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Determination of Parabolic Rate Constants from a

Local Analysis of Mass-Gain Curves

Daniel Monceau* and Bernard Pieraggi*

A method is proposed to allow a more accurate evaluation of thermogravi-
metric data to identify diffusion or partial diffusion control of scaling kinetics.
This method is based on the ® tting of mass-gain data to a parabola over a
short time interval. The translation of the time interval over the entire test
time period provides an actual instantaneous parabolic rate constant indepen-
dently of any transient stage or simultaneous reaction steps. The usefulness
and limitations of this procedure are illustrated from oxidation tests performed
on several metallic materials (pure nickel, single-crystal superalloys, and Nb±
Ti± Al alloy).

KEY WORDS: data analysis; thermogravimetry; growth kinetics; parabolic rate constant.

INTRODUCTION

One step in studying the high-temperature oxidation or corrosion of any

kind of material is to determine its overall oxidation kinetics. Oxidation

kinetics are commonly controlled by the diffusion of reactive species

through the external oxide scale and y or in the subjacent metal or alloy.
1,2

Diffusion-driven oxidation kinetics usually lead to the so-called parabolic

kinetics that are commonly described through a parabolic rate constant, kp .

However, the de® nition of an instantaneous kp , and its variation with time,

has been considered by several authors (e.g., refs. 3± 5) to explain apparent

discrepancies occurring between observed experimental and purely para-

bolic growth kinetics. Such discrepancies are often observed for relatively
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short-term exposures for which many factors may affect scaling kinetics.

Some of these factors, such as the variation of diffusion coef® cients within

the scale as a function of oxide grain size or scale compositions are inherent

to the growing scale, but heating procedure, surface preparation, and speci-

men handling are also known to drastically in¯ uence the ® rst stage of scale

growth. For example, these factors are of great importance for the oxidation

of alloys for which a transient stage often occurs before the steady-state

growth of a continuous scale of the most stable oxide (for example, trans-

formations of metastable forms of alumina into the stable a-alumina, or a

change of the alloy composition below the oxide scale). Furthermore, the

interfacial-reaction steps associated with mass or defect transfer at the gas±

scale and y or scale± alloy interfaces may, at least partially, contribute to the

control of scale growth,
6± 8

so that the growth kinetics are described by at

least two rate constants, kp and kl , as will be seen below. Therefore, ignoring

the role of interface reactions and the associated linear rate constant kl may

lead to an apparent parabolic constant k
app
p [e.g., de® ned as some local slope

of the thermal gravimetric analysis (TGA) data] that varies with time. Thus,

any method permitting a more accurate analysis of experimental data would

be useful in providing more reliable interpretations of these data.

TGA permits continuous and accurate measurements over long periods

of time and, therefore, an accurate determination of oxidation kinetics in

their integral form or derivative form. Furthermore, the increasing storage

and calculation capacity of computers allows one to take advantage of the

improving performances of automatic-recording thermobalances in terms of

accuracy, sensitivity and reproducib ility. Fast personal computers now per-

mit a careful systematic analysis of a continuous mass-gain recording. A

method to quantitatively evaluate the time evolution of actual instantaneous

parabolic rate constants is proposed in the present work. The method is

illustrated by its application to several sets of experimental data correspond-

ing to commonly encountered oxidation behavior for pure metals or alloys.

ANALYSIS OF SCALING KINETICS

Rate Equations and Kinetic Laws for Metal and Alloy Oxidation

Since the classic works of Tammann
9

and Pilling and Bedworth,
10

the

oxidation kinetics of metals and alloys determined from thermogravimetry

are commonly described through a parabolic law

Dm
2 5 kp t

where Dm is the mass gain per unit area at time t and kp is the parabolic

rate constant. The Wagner theory of metal oxidation has shown that such



parabolic kinetics result from the control of scale growth by lattice or

volume diffusion so that kp is then related to the self-diffusion coef® cients

of cations or anions across the scale.
11

However, this purely parabolic law

satisfactorily applies to the oxidation kinetics at high temperature of only a

limited number of pure metals. Deviations are often observed and reported

in the literature for the oxidation of pure metals (e.g., for pure nickel
3± 5 ,12± 14

)

or alloys (e.g., refs. 15 and 16), particularly at intermediate temperatures,

i.e., at temperatures lower than about 0.5 Tm (K), where Tm is the melting

temperature of the growing oxide.

Independent of any changes in scale-growth mechanisms, which might

depend on time and y or temperature, a common misinterpretation in the

use of equation ``Dm
2 5 kp t ’ ’ results from overlooking the initial condition

required to integrate the rate equation. Indeed, the integration of the com-

mon rate equation

dDm

dt
5

kp

2Dm
(1a)

is achieved through the initial condition `̀ Dm 5 0 at t 5 0 and constant tem-

perature,’ ’ a condition that is quite dif® cult to achieve experimentally. For

example, before the test temperature is reached and stabilized, test speci-

mens can be oxidized during the initial heating period. Even in the case of

specimen heating in a nonoxidizin g or reducing atmosphere, which is not

always possible, the introduction of oxidizing gas often disturbs the tem-

perature and measurement of mass changes for several minutes and leads

to a systematic error for the starting point of mass-gain curves.

The above equations are also used to describe the oxidation kinetics of

alloys. The most commonly encountered dif® culty is then the occurrence of

a transient-oxidation period when the oxidation of more-noble components

occurs simultaneously with the oxidation of the less-noble and more-protec-

tive component (e.g., chromia- or alumina-fo rmer alloys).
15,16

Transient oxidation is also observed during the initial stages of oxi-

dation of pure metals. In this case, the initially fast reaction rates may be

related to local thermal instabilitie s (heat release), to the fast nucleation

kinetics of oxide grains leading to microstructural instabilities , or to the

very high gradient in chemical potential through the thin initial oxide scale.

Thus, usually the initial condition Dm 5 0 at t 5 0 cannot be applied. To

account for the transient oxidation period of nonparaboli c kinetics, the

initial condition could be Dm 5 Dm i at t 5 ti ; the integration of Eq. (1a) then

leads to

Dm
2 2 Dm

2
i 5 kp (t 2 ti ) (1b)



by assuming that the oxide scale grown at t . ti has the same protective

properties as the initial scale grown at t , ti . For example, Eq. (1b) applies

to the growth kinetics of alumina scales on NiAl
17

characterized by the

growth of less-protective metastable aluminas and their subsequent trans-

formations into a protective scale of a-alumina. However, if the initial oxide

scale is not protective or much less protective than the stable oxide scale

growing at t . t i , then the following rate equation

dDm

dt
5

kp

2(Dm 2 Dmi)
(2)

is more appropriate than the ``classic’ ’ Eq. (2).
14,18,19

In Eq. (2), Dm i is the

initial mass change before the establishment of the kinetic regime associated

with the parabolic growth of the stable oxide scale.

The preceding Eqs. (1a) to (2) suppose that the oxidation kinetics are

solely controlled by diffusion inside the scale, i.e., the hypothesis is made

that diffusion of the reactive species within the scale is the rate-limiting step

in the overall oxidation process. However, if among the several series

reaction steps associated with the formation and growth of an oxide scale,

one linear interfacial step is suf® ciently slow to not be neglected, then the

overall diffusion and reaction process is described by the following rate

equations:
6± 8

dDm

dt
5

1

(1 y kl) 1 (2Dm y kp)
(3)

or

dDm

dt
5

1

(1 y kl) 1 (2(Dm 2 Dm i) y kp)
(4)

where kp and kl are the rate constants for the pure diffusion and pure reac-

tion steps, respectively. As shown by the rate equations and kinetic laws

listed in Table I, upon integration , these rate equations lead to kinetics laws

which depend on the initial conditions and on the protective or unprotective

character of the scale formed during the transient oxidation.

Equations (2) and (4) are particularly adapted to describe the kinetics

of the selective oxidation of an alloy that is commonly preceded by an initial

fast-oxidat ion regime corresponding to the growth of less-protective oxide

(e.g., refs. 15 and 16).

It should be noted here that it is meaningless to give a value of kp in

time ranges where the coef® cient C is not constant. All the rate equations

reported in Table I, and their analytical solutions (kinetics laws of Table I),



Table I. Common Rate Equations and Kinetics Laws for Metal or Alloy Oxidation

Case Rate equation Initial conditions Kinetics law

1 t 5 ti Dm
2 2 Dm

2
i 5 kp (t 2 ti)dDm

dt
5

kp

2Dm Dm 5 Dm i

Same ® rst oxide

2 t 5 ti (Dm 2 Dm i )
2 5 kp (t 2 ti )dDm

dt
5

kp

2(Dm 2 Dm i) Dm 5 Dm i

Unprotective ® rst oxide

3 t 5 tidDm

dt
5

1

(1 y k l) 1 (2Dm y kp

t 2 ti 5
Dm

2 2 Dm
2
i

kp

1
(Dm 2 Dm i)

klDm 5 Dm i

Protective ® rst oxide

4 t 5 tidDm

dt
5

1

(1 y kl) 1 (2(Dm 2 Dm i) y kp)
t 2 t i 5

(Dm 2 Dm i )
2

kp

1
(Dm 2 Dm i)

k lDm 5 Dm i

Unprotective ® rst oxide

are valid for constant values of kp and kl : the rate equation and its inte-

gration would be different if kp and kl must be considered to vary with time.

Apparent and True Parabolic Rate Constants

The ® tting of any thermogravimetric data to equation `̀ Dm
2 5 kp t’ ’

leads implicitly to an apparent instantaneo us parabolic rate constant k
app
p in

place of the pure parabolic rate constant kp considered in Eqs. (1± 4) (a

correct determination of the pure kp is explained later). At a given time t,

k
app
p could then be considered to be the slope of the (Dm

2
, t) curve, i.e., the

quantity 2Dm(dDm y dt), which is sometimes interpreted to describe the time

evolution of the parabolic rate constant (e.g., refs. 3± 5, 12, and 13). As

shown by the expression of the ratio between k
app
p and kp reported in Table

II, the apparent rate constant, k
app
p , can differ signi® cantly from the real

Table II. k
app
p to kp Ratio for the Cases Considered (see Table I) of Oxidation Processes

Case Rate equation kp y k
app
p

1 dDm

dt
5

kp

2Dm

kp

k
app
p

5 1

2 dDm

dt
5

kp

2(Dm 2 Dmi )

kp

k
app
p

5 1 2
Dm i

Dm

3 dDm

dt
5

1

(1 y kl) 1 (2Dm y kp)

kp

k
app
p

5 1 1
kp

2Dmk l

4 dDm

dt
5

1

(1 y kl) 1 2(Dm 2 Dm i) y kp

kp

k
app
p

5 1 1
kp

2Dmk1

2
Dm i

Dm



Table III. Correspondence Between Parabolic Coef® cients (A, B, C ) and Kinetics Parameters

(kp , kl)

Case Kinetic law A B C

1 0Dm
2
2 Dm

2
i

kp

5 t 2 ti ti 2
Dm

2
i

kp

1

kp

2 (Dm 2 Dm i)
2

kp

5 t 2 t i ti 1
Dm

2
i

kp

2
2Dmi

kp

1

kp

3
t 2 ti 5

Dm
2 2 Dm

2
i

kp

1
(Dm 2 Dm i)

kl

ti 2
Dm i

kl

2
Dm

2
i

kp

1

kl

1

kp

4
t 2 t i 5

(Dm 2 Dm i)
2

kp

1
(Dm 2 Dm i)

kl

ti 2
Dm i

kl

1
Dm

2
i

kp

1

kl

1
2Dmi

kp

1

kp

rate constant, kp . Moreover, the time evolution of k
app
p does not necessarily

involve a change in the oxide-scale properties, but can be explained by only

the occurrence of a short transient-oxidation period and y or slow reaction

steps. This time evolution depends mainly on the amplitude of the transient

mass gain Dm i and of the linear rate constant kl .

Therefore, rather than the determination of k
app
p , the analysis of ther-

mogravimetric data must provide an accurate determination of the true

parabolic rate constant kp , which is the only parameter strictly related to

the diffusion processes involved in the oxidation mechanisms. Then, if a

time evolution of kp is observed over a long time period, then a more

detailed analysis of the data would be required to relate the evolution of

this rate constant to a change in the growth mechanisms or a change in the

diffusion constant during the course of oxidation.

Analysis of Experimental Data and Adjustment Procedure

As shown by the kinetics laws listed in Table I, all the considered kin-

etics correspond to a variation of mass gain vs. time, which can be ® tted to

a parabola

t 5 A 1 B Dm 1 C Dm
2

(5)

Table III shows which kinetics parameters can be evaluated from the

coef® cients A, B, and C obtained from such a ® t. The most important fea-

ture is that the second degree coef® cient C is always the reciprocal of the

`̀ true’ ’ parabolic rate constant. The ® tting of the experimental data to a

complete parabola permits a correct evaluation of kp independently of the

effective oxidation mechanism and y or the occurrence of transient oxidation .

Moreover, kp does not depend on the values of Dm i and ti , which ® x the



Fig. 1. Illustration of the ``local parabolic ® tting’ ’ algorithm. The time-window

is translated over the entire data set.

initial condition for integrating the rate law. On the contrary, the coef-

® cients B and A would permit the determination of kl and of the character-

istic elements Dm i and ti of the transient period for only some speci® c cases.

In the most general case that a reaction step and diffusion jointly control

throughout a transient period kl , Dm i , and ti cannot be evaluated. However,

as the ® t to Eq. (5) covers all the cases considered, taking care of both a

transient stage and an interfacial reaction, it would always be better to ® t

the experimental data to Eq. (5) rather than to `̀ Dm
2 5 kp t.’ ’

The ® t of experimental data to a general parabola can be applied to

the entire set of data or only to a portion thereof, corresponding to a given

time interval. When using such local calculation s, any evolution or change

of the parabolic rate constant as a function of time can be detected. There-

fore, a numerical method was developed to calculate, for a short time inter-

val, the parabolic constant from the least-squares ® t of (Dm, t) data to a

parabola. This local ® t allows one to determine the value of the parabolic

rate constant for the time interval considered. The repetition of this time

interval calculation over the entire test time period permits one to detect

and analyze any change or evolution of the parabolic rate ``constant’ ’ as a

function of time.

This `̀ local parabolic ® tting’ ’ procedure is illustrated on Fig. 1 and

detailed in the Appendix. The accuracy of the analysis depends on three

factors: (1) Accurate mass gains must be recorded as a function of time

and the maximum number of (Dm, t) couples, which can be stored by the

equipment , should be used. (2) The size of the time window is decided by a

compromise between two opposing objectives: reduction of noise and



increase in time resolution, which corresponds typically to a smoothing pro-

cedure. In case of large mass gains, the size of the time window can be

reduced, leading to a better time resolution. (3) Choose the translation step

of the time window. This is just a question of time resolution vs. computing

time, which nowadays, is not a problem for such a simple algorithm.

EXAMPLES OF DATA ANALYSIS

To illustrate the advantage of this procedure, it was tested on data for

the oxidation behavior of several materials studied in our laboratory. These

tests demonstrated the usefulness and accuracy of this procedure and it is

now currently used routinely for analyzing thermogravimetric data.

All the data reported in the following examples were obtained from

oxidation tests performed on an automatic recording thermobalance

SETARAM TAG 24S equipped with a double symmetrical furnace that per-

mits a compensation for any perturbation resulting from gas ¯ ow, buoy-

ancy, and convection. This symmetrical furnace provides a very stable signal

and minimizes the drift error to less than 3 mg for a test duration of 24 hr.

Each test record was limited in size to 4000 (Dm, t) couples and the param-

eters of local ® tting were calculated for a time interval containing 200 (Dm, t)

couples.

Oxidation of Pure Nickel

The time evolution of an instantaneous, apparent parabolic rate con-

stant has been reported for the oxidation kinetics of pure nickel.
3± 5, 12± 14

In

a study of the effect of super® cial alkaline-ear th doping on the oxidation of

nickel, the oxidation kinetics of high-purity nickel were again determined

for tests performed in pure oxygen at temperatures between 600 and 1200°C

for 24 hr.
20

The local ® t procedure was applied with a translation step of

the time interval of 22 s between 20 min and 24 hr. Figure 2a shows the

oxidation kinetics at 600°C; Fig. 2b shows the variation as a function of

time of k
app
p (calculated according to 2Dm(dDm y dt)) and also of kp 5 C

- 1
.

Figure 2b shows that kp remains practically constant as soon as the time

exceeds about 3 hr, while k
app
p varies over a much longer time period and is

always greater than kp . For one time interval extending from 15 to 90 ks,

the experimental mass-gain curve can be ® tted to a single parabola (Fig. 2a)

corresponding to a constant kp equal to 1.9 3 10
- 6

mg
2

cm
- 4

s
- 1

. Figure 2b

shows that this value of kp corresponds exactly to the mean value calculated

from the local ® tting procedure. Therefore, at test times exceeding 4 hr, the

growth kinetics can be described by a classic parabolic law, but it is pre-

ceded by a transient regime of faster kinetics. Figures 2a and b clearly illus-

trate that the difference between the apparent (k
app
p ) and ` t̀rue’ ’ (kp)



Fig. 2. Oxidation kinetics for pure nickel at 600°C in oxygen.
20

(a)
Mass gain vs. time and parabolic ® tting between 15 and 90 ks; (b)

comparison of k
app
p and kp calculated from the local ® tting procedure.

constants is the consequence of the extra mass gain associated with the fast

transient period. Thus, the local ® tting procedure permits one to accurately

calculate kp independent of any change in growth kinetics.

To better illustrate the potential and the advantage of this ® tting tech-

nique, an experiment was done to determine the parabolic rate constant, kp ,

at several temperatures from one single thermogravimetric test. From the

data reported by Gonzalez-Balanchi
20

for the oxidation of pure nickel, a

temperature program was applied to one test specimen. It consisted of a

succession of isothermal periods whose durations were selected to lead to

approximate ly the same mass gain of 1 mg cm
- 2

. Figure 3 shows the tem-

perature program and the corresponding mass-gain curve. As illustrated by



Fig. 3. Temperature program applied to a pure-nickel specimen oxidized
under oxygen at atmospheric pressure and corresponding mass-gain
curve.

Fig. 4, each isothermal period of the mass-gain curve can be ® tted to only

one parabola. Comparison of Fig. 4a and d shows that the reproducibi lity

is excellent. Moreover, as shown from Table IV, the rate constants kp deter-

mined in this way are in good agreement (a factor 3 or less) with those

obtained from entirely isothermal experiments despite the small mass gains.

No other calculation procedure would have permitted such an accurate

measurement of the individual rate constants for each isothermal period;

linear regression from (Dm
2
, t) data or even (Dm, t

1 y 2
) would not lead to such

an accurate value of kp .

Oxidation of Single-Crystal Ni-Base Superalloy

A more obvious and important examination of the transient-oxidation

regime is encountered during the oxidation of alumina-forming alloys. For

example, Ni-base superalloys form an alumina scale when oxidized above

1000°C, but the growth of a Ni-rich oxide, spinel phases, and transition

aluminas may occur during the heating period and before completion of a

continuous protective a-alumina scale. The fast growth of these transient

oxides during the ® rst 2-hr leads to a mass gain at least of the magnitude

for the mass gain by alumina growth during 24 hr.
21

A direct consequence

of these initially fast oxidation kinetics is once again that the Dm
2

vs. t ® t

(or k
app
p 5 2Dm(dDm y dt)) would require very long experiments before ever

reaching the ``true’ ’ kp value characteristic of alumina growth (Fig. 5a and

b).
16

This example illustrates one limit of the proposed local ® tting pro-

cedure: Fig. 5b shows that the width of the scatter band for kp increases

with time. Indeed, the ratio between the mass gain during the considered



Fig. 4. Nickel oxidation: ® tting of successive portions of the mass gain

vs. time plot. (a) 1200°C; (b) 1000°C; (c) 1100°C; (d) 1200°C.

time interval and the experimental mass-gain sensitivity, i.e., the signal-to-

noise ratio, decreases over time. This effect is particularly important for a

slow-growing oxide, such as alumina. However, even if it would be possible

to maintain a signal-to-noise ratio approximate ly constant by increasing the

time interval, the gain in accuracy would not be signi® cant compared to

other possible error sources. Checking the constancy of kp over a large part

of the test time is more important and signi® cant than a very accurate

measurement of kp , whose value is strongly dependent on surface prep-

aration, local composition and heterogeneity, gas composition, etc.

Oxidation Kinetics of Nb± Ti± Al Alloy

This last experimental example concerns the oxidation of a Nb± Ti± Al

alloy. The accuracy of mass-change measurements and the signal stability



Fig. 4. Continued.

permitted the detection of a small irregularity in mass-change curves as

shown in Fig. 6a.
21

Indeed, the mass gain vs. time plot clearly shows several

local changes of slope indicative of a succession of protective-scale growth

and scale failures (Fig. 6a). The local ® tting procedure is well adapted to

analyze these complex kinetics. First, this procedure allows one to localize

Table IV. Parabolic Rate Constants kp Determined from Local Fit from

Nonisothermal and Isothermal Tests

Holding time kp (local ® t) kp (24-hr isothermal test)

T (°C) (hr) (mg
2

cm
- 4

s
- 1

) (mg
2

cm
- 4

s
- 1

)

1200 2.8 3.4 3 10
- 3

7.4 3 10
- 3

1000 12 3.0 3 10
- 4

3.3 3 10
- 4

1100 2.8 4.1 3 10
- 4

1.3 3 10
- 2

1200 1.5 3.0 3 10
- 3

7.4 3 10
- 3



Fig. 5. Oxidation kinetics for a Ni-base superalloy at 1100°C in

oxygen. (a) Mass gain vs. time plot
21

and parabolic ® tting between
5 and 71 ks; (b) comparison of k

app
p and kp calculated from the local

parabolic- ® tting technique.

clearly the time periods of parabolic kinetics. Indeed, the coef® cient C is

null at in¯ ection points, which corresponds to an in® nite local kp 5 C
- 1

between each parabolic period. Second, Fig. 6b shows that the minimum

values of local kp are approximate ly equal within each period. These mini-

mum values (kp 5 6.0 3 10
- 3

mg
2

cm
- 4

s
- 1

) are quite different from the value

that approximate ly ® ts the experimental curve to a single parabola over the

entire plot (kp 5 1.5 3 10
- 2

mg
2

cm
- 4

s
- 1

). These minimum kp values are more

than a factor two smaller than the minimum apparent rate constants calcu-

lated from 2Dm(dDm y dt). Moreover, there is no time coincidence between

the minimum in k
app
p and kp . This large discrepancy between the two analy-

ses can be attributed to the overestimation by k
app
p , which is intrinsic in its

calculation. Indeed, the value of Dm entering into this calculation is not the



Fig. 6. Oxidation kinetics of one Nb± Ti± Al alloy at 900°C in air.

(a) Mass gain vs. time plot;
22

(b) Comparison of k
app
p and kp calcu-

lated from the local parabolic- ® tting technique.

value that must be considered in the rate equation. The local ® tting is, there-

fore, much more appropriate and leads to kp values that permit a more

accurate analysis of the scale-growth kinetics during the growth of the tem-

porary protective scale, because this procedure leads to the correct value

independen t of the origin chosen for the calculation (cf. Table III).

CONCLUSIONS

The above analyses of experimental data for scale-growth kinetics show

that the use of the classic ``Dm
2 5 kp t’ ’ ® t (i.e., the Dm

2
vs. t plot) should be

systematically replaced by the more general procedure of ® tting to a com-

plete parabola ``t 5 A 1 B Dm 1 C Dm
2
.’ ’ The use of classic ``Dm

2 5 kp t ’ ’ ® t



involves unnecessary assumptions (e.g., pure diffusion control and no transi-

ent regime), which may lead to a misinterpretation of kinetics and to appar-

ent variations in rate constants, i.e., of diffusion properties for oxides. The

complete parabolic ® t offers the advantage of accounting for pure diffusion

control, mixed (diffusion y reaction) control, and a transient regime. Further-

more, it can be applied to small portions of mass-gain curves, which then

allows the calculation of an instantaneo us value of the parabolic ``constant’ ’

kp 5 C
- 1

inherently better than the usual kp 5 2Dm(dDm y dt).

To interpret experimental mass-gain data, the following systematic pro-

cedure can be proposed. First, the kinetics data should be ® tted to the Eq.

(5) inside a time-window sliding over the entire experiment duration (Fig.

1). This ® rst test allows the determination of those time periods over which

the oxidation kinetics are parabolic. Second, data can be ® tted to Eq. (5)

over the entire time range, where the ® tting coef® cient `̀ C ’ ’ (Eq. (5)) appears

to be constant in the ® rst test. This allows one to accurately compute the

value of the local true parabolic rate constant kp 5 C
- 1

inside these speci® c

time ranges. The values of the ® tting coef® cients ``A’ ’ and ``B ’ ’ (Eq. (5)) can

provide insight about the relative importance of the linear and parabolic

rate constants, but the value of the constant kl cannot be calculated in the

most general cases considered here (cases 3 and 4, Tables I and III), since

the rate equations involve four unknown parameters and the parabolic

® tting permits one to determine only three coef® cients. Additional assump-

tions are then needed in order to simplify the kinetics model.

APPENDIX. NUMERICAL PROCEDURE TO ANALYZE THE

THERMOGRAVIMETRIC DATA (MASS GAIN AS A FUNCTION

OF TIME)*

Experimental mass gain ® le name (s, mg y cm
2
) corresponding to Fig. 2

title 5 ``nid912.txt’ ’ ;

Read the experimental ® le and build the mass vs. time list:

time_mass 5 ReadList[title,Number,RecordLists ® True];

Build a new table: time as a function of mass in order to perform the para-

bolic ® t

time_as_a_fu nction_of_mass 5 Table[Reverse [time_mass[[i]]],i,1,Length[time_mass]];

*
This example was written with Mathematica Ò version 3.0.



This sequence performs the local full parabolic ® tting:

deltai 5 100; (size of the sliding window in which the ® t is performed, in number of points)
kp_list 5 0,0;

Do[ imin 5 i;

imax 5 imin 1 deltai;
time_window 5 Take[time_as_a_function_of_mass,imin,imax];
poly® t 5 Fit[time-window,1,x,xÃ 2,x];

kp 5 1 y Coef® cient[poly® t,x,2];
kp-list 5 Append[kp_list,time_mass[[Ceiling[(imin 1 imax) y 2]]][[1]],Log[10,kp]]

,i,1,Length[time_mass]-deltai,step];

Plot the result: kp as a function of time (see Fig. 2b)

plotkp 5 ListPlot[kp_list,PlotStyle ® RGBColor[1,0,0],PlotRange ® kpmin,kpmax]

From the last result, select the largest time-window where the kp is constant

in order to get a precise value of the true parabolic constant kp (here,

between 15 and 80 ks).

time_min 5 15000; time_max 5 80000;

imin 5 1; imax 5 Length[time_mass];
While[time_as_a_function_of_mass[[ imin]][[2]] , timemin,imin 5 imin 1 1];
While[time_as_a_function_of_mass[[ imax]][[2]] . time_max,imax 5 imax 2 1];

time-window 5 Take[time_as_a_function_of_mass,imin,imax];
poly® t 5 Fit[time-window,1,x,xÃ 2,x];
A 5 Coef® cient[poly® t,x,0];

B 5 Coef® cient[poly® t,x,1];
kp 5 1 y Coef® cient[poly® t,x,2];

mass_® t 5 kp*(Sqrt[b*b 2 4*(a 2 x) y kp] 2 b) y 2
plotdu® t 5
Plot[mass_® t,x,0,time_mass[[Length[time_mass]]][[1]],PlotStyle ® RGBColor[1,0,0]];

Print[``kp calculated between 5 ’ ’ ,time_min,’ ’ s and t 5 ’ ’ ,time_max,’ ’ s, ``kp 5 ’ ’ , kp]

The resulting plot and kp , A, and B values are given in Fig. 2a.
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