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a b s t r a c t

Thermoplastic sugar beet pulp (thermo-mechanical processing was discussed in previous studies) was

formed into film strips by extrusion. Film tensile properties are discussed according to the molecular

structure of external plasticizer. Sorbitol, fructose and adipic acid have a marked antiplasticizing effect,

while urea and xylitol gave higher ultimate tensile stress than glycerol for a comparable strain at break.

Xylitol can be considered as the best plasticizer with UTS and EL of, respectively, 4.9 MPa and 11.3% and

water absorption (85% RH, 25 °C) was less than 25%. Glycidyl methacrylate was directly used in the extru-

sion process as cross-linker. In high humidity atmosphere (97% RH, 25 °C), film water absorption was

then kept under 40% while tensile strength and strain were improved of 50% and with a 30 min UV

post-treatment the mass gain in absorption was even less than 30% after 5 days.

1. Introduction

Sugar beet pulp (SBP) is the by-product of the sugar extraction

process. It consists mainly of cell-wall polysaccharides: arabinans

and arabinoxylans hemicelluloses (Sun and Hughes, 1999), highly

methylated and acetylated pectins (Oosterveld et al., 2000) and

cellulose microfibrils (Dinand et al., 1996). Due to such composi-

tion, it is therefore only used as a food complement for animal feed

(Bach Knudsen, 1997). However expensive drying process, low

protein content and large amounts available have led to investiga-

tions to find some alternative uses for this material. Adding value

to isolated compounds was first considered: alimentary fibres

(Michel et al., 1988), cellulose microfibrils (Dinand et al., 1999),

pectins (Oosterveld et al., 2001; Turquois et al., 1999) or ferulic

acid (Micard et al., 1994). Raw pulp has as well been proposed as

cultivation substrate (Yoo and Harcum, 1999), for divalent cations

complexation (Dronnet et al., 1998), as source of polyols for the

production of urethanes and polyurethanes (Pavier and Gandini,

2000), as source of fibre in biodegradable composites (Baar et al.,

1997; Turbaux, 1997; Liu et al., 2007; Leitner et al., 2007; Moham-

ed et al., 2008) or for paper manufacture (Wong and Bregola, 1997;

Fiserova et al., 2007). Development of SBP-based materials has

been considered through the breakdown of the cell structure by

chemical or enzymatic hydrolysis (Berghofer et al., 1992) or by

thermo-mechanical processing.

In previous studies, we have demonstrated that, in specific con-

ditions, SBP cellular structure could be broken down by twin-screw

extrusion processing. SBP becomes then thermoplastic and could

be described as a composite made of cellulose micro-fibrils embed-

ded in a matrix constituted of hemicelluloses and pectins that can

be molded by injection (Rouilly et al., 2006a,b). Physical chemical

properties of extruded pulp (EP), such as hydration and glass tran-

sition in relation with ‘‘melt” viscosity have then been studied to

define optimal conditions for its thermo-mechanical processing

in low moisture conditions (Rouilly et al., 2006a,b). In this last

study, we used original DSC methods to, on the one hand, charac-

terize precisely the interaction levels between EP and sorbed

water, and, on the other hand, to predict processing temperature

according to EP water content.

Even more than for bio-based molded objects there is an indus-

trial need for biodegradable films especially for packaging applica-

tions. But, due to average plastic properties, most of natural

polymers-based films are produced by casting or thermoforming

(Rouilly and Rigal, 2002) while extrusion is a continuous, fast

and energy efficient process (Fishman et al., 2000). Scientific work

has then been focused on composites made of mixtures of natural

and synthetic biodegradable polymers (Averous, 2004). Studies of

film extrusion of natural polymers concern essentially starch or

soy protein blends (Fishman et al., 2000, 2004; Zhang et al.,

2001) and nothing has been made about raw agricultural by-prod-

ucts processing and non-starchy polysaccharides use.

But once SBP cellular structure breakdown is achieved, SBP is

thermoplastic and has a particularly fine microstructure as
* Corresponding author. Tel.: +33 5 62 88 56 54; fax: +33 5 62 88 57 30.

E-mail address: antoine.rouilly@ensiacet.fr (A. Rouilly).



cellulose is in a microfibrillar state. It is then a perfect cheap sub-

strate to investigate possible film extrusion.

In the present work, we have then studied film formation from

EP and the improvement of films properties through the use of var-

ious plasticizers and cross-linkers.

2. Methods

2.1. Material

The sugar beet pulp (DM = 89.9%) originated at the Cagny site

(France) was transformed following the previously defined twin-

screw extrusion procedure (Rouilly et al., 2006a,b).

Glycerol, sorbitol, galactose, adipic acid, fructose, trimethylol-

propane, urea, xylitol, ethyleneglycol, triethyleneglycol TEG, tetra-

ethyleneglycol TEEG, triethanolamine, dimethylsulfoxyde DMSO,

1.3-dimethylurea, ethanolamine, diethanolamine, glycidyl methac-

rylate and sodium persulfate were provided by Aldrich (St. Quentin

Fallavier, France) and were of analytic purity and used as received.

2.2. Mixture preparation

Extruded pulp (EP) was grinded trough a 1 mm grid. It was then

mixed with water (30 parts for 100 parts of EP, corresponding to a

moisture content of 44.4% w/w on a dry basis), plasticizers and

cross linkers in a planetary mixer Perrier 32.00 mixer (Montrouge,

France). The mixtures were then stored in hermetical containers at

4 °C for 24 h before the extrusion.

The experiments with various plasticizers were carried out with

a plasticizer ratio of 30 parts for 100 parts of EP.

For the addition of glycidyl methacrylate (GMA), the mixtures

were prepared adding 25 parts of GMA and 0.5 parts of sodium

persulfate (initiator) to the reference blend (100 parts, 30 parts

of glycerol and 30 parts of water) .

2.3. Extrusion

Film forming was carried out on a Polylab Haake system (Kar-

lsruhe, Germany) consisting of a single-screw extruder (18 mm

diameter screw and 1.8 compression rate) fitted with a 50 mm

wide sheet die. Operating conditions are summarized in Table 1.

Test specimens (dumbbell shaped for tensile test and circular for

water absorption test)were then cut in filmswith punch die cutters.

2.4. Tensile properties

A TA-XT2 texture analyzer (RHEO Stable Micro Systems, Lon-

don, UK) was used to assess the mechanical properties of the films.

The test samples, seven specimens per film, were 65 mm long and

5 mm wide. They were equilibrated at 25 °C and 60% RH until con-

stant weight. Their thickness was measured at five points with a

digital micrometer (model IDC-112B, Mitutoya Corp., Tokyo, Japan)

and the mean value recorded. A speed of 1 mm/s was used, with an

initial grip separation of 55 mm.

Ultimate tensile stress (UTS), Young’s modulus (E) and elonga-

tion (EL) were then calculated for each specimen.

2.5. Water adsorption

Film pieces equilibrated at 60% RH were placed in a hermetic

container above a saturated KCl solution (85% RH) during 25 days

for plasticizers comparison and a saturated solution of K2SO4

(97% RH) during 6 days for cross-linked films until some of them

were not any more handleable. They were regularly weighted

and their mass gain calculated in relation to their initial mass. Re-

ported values are the average of three experiments.

2.6. Post treatment

UV treatment of GMA containing films was done by exposing

the test specimens under a 254 nm radiation for 2, 10 and

30 min. Specimens were turned upside down at half-treatment.

2.7. Water contact angle

Circular test specimens (10 mm diam.) were used to make the

measurement. Milli-q water was used to depose a drop (3 lL) on

the surface of the disk and the static contact angle was measured

with a goniometer (GBX Instruments, France), equipped with an

automatic camera registering still images every 0.1 s. Contact an-

gles were measured automatically using the triple point calcula-

tion method. Three specimens were used for each sample. Two

contact angle measurements were done per specimen.

3. Results and discussion

3.1. Plasticizer effect

3.1.1. Influence of glycerol content

The study of glycerol content influence on films mechanical

properties was the first step of the process set up. Without any

Fig. 1. Picture of an extruded pulp film strip (left) and optical micrographs of films microstructure (right).

Table 1

Operating conditions of the EP film extrusion.

Parameter Value

Barrel temperatures (°C) 50/100/110/110(die)

Screw speed (rpm) 25 (50*)

Torque (Nm) 3.5–10.4

Die pressure (bars) 45–82

Average film thickness (mm) 0.2–0.7

* Extrusion with GMA.



external plasticizer, extrusion was possible but flow was irregular

and after drying the formed strips were brittle, while the use of

glycerol allowed to get continuous film (Fig. 1).

As sugar beet pulp is a crude material, films were not totally

homogeneous. Two types of inclusions were observed on optical

micrographs: black spots and larger bright zones. If their origin is

not completely determined, the bright areas could be residues of

beet vascular bundle and the black inclusions aggregates of cooked

low molecular weight sugars (Fig. 1).

Adding 20, 30 and 40 parts of glycerol to the reference com-

pound led to a large decrease of both ultimate tensile stress and

Young’s modulus associated, as expected, to an increase of the

strain (Fig. 2). This increase reached a plateau value around 7% as

soon as 20 parts were added while UTS dropped to 2.4 MPa.

Most of biopolymer films described in the literature are protein-

based (Rouilly and Rigal, 2002) and their maximum strain can

reach 300% by adding glycerol (Micard et al., 2000). For polysac-

charide-based films elongation remains smaller (Arvanitoyannis

and Biliaderis, 1999; Nakatsuka et al., 1978) especially for films

made from pectin. For example in the work of Pavlath et al.

(1999), elongation of pectic films made by casting never exceeded

8% for a plasticizer content of 40 parts. In small amount, glycerol

affinity to polysaccharides is good enough for it to penetrate the

network and weaken the polymer–polymer interactions but also

maybe too strong to allow large scale chain movement.

However trials on specific gluten plasticizers, especially trieth-

anolamine, showed that strong interactions between the biopoly-

mer and the plasticizer can impressively increase film strain

without strength reduction (Irissin-Mangata et al., 2001). There is

so a second crucial parameter which has to be steric hinderance.

A bulky molecule may interact more easily with many macromol-

ecules instead of being linked to only one.

3.1.2. Influence of plasticizer molecular structure

Regarding the complex structure of thermoplastic EP, a com-

plete study of plasticizer/polymer interaction was very difficult

to investigate. The aim of our experiments was then to compare

different available molecules, some of them being not usual in this

kind of study, to evaluate a possible improvement of EP-based

materials. All blends have been prepared with a constant mass ra-

tio of plasticizer (30 parts for 100 parts of EP) and as plasticizers

molecular weight varies roughly from 60 to 180 the molecular ra-

tio was not kept constant. This would be discussed later.

When compared to a filmmade without any external plasticizer

(reference), adding plasticizer caused a decrease of the ultimate

tensile strength from 19.2 MPa for the reference to 1.2 MPa with

diethanolamine while the strain varied from 1.4% to 11.8% with

xylitol (Fig. 3). More precisely, three different trends appeared.

The first three plasticizers (sorbitol, galactose and adipic acid)

affected only very slightly the strength and did not bring more

elongation to EP films. They act at this concentration as antiplast-

icizers (Gaudin et al., 1999) and did not bring more relative motion

to biopolymer chains. Second consequence of this effect, the diffu-

sion of small molecules in the polymer network is hindered (Shim-

azu et al., 2007) as observed on the water adsorption experiments

(Fig. 4). The water mass absorbed after 25 days (600 h) was less

than 13% for galactose and adipic acid. Sorbitol had an intermedi-

ate absorption behavior, the mass gain reached 23%. On molecular

structure level, adipic acid is the only molecule with an apolar moi-

ety explaining a weaker compatibility with the highly hydrophilic

EP. Concerning the two sugars, their molecular weight is twice

more than glycerol one and so their molecular ratio is twice

smaller explaining the antiplasticizing effect. However molecular

structure affected as well the plasticizing effect: galactose, sorbitol

and fructose have almost the same molecular weight but their

effect on film properties was different. Galactose really acted as

antiplasticizer (no strain increase and low water absorption), sor-

Fig. 2. Tensile properties of EP films according to glycerol content (parts for 100

parts of EP).

Fig. 3. Film ultimate tensile strength (UTS) and elongation (EL) according to plasticizer type.



bitol with this ratio seemed to have an intermediate effect, high

water absorption and low elongation, the ratio used corresponds

to the 27% concentration found as limit value on starch/sorbitol

films (Gaudin et al., 1999), while fructose had a more marked plas-

ticizing effect, elongation of films made with fructose reached 8.0%

(Fig. 3).

A second group of molecules, which includes fructose, appeared

in the study of films mechanical properties. These molecules (fruc-

tose, trimethylolpropane, urea, xylitol, triethylene glycol TEG and

tetraethylene glycol TEEG) caused a decrease of film UTS but lim-

ited to 4 MPa correlated with a real increase of elongation. Among

them three plasticizers gave some interesting results. Films con-

taining fructose showed good elongation and good strength

(respectively 8.0% and 10.4 Mpa), this positive effect of fructose

has already been reported in pea starch films (Zhang and Han,

2008). With xylitol the elongation was the highest while UTS re-

mained relatively high (respectively 11.2% and 4.9 MPa) and finally

urea gave some unexpected results (5.3 MPa and 9.0%), while it

was never considered as a good plasticizer for starch (Ma and Yu,

2004). In this group, linear molecules (TEG and TEEG) gave some

average results with low strain resulting from a smaller steric hin-

derance. Considering water absorption, if fructose, xylitol and

trimethylolpropane gave some similar results as sorbitol with mass

gain remaining lower than 25% (Fig. 4), films made with urea ab-

sorbed more than 30%. This could indicate an important difference

related to the way urea interacts with polyols by hydrogen bonding

from the oxygen of the carbonyl function.

The last group, comprising triethanolamine, glycerol, DMSO,

1.3-dimethylurea, ethylene glycol, ethanolamine and diethanola-

mine, gave the worst results. If the strain at break of films contain-

ing triethanolamine, glycerol and 1.3-dimethylurea were quiet

good (respectively 7.2%, 9.3% and 8.6%) the drop of the ultimate

tensile strength was high (respectively 2.4, 2.1 and 2.1 MPa). The

other films were discarded of the water absorption study.

3.2. Chemical cross-linking of extruded films

Water sensitivity is the major drawback of polysaccharide-

based materials and chemical cross-linking is a promising way of

improving this. Compound choice is driven by reaction conditions

(temperature, catalyst. . .) but by toxicity also as all reactive com-

pounds tend to be toxic. Dialdehydes are some interesting candi-

dates as they are reactive and their reaction with free hydroxyl

groups borne by polysaccharides does not generate any co-prod-

ucts. Unfortunately experiments conducted using 1.5 to 15 parts

of glyoxal (ethanedial, less toxic of all dialdehydes and efficient

to enhance cotton protein-based material (Marquié et al., 1997))

to the basic pre-extrusion mixture (100 parts EP, 30 parts glycerol,

30 parts water), did not improve the water resistance of films.

Competition between water, glycerol and polysaccharide hydrox-

yls was definitely not in the advantage of biopolymers.

The choice of not modifying the process by adding a compli-

cated post treatment finally led us to a different kind of cross-link-

ing using glycidyl methacrylate (GMA).

GMA is a bifunctional compound bearing epoxy and acrylic

moieties. It is then commonly used to functionalize synthetic poly-

mers or compatibilize polar and apolar polymers (Pan et al., 2002;

Tedesco et al., 2002). The epoxy moiety reacts around 40–60 °C

with any nucleophilic function and by free radical addition be-

tween acrylic groups covalent cross-linking can be initiated. GMA

has been used on bio-based polymers: starch and polycaprolactone

(Kim et al., 2001), gelatin (Koepff et al., 1993), chitosan (Elizalde-

Pena et al., 2007; Noble et al., 1999), pectin (Maior et al., 2008)

or to treat wood (Devi and Maji, 2007) and can be directly added

in a reactive extrusion process (Alyamac and Yilmazer, 2007).

Even if GMA has a poor water solubility, it was directly added to

the reference mixture in the planetary mixer. Operating extrusion

conditions were identical excepting the screw speed which had to

be increased to 50 rpm to ensure a good flow of the mixture.

Addition of GMA improved greatly films tensile properties even

before UV treatment, UTS and EL reached respectively 6.6 MPa and

11.3% without a significant change of the Young’s modulus (Table

2). Strength increase was attributed to covalent cross-linking and

was confirmed by UV treatment which resulted in an another

slight improvement of film properties. The strain increase was

more surprising. The possible synthesis of a new plasticizer by

reaction between GMA and water could be a reason but it could

not be confirmed. And as water absorption is really decreased with

GMA this should only be a side effect (Fig. 5).

Water sensitivity of the extruded films was really improved by

GMA. In an atmosphere almost saturated in water, the mass gain

after more than 5 days remained under 40% while it reached 70%

and diverged for the sample made only with glycerol. UV treat-

ment efficiency was particularly remarkable for duration of

30 min, the mass gain at the end of the experiment was less than

30% and tended to a plateau value. In addition, when soaked in

water for a week, this sample did not dissolve. For a shorter expo-

sure, UV did not seem to really enhance film properties (Fig. 5).

Fig. 4. Water absorption kinetic (85% RH, 25 °C) of EP films plasticized with various plasticizers.



However, the treatment did not improve the surface properties to-

wards water. It caused a decrease of the water contact angle from

45° to value around 35° (Table 2). This phenomenon has been

attributed to a displacement of glycerol towards the outer part of

the cross-linked polymer network. The decrease of free hydroxyl

groups with the chemical grafting of GMA could hinder glycerol–

polysaccharide interactions. This was also observed during the

water absorption experiments: glycerol seeped towards sample

surface and was then responsible for the larger results deviation

of contact angle measurement.

4. Conclusion

Sugar beet pulp can be formed into film strips by extrusion.

Being an industrial by-products and a crude material, it can be a

promising alternative to classical polysaccharides used for this

kind of application (i.e. starch or cereal flour). Films get average

mechanical properties due to the small molecular weight of EP

polysaccharides (Rouilly et al., 2006a,b) and heterogeneous

microstructure.

The use of an external plasticizer is necessary to ensure regular

flow in the die. Glycerol is most common plasticizer but did not

give the best results when compare to other molecules. Sorbitol,

fructose and adipic acid have a marked antiplasticizing effect.

Among common plasticizers, urea and xylitol gave higher ultimate

tensile stress than glycerol for a comparable strain at break. Xylitol

can be considered as the best plasticizer for EP films with UTS and

EL of, respectively, 4.9 MPa and 11.3% and water absorption (85%

RH, 25 °C) was less than 25%.

Improving water resistance of EP films without modifying the

extrusion process was possible using glycidyl methacrylate as

cross-linker. In high humidity atmosphere (97% RH, 25 °C), water

absorption was kept under 40% while tensile strength and strain

were improved of more than 50% and with a 30 min UV post-treat-

ment the mass gain in absorption was even less than 30% after

5 days.
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