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b s t r a c t

he local and global Ohmic response for an electrode exhibiting geometry-induced potential and/or
urrent distributions has recently been shown to be represented by a frequency-dependent complex
mpedance. A physical explanation for this result is provided in terms of the radial contribution to local
urrent density and the decrease in current density along the current lines. Experiments performed with
u/Al and Mg/Al galvanic couples show that, in regions where a radial current density does not exist,
he local Ohmic impedance is independent of position; whereas, in regions where the radial current
ensity cannot be neglected, the local Ohmic impedance is a function of position. Simulations performed
n recessed electrodes show that, even in the absence of a radial current, an axial variation of current
ensity gives rise to a complex Ohmic impedance. The complex character of the Ohmic impedance shows
hat an equivalent circuit, using the usual two-terminal resistor to represent the Ohmic contribution of

he electrolyte, provides an inadequate representation of an electrode with geometry-induced current
nd potential distributions.
. Introduction

The electrochemical impedance is generally separated into two
arts, one part corresponding to the interface which includes the
ouble layer capacitance, the Faradaic impedance and, if necessary,
n impedance corresponding to a deposit or coating; and a sec-
nd part corresponding to the Ohmic drop in the electrolyte. This
hmic contribution is usually represented by a pure resistor. In
any experiments, this contribution is minimized, for instance by

iminishing the distance between the reference electrode and the
orking electrode, but it cannot be omitted. The Ohmic resistance
epends on the electrolyte conductivity and on the cell geome-
ry (i.e. electrode size and positions). For instance, Newman [1], by
olving the problem of primary current distribution for a disk elec-
rode of radius r0 embedded in an infinite insulating plane and with
hemispherical counterelectrode at infinity, gave the correspond-

ng electrolyte resistance as

e = 1
(1)
4�r0

here � is the conductivity of the solution. This resistance is repre-
ented in the equivalent electrical circuit by a resistor in the form
f a two-terminal element.

∗ Corresponding author at: Department of Chemical Engineering, University of
lorida, PO Box 116005, Gainesville, FL 32611, USA.

E-mail address: meo@che.ufl.edu (M.E. Orazem).
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The impedance response of electrochemical systems often
reflects a distributed reactivity. The local variation of impedance
was considered by Brug et al. [2] to investigate the CPE behavior of a
blocking electrode. In the schematic representation of the interface
(Fig. 1), the local electrolyte resistance appears as having a constant
value along the radial coordinate, and the interfacial capacitance
C0(r) is distributed along the electrode surface.

In the recent development of local electrochemical impedance
analysis [3–5], concepts of local impedance were revisited taking
advantage of the possibility of measuring the local ac-current den-
sity in the close vicinity of the interface [6–8]. Huang et al. [3–5]
defined the local interfacial impedance z0 to be

z0 = Ṽ − ˜̊ 0

ĩ
(2)

the local Ohmic impedance ze to be

ze =
˜̊ 0 − ˜̊ ∞

ĩ
(3)

and local impedance z, which is the sum of Eqs. (2) and (3), to be

z = z0 + ze = Ṽ − ˜̊ ∞
ĩ

(4)
In these definitions, Ṽ − ˜̊ 0 represents the ac-potential dif-
ference between the electrode surface and a point just outside
the double-layer, ˜̊ 0 − ˜̊ ∞ represents the ac-potential difference
between a point just outside the double layer and the refer-
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ig. 1. Representation of an idealized polarized electrode according to Brug et al. [2].
e is independent of the radial position; whereas, C0 depends on the radial position.
he Ohmic resistance is represented as a two-terminal element.

nce electrode in the bulk solution, and Ṽ − ˜̊ ∞ represents the
c-potential difference between the electrode surface and the
eference electrode in the bulk solution. The quantity Ṽ − ˜̊ ∞ is
he applied ac-perturbation to the electrochemical system.

The corresponding definitions are illustrated in Fig. 2 in terms
f local electrical equivalent circuits. The arrows show the usual
nderstanding of the flow of the time-dependent current density
hrough the Ohmic impedance and then splitting into Faradaic (Rt)
nd capacitive (C0) components. A cylindrical coordinate system
as used in this work such that the axial coordinate is normal to

he electrode surface.
For an idealized polarized electrode, Rt is infinite and the only

ifference between Figs. 1 and 2 is the physical nature of the Ohmic
mpedance. In Fig. 1, the Ohmic impedance corresponds to a pure
esistor (electrolyte resistance) with a real and uniform value along
he electrode radius; whereas, in Fig. 2, the Ohmic impedance is a
omplex quantity that depends on the radial coordinate. Huang
t al. [3–5] have shown that, for a disk electrode embedded in an
nsulating plane, the local Ohmic impedance is a complex number

ith a non-negligible imaginary part. Such an Ohmic contribution
an be experimentally observed on blocking electrode [4] or for
ore complicated reaction mechanism involving adsorbates [9,10].

s a consequence, the local impedance experimentally measured
hows inductive behavior at high frequency [4,11–13].

The complex Ohmic impedance originates in the nature of the
urrent distribution within the electrolyte. For both an ideally

ig. 2. Schematic representation of an impedance distribution for a disk electrode
here ze represents the local Ohmic impedance, C0 represents the interfacial capac-

tance, and Rt represents the charge-transfer resistance. The arrows show the flow
f time-dependent current density through the Ohmic impedance and splitting into
aradaic and capacitive components. [5].
polarized electrode (Fig. 1) and a non-ideally polarized electrode
(Fig. 2), the potential ˚0(r) of a reference probe located at the outer
limit of the diffuse double layer depends on its radial position. A
nonzero difference of potential exists between two radially sepa-
rated points equidistant from the electrode surface and just outside
the diffuse double layer. Thus, according to Ohm’s law, a radial
contribution of the current must exist and is defined as

ir = −�
∂˚

∂r
(5)

However, the electrical representation of the electrochemical
cells presented in Figs. 1 and 2 does not account for such a radial
current because only normal pathways to the electrode surface are
considered.

Newman et al. [14–16] demonstrated, for a disk electrode in
an insulating plane, that the potential distribution is nonuni-
form when the current distribution is uniform, and, conversely,
the current distribution is nonuniform under conditions where
the potential is uniform. As explained above, a consequence of a
nonuniform potential distribution is the existence of a radial cur-
rent; thus, when the normal current density follows a primary
distribution, the radial current does not exist and when the normal
current is uniform the radial current has a nonzero value. More-
over, these effects are frequency-dependent since the distributions
of potential and current along the disk also depend on frequency.

The objective of the present work is to understand, on a physical
basis, the parameters that contribute on local impedance dia-
grams to the inductive behavior observed at high frequency, and
in particular, to investigate the influence of current and potential
distributions. In order to explore radial and normal current distri-
butions, three different configurations were studied. First, simple
systems consisting in two model couples were investigated: a pure
copper/pure aluminum (Cu/Al) couple and a pure magnesium/pure
aluminum (Mg/Al) couple. For the two model couples, the gal-
vanic coupling between the two metals increases the radial current.
Experimental results were compared with numerical simulations
of potential and current distributions on the surface of the model
couples at the beginning of immersion. The second case concerned
a recessed electrode for which the radial current can be elim-
inated. In this case, calculations were performed for a blocking
electrode. Finally, the origin of the frequency dependence on the
Ohmic impedance was shown for a disk electrode with a single-
step-Faradaic reaction.

2. Experimental

2.1. Samples

The samples consisted of pure magnesium/pure aluminum and
pure copper/pure aluminum couples. A cylinder of pure aluminum
(99.999 wt%—Alfa Aesar) was drilled in its center and a cylinder of
pure magnesium (99.9 wt%—Alfa Aesar) was introduced by force
into the hole. The assembly of the two materials gave a perfectly
joined interface, avoiding any crevice corrosion due to surface
defects. The cylinder diameters were chosen to obtain an alu-
minum/magnesium surface area ratio of about 10 (the radii were 1
and 0.32 cm for the aluminum and magnesium bars, respectively).
Similarly, a cylinder of pure aluminum was drilled in its center
and a cylinder of pure copper (99.9 wt%—Goodfellow) was then
introduced by force into the hole. The surface ratio of the two elec-
trodes was also 10. The electrodes were then embedded in an epoxy

resin. Before immersion in the electrolyte, the disk electrodes were
mechanically polished with SiC papers down to 4000 grade and
ultrasonically cleaned with ethanol, then with distilled water. The
electrolyte was a 10−3 M Na2SO4 solution prepared with analytical
grade chemicals at room temperature.



2

l
s
m
l
m
e
t
c
[
o
s
d
3
s
s
m
c

2

a
g
a

3

s

3
m

g
m
e
i
o
c
t
w

3

a
t
c
I
d
t
c
t
d

t
i
t
t
i
m
t
l

.2. Local electrochemical measurements

The corrosion behavior of the model couples was studied by
ocal electrochemical impedance spectroscopy (LEIS). The mea-
urements were carried out with a Solartron 1275 system. The
ethod used a five-electrode configuration. The disk in an insu-

ating plane represented the working electrode with potential
easured with respect to a distant reference electrode. A counter

lectrode was placed far from the disk electrode. Two sensing elec-
rodes were employed in a small bi-electrode probe used for local
urrent density measurements. Details are provided elsewhere
17–19]. The bi-electrode probe was stepped across a selected area
f the sample. The analyzed part had an area of 2.4 × 2.4 cm and the
tep size was 500 �m in the X and Y directions. The local impedance
iagrams were recorded over a frequency range of 3 kHz to around
00 mHz with six points per decade. The local impedance mea-
urements were carried out in a low conductivity 10−3 M Na2SO4
olution (10−4 S cm−1) to optimize resolution of the local current
easurement. With the experimental set up used, only the normal

omponent of the current could be measured.

.3. Numerical analysis

All calculations were performed using the finite element pack-
ge Comsol® for solving Laplace’s Equation in a 2D axis-symmetry
eometry. The detailed implementation of the equation and bound-
ry conditions was previously described elsewhere [12,20].

. Results

The experimental and simulation results are presented in this
ection.

.1. Galvanic coupling between copper/aluminum and
agnesium/aluminum

Pure Cu/Al and pure Mg/Al couples were devised in order to
ive rise to radial and normal current distributions. These two
odel couples were initially designed to study corrosion phenom-

na associated with intermetallics in aluminum alloys in previous
nvestigations [21,22]. In the Cu/Al couple, aluminum is the anode
f the system and is in the passive state while copper is polarized
athodically. In the Mg/Al couple, magnesium acted as the anode of
he system whereas, both oxygen and water reduced on aluminum,
hich behaves as a cathode.

.1.1. Pure copper/pure aluminum
The potential distribution calculated on the electrode surface

long the electrode radius is presented in Fig. 3a. The potential dis-
ribution is uniform on copper and nonuniform on aluminum. The
orresponding current distributions are presented in Fig. 3b and c.
n agreement with the Newman’s predictions [14–16], the potential
istribution on copper is uniform and the normal current distribu-
ion is nonuniform. Accordingly, the radial current is uniform. In
ontrast, the potential distribution on aluminum is nonuniform,
he normal current distribution is uniform, and the radial current
istribution is nonuniform.

Local impedance spectra measured at different radial posi-
ions are presented in Fig. 4. The high-frequency inductive loop
s attributed to the local Ohmic impedance [3–5]. It appears clearly
hat on copper, where the potential distribution is uniform and

he radial current density is equal to zero (Fig. 3), the local Ohmic
mpedance is not distributed even though a clear inductive loop is

easured. In contrast, on aluminum, where the potential distribu-
ion is nonuniform, the radial current is not equal to zero, and the
ocal Ohmic impedance is distributed along the radius.
Fig. 3. (a) Potential distribution on the surface of the Cu/Al model couple deduced
from theoretical calculations for an electrolyte conductivity of 5 × 10−5 S/cm; (b)
radial current distribution and (c) normal current distribution [21].

On both copper and aluminum parts of the electrode, the local
Ohmic impedance is represented by a complex quantity. The local
Ohmic impedance is independent of the radial position when the
radial current is equal to zero, and it depends strongly on the radial
position when the radial current is not equal to zero. It should be
noticed that such a behavior has already been observed but not
interpreted in the pioneering work of Isaacs on local impedance [6]
for the Mo/Al system.

3.1.2. Pure magnesium/pure aluminum
The polarization of the Al electrode changes in the Mg/Al system.

For the Mg/Al couple, Al acts as a cathode and Mg is the anode [22].
The potential distribution on magnesium is uniform, the normal
current distribution is nonuniform, and the radial current density
near the interface has a zero value. On aluminum, in contrast, the
potential distribution is nonuniform, the normal current distribu-
tion is uniform, and the radial current density near the interface is
not equal to zero [22].

Local impedance measurements were performed on both elec-
trodes with the radial position of the bi-electrode as a parameter.
Over the Mg electrode (Fig. 5) the high-frequency inductive loops
are attributed to the local Ohmic impedance and are clearly inde-
pendent of the radial position. In this case also, when the radial
current has a zero value or when there is no potential distribution,

the local Ohmic impedance is independent of the radial position.

Conversely, the local impedance diagrams measured on the
aluminum electrode for different radial positions (Fig. 6) show a
high-frequency inductive loop that depends on the radial posi-
tion. Again, when the potential is distributed, the radial current



Fig. 4. Local electrochemical impedance spectra measured along the Cu/Al electrode radius: (a) frequency range from 3 kHz to 350 mHz; and (b) an expanded view of the
high frequency part.

Fig. 5. Local impedance spectra obtained on the magnesium electrode with the radial position as a parameter.

Fig. 6. Local impedance spectra obtained on the aluminum electrode with the radial position as a parameter.
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Fig. 7. Calculated current and potential (vs. SSE/V) distributions for a M

s nonzero and the local Ohmic impedance varies with the radial
osition.

.1.3. LEIS numerical simulations for galvanic coupling
Numerical calculations were undertaken for the Mg/Al couple

o verify that these effects only reflect the geometry of the system
nd the galvanic coupling. Simulations were performed under the
ssumptions that:

the potential is governed by the Laplace equation,
the net dc-current over the electrode surface is equal to zero

[21,22],
a large counterelectrode was located far from the working elec-
trode in the electrochemical cell, and
the reference electrode and counterelectrode are at the same
potential.
uple obtained at two different frequencies: (a) 100 kHz; and (b) 2 mHz.

By solving Laplace’s equation for the sinusoidal steady-state
condition, the local impedance could be calculated for differ-
ent radial positions. The results of this simulation are given in
Figs. 7 and 8.

The calculated distributions of current and potential are pre-
sented in Fig. 7 for high and low frequencies. At 100 kHz, the
potential distribution corresponds to the primary potential distri-
bution and is consistent with the previous work of Newman [1].
This primary current distribution depends on the diameter of the
disk electrode formed by the couple Mg/Al and the use of a hemi-
spherical counterelectrode located at infinity allows the electrolyte
resistance to satisfy Eq. (1). In contrast, for a frequency of 2 mHz

(Fig. 7b), the current and potential distributions are similar to the
distributions obtained for the dc case and have been discussed in
Ref. [22].

The calculated local impedance spectra (Fig. 8) provide qualita-
tive agreement with the experimental spectra. On the magnesium,
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tends towards a real number. For a sufficient depth, the geometry-
induced current and potential distributions are negligible, and the
local Ohmic impedance approaches the same value for the two
radial positions r/r0 = 0 and r/r0 = 0.6.
ig. 8. Calculated local impedance spectra with radial position as a parameter for a
luminum and (b) magnesium.

he high-frequency inductive loop is independent of the radial posi-
ion; whereas, on the aluminum, the high-frequency inductive loop
epends on the radial position. These calculations were in fairly
ood qualitative agreement with experimental results. The discrep-
ncies observed between experiment and numerical calculations
ere attributed to the fact that the system used for performing local

mpedance measurements could not provide the precise conditions
ssumed for calculations.

The above work demonstrates that the complex character of the
hmic impedance can be attributed in part to the presence of a

adial current density in the electrolyte outside the diffuse double
ayer. However, local Ohmic impedance is observed as well along
he centerline of the electrode where, by axial symmetry, the radial
urrent density is identically equal to zero. Thus, while a radial cur-
ent distribution must influence the Ohmic impedance away from
he centerline, an additional contribution must be attributed to the
ecrease, associated with the disk geometry, of the current den-
ity with axial position, as discussed by Frateur et al. [12]. The role
f changes in current density with axial position was explored by
imulations performed for recessed electrodes.

.2. Recessed electrode

The objective of this part of the work was to explore by numer-
cal simulation the influence of the recessed geometry of a disk
lectrode on the local and global Ohmic impedance for an ideally
olarized electrode. The geometry and the position of the refer-
nce (or counter) electrode were shown to play a significant role
n the numerical result of the calculated impedance. Thus, a spheri-
al geometry and a distance between the working electrode and the
ounterelectrode 2000 times larger than the disk electrode radius
ere used to perform numerical calculation in order to reach an

rror range smaller than 0.2%. The corresponding experimental
lectrochemical cell was described in [12].

Local Ohmic impedance spectra corresponding to two radial

ositions are presented in Fig. 9 in terms of dimensionless fre-
uency

= ωC0r0

�
(6)
trode with galvanic coupling between magnesium at the center and aluminum: (a)

with the dimensionless recessed electrode depth P = p/r0 as a
parameter where p is the depth of the recessed cavity. The nom-
inal Ohmic resistance associated with the cavity is subtracted in
Fig. 9 from the real part of the Ohmic impedance, which serves to
emphasize the contribution associated with the electrolyte above
the cavity. When the recessed electrode depth increases, the loop
corresponding to the local Ohmic impedance decreases in size and
Fig. 9. Calculated values for local Ohmic impedance at the electrode surface with
the recessed electrode depth as a parameter: (a) r/r0 = 0 and (b) r/r0 = 0.6. Adapted
from Ref. [12].
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ig. 10. Calculated global Ohmic impedance with dimensionless recessed electrode
epth as a parameter.

The corresponding global Ohmic impedance is given in Fig. 10
ith the recessed electrode depth as a parameter. When P tends

owards zero, the situation is identical to the case study presented
y Newman for an ideally polarized electrode [23].

Recently, experimental local electrochemical measurements
erformed with bi-electrode and with microcapillary technique
howed a divergence due to the Ohmic impedance [13]. For the
i-electrode, the Ohmic impedance in the complex plane had an

nductive loop and, for the microcapillary, which is similar to a
ecessed electrode, the Ohmic impedance is real. These results are
n perfect agreement with those obtained in the present study.

.3. Influence of frequency for a Faradaic reaction

The preceding work was used to demonstrate the role that axial
nd radial current density distributions have on the appearance of a
omplex character in the Ohmic response of the electrolyte. Huang
t al. [3–5] have shown that the contribution of the imaginary part
f the Ohmic impedance is dependent on frequency. The Ohmic
mpedance approaches a real number corresponding to the primary
esistance at high frequency and a different real number at low
requency. The origin of the frequency dependence of the imaginary
art of the Ohmic impedance can be inferred through examination
f the local oscillating potential, shown in Fig. 11 with frequency as
parameter. The simulations were performed for a disk electrode

ubject to a single-step Faradaic reaction with J = 4Re/�Rt = 1 [5].
he local Ohmic impedance, given in Eq. (3), can be expressed as

e =
˜̊ 0

ĩ
(7)

here the potential is referenced to the fixed value ˜̊ ∞. The distri-
ution of local Ohmic impedance is given in Fig. 12.

Due to the numerical limitations described by Newman [23],
he simulations were not reliable for dimensionless frequencies K
reater than 100. Nevertheless, the results can be used to show that,
t high frequency, e.g., K > 100, the real and imaginary parts of the
omplex potential ˜̊ 0 tend to be uniform and the imaginary part
f the potential becomes very small. This corresponds physically
o the condition under which the charging current dominates as
ompared to the current associated with the Faradaic reaction. At
ow frequencies, the real part of the potential is not uniform, but the
maginary part of the potential tends toward zero. This corresponds
hysically to the condition under which the current associated
ith the Faradaic reaction dominates. Both the corresponding low-
requency and high-frequency local Ohmic impedances shown in
ig. 12 are not uniform, but the imaginary parts tend to zero (see
lso Fig. 11 in Ref. [5]). The imaginary part of the local Ohmic
mpedance plays a significant role between K = 1 and K = 10 where,
s seen in Fig. 11b, ˜̊

0,j has a maximum value. The value K = 1 cor-
Fig. 11. Calculated distribution of the oscillating interfacial potential for a disk elec-
trode with a single-step Faradaic reaction with J = 1: (a) real part and (b) imaginary
part.

responds to frequency ω = (ReC0)−1, as discussed by Huang et al.
[5].

4. Discussion

The global overall impedance for ideally polarized disk
electrodes exhibiting geometry-induced current and potential dis-
tributions has been calculated and shown to exhibit time-constant
dispersion. The effect is seen for dimensionless frequency K =
ωC0r0/� > 1, which can be within the experimentally accessible
range [2]. This result, which applies as well to disk electrodes under
linear kinetics, was first reported by Newman in 1970 [23].

The origin of the time-constant dispersion is represented in
the present work in the form of a complex Ohmic impedance. To
see that this approach is in agreement with Newman’s results,
consider a blocking interface with a frequency-independent capac-
itance C0 and an interfacial impedance Z0 = 1/jωC0. This interfacial
impedance is independent of the electrode geometry. The mea-
sured overall impedance, which includes the Ohmic contribution,
is Z = Ze + 1/jωC0, where the capacitance C0 is independent of
frequency and Ze is termed the Ohmic impedance. Newman, in
contrast, represented the overall impedance as the sum of a
frequency-dependent resistance Reff in series with a frequency-

dependent capacitance Ceff. The two descriptions of the same
phenomena give

Ze + 1/jωC0 = Reff + 1/jωCeff (8)
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ig. 12. Calculated distribution of the local Ohmic impedance for a disk electrode
ith a single-step Faradaic reaction with J = 1: (a) real part and (b) imaginary part.

hich yields

e = Reff − j

ω

(
C0 − Ceff

C0Ceff

)
(9)

The fact that Ze is frequency-dependent is in perfect agreement
ith Newman’s result [23]. When the frequency tends towards

nfinity, the current distribution corresponds to the primary current
istribution and lim

ω→∞
Ze = 1/4�r0, in agreement with Newman’s

ormula.
It is important to note that the complex character of the

hmic impedance is not only a property of the electrolyte but is
nstead a property of the electrode geometry, of the interfacial
mpedance, and of the electrolyte with conductivity �. The interfa-
ial impedance can correspond to an ideally polarized electrode but
lso to Faradaic reactions with or without adsorbed intermediates.
complex Ohmic impedance is not seen for recessed electrodes

or which both the current density and interfacial potential are
niform.

For the different cases considered in this work, the local Ohmic

esponse also takes the form of a complex frequency-dependent
mpedance. The local Ohmic impedance varies with position when

radial current is present due to the presence of a potential dis-
ribution. In absence of potential distribution and in presence of a
ormal current distribution, the local Ohmic impedance can have
a complex value, but, in this case, the value is independent of the
radial position.

The observation that the local Ohmic impedance has a complex
value, even on the electrode axis, where, for reasons of symmetry
the radial current density is equal to zero, shows that the Ohmic
impedance cannot be explained solely by the fact that the radial
current is not taken into account in the equivalent circuit represen-
tation. The explanation can be extended to account for the observed
phenomenon. In the usual interpretation of a two-terminal ele-
ment, as was used in Figs. 1 and 2, the current which enters the
element must be the same that the current which leaves the ele-
ment. An explanation for the observed complex Ohmic impedance
at the centerline can be found by recognizing that, due to the disk
geometry, the current density at the entrance of the two-terminal
element is different than the current density which leaves the ele-
ment. Along a vertical line, the current density decreases with the
distance from the electrode. For global impedance, one side of the
two-terminal element corresponds to the electrode area and the
other side to the surface of the counterelectrode, which is much
larger. Due to the frequency dependence of the current distribution
on the electrode surface, the variation of the current density along
the normal distance to the electrode depends on frequency, which
explains why this quantity is represented by a complex value.

While the presence of geometry-induced current and potential
distributions can be used to indicate the presence of an Ohmic
impedance rather than an Ohmic resistance, exploration of the
dependence of the imaginary part of the Ohmic impedance on
frequency requires consideration of the oscillating components of
potential and current. The relationship between complex oscillat-
ing potential and current density is somewhat complicated, but
numerical simulations show that the Ohmic impedance approaches
a real number at high frequencies and at low frequencies. As
discussed by Huang et al., the complex character is seen at an
intermediate frequency associated with the ReC0 time constant
[5].

5. Conclusions

The appearance of the complex Ohmic impedance is attributed
to the nonuniform current and potential distributions induced by
electrode geometry. For the disk embedded in an insulating plane,
the radial current density is a function of radial position and has
an associated decrease in current density with axial position. In
this case, the Ohmic impedance must be represented by a complex
number. For the recessed disk electrode geometry, there is no radial
current and the current density is independent of axial position. In
this case, the Ohmic impedance can be represented by a real num-
ber. The complex character of the Ohmic impedance is therefore
not only a property of electrolyte conductivity, but also a property
of electrode geometry and interfacial impedance.

The experiments performed with galvanic couples eliminated,
over a portion of the disk surface, the radial current density, but did
not eliminate the axial variation of current density. In this case, the
Ohmic impedance was still represented by a complex number, but
this value was independent of radial position. In cases where the
radial current density was not eliminated, the complex local Ohmic
impedance was a function of radial position. This work shows that
the local variation of axial and radial current density causes the
Ohmic contribution to be represented by a complex number.

The local Ohmic impedance represents the impedance between

a point just outside the diffuse double-layer and a hemispherical
counter electrode at infinity. This impedance takes into account
the possible existence of a radial current and the variation of the
current density along the direction normal to the electrode. The
global Ohmic impedance represents the mean value of the local
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hmic impedance over the electrode and it is represented by a com-
lex quantity for the same reasons. The complex character of the
hmic impedance seems counter-intuitive when the disk electrode

s represented by an equivalent circuit using the usual two-terminal
esistor to represent the Ohmic contribution of the electrolyte.

hile representation of the impedance by an equivalent electric
ircuit can be convenient, this simplified representation may also
ause misunderstanding.
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