
Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.  

This is an author -deposited version published in: http://oatao.univ-toulouse.fr/ 

Eprints ID: 3816 

To link to this article: DOI:10.1016/j.actbio.2009.08.032 

URL: http://dx.doi.org/10.1016/j.actbio.2009.08.032

To cite this version: Combes, Christèle and Tadier, Solène and Galliard, H. and Girod-

Fullana, S. and Charvillat, C. and Rey, Christian and Auzély-Velty, R. and El Kissi, N. ( 

2010) Rheological properties of calcium carbonate self-setting injectable paste. Acta 

Biomaterialia, vol. 6 (n° 3). pp. 920-927. ISSN 1742-7061 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rheological properties of calcium carbonate self-setting injectable paste

C. Combes a,*, S. Tadier a, H. Galliard b, S. Girod-Fullana c, C. Charvillat a, C. Rey a, R. Auzély-Velty d, N. El Kissi b

aUniversité de Toulouse, CIRIMAT, UPS-INPT-CNRS, ENSIACET, 4, allée Emile Monso, BP 74233, 31432 Toulouse Cedex 4, France
b Laboratoire de Rhéologie, Université Joseph Fourier – INP Grenoble – CNRS UMR 5520, Domaine universitaire, BP 53, 38041 Grenoble Cedex 9, France
cUniversité de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France
dCERMAV – CNRS, Université Joseph Fourier, 601 Rue de la Chimie, 38041 Grenoble Cedex 9, France

Article history:

Received 30 April 2009

Received in revised form 20 August 2009

Accepted 24 August 2009

Available online 27 August 2009

Keywords:

Calcium carbonate

Bone cement

Rheological properties

Injectability

a b s t r a c t

With the development of minimally invasive surgical techniques, there is growing interest in the research

and development of injectable biomaterials with controlled rheological properties. In this context, the

rheological properties and injectability characteristics of an original CaCO3 self-setting paste have been

investigated. Two complementary rheometrical procedures have been established using a controlled

stress rheometer to follow the structure build-up at rest or during gentle mixing and/or handling on

the one hand, and the likely shear-induced breakdown of this structure at 25 or 35 !C on the other.

The data obtained clearly show the influence of temperature on the development of a cement microstruc-

ture during setting, in all cases leading to a microporous cement made of an entangled network of ara-

gonite-CaCO3 needle-like crystals. Linear viscoelastic measurements arriving from an oscillatory shear

at low deformation showed a progressive increase in the viscous modulus (G0 0) during paste setting,

which is enhanced by an increase in temperature. In addition, steady shear measurements revealed

the shear-thinning behaviour of this self-setting paste over an extended period after paste preparation

and its ability to re-build through progressive paste setting at rest. The shear-thinning behaviour of this

self-setting system was confirmed using the injectability system and a procedure we designed. The force

needed to extrude a homogeneous and continuous column of paste decreases strongly upon injection and

reaches a weight level to apply on the syringe piston around 2.5 kg, revealing the ease of injection of this

CaCO3 self-setting paste.

1. Introduction

Over the last few years, the development of minimally invasive

surgical techniques, especially in the field of bone substitution and

repair, has boosted the research and development of injectable cal-

cium phosphate suspensions and cements [1]. In particular, fast-

setting calcium phosphate (CaP) bone cements have developed

considerably in the past few years due to their excellent biocom-

patibility and bioactive properties [2,3]. Although several fast-set-

ting CaP bone cements have been used for more than 10 years,

there is still a need to develop hydraulic bone cements with im-

proved rheological properties to facilitate handling and injection

by surgeons.

Mineral cement paste with improved rheological properties

should limit or avoid the two main drawbacks commonly observed

with such injectable systems which greatly limit their use in vivo:

(i) ‘‘filter-pressing”, corresponding to a phase separation between

the particulate/powder and the liquid within the syringe used

and resulting in plugging and thus partial paste extrusion; and

(ii) ‘‘cement washout”, corresponding to a disintegration of the

paste affecting the paste cohesion and occurring at the early con-

tact of the paste with biological fluids [4–9]. Consequently, the

presence of scattered cement particles after implantation can lead

to more or less intense inflammatory response of tissue [6].

Recently, several original injectable calcium carbonate-based

cement compositions have been presented as promising biocom-

patible and resorbable self-setting pastes for bone substitution

and repair [10,11]. Their solid-phase composition included high

proportions of CaCO3 metastable phases. As in the case of CaP ce-

ments, they showed excellent biocompatibility and bioactive prop-

erties and also ease of use, especially as a self-setting injectable

paste with adaptable shape. In addition, the high proportion of

CaCO3 metastable phases with higher solubility than apatite can

confer better resorption properties to such cement compositions.

Interestingly, the handling of CaCO3-based cement paste during

and after its preparation is perceptibly different from that of other

well-known CaP-based self-setting pastes. A rapid and reversible

transformation of paste consistency characterized by a drastic
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modification of its viscosity (from viscous state to liquid state) can

be noticed during mixing, and thus when the level of stress applied

to the paste is prolonged.

Therefore, the characterization of rheological properties and

injectability of this original CaCO3-based cement composition is

of interest with a view to specifying and controlling the variations

of rheological behaviour and injection properties of the paste from

its preparation at room temperature to its injection. The objective

of this study was to set up protocols for the determination of CaCO3

self-setting paste rheological properties in conditions as close as

possible to a surgeon’s operating conditions.

Investigations on self-setting mineral pastes are complex as

they are generally fast reactive systems under continuous transfor-

mation involving the development of an internal microstructure

during cement setting and hardening. Despite these difficulties,

rheological measurements can help us to thoroughly characterize

self-setting paste and understand setting and hardening phenom-

enon, and such approaches are just beginning to be explored. Dif-

ferent procedures to characterize the rheological properties of

biomedical CaP pastes or suspensions can be found in the litera-

ture, but only a very few studies have investigated self-setting

pastes using dynamic rheometry over an extended period during

setting [12–14]. In the field of paper-maker applications, Kugge

and Daicic [15] studied the rheological properties of non-setting

calcium carbonate concentrated suspensions using a controlled

strain rheometer. However, the rheometrical protocol should be

adapted to take into account the occurrence or not of a setting

reaction in the studied system.

One of the first studies reporting rheometrical analysis of self-

setting CaP pastes is that of Sarda et al. [12]. They investigated

the rheological behaviour of injectable CaP cements by studying

the creep response of the paste as a function of shear stress and

other parameters controlling the paste’s rheological properties,

such as temperature, the liquid-on-solid ratio (L/S) and the pres-

ence of additives such as citric acid. More recently, Liu et al. [13]

reported a steady and dynamic rheological study on CaP cement.

They performed dynamic rheological measurements involving

the application of low-amplitude oscillatory strains to the paste

that allowed the simultaneous investigation of the viscous and

elastic properties of the paste during the development of its inter-

nal structure due to setting reaction. In addition, they used these

rheometrical data to evaluate the paste-setting time based on the

storage modulus (G0 value) analysis. Wang et al. [14] presented

steady rheological measurements to characterize the stability of

a paste consisting of a mixture of amorphous calcium phosphate

and dicalcium phosphate dihydrate based on a novel approach of

thixotropy measurement. They also reported measurements of

paste injectability based on the calculation of the volume of paste

extruded compared to the initial volume of paste within the

syringe.

It appears from all the previous cited studies that the determi-

nation of such complex suspension properties has to be made very

carefully. A well-controlled and reproducible experimental proce-

dure has to be determined. It has to take into account the paste his-

tory, from its preparation to its implantation in vivo. The

interactions between the paste and the biological environment

are another important parameter to consider. Moreover, the sur-

gery operating conditions, such as temperature and handling

stress, are determinant factors too.

It is thus necessary to understand and follow the structural

build-up and breaking both before and during the injection. In

the case of hydraulic cements, this structural build-up is associated

with physical–chemical processes, especially a dissolution–recrys-

tallization process involving free water that leads to the solidifica-

tion of the system. During the injection, the paste undergoes high

shear that is capable of inducing the structure’s breaking. Under-

standing and controlling the rheological properties of the system

during these two distinct but not independent phenomena will al-

low us to determine the parameters and time scales that control

the behaviour of the system during use. Therefore, non-destructive

tests, based on small-amplitude oscillatory shear using very low

strain amplitude, are considered. They are appropriate to quantify

the stiffness or growth of structures in unsheared flows [16], and

are thus representative of the material behaviour at rest, before

injection. Moreover, shear flow is also considered. This may involve

the breaking down of the structures that form as the crystallization

reaction progresses and are representative of the evolution of the

paste structure under injection conditions. These tests, and the

experimental conditions associated, are described in detail in Sec-

tion 2.4.

Injectability is also a determinant property to be considered for

biomedical self-setting substitutes as the paste has to be easily ex-

truded by surgeons. Even though the injectability of CaP pastes has

been investigated theoretically and experimentally by several

authors, there is still no standard procedure by which to measure

the injectability of a self-setting paste [14,17–22]. Bohner et al.

[8,18] and Qi et al. [23] showed that improvement of injectability

can be achieved in two ways: by modifying the injection system

parameters, such as the length and diameter of syringe cannula

and/or the injection rate; or by varying cement composition

parameters, including the L/S ratio, the powder particle size and/

or the presence of additives. In the former case, a compromise be-

tween cement’s rheological properties and the injection system

must be found, but the possibilities of variation are limited as

injection parameters must fit in with surgical use.

Injectability remains an undefined property of a cement paste

and several protocols can be found in the literature to evaluate this

property. In all cases a syringe system is used with or without a

cannula, and authors measure the amount or volume of paste ex-

truded at a constant force [14,19–22,24], and/or the pressure/force

required to extrude the paste [8,17,18]. Less attention is paid to the

cement’s properties (setting, cohesion) and composition after

injection, although these parameters are fundamental in the eval-

uation of the injectability of a cement formulation.

2. Materials and methods

The original cement composition studied consists of a mixture

of vaterite and amorphous calcium carbonates constituting the so-

lid phase (S) with deionized water as the liquid phase (L). The prep-

aration and characterization of the reactive powders, along with

the characterization of the paste’s rheological properties, its injec-

tability and setting time, are described hereafter.

2.1. Reactive powders synthesis and characterization

The reactive powders vaterite and amorphous calcium carbon-

ate, which constitute the solid phase of the cement, were synthe-

sized by precipitation at ambient temperature, following

protocols described previously [10]. The precipitates were filtered,

washed with deionized water (only for vaterite CaCO3), lyophilized

and stored in a freezer to avoid any evolution of these metastable

powders before their use.

The as-prepared powders were characterized using Fourier

transform infrared (FTIR) spectroscopy (Nicolet 5700), X-ray dif-

fraction (INEL CPS 120) and scanning electron microscopy (SEM,

LEO 435 VP, sample silver plating before observation) techniques.

Laser diffraction granulometry (Malvern, Mastersizer 2000) and

specific surface area analyses (Monosorb MS22, Quantachrom)

were also carried out on these powders. Mean particle diameter

and specific surface area are important physical characteristics of



powders to consider when evaluating the rheological properties

and injectability of concentrated and reactive suspension of parti-

cles, such as the CaCO3 self-setting paste studied in this paper.

2.2. Self-setting paste preparation

The cement paste was prepared by mixing the appropriate

amount of liquid phase (deionized water) with a powder mixture

of metastable calcium carbonate phases (amorphous CaCO3 and

vaterite with a weight ratio of 1:2), as previously published [10].

The L/S ratio was equal to 0.67. In this study, the initial time corre-

sponds to the end of the mixing of the liquid and solid phases, up to

a maximum of 1 min of mixing, i.e. when a homogeneous paste is

obtained.

In order to prepare the reference hardened cement, the paste

was then placed in a sealed container in an atmosphere saturated

with water at 37 !C for setting and hardening.

2.3. Physical and chemical characterization of the cement

Cements set and hardened in reference conditions (i.e. in an

oven at 37 !C) or during rheometrical measurements were charac-

terized using FTIR spectroscopy (Nicolet 5700), X-ray diffraction

and SEM (sample silver plated before observation) techniques.

These complementary techniques have been used to thoroughly

characterize the cement’s composition (CaCO3 crystalline phase

identification) and microstructure after setting and hardening. A

paper on the characterization of calcium carbonate-based cement

compositions for bone substitution has recently been published

[10].

2.4. Rheometrical characterization

Accurate characterization of the rheometrical behaviour of the

calcium carbonate self-setting paste was difficult due to several

perturbating effects induced by the apparatus and, mainly, by the

chemical reaction that the system undergoes during measurement.

In this study, rotational rheometry is considered. The rheomet-

rical tests were conducted using a controlled stress rheometer

(CARRI-Med CSL2 100, TA Instruments) equipped with a parallel-

plate geometry. Three main problems arise when using this geom-

etry. First, the shear rate varies throughout the test sample

(although this does offer the advantage of the adaptability of the

gap size, which is important in cases of such concentrated suspen-

sion systems). Moreover, measurements could be affected by ‘‘wall

slip”. This was avoided by sticking an abrasive paper to the surface

of the plates. Finally, to prevent water evaporation during mea-

surement, geometries and samples were enclosed in a water trap

to maintain an atmosphere saturated with water. The lower plan

was equipped with a Peltier thermoelectric device that insures a

controlled temperature, fixed at 25 or 35 ± 0.1 !C for this study.

These values were chosen as temperatures close to the preparation

of the paste at room temperature by the surgeon (25 !C) and the

injection of the paste in vivo (35 !C). The set is schematically rep-

resented in Fig. 1a.

Two different rheometrical procedures were considered to fol-

low the structure build-up at rest or during gentle mixing and han-

dling on the one hand, and the likely shear-induced breakdown of

the structure, representative of injection conditions, on the other.

Linear viscoelastic measurements and steady shear measurements

were carried out at 25 or 35 !C. The former consisted of an oscilla-

tory shear at low deformation. This is representative of the behav-

iour of the sample at rest and allows the follow-up of the structure

build-up before or after injection. Evolution of loss and elastic

modulus were recorded. Schematic representations of the set and

procedure are presented in Fig. 1a and b, respectively.

Briefly, the cement paste to be tested was prepared as detailed

in Section 2.2. The paste was then transferred onto the rheometer

top plate and the gap immediately set to 700 lm. This value allows

the easy control of the sample set-up; however, it is also quite

high, and may induce some fracturation of the sample during the

rheometrical characterization. It was thus reduced before the mea-

surements, as explained below.

In procedure 1, nearly 3 min after the paste had been placed be-

tween the parallel plates (the time required for the entire sample

to reach the right temperature), it was sheared under a constant

shear of 30 s!1 for 10 s at 25 !C. This step allows the paste’s initial

state to be standardized with regard to the structure’s develop-

ment. In addition, such a level of shear can be representative of

the paste injection conditions. The sample was then left to rest

for about 3 min before being sheared again under low-amplitude

oscillatory conditions. During the rest period the structure devel-

ops in a controlled and reproducible way, after which it is possible

to start the experiment. Note that after 5 min (t = 50) the gap was

reduced to 500 lm to minimize any possible fracturation occurring

within the paste due to the high level of shear considered. This gap

value was high enough to consider the sample homogeneous. It

was also sufficient to ensure that the cement microstructure devel-

opment during setting was not disturbed by the vicinity of the

interfaces, thus allowing us to consider the setting mechanism in

the sample as being representative.

At t = 50450 0, low-amplitude oscillatory shear measurements

started under 0.05% deformation and at an angular frequency of

6.823 rad s!1, corresponding to 1 Hz. It was thus possible to follow

the setting of the paste during a sufficiently long period of time

without disturbing the setting and hardening dynamic of the sam-

ple. Experiments were performed at 25 and 35 !C.

The second rheometrical procedure considered was performed

in order to follow the structural evolution of the sample under high

deformations, representative of the injection conditions. Procedure

2 consisted of steady shear measurements, repeating procedure 1

three times every 20 min, as schematically represented in Fig. 1c.

The shearing period allows the shear-induced breakdown of the

structure, which can build-up and develop once again during the

following period of rest under a low-amplitude oscillatory shear.

This structure development could be followed and recorded during

the oscillation period. The steady shear viscosity of the sample dur-

ing the shearing period was recorded as a function of time.

Each sample was analysed in triplicate. The uncertainty on the

rheometrical measurements was around 12%, but we chose not

to report the statistical results on the figures to keep them more

legible.

2.5. Injectability and setting time measurements

Injectability was measured using a TAXT2 texture analyser (Sta-

ble Micro Systems) equipped with a specific syringe system,

including a 2.5 ml syringe (inner diameter of the syringe

body = 9 mm and opening/exit diameter = 2 mm) without a needle.

It followed a protocol designed to measure: (i) the force, expressed

as a weight to be applied on the piston, needed to extrude a vol-

ume of paste corresponding to a displacement of 15 mm of the syr-

inge piston at a constant rate of 2 mm s!1 (piston surface =

64 mm2); and (ii) the weight of the volume of paste extruded.

In addition, the system permits testing commercially available

syringes and fits to a surgeon’s manipulation.

Briefly, each sample (1.5 g of powder mixture and 1 g of deion-

ized water) was prepared as described in Section 2.2. Measure-

ments were performed at room temperature and 7 min after the

paste had been prepared (i.e. mixing of the L and S phases). This

period corresponds to the time needed to prepare the paste, to

introduce it into the syringe and to leave it at rest for about



3 min (like for the resting period in rheometrical procedure de-

tailed in Section 2.4) before starting the injectability measure-

ments. This period could also correspond to the time a surgeon

would need to prepare the cement paste and introduce it into a de-

vice for implantation by the injection technique.

In addition, a balance was placed under the support of the syr-

inge to weigh the amount of paste extruded at the end of the injec-

tion period. This protocol was chosen as it allowed comparison

between cements with largely differing rheological properties

[25]. The volume extruded corresponding to a displacement of

15 mm of the syringe piston was chosen as it was sufficiently large

to minimize the response of the system related to the syringe

geometry that could cause small differences between samples.

The setting of the cement was followed as a function of time

using a TAXT2 texture analyser (Stable Micro Systems) fitted with

a cylindrical needle 1 mm of diameter (surface = 0.785 mm2). The

setting time was considered to be reached when the paste devel-

oped a resistance to needle penetration greater than 600 g mm!2.

For all measurements, each sample was analysed in triplicate.

3. Results

Fig. 2a illustrates the lentil-like morphology of vaterite parti-

cles. Their mean diameter and specific surface area were deter-

mined to be 2.1 ± 0.5 lm and 33 ± 11 m2 g!1, respectively. The

morphology of the amorphous calcium carbonate particles is less

well defined, as seen in Fig. 2b. Their mean diameter and specific

surface area were determined to be 5.1 ± 0.8 lm and

22 ± 7 m2 g!1, respectively.

Fig. 3 presents the evolution of the viscous modulus (G0 0) as a

function of time at 25 and 35 !C following procedure 1. A progres-

sive increase in G0 0 can be observed during paste setting, and this

phenomenon is enhanced by an increase in temperature. For exam-

ple, the time needed to reach a level of G0 0 of 3 MPa is 38 min at

35 !C and 96 min at 25 !C. An analogous evolution was obtained

for the elastic modulus G0 (data not presented).

The determination of the setting time at 37 !C (setting

time = 90 min) and 20 !C (setting time = 370 min) using a texture

analyser also revealed the drastic effect of temperature on the set-

ting process of this calcium carbonate self-setting paste.

Physical–chemical characterization of the cement set in refer-

ence conditions or during dynamic rheological measurements fol-

lowing procedure 1 was performed. FTIR spectra of both cements

are presented in Fig. 4a. When we zoom in on the m2CO3 domain

(Fig. 4b) we can clearly identify in both cases the presence of car-

bonate vibration bands at 855 and 713 cm!1, characteristic of ara-

gonite. Formation of aragonite was also confirmed by X-ray

diffraction analysis. In addition, SEM micrographs of the cement

set in reference conditions (Fig. 5a and b) and under dynamic

Fig. 1. Rheometrical characterization: schematic representation of (a) the experimental set; (b) procedure 1; and (c) procedure 2.



rheological measurements (Fig. 5c and d) show the formation of a

microporous cement made of an entangled network of aragonite

needle-like crystals of about 2 lm in length in both cases. Further-

more, we note in both cases the absence of lentil-like crystals char-

acteristic of vaterite (Fig. 2a) in the set cement (Fig. 5), confirming

that the latter fully transformed into aragonite during setting and

hardening.

We next examine the results obtained through rheometrical

characterization using procedure 2, characterized by shearing peri-

ods followed by small-amplitude oscillatory flows.

Fig. 6 presents the evolution of the shear viscosity during the

three shearing periods (about 3, 21 and 41 min after paste prepa-

ration). It shows that the viscosity of the paste strongly decreases

during the applied shear and reaches a plateau after 8 s of flow,

revealing the shear-thinning behaviour of this self-setting paste.

This phenomenon is also observed even 41 min after paste prepa-

ration. The level of viscosity at the end of the paste flow was close

to that reached at 21 min, but above that measured during the first

shear. In addition, we noted that the initial viscosity level, mea-

sured after 2 s of shear, increased with time. This effect may be

attributed to the progressive setting of the paste occurring during

measurement.

Fig. 2. Scanning electron micrographs (2500"magnification) of the reactive powders used to prepare the cement paste: (a) vaterite CaCO3; (b) amorphous calcium carbonate.
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The viscous modulus G0 0 was recorded as a function of time dur-

ing the small-amplitude oscillatory flows following each shearing

period. The results indicate a clear increase in the viscous modulus

for tests performed at both 25 and 35 !C (Fig. 7). It thus appears

that after each of the three flows and following a strong decrease

in paste viscosity (Fig. 6) the sample is then allowed to re-build

through a progressive setting of the paste left to rest (Fig. 7).

The increase in the viscous modulus is fast and high at 35 !C,

but moderate at 25 !C (Fig. 7). In addition, we note that the level

of the viscous modulus G0 0 is higher all along the setting for tests

at 35 !C compared to those at 25 !C. These results reconfirmed

the strong influence of temperature on the (re)development of ce-

ment microstructure during setting.

The shear-thinning behaviour revealed by the measurements

presented in Fig. 6 was confirmed with the procedure used to char-

acterize the injectability of the paste. Indeed, we note in Fig. 8a a

strong decrease in the force needed to extrude a given volume of

paste followed by a plateau. It is important to note that the shape

of the curve, the weight level measured and the amount of paste

extruded (1.29 ± 0.01 g) are repeatable. This confirmed the reliabil-

ity of the specific syringe system and protocol set used to evaluate

the injectability of this self-setting paste. Fig. 8b presents a photo-

graph of the paste once extruded from the syringe. We see that a

continuous and homogeneous ‘‘spaghetti” of paste is obtained after

extrusion.

4. Discussion

4.1. Rheological properties

The two rheometrical procedures used to characterize the self-

setting calcium carbonate paste are complementary. They both

clearly show the influence of temperature on the development of

cement microstructure during setting and hardening. In a previous

study, we showed that the setting and hardening properties of cal-

cium carbonate cement are due to the progressive dissolution of

amorphous calcium carbonate and vaterite, and the crystallization

of aragonite crystals. This dissolution–reprecipitation mechanism

can be accelerated by an increase in temperature. This mechanism

was confirmed in the present study, especially by the absence of

the carbonate vibration band characteristic of vaterite at

745 cm!1 in the cement set in both conditions (i.e. reference con-

ditions and during rheometrical measurements), which revealed

a vaterite dissolution–reprecipitation process during paste setting

and hardening.

In addition, it is important to note that the rheometrical proto-

col involving low mechanical stress on the paste under dynamic

measurements (procedure 1) did not prevent the cement setting

reaction to occur through recrystallization of amorphous calcium

carbonate and vaterite into aragonite (Figs. 4 and 5). In particular,

physical–chemical characterizations revealed the development of

the microporous cement microstructure resulting in an entangled

network of aragonite needles whatever the conditions analysed,

i.e. paste set between the parallel-plate geometry of the rheometer

and during rheometrical measurements at 35 !C or in the reference

conditions (Fig. 5). Such stability in the setting process is important

for assessing the reliability of the rheological procedures used and

should be performed for every rheological property determination

on cement paste, although this is rarely done. In addition, the use

of such non-destructive procedures represents a decisive advan-

tage for the further investigation of the rheological properties of

other bone cements.

The originality of procedure 2 helped evaluate the ‘‘longevity”

and workability of the paste at different temperatures: (i) room

temperature (25 !C) for paste preparation; and (ii) close to

Fig. 5. Scanning electron micrographs (5000" and 10,000" magnifications) of the cement set in an oven at 37 !C (a and b) or during procedure 1 (c and d).
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physiological temperature (35 !C) for paste implantation through

the injection technique. We showed that the viscosity of paste in-

creased during the rest period but decreased strongly during each

shear/flow and reached quite similar values, indicating a fully

reversible transformation from paste to viscous liquid due to the

shear-thinning properties of this self-setting paste. The shear-thin-

ning behaviour is associated with a destructuration of the paste,

corresponding to its fast transformation into a liquid suspension.

At rest, under a low oscillatory shear, the progressive recovery of

the structure was followed through the increase in the viscous

modulus with time (Fig. 7). The capacity of this calcium carbonate

self-setting paste to restructure itself after shear, namely thixot-

ropy, depends on both temperature and the time after which paste

flow behaviour is examined. One can hypothesize that several phe-

nomena are superimposed, including the setting and hardening of

the cement, which are irreversible after undergoing dissolution–

reprecipitation during setting, and the cement thixotropy, which,

by definition, is reversible. Both processes are temperature-depen-

dent. It would take further investigation to distinguish these oppo-

site behaviours of the calcium carbonate paste, namely reversible

thixotropy and irreversible setting. We are currently using several

physical–chemical characterization techniques to investigate

which phenomenon is involved in the shear-thinning behaviour

associated with the very fast transformation of this calcium car-

bonate self-setting paste into viscous liquid under stress.

Interestingly, at 35 !C the cement paste rapidly recovered its

consistency even if the shear stress was performed more than

41 min after paste preparation. This extended period of testing

(60 min) was an overestimate with regard to the paste workability

and self-setting ability expected by surgeons using such injectable

paste. However, the strong decrease in paste consistency and self-

setting rate observed after shearing at 25 !C suggested a risk of

‘‘cement washout”, resulting in the disintegration of the paste on

contact with tissue or fluids which could limit its implantation

using an injection process. To compensate for this high flowability

of the paste during its injection, consideration could be given to

using a slightly heated syringe to minimize this risk after injection.

4.2. Injectability of the paste

One of the main challenges for injectable hydraulic cements is

to better control their injectability and avoid the well-known phe-

nomenon of ‘‘filter-pressing”, or the separation of powder particles

and liquid within the syringe, which greatly limits their implanta-

tion using an injection process. In the literature there are a number

of studies on the injectability of calcium phosphate cements based

on the weight of paste extruded (i.e. injectability expressed as a

percentage of the paste extruded) or the measurement of force or

injection pressure needed to extrude a volume of paste

[14,17,22]. As already pointed out by several authors, many extrin-

sic parameters affect injectability measurements, such as the pres-

ence of a cannula, its diameter, temperature, the time after which

measurements are performed, a prolonged mixing of the paste and

the injection environment [25–28]. These factors make comparison

of the results presented in the literature difficult.

The protocol and the specific syringe system we designed to

evaluate the injectability of this CaCO3 self-setting paste combined

the measurement of two commonly used quantitative parameters:

the force, expressed as a weight to apply on the syringe piston,

needed to extrude a volume of paste and the extruded paste

weight. It is important to note that we checked whether, once ex-

truded, the paste was homogeneous, set and led to hardened ce-

ment with the same composition and microstructure as that

obtained for the reference cement.

In addition, the technique used and protocol set led to sensitive

characterization of the injectability of the paste. For example,
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powder particle size and/or paste L/S variation involved significant

change in the force needed for paste extrusion [29]. It is thus nec-

essary to carefully and reproducibly prepare the reactive powders

and the paste to obtain reproducible results.

The injectability measurements presented in Fig. 8 confirmed

the shear-thinning behaviour of calcium carbonate cement re-

vealed by the rheometrical study as the force needed to extrude

the paste decreases strongly and then reaches a plateau corre-

sponding to a weight level to apply to the syringe piston of around

2.5 kg. This reveals the ease of injection of this CaCO3 self-setting

paste. However, we noted that a very slight increase in the weight

level needs to be applied to extrude the paste when the piston ap-

proaches the bottom of the syringe (see the right part of the curve

in Fig. 8a), suggesting that a filter-pressing phenomenon could oc-

cur even if it is of low intensity.

On the one hand, this shear-thinning property and the ability of

the calcium carbonate self-setting paste to becomemore liquid un-

der shear stress improved its capacity to diffuse within the whole

bone defect and keep homogeneous during injection, thus decreas-

ing the filter-pressing. On the other hand, this property increases

the risk of cement washout after injection in vivo. To prevent or

minimize such an undesirable phenomenon, it would be of use

to customize a system capable of controlling the temperature of

the syringe and/or the cannula with a view to finding the best com-

promise between ease of paste injection and paste cohesion.

5. Conclusions

In this study, the rheological characterization of an original cal-

cium carbonate self-setting paste has been carried out in condi-

tions as close as possible to surgeon operating conditions: paste

stress preparation and introduction into the syringe at room tem-

perature, and injecting in a wet environment and at a temperature

close to that of the body.

The shear-thinning behaviour of this calcium carbonate self-

setting paste has been demonstrated both by dynamic rheological

and injectability measurements using two analysis techniques: a

controlled stress rheometer and a texturometer. Interestingly, this

study pointed out the ease of injection of this calcium carbonate

paste and demonstrated a limited filter-pressing phenomenon, a

workability and a self-rebuilding ability even over an extended

period after paste preparation.

Even if it appeared difficult to distinguish the cement setting,

which is an irreversible process, from the cement thixotropy, which

is a reversible one, the experimental procedures set up in this study,

i.e. based on dynamic rheological characterization of this CaCO3

self-setting paste and involving flow and low-amplitude oscillatory

shears, are non-destructive. The setting and hardening processes

occurred as observed in reference conditions, and led to a micropo-

rous cement made of an entangled network of aragonite-CaCO3

needle-like crystals. These rheometrical procedures deliver impor-

tant data with a view to improving and controlling the paste’s rhe-

ological properties during preparation at room temperature and

injection in vivo. They also provide a method to compensate for

the lack of a standard procedure for characterizing the rheological

properties and injectability of such injectable bone substitutes.

Appendix Figures. with essential colour discrimination

Certain figures in this article, particularly Figures 1, 7 and 8, are

difficult to interpret in black and white. The full colour images can

be found in the on-line version, at doi:10.1016/j.actbio.2009.08.

032.
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