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a b s t r a c t

Changes in pig slurry organic matter (OM) during anaerobic digestion (AD) were studied in a reactor to

characterize OM evolution through AD. OM maturity and stability were evaluated using different bio-

logical and physico-chemical methods. Germination and growth chamber experiments revealed a higher

maturity of digested slurry (DS) than raw slurry (RS). Soil incubations showed that DS was more stable

than RS with a C-mineralization of 12.0 g CO2-C 100 gÿ1 Corg after 49 days as compared to 17.6 g CO2-

C 100 gÿ1 Corg. Biochemical fractionation showed a relative increase in stable compounds such as

hemicellulose-like and lignin-like molecules. Fourier-transform infrared spectroscopy showed some

changes in the chemical structures of OM with a reduction in the aliphatic chain, lipid and poly-

saccharide levels. A comparison between the evolution of OM during AD and the first weeks of a

composting process showed almost identical changes. Finally a theoretical method called Fictitious

Atomic-group Separation was applied to the elemental compositions of RS and DS. DS was less humified

than RS and presented the properties of a fulvic acid, indicating that the observed stability in DS was

mainly due to the biodegradation of the most labile compounds.

1. Introduction

European energy policies are evolving towards the development

of anaerobic digestion for organic residue and waste treatment

(European Parliament, 2008). Because of its energy potential,

anaerobic digestion (AD) has been studied for decades and the

process is well known (Deublein, 2008; Moletta, 2008). That is the

reason why this technology is already of particular importance in

some European countries for agricultural by-products such as cattle

or pig slurries and crop residues. On the other hand, pig slurries are

traditionally spread on agricultural lands to recycle fertilizing

elements such as N, P or K. When anaerobically digested, they can

be managed like raw slurries, by spreading on land, or like

substrates for composting. Different studies have been carried out

to evaluate the quality of the organic matter from digestates in

comparison to composts, in order to better characterize their

aerobic post-treatment (Fuchs et al., 2008). However, when

anaerobically digested products are directly spread on land, only

the nutrients (N and P principally) and the pollutants are taken into

consideration (Palm, 2008). Consequently, there is still a lack of

information about the agronomic benefits and disadvantages of the

organic matter quality from anaerobically digested pig slurries,

although they are widely reused in crop soils. This is of particular

interest since soil organicmatter is decreasing in crop soils currently

in Europe and is receiving increasing attention. At the same time,

in a context of climate change and sustainable development, C

sequestration in the topsoil is being studied to be accounted as

C sinks in national greenhouse gas inventories (Saby et al., 2008).

Organic matter (OM) quality has been widely studied for

composts. Bernal et al. (1998) presented the two main criteria to

safely use compost in soil: maturity and stability. Maturity implies

a stable organic matter content and the absence of phytotoxic

compounds and plant or animal pathogens, and is associated with

plant growth potential or phytotoxicity. Stability is often related to

the compost’s microbial activity, but can be associated to physico-

chemical parameters (colour, pH, and C/N). In 2005, 12 stability

parameters and 7 maturity parameters cited by 49 articles were

identified (ADAS Consulting Limited, 2005). Further investigations

on composts revealed that stability was best evaluated by

combining different characteristics (Bernal et al., 1998; Benito et al.,

2003) but there is still no internationally standardized method to

evaluate maturity and stability. However, seed-germination tests

are widely performed to guarantee maturity and one such proce-

dure has been standardized in France (AFNOR, 2004). Microbial
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activity, and more particularly respirometry, is another current

method to evaluate compost stability (Barrena Gómez et al., 2006).

These two kinds of test are the most widely used, but other

methods have been developed to characterize humic substances.

For example, Fourier-transform infrared spectroscopy has allowed

a much better understanding of humic substances (Stevenson,

1994; Chen, 2003). In consequence, several research works have

dealt with humic and fulvic acids in sewage sludge (Gigliotti et al.,

2001; Guiresse et al., 2004; Amir et al., 2005; Senesi et al., 2007) or

pig slurry (Plaza et al., 2002, 2003; Hernández et al., 2006a) and

compared their characteristics to the properties of soil humic

substances. Moreover, different authors have established predictive

methods to evaluate humic substances or compost behaviour in soil

from the chemical characteristics of the organic matter. Linères and

Djakovitch (1993) proposed an original approach to predict the

OM humic potential using biochemical fractionation to calculate

a biological stability index (BSI). In a similar way, an interpretation

method of the elemental formula of humic substances was

proposed with the goal of understanding their genesis and struc-

ture (Tardy et al., 2000; El Hajjouji et al., 2008).

In consequence, the present work aimed to bring new data

concerning the changes in the OM quality through a pig slurry

anaerobic digestion process and at characterizing the final product

from an agronomic point of view. The maturity of both raw and

anaerobically digested slurry was first evaluated with a growth

chamber experiment. Then, we characterized the organic matter

stability of raw and digested slurries by combining four methods

inspired from edaphological approaches and compost evaluation:

soil incubation and determination of carbon mineralization rate;

biochemical fractionation and determination of the biological

stability index (BSI); Fourier-transform infrared spectroscopy and

identification of themain functional groups; elemental formula and

modelling with the ‘‘Fictitious Atomic-group Separation’’ (FAS)

method. All these methods were applied considering the organic

matter as a whole and not humic and fulvic fractions which are

inappropriate to differentiate animal slurries (Plaza et al., 2003;

Moral et al., 2005). Large amounts of raw or digested slurry had to

be used for biological tests (growth chamber tests and soil incu-

bation) to simulate themid- and long-term environmental effects of

slurry spreading. Since such great quantities can be harmful due to

the presence of abundant NH4
þ (Mantovi et al., 2005), the research

was conducted using solid slurry extracts prepared by removing the

aqueous phase containing ammonia after centrifugation.

2. Materials and methods

2.1. Sample collection, preparation and characterization

Raw slurry (RS) and digested slurry (DS) were collected from the

anaerobic digestion plant described by Marcato et al. (2008). This

150 m3 continuous stirred-tank reactor treated about 11 m3 dÿ1 of

pig slurry from a farrow-to-finish herd, with a retention time of 15

days. RS and DS samples were collected using a sampler and were

then centrifuged using a Beckam J2-21M/E centrifuge (14 000g,

30 min) in order to concentrate the organic matter, Cu and Zn, in

the sample. The resulting extracts were air-dried at 40 �C to obtain

a homogeneous powder. Elemental analyses were performed on

a Thermo EA1110 (C, H, N and S) and a Thermo Flash EA1112 (O)

elemental analyzers. Three replicates were carried out for each

sample.

2.2. Growth chamber experiment

Preliminary tests were performed to evaluate the maturity of

the slurry extracts following the method used for composts,

checking the absence of phytotoxic substances for plant growth.

The growth chamber experimentwas conducted on a Neoluvisol

with cultures of maize (Zea mays) and broad bean (Vicia faba). Soil

was sampled from the surface layer (0–20 cm), air-dried, sieved

(<4 mm) and stored at room temperature before use. Soil main

characteristics were clay¼ 35 g 100 gÿ1; silt¼ 41 g 100 gÿ1;

sand¼ 24 g 100 gÿ1; pH¼ 6.4; organic C¼ 1.33 g 100 gÿ1. The

methods of characterization followed the work of Garcı́a-Gómez

et al. (2003). Treatments consisted of a single application rate for

each slurry and each plant, considering that annual RS and DS

spreading is about 60 m3 haÿ1 (Marcato et al., 2007). Such an

application rate corresponds to annual dry matter application rates

of 1.62 t RS haÿ1 or 0.96 t DS haÿ1. The maize assay simulated a long

spreading period with high application rates (250 t RS haÿ1 and

160 t DS haÿ1) and the bean assay represented a shorter period,

with application rates of 50 t RS haÿ1 and 32 t DS haÿ1. Corre-

sponding quantities of slurry extracts were added to a 500 g soil

sample to constitute the culture substrates. Three treatments were

prepared for each assay: control soil (without any fertilisation), soil

amended with raw slurry extract and soil amended with digested

slurry extract (Table 1). Each treatment was replicated five times.

Pots of 8 cm upper diameter, and a height of 10 cm, with holes in

the base for drainage were used, giving a total of 30 pots. The soil

moisture was adjusted to 60% of the water-holding capacity (WHC)

with tap water.

In the maize assay, slurry amendment led to double the quantity

of organic matter (OM) in the culture substrate. Then, preliminary

substrate incubation was carried out to allow a mineralization of

the organic C. The mixture was placed in the dark at 28 �C for 50

days and the moisture content was maintained at 60% of the WHC.

Dry Z. mays and V. faba seeds were soaked for 24 h in deionised

water. Four seeds of maize and bean were sown in each pot, and

then coveredwith a thin layer of sand to facilitate germination. Pots

were placed in a growth chamber (dark, at 25 �C) for a week, and

only one germinated seed was kept in each pot. Then, the pots were

placed for 7 weeks at 24 �C day, 20 �C night, with a 16-h photo-

period. The relative humidity was kept at 70% day, 75% night. The

plants were watered with tap water to maintain the culture

substrate moisture at 60% of the WHC. At the end of the growing

period, the aerial parts and roots of each plant were collected and

the dry weights determined. Statistical analysis of the data was

performed by analysis of variance and means comparison between

each slurry treatment vs the control treatment. Mean values were

tested for statistically significant differences using a t-test at

p< 0.05. Finally, a growth index was calculated as the percentage

ratio between the mean dry weight of plants in slurry and control

treatments (Barberis and Nappi, 1996).

2.3. Soil incubation experiment

Potential C-mineralization of slurry extracts was measured by

soil incubation at 28� 1 �C for 49 days. The soil used for these

incubations was the same as the growth chamber experiment.

Slurry input was 0.67 g dry weight (DW) per 25 g soil for raw slurry

and 0.44 g DW per 25 g soil for digested slurry. Control soil without

any input was also included. Dried slurries were homogeneously

mixed with soil samples. In the three treatments (control, RS and

DS), equivalent of 25 g dry soil was placed in hermetically closed

800 mL glass jars. Three replicates were performed for each

Table 1

Slurry rates and corresponding theoretical OM amounts in the culture substrates.

Control soil Long-term/Maize Middle term/Bean

RS DS RS DS

Slurry extracts (g potÿ1) 32.8� 0.4 21.1� 0.1 7.4� 0.3 3.9� 0.1

OM (g potÿ1) 12.0 35.1� 0.3 25.8� 0.1 16.9� 0.1 14.2� 0.0



treatment and sampling date. Soil moisture content was main-

tained at 60% of the WHC by weighing and adjusting if necessary

with tap water. The CO2 produced was trapped in 10 mL of 0.5 M

NaOH. CO2 traps were renewed after 1, 3, 7, 14, 28 and 49 days. The

residual alkalinity was analyzed by back titration with 0.1 M HCl in

an excess of BaCl2.

C-mineralization was calculated as the difference between the

C-mineralization in control soil and in the soilþ slurry extract. It

was assumed that mineralization from soil was similar with and

without slurry addition. Cumulative C-mineralization was

expressed in g CO2-C 100 gÿ1 slurry organic C.

2.4. Biochemical fractionation and biological stability index (BSI)

Slurries were fractioned following the method proposed by

Linères and Djakovitch (1993) that was recently standardized in

France (AFNOR, 2005). For this fractionation, 1 g of slurry was

mixed with 2 g of calcinated sand in a coarse porosity (40–90 mm)

glass crucible. The mixture was boiled in successive extractants

using a Velp Scientifica FIWE extractor:

- the soluble and neutral detergent fiber fractions (NDF) were

determined by extraction with neutral detergent (100 �C) for

60 min.

- the acid detergent fiber fraction (ADF) was determined by

extraction with acid detergent (100 �C) for 60 min.

- the acid detergent lignin faction (ADL) was determined by cool

extraction with sulphuric acid for 3 h.

Dry weight residue between each step was used to calculate the

neutral detergent soluble (NDS), hemicellulose-like (HEMI) and

lignin-like (LIC) fractions using the following relationships:

NDS ¼ 1ÿ NDF; HEMI ¼ ADFÿNDF; LIC ¼ ADL

where the fractions are expressed in g gÿ1 slurry.

The Wende cellulose fraction (CEW) was determined by

successively boiling the same sand and slurry mixture for 30 min in

sulphuric acid (0.26 M) and potassium hydroxide (0.23 M).

The biological stability index (BSI) was calculated according to

Gabrielle et al. (2004):

BSI ¼ 2:112ÿ 2:009�NDSÿ 2:378� HEMIÿ 2:216� CEW

þ 0:840� LIC

2.5. FTIR spectra

Fourier-transform infrared (FTIR) spectra were recorded on an

FTIR Thermo Nicolet 5700 spectrophotometer on potassium

bromide (KBr) pellets, obtained by pressing a mixture of a 2-mg

slurry extract sample with 300 mg KBr. To limit moisture interfer-

ence, both slurries and KBr were separately dried at 105 �C before

making the pellets. Spectra were plotted over the range 4000–

400 cmÿ1.

2.6. Fictitious Atomic-group Separation (FAS)

This method was proposed by Tardy et al. (2000) and used by El

Hajjouji et al. (2008) to evaluate the degree of hydration and

oxidation of carbon within a given elemental formula (CmHnOp).

Derived from the elemental species composition (CHON) and the

stoichiometry of the reactions, the FAS was developed to under-

stand the thermodynamic stability of humic substances in soil–

plant–water environments.

For the calculations, elemental composition was first expressed

for 1 N, and then one NH2 was subtracted from the formula since

most of the organic N present in a pig slurry solid fraction is part of

proteins (Béline, 2001). Oxygen was then used first to create CH2O.

If some O remained, CO was created; on the other hand, if all the

oxygen was used and hydrogen remained, CH2 was generated. The

remaining carbon was written C; if not enough C was present, free

H2O, considered as a sign of hyperhydration, was counted as CH2O–

C. After subtracting NH2, the oxidation state of carbon (Cx) is

distributed between ÿ4, such as in CH4, and þ4, such as in CO2. In

all cases, the average degree of oxidation of carbon is given by

either Cxþ¼ 2CO/Ct or Cxÿ¼ 2CH2/Ct, where Ct is the total number

of carbons counted in the elemental formula.

Moreover, total acidity (TA, meq gÿ1 C), carboxylic acidity

(COOH, meq gÿ1 C), alcohol acidity (OH, meq gÿ1 C) and molecular

weight (MW, gmolÿ1 C) can be also calculated from the elemental

composition with the following relationships (Tardy et al., 2000), A

being the degree of de-polymerisation:

A ¼ ðCH2Oþ COÞ=Ct

Log TA ¼ 0:689� Aþ 0:422

Log COOH ¼ 1:319� Aÿ 0:217

Log OH ¼ 1:366� Aþ 0:385

MW ¼ ÿ4:902� Aþ 7:897

3. Results and discussion

3.1. Growth chamber experiment and maturity

Shoot and root dry weights of bean and maize are shown in

Table 2. All the treatments had amaximum germination index since

the four seeds of each pot germinated in all cases.

However, after selecting a seed, a difference was noted in bean

growth between RS and DS. One RS plant was unable to grow and

only four replicates were harvested and the growth index was very

low (45%), indicating phytotoxic symptoms (Barberis and Nappi,

1996) while the DS treatment showed only a slight decrease of

biomass with a growth index of 89%. This result underlines a posi-

tive effect of anaerobic digestion on pig slurry maturity. Three

explanations can be formulated for such phytotoxicity: (i) some

phytotoxic compounds such as phenols or volatile acids were

degraded by AD (Powers et al., 1999); (ii) the C-mineralization of

raw slurry extract in soil might have generated large amounts of

CO2 and conditions of asphyxia or anoxia (Guiresse et al., 1995) or

might have immobilised the nitrogen (Busby et al., 2007). However,

immobilisation of nitrogen cannot explain the drop in growth since

the levels of nitrogen in the whole plant did not show deficiency:

nodules were present on the roots.

In contrast, when considering the maize assay, the growth

indices were good: 260% and 116% for RS and DS, respectively.

Table 2

Dry weight yields (g potÿ1) of shoots and roots of bean and maize.

Control soil RS DS

Bean Roots 1.11� 0.54 0.41� 0.45 1.24� 0.45

Shoots 3.31� 0.90 1.59� 1.30* 2.68� 0.59

Maize Roots 0.42� 0.12 1.09� 0.59* 0.42� 0.39

Shoots 0.87� 0.12 2.27� 1.24 1.01� 0.91

*p< 0.05 in the Student t-test.



Moreover, the root biomass of the RS treatment was significantly

higher than in the control treatment. In this assay, a previous soil

incubation increased the maturity of the culture substrates, and the

largest quantity of slurry extract added in the RS treatment (Table

1) to simulate a long spreading period led to an increase in nutri-

ents (organic N in particular) in the culture substrate and to better

biomass yield.

The preliminary growth chamber experiment confirmed that

both raw and anaerobically digested pig slurry can be safely used as

organic fertilizer. Moreover, this assay emphasised the relevance of

organic substrate mineralization before sowing. The mineralization

reduced the phytotoxic potential which may be due to toxic

compounds or competition for O2 in soil. Finally, the growth

chamber experiment showed a higher degree of maturity for DS

than RS.

3.2. Soil incubation

The amount of CO2 released after 49 days (Fig. 1) was signifi-

cantly lower in the control soil (3.6 g CO2-C 100 gÿ1 soil organic C)

than in the soils receiving raw or digested slurry (respectively 17.6 g

and 12.0 g CO2-C 100 gÿ1 organic C supplied). Soil receiving raw

slurry showed the highest organic carbon mineralization rate, and

both raw and digested slurry-amended soils had mineralization

rates statistically different from the control until the end of the

assay. However, during the last two weeks, slurry mineralization

rates tended towards a similar value. Maximum values were

obtained for the three treatments on the first day of the

experiment.

These results are consistent with those presented by Plaza et al.

(2007) studying the microbial activity in pig slurry-amended soils

at rates of 0, 150 and 300 m3 haÿ1. Depending on the treatment,

these authors obtained a basal respiration from 30 to 65 g CO2-

C gÿ1 dÿ1 during the first days, and the mineralization rate of

amended soils was statistically significant for about ten weeks, the

greatest difference being observed during the first 30 days.

However, the initial mineralization rates assessed in our experi-

ment (18–23 g CO2-C gÿ1 dÿ1) were quite low in comparison to the

results of Plaza et al. (2007) and those of Morvan et al. (2006) who

screened 47 animal wastes to establish a typological approach

between biochemical composition and mineralization kinetics.

Busby et al. (2007) found that C from municipal waste was twofold

less mineralised in a Troup loamy fine sand when the application

ratewas eightfold higher. Also, the amount of organic matter added

as slurry extracts to simulate several decades of spreading was 4- to

16-fold higher than the quantities used by Plaza et al. (2007). These

high levels of OM added to the soil might explain the observed

C-mineralization difference.

Moreover, the soil incubation assay gave some useful informa-

tion to identify the effect of AD on the maturity and stability of pig

slurry organic matter. The C-mineralization values obtained with

raw and digested slurry extracts were similar to those reported by

Garcı́a-Gómez et al. (2003) for compost samples at different

degrees of maturity. RS behaved like the organic mixture at the

beginning of the treatment (17.6 vs 22.5 g CO2-C 100 gÿ1 Corg) while

DS (12 vs 12 g CO2-C 100 gÿ1 Corg) was similar to the compost after

a 4-week treatment, i.e. during the thermophilic phase. Moreover,

during the first four weeks of the composting process, about 50% of

the initial organic matter was lost. This value is comparable to the

conversion rate of 53% presented by Marcato et al. (2008) for the

anaerobic digestion plant where raw and digested slurries were

sampled. Hernández et al. (2006b) compared C-mineralization

during composting of an aerobic and an anaerobic sewage sludge

mixed with sawdust. The initial C-mineralization rate of anaerobic

sludge was lower and comparable to the values obtained with

aerobic sludge after 60 days of composting.

Finally, the comparison of various incubation tests conducted

with different substrates shows that whatever the organic waste

and the plants considered, the phytotoxicity parallels C-minerali-

zation in the soil. This indicates that the phytotoxicity observed in

the growth chamber experiment was more likely due to oxygen

depletion than due to toxic compounds. Based on this observation,

further information on slurry extract stability is needed to define

the effect of anaerobic digestion on the OM quality, and more

particularly stability. Several European authors have tried to predict

the C-mineralization in soil of various organic substrates from

a chemical characterization, and frequently from a biochemical

fractionation.

3.3. Biochemical fractionation and BSI

Raw and digested slurries showed a similar percentage distri-

bution of organic components with a preponderant NDS fraction

and a cellulose fraction that were almost non-existent (Fig. 2). Most

of the organic content was recovered in the NDS fraction which

represented more than 90% in raw slurry and about 83% in digested

slurry. These results are similar to those presented by Francou

(2003) studying mixed vegetable and fruit wastes for which 86.7%

of the total organic matter was recovered in the NDS fraction.

However, calculated biological stability indexes (BSI) were not

statistically different between the two slurries: about 0.09 for RS

and 0.10 for DS. These values are very low, confirming that pig

slurries constitute a poorly humified substrate. These values are
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low in comparison to the results presented by Parent (2006) for

sludge obtained by a raw slurry separation where the BSI was

evaluated at 0.36. On the contrary, these results are consistent with

those of Morvan et al. (2006). The lack of significance between RS

and DS indexes is consistent with the results of Moral et al. (2005)

who used the same method to study different manures but could

not differentiate them with this approach. The BSI was developed

by Linères and Djakovitch (1993) to classify organic amendments

following their degradation ability and does not seem to be well

adapted to the characterization of non-humified products such as

slurries or manures. Biochemical fractionation appeared to bemore

efficient than the BSI in distinguishing raw and digested slurries

with respect to their organic matter stability. Indeed, stabilisation

was observed when considering the fractions independently, due

to the bioconversion of the most labile fraction (NDS) into biogas

during AD. Thus, the relative amounts of the most stable fractions

(HEMI, LIC) increased proportionally. Morvan et al. (2006)

preferred to use biochemical fractionation rather than the BSI to

characterize several animal wastes (including slurries, litters and

manures) and to predict the kinetics of C and N mineralization.

Previously, the lignin content had been found to be significantly

correlated to the C-mineralization (Bernal et al., 1998; Parnaudeau

et al., 2004) or the Lepidum sativum L. germination index (Bernal

et al., 1998). Studying composts, Francou (2003) proposed the ratio

LIC/(HEMIþ CEL) to represent the stability and to predict C-

mineralization. Considering the raw and digested slurry extracts,

the ratios are significantly different (0.24 and 0.44, respectively, for

RS and DS). These results better represent the OM stabilisation

through anaerobic digestion than the BSI.

3.4. FTIR spectra

The FTIR spectra of both raw and digested slurries are illustrated

in Fig. 3. Themain features of these spectra and their corresponding

assignments are: (i) a broad band at about 3400 cmÿ1 attributed to

O–H (phenols, alcohols and carboxylic groups) and N–H (amines

and amides A) stretching, (ii) two sharp bands at about 2930–

2920 cmÿ1 and 2860–2850 cmÿ1 corresponding to aliphatic C–H

(fatty acids and other long-chain structure) stretching, (iii) a broad

band in the region between 1665 and 1635 cmÿ1 due to C]O

stretching in amides (amide I), acids or ketones and C]C stretching

in aromatics, (iv) an intense band at about 1570 cmÿ1 due to N–H

deformation and C]N (amide II) stretching, (v) a shoulder at about

1460 cmÿ1 attributed to C–H (aliphatic structures) stretching, (vi)

a medium intensity band at about 1420 cmÿ1 which is character-

istic of C–O stretching (carbonate group), (vii) a weak intensity

band at about 1250 cmÿ1 attributed to C–O stretching, C–N bending

and O–H bending of carboxyl, phenols and aromatics, (viii) a band

composed of two main peaks between 1120 cmÿ1 and 1040 cmÿ1

which might be due to the ring vibration of polysaccharides or

polysaccharide-like substances on one hand or, on the other hand,

due to symmetric and asymmetric stretching of phosphodiesters

(contribution of microbial biomass), and (ix) a little sharp band at

875 cmÿ1 due to C–O out of plane (carbonate group).

Raw and digested slurry FTIR spectra exhibited the same

absorbance areas, but they differed in the intensity of some peaks.

In digested slurry, the spectra showed a remarkable decrease of: (i)

aliphatic structures and lipids (bands at about 2930–2920 cmÿ1,

2860–2850 cmÿ1 and 1460 cmÿ1), (ii) amides (bands at about

3330 cmÿ1, 1665–1635 cmÿ1 and 1570 cmÿ1), (iii) polysaccharides

(1040 cmÿ1). These decreases represented the biodegradation of

the labile fraction into biogas (Smidt et al., 2002), with a relative

increase in more resistant and stable compounds. These observa-

tions are coherent with the results of Amir et al. (2005) who

showed that sludge decomposition during composting begins by

the lipid, protein and carbohydrate components. On the other hand,

the digested slurry FTIR spectra revealed an increase in carbonates

(875 cmÿ1) probably due to OM mineralization during anaerobic

digestion. Indeed, the bioconversion of organic matter into biogas

led to the release of compounds such as Ca which reacts with

carbonate ion and precipitates.

Moreover, the FTIR spectra can be compared to those of humic

acid (HA) and fulvic acid (FA) extracted from pig slurry (Plaza et al.,

2003; Hernández et al., 2006a). RS spectra are quite similar to HA

spectrawhile DS spectra look like FA spectra due to the reduction of

aliphatic C–H groups (peaks at about 2900 cmÿ1 and 1460 cmÿ1).

These observations confirm that anaerobic stabilisation of organic

matter is mainly due to the build-up of more stable compounds in

the dry matter rather than humification processes. This stabilisa-

tion was highlighted during the biological treatment of municipal
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solid waste combining a mechanical, an anaerobic and a compost-

ing treatment (Ponsá et al., 2008). The stabilisation was evaluated

at the different stages of the process, and AD was found to be the

step that stabilised the waste most.

3.5. Fictitious Atomic-group Separation (FAS)

The elemental species compositions (Table 3) confirmed that

slurry dry matter is richer in organic compounds (mainly formed of

C, H, O, N) before anaerobic digestion than after. The elemental

composition of RS resembles that of the humic acid-like fractions

isolated from composted animal manures and wastes, C repre-

senting between 55 and 60% of the OM and O about 30% (Senesi and

Brunetti, 1996). These authors presented elemental compositions

for the fulvic acid-like fraction from different composted materials

which were comparable to the DS composition here, with C and O

contents between 45 and 50%.

The carbon oxidation degrees were, respectively, ÿ0.829

and ÿ0.216 for RS and DS, meaning that both RS and DS were from

anaerobic ecosystems. DS showed a higher oxidation degree than

RS, which is surprising since the DS came from a very reduced

environment (ÿ300 mV). This is due to the bioconversion of the

OM into a biogas containing about 64% CH4. The most reduced OM

fraction was then converted into biogas, leading to a relative

increase in the C oxidation degree of the remaining OM. These

results are consistent with the biochemical fractionation which

showed an increase of compounds like lignin or hemicellulose.

The results of the FAS are listed in Table 4. As expected from the

FTIR spectroscopy findings, the de-polymerisation degree

increased through anaerobic digestion due to the hydrolysis of

macromolecules. This phenomenon was also revealed by an

increase of FAS hydroxyl-bearing groups in DS (total acidity,

carboxylic COOH and alcoholic OH), an increase of the H/C ratio, as

well as a decrease in the molecular weight. In comparison to the

values given by Tardy et al. (2000), these results confirm that the

molecules are less condensed after AD. The different fictitious

atomic groups of RS were similar to those of very condensed

molecules such as humin, while the values obtained for DS were

comprised between those of humic and fulvic acids.

4. Conclusion

This work aimed at characterizing themodifications occurring in

organic matter on anaerobic biological treatment. The model

studied was a pig slurry digestion plant. The results showed that

during anaerobic digestion, organic matter is stabilised by the

degradation of the most labile fraction leading to a relative increase

of more stable compounds. The different chemical, biochemical and

biological techniques used in this study (elemental analysis, growth

chamber test, soil incubation, biochemical fractionation and FTIR)

revealed that this anaerobic biodegradation is comparable to the

thermophilic phase of the composting process, but not to a humifi-

cation process. Then, it was proposed that as themost labile fraction

governs OM behaviour in soil in the short-term, spreading stabilised

anaerobically digested organic matter should be less disturbing for

the soil microflora than spreading raw organic matter. Conse-

quently, there will be less risk of competition for nutrient (N in

particular) and oxygen between the crops and the soil bacteria. On

the other hand, the aerobic post-treatment of anaerobically digested

material will be quicker and less odorous than for a raw material.

This is of particular interest for the co-composting of sewage sludge

and green waste. Indeed, a preliminary anaerobic digestion of

sewage sludge would reduce the quantities to be treated as well as

the associated harmful effects while conserving the fertilising value

and producing renewable energy.
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