify to the classical Bernoulli–Gaussian
model. We note that our model can be extended by assigning
prior distributions also to and hyperparameters like etc.
that are assumed fixed here; these hyperparameters can then be
estimated along with the model parameters using a hierarchical
Bayesian algorithm. Furthermore, the modified Bernoulli prior
in (10) can be replaced by a more sophisticated Markovian prior
(cf. [43]).

Pulse Shape: We choose the prior of as i.i.d., zero-mean,
and circularly symmetric complex Gaussian, i.e.,

(11)

where the variance is a fixed hyperparameter.
Noise Variance: The noise is modeled as i.i.d. circularly

symmetric complex Gaussian with a constant variance ,
which is treated as a random hyperparameter and is estimated
jointly with the other unknown parameters. Our stochastic
model is thus a hierarchical Bayesian model. For the prior of

, we choose an inverse gamma pdf, i.e.,

(12)
where is the gamma function, is the unit step func-
tion, and and are fixed hyperparameters. The inverse gamma

1It can be shown that ,
where is the positive real solution of the equation

.

distribution is convenient (and commonly used in similar con-
texts) because it is the conjugate prior for the Gaussian likeli-
hood function [42, p. 152]. The same is true for the priors
and .

C. Posterior Distribution

The unknown quantities to be estimated are , , , and
or, equivalently, , , , and . According to the adopted
Bayesian methodology, their estimation is based on the poste-
rior distribution, whose determination involves the likelihood
function and the priors [42, p. 9]. The likelihood function of our
model is, according to (2), (4), (6), and the i.i.d. Gaussian prior
for the ,

(13)

Assuming that , , and are a priori independent, the joint
posterior distribution of , , , and is then obtained from
the likelihood function and priors as

(14)

where the factors in the final expression are given in (7), (8),
and (10)–(13).

III. MONTE CARLO DETECTION-ESTIMATION METHOD

In this and the next two sections, we will develop a Monte
Carlo detection-estimation method for BD. Following [37], our
approach is to first detect (i.e., detect which

or, equivalently, are nonzero) and then estimate the cor-
responding nonzero . Without the detection step, sparsity of

would not be ensured [37]. In addition, we will estimate the
unknown pulse coefficients and noise variance . We first
present the basic detector and estimators and their conceptual
relation to optimal detectors and estimators.

A. Sequence and Component Detectors

MAP Sequence and Component Detectors: As a motivation
for the block detector to be proposed in Section III-B, we first
consider two well-known optimal methods for detecting the in-
dicator sequence and their Monte Carlo (sample-based) coun-
terparts. The MAP sequence detector

(15)

is optimal in that it minimizes the probability of a sequence error
[44, p. 80]. Note that . Similarly, the MAP

component detector

(16)

minimizes the probability of a component error ;
it is also known as “maximum posterior marginal/mode



(MPM) detector” (e.g., [45]). It can be shown that
.

In principle, both used in (15) and used in
(16) can be derived from the joint posterior
by marginalization. However, due to the high dimension-
ality of , we will use a Monte Carlo ap-
proach [29, p. 79], [46], i.e., we will generate a sample

of realizations
from and then

perform the detection based on this sample. Note that
depends on the observation . The generation of will be
discussed in Section IV.

Sample-Based Sequence Detector: Using the sample ,
marginalizations are easily done by ignoring the undesired
components of each realization . We
first consider the marginalization that corresponds to the mar-
ginal posterior underlying the MAP sequence detector

in (15). Let denote the relative multiplicity of
some in , i.e., the number of occurrences of
in normalized by the sample size . In particular,

if does not occur in . Let denote the set of the
contained in (i.e., for which ); note

that due to our minimum distance constraint. If the
process generating does not exclude parts of the support of

, i.e., parts of , then converges to as
increases without bound [46, p. 5]. Therefore, the sample-based
sequence detector

approximates for sufficiently large. Note that is
simply the occurring most often in .

Unfortunately, is usually not sufficiently large; it is
much smaller than the number of hypotheses among
which in (15) selects the best. This means that cor-
responds to a very coarse quantization of the probability distri-
bution of the admissible hypotheses in steps
of . This often leads to ties among multiple hypotheses that
simultaneously maximize even though their true posterior
probabilities are not equal (see Section VI-B).

Sample-Based Component Detector: The above problem is
avoided by the sample-based version of the MAP component
detector (16), which is given by

Here, is the relative multiplicity of some in
, i.e., the number of realizations in that have the given
at position , normalized by the sample size . Thus, is

the that the majority of the realizations contain
at position . If the process generating does not exclude parts
of the support of , i.e., of {0,1}, then converges to

as increases without bound [46, p. 5]. Therefore, the
sample-based component detector is an approximation of

the MAP component detector . The fact that is usually

rather small is no problem here since there are only two possible
hypotheses for . Hence, will be a good approximation
of and, in turn, will be a good approximation of

. Again, is in . This is because
each realization is in , and hence, for and such that

, none of the realizations can contain 1’s at
both positions and . Thus, it is impossible that the majority
of the realizations contain a 1 at position and, at the same
time, the majority of the realizations contain a 1 at position

.
However, the MAP component detector has itself a

problem that renders it unsuitable in our context. In regarding
only one marginal at a time, ignores a signif-
icant part of the information contained in the joint posterior

, which may yield counterintuitive results. In particular,
consider a fixed time interval of length , and sup-
pose that for a given observed , the probability that there is
exactly one active indicator in is 1. Equivalently,

since the events are mu-
tually exclusive for (there may not be more than one

in because of the minimum distance constraint). Sup-
pose further that is not much larger at any of
the possible positions than at the respective other po-
sitions, so for all . This means that

for all , which implies that
for all , i.e., the MAP component detector

does not detect any pulse in . This is clearly counterintuitive
as the probability that there is no pulse in is zero.

B. The Proposed Block Detector

In order to mitigate the problems described above, we con-
sider a block detector that is a compromise between the se-
quence detector and the component detector. The sequence
is split into nonoverlapping blocks of generally different

lengths , , i.e., . Each block
is detected independently of the others. Thus, the MAP block
detector is given by

Here, is again a marginal of and is the set
of all conforming to the minimum distance con-
straint. The MAP block detector minimizes the block error prob-
ability . The overall detection result is obtained

by concatenating all detected blocks , i.e.,

. Note that the MAP sequence detector

and the MAP component detector are special cases
of the MAP block detector corresponding to ,

and , , respectively.
The sample-based approximation of the MAP block detector

is given by



Here, is the relative multiplicity of in ,
i.e., the number of in that have the given
as the th block, normalized by , and is the set
of all that are featured by the contained in

(i.e., the for which ). The overall detection
result is again obtained by concatenating all detected blocks,

i.e., .
For the definition of the block intervals, we can exploit the

typical structure of induced by the sparsity of . We first

calculate , i.e., the relative multiplicity of
, at each position . We have observed

empirically that, for a sparse , and assuming that the signal
model is well matched to the problem, the sequence typi-
cally consists of long “zero intervals” and short “nonzero in-
tervals.” That is, the intervals of positions where some re-
alizations contain nonzero indicators are separated by longer
intervals where no realization contains a nonzero indicator. We
propose to use these zero intervals and nonzero intervals as
blocks. Within zero intervals, , which means that no

in features a nonzero indicator in the interval
considered, and thus the sample-based block detector trivially
yields the zero block. Nonzero intervals, on the other hand, have

at all positions. They are typically short enough to avoid
the problems of the sequence detector. Moreover, they are sepa-
rated from each other by the zero intervals, which reduces their
statistical dependence and thus avoids the problems of the com-
ponent detector.

The block detector will perform well if the nonzero intervals
are short (not much longer than ) and the zero intervals
are long (longer than ). We note that is not guaran-
teed to be an element of , or even of , because the different
blocks are processed independently; only the special cases
and are guaranteed to be in . However, if has the
interval structure described above, is highly likely to sat-
isfy the minimum distance constraint. Also, sparsity of
is ensured because all realizations satisfy the minimum
distance constraint. Conditions for to feature zero and
nonzero intervals include a well-matched signal model, time-
shift compensation (see Section V), and a close match between

and the process generating . In the case of
MCMC methods—see Section IV—the last condition presup-
poses convergence of the Markov chain, i.e., a long enough
burn-in period. For a given sample , it is easy to calculate

and check if it has the desired interval structure. When
it does not, a more sophisticated detector like the sequence de-
tector proposed in [47] may be used. This detector maximizes
a specially designed metric that is calculated from all jointly
and enforces the minimum distance constraint.

C. Estimation of Amplitudes, Pulse Coefficients, and
Noise Variance

Amplitudes: For estimation of the amplitudes given
the previously detected indicator sequence , we ideally use
the minimum mean square error (MMSE) estimator

However, calculating by marginalization
of is not feasible. A solution is again provided
by a sample-based estimator. Unfortunately, a sample-based ap-
proximation of is not available because
is not guaranteed to be an element of . We therefore condi-
tion each only on the respective detected indicator

, i.e., we consider the componentwise MMSE
estimator

Accordingly, we use a sample-based approximation of
rather than of . Note

that, in contrast to , is guaranteed to occur in due
to our definition of the block detector in Section III-B. The
sample-based version of is then obtained as follows.
For each , we partition the set of realization
indices into two complementary subsets
and containing all indices for which and

, respectively. Then, is estimated as

(17)

where is the th entry of and denotes the
cardinality of . Note that because

occurs in . Furthermore note that entails ,

because all realizations with are zero; thus,
(17) has to be calculated only for those where .

The above sample-based componentwise estimator is com-
putationally efficient and performed well in our simulations. An
alternative is provided by the joint conditional MMSE estimator

Using the Gaussianity of , one easily obtains

(18)

where is the that corresponds to and .
Note that presupposes prior estimation of and ,
to be discussed below. In our simulations, the performance of

was consistently—if only slightly—better than that of
in (17). However, the complexity is higher.

Pulse Coefficients and Noise Variance: For estimation of the
pulse coefficients and noise variance , we use the sample-
based versions of the respective MMSE estimator, i.e.,



IV. PARTIALLY COLLAPSED GIBBS SAMPLER

MCMC methods [29], [30] are often used when the analytic
expression of a detector or estimator is too complex to be cal-
culated directly. The detector or estimator is approximated by a
sample-based scheme (as, e.g., in Section III), where a sample
is generated by means of an ergodic Markov chain whose sta-
tionary distribution is the target distribution from which the
sample realizations are to be drawn. In this section, we first re-
view the Gibbs sampler and the PCGS and discuss their suit-
ability for problems with deterministic constraints such as our
minimum distance constraint. Then, we propose a PCGS that
exhibits fast convergence in the presence of a minimum distance
constraint.

A. Review of Gibbs Sampler and PCGS

Gibbs Sampler: Consider a random vector
, and let denote without the th entry . (The

generalization to the case where the are themselves vec-
tors is straightforward.) To obtain realizations from the joint
distribution —which corresponds to in
our problem—the Gibbs sampler iteratively samples each
from in an arbitrary order. This strategy is known
to converge to the target distribution , which is the sta-
tionary distribution of the underlying Markov chain [29, p. 378],
[46]. After convergence, such sampling steps produce a new
realization from ; this will be referred to as one itera-
tion of the Gibbs sampler. Since the initialization may strongly
influence the first few realizations, only the realizations after
a certain “burn-in period” are used in the sample. The main
strengths of the Gibbs sampler are the generality of its formu-
lation and the fact that it circumvents the “curse of dimension-
ality.” However, a known weakness is that statistical dependen-
cies between (some of) the tend to result in slow convergence
of the Markov chain to its stationary distribution [23], [32].

PCGS: The PCGS is an extension of the Gibbs sampler that
allows the following three modifications [33].

• Marginalization. Rather than sampling only the entry in
step , some other entries may be sampled along with in-
stead of being conditioned upon. Let ,
and let the vectors and contain the en-
tries of indexed by and by its complement

, respectively. Then step may sample
from instead of . This
can improve the convergence rate significantly, especially
when there are strong dependencies between the . Note
that, in general, some for different overlap. Within
one entire PCGS iteration, some are thus sampled
several times.

• Trimming. If a is sampled several times in consecu-
tive steps, only the last value is relevant, since the other
values are never used. Such unused entries can thus be
dropped from the respective sampling distribution. We can
formulate this as follows: For any ,
let the vector contain those entries of that
are not contained in , i.e.,

. Then step may sample from in-
stead of , which may reduce the com-

plexity of the sampling steps. The convergence behavior is
not affected. Note that the distributions used for sampling
are generally no longer conditional distributions associated
with the full joint distribution , but conditional dis-
tributions associated with certain marginal distributions of

.
• Permutation. It is reasonable to choose the (arbitrary) sam-

pling order such that trimming can be performed to a max-
imum extent. After trimming, permutations are only al-
lowed if they preserve the justification of the trimming al-
ready applied.

These modifications do not change the stationary distribution
of the Markov chain [33]. The PCGS’s flexibility regarding the
choice of the sampling distributions makes it applicable to many
cases in which the sampling distributions required by the Gibbs
sampler cannot be calculated analytically (see [34] and refer-
ences therein).

Deterministic Constraints: Deterministic constraints such as
our minimum distance constraint may cause slow convergence
of the Gibbs sampler and may even inhibit its convergence alto-
gether. This is because each of the sampling steps constitutes
a jump along one of the axes of the -dimensional hypothesis
space. A deterministic constraint may restrict the hypotheses
with nonzero probability to disjoint regions such that one region
cannot be reached from another by such jumps. Sampling sev-
eral jointly, as in the PCGS, corresponds to a jump along the
linear span of the axes associated with these . Thus, there are
more configurations of disjoint regions in the hypothesis space
between which the sampler can jump. In the Gibbs sampler, the

may be grouped into vectors, too, but these vectors must be
disjoint. Therefore, the possible directions of the jumps are still
orthogonal to each other. The restricted hypothesis space typi-
cally demands more freedom for the jumps, which can be pro-
vided by the overlapping subvectors that are possible in
the PCGS.

B. The Proposed PCGS

We recall that our goal is to obtain a sample

from the posterior distri-
bution ;
from this sample, the unknown parameters , , , and
can be detected or estimated as discussed in Sections III-B
and III-C. We now present a PCGS—briefly referred to as
“proposed sampler” and abbreviated PS—that exhibits fast
convergence in the presence of a minimum distance constraint.
For now, we ignore the scale and time shift ambiguity inherent
to BD; a modification of the PS that accounts for this ambiguity
will be discussed in Section V.

For a given time , let
denote a right-hand neighborhood of whose

length is except when is so close to the se-
quence end point that less than entries are left, i.e.,
we set
and . Let

denote the corresponding subvector of
, and the complementary subvector. Analogous defini-

tions apply to . The neighborhoods are special instances



of the parameter index subsets considered in Section IV-A.
One iteration of the PS is stated as follows.

One PS iteration

• Sample from .
• For ,

— sample from ;
— sample from .

• Sample from .

Thus, a PS iteration consists of three sampling steps, where the
second step is split into substeps. The th substep samples

and , and is equivalent to jointly sampling from
. The PS is not a Gibbs sam-

pler because is not a con-
ditional distribution associated with . Rather,
it is a conditional distribution associated with
marginalized with respect to all parameters in without
and . Thus, and are not contained in the condi-
tion for , which is hence sampled regardless of the pre-
vious realization of and . This difference from the
Gibbs sampler allows the PS to explore the restricted hypothesis
space efficiently.

The PS is a valid PCGS, because it is the trimmed
version of a sampler that samples from

rather than just
from . In the

untrimmed version of the sampler, all the sampling distribu-
tions are conditional distributions associated with the full joint
posterior. The trimming is justified because all elements of

except itself are also contained in
(cf. Section IV-A).2

The fact that and do not contain
in their conditions is not the result of trimming but reflects

the fact that and are conditionally independent of
when is given, i.e., and

.
For a full validation of the PS as a PCGS, Appendix A derives

the PS from a classical Gibbs sampler, using only modifications
that are allowed by the PCGS concept.

C. Sampling Distributions

We will now present closed-form expressions of the sampling
distributions involved in the PS. Detailed derivations of these
distributions are provided in Appendix B.

Pulse Coefficients: The sampling distribution for is

(19)

2This also explains why we define as a one-sided neighborhood: within
, is the only entry that cannot be trimmed because it

is conditioned upon in the next substep. If we defined as a two-sided
neighborhood, supported on both sides of , we would not be allowed to trim
the entries with indices lower than . This is a direct consequence of the order
of sampling steps and substeps we choose for the algorithm, namely with as-
cending from 1 to . If we chose a random order of these substeps (which would
not violate the PCGS concept), no trimming could be performed at all, regard-
less of how we define ; i.e., we would have to sample
from in each substep.

with

(20)
Thanks to the moderate size of and its jointly Gaussian pos-
terior, the entries of can be sampled jointly. (This is the point
where we exploit the benefit of the basis expansion, i.e., the
lower dimensionality of compared to .) Before is sampled,

is constructed from the most recent realization of . Simi-
larly, after is sampled, is updated using the new realization
of before the other parameters are sampled (see below).

Indicators: In order to obtain the sampling distribution
analytically, we would have

to marginalize the joint posterior with respect
to and . While the marginalization
with respect to is easily done in closed form, we
want to avoid the marginalization with respect to the dis-
crete-valued . Instead, we sample
from and then use the
contained in the sampled . The sampling distribution is

(21)
with

(22)

Here, , consists of the
columns of indexed by , and is without these
columns. We evaluate (21) for all hypotheses ; summing
the results yields the normalization constant which makes (21)
a valid probability mass function (pmf). In this step, we exploit
the minimum distance constraint: since in (21) contains
the factor , all hypotheses that violate the constraint
have a probability of zero. Because the length of is
at most , this applies to all hypotheses that contain
more than one 1. Without the minimum distance constraint,
there would be hypotheses with potentially nonzero prob-
ability. With the constraint, there are only , namely
one which contains no 1’s and which contain one 1. We
only need to evaluate (21) for these hypotheses. This
drastic reduction of the number of hypotheses is the key to the
high efficiency of the PS.

The are sampled in ascending order , and
the sampling distribution of each is conditioned on the pre-
viously sampled (contained in ). Together
with the factor in (21), this guarantees that the realization

obtained after the substeps is in . Thus, for
all in .

Amplitudes: The sampling distribution for is

if
if (23)



with

(24)

Here, is the th column of . When the sampled equals 1,
then in (22), and thus and .
This means that and need not be calculated.

Noise Variance: The sampling distribution for is

(25)

where, as in (12), denotes the inverse gamma pdf
with parameters .

D. An Alternative PCGS

An alternative PCGS, referred to as “alternative sampler”
(AS), can be formulated as follows.

One AS iteration

• Sample from .
• For , sample from

.
• Sample from .
• Sample from .

This sampler, too, is a valid PCGS. The difference from the
PS is that in the sampling substeps for the , is entirely
marginalized out, which is similar to the samplers proposed in
[23] and [35]. (Subsequently, can be sampled jointly be-
cause it is of moderate dimension and jointly Gaussian.) At
first sight, the AS appears to be a promising alternative to the
PS, because it is “more collapsed” than the PS, i.e., its sam-
pling distributions are conditioned on fewer parameters. There-
fore, the gain in convergence rate relative to the Gibbs sampler
is slightly larger than for the PS. However, the complexity of
computing the sampling distributions is much higher. In partic-

ular, the simple expression in (21) is replaced by

, with a length- vector and a
matrix that have to be calculated for each of the hy-
potheses, each time a is sampled. An efficient update method
described in [23] can be used for a recursive calculation of the
relevant pmf, thus avoiding the explicit inversion of a
matrix for each hypothesis. However, even in that case, the AS
is still significantly more complex than the PS.

E. Reducing Complexity

The complexity of the PS depends strongly on the number
of hypotheses (for all ) for which the probabilities

have to be evaluated in
one PS iteration. An approximation of can be obtained by
ignoring the reduced neighborhood lengths near the block
boundary , i.e., by assuming that all neighborhoods

, have length . Then, each of the
sampling substeps of for requires evalu-
ating in (21) for
hypotheses, and therefore, . We can use

two modifications of the PS to reduce approximately by
the factor , so that , without changing the
sampler results. For simplicity, we assume that is not near
the block boundary , which means that and

.
For the first modification, assume that we sample

at position . This will be present in the condition
of the sampling distributions of all subsequent indicators

, , and it forces the next in-
dicators to be zero. This is because the factor in (21)
assigns zero probability to all hypotheses in which not
all are zero. Therefore, after sampling

, the subsequent indicators can
be set to zero and the corresponding sampling sub-
steps can be skipped. This includes skipping the sampling of

and setting these amplitudes to zero.
The second modification applies to the complementary case,

i.e., after sampling . As a motivation, we note that (21)
is proportional to . Here, consists of

and , which are contained in the argument and
condition of in (21), respec-
tively. Let denote the set of the hypotheses con-
sisting of the respective and (the latter is the same
for all hypotheses). It can be shown—the case will
be elaborated presently—that is invariant
to a shift of the neighborhood to for a given if
the nonoverlapping parts of and contain only
zeros. (In that case, also the nonoverlapping parts of
and contain only zeros.) This means that, if some is
contained in both and and the nonoverlapping parts of

and contain only zeros, the probability of this
is the same in the sampling substeps corresponding to and
; thus, it has to be calculated only once.
An example for the case (corresponding to

hypothesis sets and ) is shown in Fig. 1. It is assumed
that , so there are hypotheses in

and also in . In [see the left box in Fig. 1(a)],
there is one hypothesis with all indicators in —i.e.,

—equal to zero. The other hypotheses
each contain exactly one 1 in . The indicators at the
remaining positions, and , are
the same for all hypotheses. (Among them, note that

, in particular, is equal to the respective realization
drawn in the previous sampler iteration.)

Similarly, in [see the right box in Fig. 1(a)], there
is one hypothesis with all indicators in —i.e.,

—equal to zero, and each of the other
hypotheses contains exactly one 1 in . The remaining
indicators and are the same for
all hypotheses. (Among them, in particular, is equal
to the respective realization drawn in the previous substep.)

The following can now be verified by inspection [see
Fig. 1(b)]: If both drawn in the previous sampler
iteration and drawn in substep [highlighted by boxes
in Fig. 1(b)] are zero, then of the hypotheses in
appeared already in . (In Fig. 1(b), these hy-
potheses are indicated by arrows.) This means that only one



Fig. 1. (a) Hypothesis sets and for . White (black) nodes depict zero (nonzero) indicators. Gray nodes may be zero or nonzero, depending
on the outcome of the past sampling substeps. (b) The same, under the condition that in (left set) and in (right set)—both are highlighted by
boxes—are zero (white). It can be seen that sequences in also appear in , as indicated by the arrows.

hypothesis is new. Therefore, has to be
calculated only for one hypothesis; for all others, the values
of from the previous sampling substep
can be reused. (Note, however, that the values to be reused are
those of (21), i.e., before normalization.)

Therefore, after sampling , (21) is calculated for only
one hypothesis in substep (unless ), which
amounts to an average computation of little more than one prob-
ability per substep.3 In the complementary case, i.e., after sam-
pling , we apply the first modification and skip
substeps. Then, we calculate (21) for hypotheses in the
following substep . Again, this amounts to an average
computation of approximately one probability per substep. The
effects of the two modifications thus complement each other.
When both modifications are used, the overall average com-
plexity per PS iteration, , is reduced from about
to about , the number of substeps.

V. RESOLVING THE SCALE AND SHIFT AMBIGUITY

A. Problem Formulation

Assuming for the moment an infinite temporal domain of ,
, and , we have for and

3The effect of the case on the overall complexity is small, since
is sparse and thus contains only few nonzero entries. This means that the case

occurs very rarely.

, with an arbitrary amplitude scale factor
and an arbitrary time shift . Provided that some

exists such that , this can be expressed
as toep toep . This equality has the following
two consequences.

First, the observation is invariant to amplitude scalings and
time shifts of the true and . Thus, unless the true parame-
ters are constrained in a way that uniquely defines and , BD
methods are inherently invariant to amplitude scalings and time
shifts of the true and . This means that the BD result may
feature an incorrect amplitude scale and time shift. In practice,
this is not necessarily a major problem.

Second, the likelihood function in (13) is invariant to ampli-
tude scalings and time shifts of its arguments:

toep

Therefore, the likelihood function is strongly multimodal: in-
stead of a global maximum, there is an equivalence class of com-
binations with different and that maximizes the
likelihood. With respect to time shifts, however, the ambiguity
is relaxed in our case because our system model does not satisfy
the two assumptions made above, namely, infinite temporal sup-
port and existence of a such that . In fact,
since and are confined to the time intervals
and , respectively, some time shifts lead to the loss



of nonzero values or as they are shifted outside their re-
spective interval. In this case, the likelihood changes. Further-
more, a satisfying the time shift invariance relation

exactly typically does not exist; the relation can only
be satisfied approximately. This means that the likelihood func-
tion is only approximately invariant to time shifts. Therefore,
there is generally one specific time shift that fits the data best,
although others may be almost as good.

As explained in Section II-C, our BD method is based
on the joint posterior distribution

, where the likelihood
appears as one of the factors. Due to the other factors, the pos-
terior is not invariant to scalings and time shifts. Nevertheless,
it usually preserves a multimodal structure similar to that of
the likelihood function. This is problematic for both phases of
MCMC detection/estimation: the generation of the sample and
the sample-based detection/estimation.

B. Scale and Shift Ambiguity in the Sampling Phase

In the sampling phase, the multimodality of the posterior
leads to slow convergence of the sampler. In fact, each has
an “ideal partner” with respect to scale and shift, and vice
versa. The sampling steps proposed in Section IV-B generate
new realizations of and conditioned on the respective other
vector, rather than jointly. Therefore, the scale and shift param-
eters hardly change, i.e., the sampler stays within one mode of
the likelihood for many iterations. Following [23], [48], this
problem can be avoided by adding two joint sampling steps for

, one for shift compensation and one for scale compen-
sation. Both are inserted after the first PS step, i.e., after sampling

(see Section IV-B), and they use the Metropolis–Hastings
(MH) sampling algorithm [29, p. 267]. Based on the current
realization , we first sample a proposal from
some proposal kernel . Then, with some
acceptance probability , we replace by ,
i.e., becomes the current realization of the sampler,
whereas with probability , remains the current
realization. Here, is determined by and
the stationary distribution of the sampler, (see
[29, p. 267] and [48] for details).

The first MH sampling step is for shift compensation and con-
sists of the following substeps.

• Sample from a uniform distribution on
, denoted , with some fixed .

• Obtain and from and by means of a circular
shift by steps, i.e., and

.
• Sample from [see (19)]. (It can be

shown that this corresponds to the proposal kernel
.)

• With probability , replace , , and by , , and ,
respectively. Here,

where with and

as defined in (20).

This shift compensation method differs from that in [23] and
[48] by the support of the uniform distribution of , which is

instead of { 1,0,1}. This allows larger
jumps, which we observed to be beneficial. Another difference,
due to our different priors, is the presence of in the
expression of .

The MH sampling step for shift compensation is succeeded
by that for scale compensation, which is based on the same con-
cept and consists of the following substeps:

• Generate by sampling from
with some fixed and from a uniform distribution on

. (These pdf’s will be denoted by and .)
• The proposal consists of , , and ,

where , , and denote the realizations that were
accepted in the shift compensation step. (It can be
shown that this corresponds to the proposal kernel

.)
• With probability , replace by and by . Here,

After shift/scale compensation, the PS continues with the
sampling step, as described in Section IV-B.

C. Scale and Shift Ambiguity in the
Detection/Estimation Phase

In the sample-based detection/estimation algorithms of
Section III, the scale and shift ambiguity causes severe prob-
lems. For example, the estimators are averages over the sample

, which become mean-
ingless if the individual realizations
feature different scales and shifts. A method for achieving
identical scales and shifts in all realizations is described in [48].

VI. NUMERICAL STUDY

A. Simulation Setup

We will compare the performance of the proposed sampling
method (PS) with that of the AS described in Section IV-D. As
a performance benchmark, we also consider the following “ref-
erence sampler” (abbreviated RS) that does not exploit the min-
imum-distance constraint.

One RS iteration

• Sample from .
• For , sample from .
• Sample from .
• Sample from .

This sampling algorithm, up to minor modifications, was pro-
posed in [23] for a Bernoulli–Gaussian sequence . Note that



Fig. 2. Results of detection/estimation: (a) Signal , (b) estimates , (c) estimates . The results shown here are obtained after 60 iterations (PS and AS) or 1500
iterations (RS-A and RS-B). The vertical lines in (b) indicate the true . Real parts are shown.

our signal model is different because the Bernoulli–Gaussian
prior of is modified by the minimum-distance constraint. Just
as the PS and AS, the RS is a PCGS, not a classical Gibbs sam-
pler, because the sampling distribution for is a conditional
distribution associated with , rather than with the
full joint posterior . The RS differs from the
AS in that the AS exploits the minimum distance constraint by
sampling from . Like the AS, the RS
requires many matrix inversions. It is much more complex than
the PS, even if the recursive inversion method of [23] is used.

We consider two versions of the RS. The first, denoted RS-A,
is based on the true signal model (with minimum distance con-
straint), in which . Since the RS be-
haves like a classical Gibbs sampler with respect to dependen-
cies within , it is not well suited to this prior. Therefore, we
consider also a second RS version, denoted RS-B, which (at
the cost of a model mismatch) is based on the unconstrained
Bernoulli–Gaussian model for which the RS was proposed in
[23]. We thus interpret realizations from as Bernoulli se-
quences from , where is the approximation
of described in Section II-B. It can be shown that the
average distances between 1’s in sequences drawn from
and are approximately identical. Consistently replacing

by and by in RS-A, we obtain RS-B.
We generated 100 realizations of from parameters ran-

domly drawn according to the priors given in Section II-B,
using , , , , ,

, , , and (the latter two
parameters provide a noninformative prior for ). For each
realization of , we generated four Markov chains according
to the four sampler methods. Detection and estimation were
then performed on each of the four samples as described in
Section III. As mentioned in Section V, the time shift and
amplitude scale of the estimate are arbitrary and, indeed,
usually irrelevant. Therefore, for performance assessment, we
matched the time shift and amplitude scale of each estimate
to the true , i.e., we calculated the shifted/scaled version of

minimizing , and the corresponding shifted/scaled
.

B. Simulation Results

As an example, the result of one simulation run—corre-
sponding to one realization of —is shown in Fig. 2. Here, the
detected/estimated sequences and pulse shapes of
both the PS and AS are seen to coincide with the true and
after only 60 iterations. The results of RS-A and RS-B after
1500 iterations are significantly worse. We note that all methods
use the joint conditional estimator in (18); however,
almost identical results are obtained with the componentwise
sample-based estimator in (17).

To assess the convergence rates of the various samplers,
Fig. 3(a) shows the empirical normalized mean-square error
(NMSE) of versus the number of iterations. The empirical
NMSE is defined as the average (over the 100 realizations) of

normalized by the average of . The number of
iterations indicated on the abscissa equals the total length of the
Markov chain. Out of each chain, the last 20% of the iterations
were used for detection/estimation. Again, was used
for amplitude estimation; however, the NMSE obtained with

is effectively equal for AS, RS-A, and RS-B and only
about 0.3 dB higher for PS. The values of the NMSE of
after 60 and 1500 iterations are also given in the first two rows
of Table I. It is seen from Fig. 3(a) that RS-A fails to produce
satisfactory results, and its error does not decrease with time.
This is easily explained by the bad match between model and
algorithm: the model features strongly dependent indicators
because of the minimum distance constraint, whereas RS-A
treats the indicators like a classical Gibbs sampler, which
performs poorly in the presence of strong dependencies. This
problem is circumvented in RS-B, since the model is adapted
to the algorithm by dropping the minimum distance constraint.
Indeed, we observe a steady decrease of the error, but at a very
low rate: after 1500 iterations, the NMSE has only decreased
by less than 2 dB. By contrast, both PS and AS achieve a
low error after about 50 iterations. This fast convergence may
appear surprising, as the MCMC concept is based on the law of
large numbers. It can, however, be explained by the fact that the
minimum distance constraint excludes large parts of the param-
eter space that would otherwise have a nonnegligible posterior



Fig. 3. Detection/estimation performance versus the number of iterations: (a) Empirical NMSE of , (b) normalized average error of , (c) empirical
NMSE of .

TABLE I
REPRESENTATIVE SELECTION OF SIMULATION RESULTS

probability. Within the remaining parts of the parameter space,
the posterior probability is thus increased, which leads to faster
convergence. From the superiority of the results of PS and AS
over those of RS-A and RS-B, we can conclude that the use of
the minimum distance constraint is highly beneficial.

In Fig. 3(b), we study the sparsity of the estimates (or,
equivalently, ) by assessing the accuracy of . More
specifically, we show the average (over the 100 realizations) of

normalized by the average of versus the number
of iterations. The values of the normalized average error of
after 60 and 1500 iterations are also given in the third and fourth
rows of Table I. In RS-B, the absence of a strict sparsity con-
straint leads to very high values of (up to 5 times the true

) in the first iterations. After the first 10 iterations, the error
slowly but steadily decreases. In RS-A, a certain level of spar-
sity is enforced by the minimum distance constraint, leading to
a normalized error between 0.07 and 0.09 after about 10 itera-
tions. This error does not decrease with further iterations. The
sparsity achieved by RS-A may be meaningless in view of the
failed convergence of . By contrast, both PS and AS reach er-
rors below 0.04 after about 25 iterations.

Fig. 3(c) shows the empirical NMSE of versus the number
of iterations. The results are roughly similar to those in Fig. 3(a).
It can be seen that, in general, the error of the estimated pulse
shapes is smaller than that of the estimated sparse sequences.
Furthermore, RS-A outperforms RS-B because its realizations
of are more sparse due to the minimum distance constraint.
However, this is of little relevance since both RS-A and RS-B
fail to estimate appropriately.

One reason why RS-B converges so slowly appears to be our
choice of a relatively wide class of random pulse shapes in our
simulation. To study this issue, we generated 100 realizations

Fig. 4. Empirical NMSE of versus the number of iterations, for realizations
of using the pulse shape described in [23].

of from parameters drawn as described above, except that
the pulse shape was fixed, namely, the one used in [23]. The
estimation methods were not changed, i.e., they still estimated
the pulse shape rather than using the true one. Fig. 4 shows the
empirical NMSE of versus the number of iterations for this
case. It is seen that the error of RS-B (and also that of PS and AS)
decreases significantly faster than in Fig. 3(a). We can conclude
that many of the pulse shapes that we generated randomly are
harder to detect and estimate than the pulse shape used in [23].

Next, we illustrate the rationale of our choice of the block
detector (see Section III-B). Out of a Markov chain of
length 1000 generated by the PS, the last 200 realizations of

were used as a sample. Within the sample, two realizations
appear 22 times and no realization appears more than 22 times.
In this case, the sample-based MAP sequence detector in



Fig. 5. Relative multiplicity versus .

Section III-A would fail, since the maximum is
achieved by two realizations simultaneously. As explained
in Section III-A, this is due to the coarse quantization of the
probability. In another simulation run, again with sample size
200, we obtained a sequence that is depicted
for in Fig. 5. Within that interval, there
are two “zero intervals” (where no realization contains a 1, and
thus in the zero intervals); these zero intervals are sep-
arated by the “nonzero interval” (i.e.,
for all ). Within the sample, the following
different realizations of occurred. Out of the
200 realizations, 89 contain a 1 at position 733, 42 contain a
1 at position 734, 22 contain a 1 at position 735, 4 contain a
1 at position 736, and 2 contain a 1 at position 737. The re-
maining 41 realizations contain no 1 within .
No realization contains more than one 1 within .
Thus, at each position , less than half of
the 200 realizations contain a 1; therefore, the component de-
tector would not detect any 1’s. In the block detector, on the
other hand, the five positions are combined
into a block . According to the multiplici-
ties in the sample listed above, there are six hypotheses with
relative multiplicities given by 89/200, 42/200, 22/200,
4/200, 2/200, and 41/200. The maximum relative multiplicity

(89/200) is achieved by the hypothesis with a 1 at po-
sition 733. Thus, the MAP block detector would detect a 1 at
position 733, which is more intuitive than the result of the com-
ponent detector.

We finally note that the computational complexities of the PS,
AS, RS-A, and RS-B differ significantly. Exemplary computa-
tion times for 20 iterations are reported in the last row of Table I
for an unoptimized Matlab R2009b 64-bit implementation on
a 2.2-GHz Intel Core 2 Duo processor. The processing time of
the AS is almost 9 times that of the PS. This high complexity
is not justified by a better performance, since (as shown by our
simulation results) the performance of the AS is very similar to
that of the PS. The processing times of the RS-A and RS-B are
about 3 and 17 times that of the PS, respectively.

VII. CONCLUSION

We studied Bayesian blind deconvolution of an unknown
sparse sequence convolved with an unknown pulse. Our ap-
proach extended the conventional Bernoulli–Gaussian prior

(modeling sparsity) by a hard minimum distance constraint,
which requires any two detected pulse locations to have a
certain minimum separation. Such a constraint is physically
motivated in many applications and is an effective means of
avoiding spurious detected pulses. However, the minimum
distance constraint implies strong dependencies, which lead to
slow convergence of the classical Gibbs sampler. We demon-
strated that this problem can be overcome by a new Monte
Carlo blind deconvolution method based on the recently in-
troduced PCGS principle. The proposed method exploits the
structure that the constraint imposes on the parameter space to
achieve fast convergence and low computational complexity.
Our simulation results demonstrated a significant reduction of
both the complexity and the number of spurious components
compared to a recently proposed PCGS that is not specifically
designed for the minimum distance constraint.

The proposed method can be easily generalized to inverse
problems with a minimum distance constraint that are not de-
scribed by a convolution model. This makes it potentially inter-
esting for many signal processing applications including signal
segmentation [49], optical coherence tomography [50], elec-
tromyography [10], [11], and electrocardiography [13], [51].
Furthermore, the minimum distance constraint itself can be gen-
eralized to a wider class of “local deterministic constraints,”
which can be exploited in an analogous way [36].

APPENDIX A
VALIDATION OF THE PS

To validate the PS as a PCGS, we will derive it from a clas-
sical Gibbs sampler by means of marginalization and trimming
(see [33] and Section IV-A). These modifications are allowed
because they do not change the stationary distribution of the
sampler. One iteration of the Gibbs sampler is given as follows:

• Sample from .
• For , sample from

.
• Sample from .

This is a valid Gibbs sampler, since each parameter is sampled
once per iteration and each sampling distribution is conditioned
on all other parameters (i.e., all except those being sampled).4

This concept is not compromised by the fact that some parame-
ters are sampled jointly, namely and as well as all entries
of .

The first modification we use is a marginalization, which
leads to a sampler in which the second step of the Gibbs sampler
is replaced by the following:

• For , sample from
.

Here, additional parameters are sampled in each sampling step.
The sampler is no longer a Gibbs sampler, since the and
(for all ) are now sampled several times within each sampler it-
eration, in varying combinations. The choice of
as a replacement of the tuple sampled by the original
Gibbs sampler is key to the fast convergence of the PS. On

4As mentioned in Section IV-B, does not appear in the conditions of the
sampling distributions of and because, for a given , is conditionally
independent of and .



the one hand, the subvector is large enough so
that the parameters that strongly depend on each other (due to
the minimum distance constraint) are sampled jointly. On the
other hand, it is small enough to allow efficient sampling as
discussed below (22). Note that all sampling distributions are
still conditioned on all parameters except those sampled. Thus,
they are still conditionals associated with the joint posterior

.
Next, we apply trimming to obtain the following modified

second step:
• For , sample from

.
Since some entries of —namely, all except

—are removed from the argument of the sampling dis-
tribution of the respective substeps, these sampling distributions
are no longer proportional to the joint posterior .
As previously explained in Section IV-B, the trimming is justi-
fied because all elements of except
itself are also contained in .
Therefore, out of , the untrimmed sampler uses
only in the condition of the next substep, whereas the
other entries are ignored. (This is true even for , trivially,
since .)

Finally, joint sampling of can be achieved by first
sampling and then sampling conditioned on the thus
obtained. Thus, the following final version of the second step is
obtained:

• For ,
— sample from ;
— sample from .

Together with the first and third steps of the Gibbs sampler, this
is equal to the PS described in Section IV-B.

APPENDIX B
SAMPLING DISTRIBUTIONS

In this appendix, we derive the sampling distributions used
by the PS (cf. Section IV-C).

Pulse Coefficients: To obtain the sampling distribution for
in (19) and (20), we note that

We now insert (13) and (11), and obtain

This can be rewritten in terms of and as defined in (20):

Finally, normalization leads to ,
which equals (19).

Indicators: In order to derive (21) and (22), we start from
. Noting that is

composed of and and is composed of
and , and using (14), we obtain

In the last step, we used (7) and dropped factors that are constant
with respect to and . Using (13) and again (7) yields

(26)

where and consists of the
columns of indexed by .

We now exploit the minimum distance constraint, i.e., the fact
that can contain at most one nonzero entry. We will con-
sider the cases and separately. (This
means that we may not drop any constant factors until we find a
joint expression for both cases.) For the case , let

denote the (unknown) position of the nonzero entry. Noting
that and using (8), we can write (26) as

Using and as defined in (22), this can be rewritten as

(27)



Integrating out then yields

(28)

For the case , we can rewrite (26) as

Integrating out gives

(29)
Now according to (22), implies that and

. Formally inserting these values into (28) yields (29).
Therefore, (28) is valid for both and .
Finally, dropping the constant factors in (28) yields (recall from
(22) that and depend on )

which is (21).
Amplitudes: For the derivation of the distribution in (23), we

first note that

The right-hand side can be calculated by marginalizing
with respect to all

entries of and except and : using to
denote , we have

(30)

We will develop this expression separately for the two cases in
(23), i.e., for and . For , the summation
collapses:

(31)

This is due to the minimum distance constraint: if , then
the only hypothesis for with potentially nonzero proba-
bility is . Our case , is a special

case of , namely with . We now recall that
an expression of for the case
was given in (27). For , (27) reads

where constant factors have been dropped. Inserting this into
(31) yields

or, equivalently,
. As explained below (24), due to ,

and equal, respectively, and as given in (24). Thus,
we have verified (23) for .

In the complementary case , we can rewrite (26) as

Inserting this into (30) yields

After proper normalization, we obtain
, which is (23) for .

Noise Variance: To derive the sampling distribution for
in (25), we first use



Inserting (13) and (12), we obtain further

Normalization then leads to
, which is (25).
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