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Local and nonlocal models for the diffusion of photopolymers are applied to the dynamic formation of
transmission gratings recorded in photopolymers and holographic polymer-dispersed liquid crystals
(H-PDLCs). We retrieve the main parameters of H-PDLCs (refractive-index modulation and diffusion
coefficient) by combining a solution of the one-dimensional diffusion equation and the rigorous coupled-
wave theory applied to transmission gratings. The rigorous coupled-wave theory method provides us
with information on higher harmonics of the refractive profile (not only on the first harmonic as when the

classical Kogelnik theory is applied).

modeling.

1. Introduction

Holographic optical elements are taking a more im-
portant place in telecommunications and information
processing. Functions such as switching, spectrum
analysis or equalization, data storage, and filtering
can be realized with diffractive elements fabricated
holographically. For this to be extended to an in-
dustrialization phase, we need holographic materials
that are low cost and easy to use. Photopolymers
are a serious candidate for meeting these require-
ments. They are self-processing materials, and the
development is dry, unlike dichromated gelatin,
which requires a specific chemical process.
Photopolymers have been widely studied and sev-
eral models have been developed, as in Refs. 1-3. In
particular, it has been shown that the diffusion pro-
cess is nonlinear with the exposure energy and that
harmonics appear.# The idea proposed here is to
validate a diffusion model for photopolymers by use of
the experimental values of the second-order grating.

Measurements concerning the second harmonic validate the

This phase will help us to validate the method used in
the present paper.

Holographic polymer-dispersed liquid crystals (H-
PDLCs) are known to be a promising technology.
They can find applications in telecommunications
(dynamic spectral equalization®) and information
processing by providing switchable holograms, data
storage, and color reflective displays. H-PDLCs can
range from simple gratings to two-dimensional and
three-dimensional structures as photonic crystals.®

H-PDLCs are attractive materials as they have the
advantages of photopolymers cited previously, and
the presence of liquid crystals (LCs) provides them
with a switchable behavior. During the exposure to
an interference pattern [see Fig. 1(a)], a phase sepa-
ration occurs between the monomer and the LC drop-
lets owing to the diffusion process. Polymerization
occurs in bright regions, the monomer diffuses from
dark to bright regions, and the LC diffuses in the
opposite direction. So, after the exposure, the
H-PDLC system consists of alternating layers of poly-
mer planes and LC-rich droplet planes as shown on
Fig. 1(b).

By use of a monomer whose polymer’s refractive
index is equal to n, (ordinary index of the LC), the
recorded structure can be erased by applying a volt-
age (all the LC molecules are aligned along the ordi-
nary axis). Hence their possible application to
photonic switching, which is one of the key functions
in reconfigurable optical networks.

For such applications, we need to know precisely
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Fig. 1. (a) Classical experimental setup used for recording trans-
mission holographic gratings in photopolymers or H-PDLCs and
(b) illustration of the diffusion process when a H-PDLC cell is
illuminated with an interference pattern. ITO, indium tin oxide.

the values of the parameters of the material used.
For photopolymers and H-PDLCs, it is possible to
determine and control these parameters by studying
the dynamic formation of holograms. Some perti-
nent information concerning the refractive-index pro-
file can be derived from a diffusion model. In our
case, we are more interested in these materials from
a diffractive point of view, and we retain as pertinent
information the values of the first and second har-
monics of the refractive profile.

The fact that we do not need a chemical process for
the development of the holograms allows us to study
in real time the formation of the grating by using an
attenuated He—Ne laser and by recording the dif-
fracted powers in the zeroth and first orders as shown
on Fig. 1(a).

By monitoring the grating formation process and
by combining a diffusion model for the photopolymer-
ization and a diffraction modeling algorithm, we shall
be able to make some preliminary conclusions con-
cerning the refractive-index profile of the grating and
its temporal evolution and to retrieve an estimate of
the diffusion coefficient of the monomer. Then it
will be easier to optimize the recording process and to
obtain reproducible components, which is a key of
future industrialization.

In the first part we shall present the theoretical
aspects of the diffusion process for photopolymers
and H-PDLCs. The numerical methods used for the
diffusion equations and diffraction efficiency calcula-

tion and the way that we will get the values of the
main parameters of these two materials, such as the
diffusion coefficient or the refractive-index modula-
tion, will be given. Then experimental and fitted

results will be presented for photopolymers and
H-PDLCs.

2. Theoretical Aspects

A. Diffusion Model

1. Local Model

Our analysis uses a classical model of diffusion that
has been developed for photopolymers.! In this pa-
per we are interested in the diffusion of one kind of
monomer. Because the diffusion constant of LC is
larger than for monomers,” we can assume that the
LC redistribution is given by the mass conservation
law.

The diffusion equation for the concentration of
monomers is given by

a(x, 1) _ 0

dd(x, ¢)
Jt Jax Jax

1

with &(x, 0) = &y, where &(x, ¢) is the monomer
concentration, D(x, t) is the diffusion coefficient, and
F(x, t) is the polymerization rate. The first term of
the right-hand side of this equation corresponds to
the diffusion of free monomers, and the second term
represents the photopolymerization process. The
expressions of the diffusion coefficient and the poly-
merization rate are given by

D(x, t) = D, exp| —aF(x, t)t], 2)

with « as the diffusion coefficient decay parameter,
and

F(x, t) = «{I,[1 + V cos(Kx)]}'/?, (3)

where I, = I; + I, is the exposure energy (/; and I,
are related to the two beams interfering), V =
2VI1,1,/(I; + I,) is the fringes’ visibility, K = 2mw/A (A
is the period of the recorded grating) is the modulus
of the grating vector, and « is the polymerization rate
coefficient. The product Kx corresponds to the one-
dimensional scalar product K - r.

We can also write the equation for the concentra-
tion of the polymer:

oV (x, t)

= F(x, t)d(x, 1), (4)
ot

with W(x, 0) = 0, where W(x, ¢) is the polymer con-

centration.

In photopolymers the refractive index is linked to
the density of polymers. Concerning the index pro-
file, we assume that n(x, ¢) = ¢,[d(x, t) + P(x, 8)],
where c,, is a proportionality constant that links the
monomer (or polymer) concentration to its index



value. So we can write a differential equation for
the evolution of the refractive-index profile:

an(x, t) 9 dd(x, 2)
- ., = Cy Y )
ot 0x 0x
with n(x, 0) = n,.
At the end of the recording process, the refractive-

index profile is not sinusoidal, and it can be written as
a Fourier series expansion:

n(x) =ny+ E n; cos(zxm) . (6)

i=1

[D(x, t) (5)

This can be interpreted as a superposition of grat-
ings with periods A/i with respective index modula-
tions n;. n, will refer to the primary grating (purely
sinusoidal) and n, to the secondary grating.

2. Nonlocal Model

In the previous model it is assumed that the poly-
merization process is a local one and that the effect at
a certain point is independent of other places. It has
been shown that disagreements occur between pre-
dictions of this model and experimental results for
high-spatial-frequency gratings.2 It means that
polymer chains can grow away from their starting
point, which leads to a spreading of the polymer and
a more sinusoidal index profile.8

The diffusion equations can be rewritten under the
form

WD _ 0 b,
at dx ’

adb(x, t)
Jax
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(7

oWV(x, t) _

- f TG, ) F(x, 00(x’, 0dx', (8

with

G(x,x') =

1 [—(x — x’)Z}
\V2mo xp 20

as the nonlocal response function, where o is the
polymer chain-length variance growing away from
the initiation point. This distribution will have the
effect of spreading the polymer concentration.

B. Solving of the Diffusion Equations

The problem that we have to solve is classified in the
parabolic equations with periodic boundary condi-
tions. We will use a finite-difference scheme to solve
this set of equations. The numerical method re-
tained is the Crank—Nicholson method, which is
known to be automatically stable whatever the time
step and more accurate than the classical explicit and
implicit methods (see, for example, Ref. 9). The

Crank—Nicholson method evaluates partial deriva-
tives at the instant ¢ + %by calculation of the mean of
the explicit and implicit methods. By attribution of
the indexes i, j to the variables x and ¢ on the solving
mesh, the finite-difference scheme for the monomer
equation is given by Eq. (9):
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with the periodic boundary conditions ¢y = ¢,/ and
¢y = b1

This equation can be written in a matrix form,
which is easier to compute and faster than using an
iterative method at each time step:

(I-MHe'" = (I - M), (10)

where I is the identity matrix and M is an N X N
matrix of the form

M= % {[ox]D[ox] + [D][0x*] — [F]}. (11)

Matrices [0x] and [9x?] correspond to operators rep-
resenting the first- and second-derivative operations
by use of a finite-difference scheme. [D]and [F] are
diagonal matrices with elements D, and F;, and D is
a column vector with elements D,;. Taking into ac-
count the periodic boundary conditions, we find that
the first- and second-derivative operators are of the
form

0 1 0 -1
;|1 0 1 0
[ox] = - :
2Ax 1 0 i
1 0 -1 0
-2 1 0 1
1 -2 1 0
[0x] = B (12)
Axtl 1 -2 i
1 ... 0 1 -2

So, one can easily obtain ¢&’*' by inverting the
matrix I — M *! by a standard algorithm such as
lower-triangular—upper-triangular  factorization.®
For the refractive-index profile, we apply the same
method. Then, by applying a fast Fourier transform
to the refractive-index profile, we can obtain the tem-
poral evolution of the different harmonics (we will be
mainly interested in the first and second harmonics).



In the case of the nonlocal model the integral is
calculated with a trapezoidal rule:

fﬂc G(x,x")F(x', t)d(x', t)dx’

dx N-1
22[v<1,j>+2 > vk, j) +v(N,j)|, (13)
k=2

with v(k, j) = G(x;, x) Fx)d(z, J)-
has to be replaced in Eq. 11.

The matrix [F]

C. Transmission Gratings Modeling

The standard Kogelnik’s theory© for thick gratings
may become inaccurate especially when the @ factor
of the grating is lower than 10, when we are far from
the Bragg condition, or when the grating is too dis-
persive and it can become strongly polarization de-
pendent. In addition, it is well known that the
refractive-index profile for gratings recorded in pho-
topolymers is not purely sinusoidal and that harmon-
ics of higher order can appear, which is not predicted
or directly calculated by Kogelnik’s theory. For
these reasons, we use a rigorous modeling tool: the
rigorous coupled-wave theory.l! In our case, the sta-
ble implementation was used!2 in order to avoid con-
taminations due to positive and real exponential
terms to prevent numerical instabilities.

D. Determination of the Diffusion Parameters

By monitoring the recording process with a He—Ne
laser, we record the temporal evolution of the zeroth
and first diffracted orders, and we retrieve the evo-
lution of the refractive-index modulation (or the first-
harmonic coefficient of the polymer concentration) by
using the rigorous coupled-wave theory. We obtain
a function n{*(z).

Then, following Ref. 8, we use a quasi-Newton
method requiring lower- and upper-boundary values
for the unknown parameters. At each function call,
the diffusion equation is solved, and the first-
harmonic evolution n,(D,, «, «, ¢,, ¢) is obtained.
We calculate the error between the experimental
data and the calculations:

Error(t) = |n,(D,, , a, c,, t) — n"P@¢)|]. (14)

We search to minimize this error function with a
constraint on the second-harmonic value, which has
to be lower than the measurement. At the begin-
ning of the optimization process, it is better to start
with quite realistic initial values to avoid local min-
ima.

One can check the validity of the fitting of the
parameters by the agreement of numerical results
with the monitoring curves by comparing them with
typical values found in the literature and by inserting
the refractive-index profile obtained with the optimi-
zation process directly into the rigorous coupled-wave
theory rather than a classical sinusoidal profile.
The calculated profile will agree if it closely fits the
angular characterization when the first and second

diffracted orders are taken into account. The model
that we are going to keep will be one that will give us
the more reasonable values for the physical parame-
ters.

3. Experiments

A. Experimental Setup

The experimental setup is presented on Fig. 1(a): It
is a standard two-plane-wave interference setup.
We prepare a H-PDLC cell by inserting a preparation
monomer-LC between two glass substrates coated
with indium tin oxide. A photoinitiator (Rose Ben-
gal dye in our case) is added to the preparation to
activate the reaction of polymerization. The laser
used for the recording is an Ar" at 514.5 nm. The
period of the recorded grating is given by A = \/(2 sin
0) (relation in the air). The He—Ne laser used in this
case is TE polarized (parallel to the fringes of the
grating). In the following, we will work only with
this polarization state. After the recording we do a
UV postexposition to polymerize all the remaining
monomer.

B. Recordings on DuPont Photopolymers

1. Experimental Results

We first did holographic recordings in DuPont Om-
nidex HRT-700-20 photopolymers (see Acknowledg-
ments) to validate our method by comparing the
fitting results to classical values found in the litera-
ture. We recorded gratings with a period of 0.882
pm (chosen sufficiently dispersive to separate cor-
rectly the diffracted beams of the Ar* and He—Ne
lasers). This period has been determined by the
measurement of diffraction angles and refined with
rigorous coupled-wave analysis (RCWA). In these
experiments the cell was not presented as on Fig. 1(a)
but with a photopolymer film deposited on a glass
substrate. The sample is exposed on the glass sub-
strate side to avoid a decrease of the fringes’ visibility
because of the birefringence of the Mylar film recov-
ering the material.

To determine the parameters of the model, we re-
alized four recordings at different exposure energies.
The recording process has been stopped at the steady
state. Using the rigorous coupled-wave theory, we
obtain the following curves for the temporal evolution
of the refractive-index modulation. Results are pre-
sented on Figs. 2(a) and 2(b).

The diffraction efficiencies that are plotted on Fig.
2(a) are relative efficiencies (in that case, losses due
to Fresnel reflections are automatically taken into
account). For such a grating, which is quite disper-
sive, we can assume that we have only the zeroth and
first diffracted orders at Bragg incidence. The two
curves on Fig. 2(a) that have a maximum before the
steady state indicate that the gratings are overmodu-
lated (the refractive-index modulation is higher than
the modulation required to give a maximum diffrac-
tion efficiency in the first order at Bragg incidence).

We angularly characterize the gratings, and we
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Fig. 2. (a) Temporal evolutions of diffraction efficiency and (b)

corresponding refractive-index modulation for gratings recorded in
DuPont photopolymers at four exposures.

retrieve the main parameters by using the rigorous
coupled-wave theory.

The values of the refractive-index modulations are
given in Table 1, where n; and n, are, respectively,
the index modulations of the first and secondary grat-
ings [see Eq. (6)] and T is the thickness of the grating.
These values differ a little with the monitoring curves
when they are at steady state; this can be due to the
fact that the He—Ne laser is not precisely at Bragg
incidence (the angular response is quite narrow) and
due to the UV postexposition, which increases the
index modulation. We do not take into account
eventual shrinkage effects of the photopolymer film
during the UV exposure.

We now present on Figs. 3(a) and 3(b) the angular
measurements’ results and compare them with the
theory given by the rigorous coupled-wave theory for
two gratings when different exposure energies are
considered.

The accordance between measurements and
RCWA is quite good. The angular response of the
grating in Fig. 3(b) is due to overmodulation.

2. Optimization Results

To simplify the problem, we will assume that the dif-
fusion coefficient is constant (a« = 0). We take ¢, =
100 mol/cm? (typical value) as the initial value for the
monomer concentration. The parameter k can be ap-
proximated directly from the experimental results,
and it has been shown that the steady state is reached

Table 1. Grating Parameters Recorded in Photopolymers Determined
with the Rigorous Coupled-Wave Analysis

Exposure [,

Grating (mW/cm?) T (wm) n, g
1 5.23 22.5 0.0172 0.0035
2 13.75 22.5 0.0155 0.0039
3 24.75 22.5 0.0145 0.0032
4 30.57 23 0.0138 0.0031
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Fig. 3. Angular evolutions of the diffraction efficiency for two
gratings recorded in DuPont photopolymers with exposures of (a)
30 mW/cm? and (b) 3.7 mW/cm?.
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for a value of the normalized time ¢, = VI, tsteady =
10. This leads to an optimization problem of only two
or three parameters in the nonlocal model case.
Knowing the value of k, we will not use directly the
diffusion coefficient D, but rather a dimensionless pa-
rameter called R}, which avoids manipulation of very
small numbers for the optimization (D, is of the order

of 107 1), The expression of R, is given by
R, = M (15)
P K \/170 A2 ’

We tried two algorithms, one using the constraint
on the second harmonic and the other unconstrained.
The results obtained by the optimization process are
given in Table 2.

We note that, for the unconstrained algorithm,
refractive-index modulations are overevaluated,
hence the need to check the value of the second har-
monic calculated by the model. If we keep only the
constrained algorithm for the nonlocal model, we ob-
tain the values given in Table 3.

We can see that the constraints of optimization are
respected for both models (values for n, and n,) but
that the results for the diffusion coefficients are differ-
ent by a factor of 10 or more. Concerning the nonlocal
model, if we plot the diffusion coefficient as a function
of the exposure energy, we obtain an exponential curve
[see Fig. 4(a)]. Hence we can write D, = D,
exp(Bl,). Using a standard curve-fitting routine, we get

D(I;) = 1.80 X 10" exp(0.06891,). (16)

We apply the same process to ¢,: It appears to be

roughly linear versus I,,;; we obtain
c,(Iy) =4.92x 10, +5.24 x 10°*  (17)
[see Fig. 4(b)].



Table 2. Fitting Results Obtained with the Local Model Applied to Photopolymers

D, c, K
Grating Algorithm R, (1071 cm?/s) (10* cm?/mol) [(ecm/VmW)/s] n, gy
1 unconstrained 2.9018 8.2251 2.6653 0.0629 0.0164 0.00507
constraint 10.5848 30.1239 2.3299 0.0629 0.0164 0.00354
2 unconstrained 1.7821 9.6207 2.8659 0.0739 0.0142 0.00609
constraint 6.2578 45.6572 2.3526 0.0739 0.0142 0.00385
3 unconstrained 1.2152 12.9134 2.9984 0.1084 0.0134 0.00693
constraint 11.9133 97.5631 2.1186 0.1084 0.0134 0.00318
4 unconstrained 1.64014 29.3753 2.4933 0.1644 0.0121 0.00539
constraint 8.0652 144.4498 1.9643 0.1644 0.0121 0.00309

Concerning the nonlocal length o, it does not seem
to depend on the exposure energy: We keep the
mean value, giving \/% = 106.29 nm.

According to the literature,®3.13 the order of mag-
nitude of the diffusion coefficient is 10~ !!, hence
there is a best fitting with the nonlocal model. In
addition, because the error function was higher with
the local model than with the nonlocal model, there
are greater difficulties when fitting experimental
data with the first model. It is possible to fit cor-
rectly experimental data with the local model, but the
values predicted for the second harmonic are quite
wrong.

3. Predictions Given by the Model

We now check the model described above by attempt-
ing to fit the monitoring curves of the gratings re-
corded in photopolymers only by using previously
calculated values. We recorded two gratings with
exposures I,' = 13.6 mW/cm? and I, = 21.81 mW/
cm? The temporal evolution of the first harmonic
calculated with the diffusion equations by use of the
fitting parameters is inserted in the RCWA program.
A comparison between experimental and predicted
diffraction efficiencies is given in Fig. 5.

A comparison between values obtained for the first
and second harmonics of the refractive-index profile
with experimental results are provided in Table 4.

We note that predicted values are in quite good
accordance with the corresponding measured values
of n; and n,. The values of the parameters obtained
by the optimization process can be validated for the
exposure range of energy studied. The behaviors of
D, and c¢,, may change for quite low exposure ener-
gies.

In addition, we have to keep in mind that such
results depend strongly on the performance of the
values given by the minimization algorithm of a

function of several variables (the error function in
our case). Such functions can present several local
minima, but the constraint on the second-order
grating helps the algorithm to avoid some of these
local minima.

C. Recording on Holographic Polymer-Dispersed Liquid
Crystals

We shall now apply the same study to H-PDLCs. In
contrast to DuPont photopolymers, H-PDLC materi-
als are not commercially available, and we have to
process them. So a first task is to determine a com-
position for which we shall get acceptable diffraction
efficiencies in the first order (typically more than
70%).

1. Processing

First, we tested four different preparations by vary-
ing the concentrations of LCs and added another
monomer for two preparations. The compositions
are related in Table 5. These data are given in per-
centages of the total weight. The meanings of the
abbreviations are

e DPHPA: dipentaerythritol penta- and hexaac-
rylate (monomer),
e HexF: hexafluoroisopropyl acrylate (mono-

mer),
e VN: vinyl neononanoate (monomer),
e P-I: photoinitiator,
e BLO036: liquid crystal.

The component HexF has the property of enhanc-
ing the phase separation and reducing switching volt-
ages,4 and the monomer VN is here in order to have
a preparation less viscous. The P-I solution has dif-
ferent components. Its composition is Rose Bengal
(2%), N-phenylglycine as a coinitiator (6%), and the

Table 3. Fitting Results Obtained with the Nonlocal Model Applied to Photopolymers

D, K Vo c,
Grating R, (1071t cm?/s) [(cm/VmW)/s] (nm) (10™* cm?/mol) n, g
1 0.9106 2.6288 0.0629 111.93 5.1025 0.01644 0.003549
2 0.8501 4.5896 0.0739 100.98 4.3257 0.01488 0.003861
3 0.8710 9.4477 0.1084 108.46 4.1627 0.01341 0.003184
4 0.8591 15.39 0.1644 103.79 3.7021 0.01205 0.003093
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Fig. 4. Evolutions of (a) the diffusion coefficient D, and (b) the
coefficient c,, according to the exposure energy for photopolymers.

two reactive diluents 1-vinyl-2-pyrrolidinone (46%)
and trimethylolpropane tris(3-mercaptopropionate)
(46%).

After the recording, the H-PDLC samples undergo
a UV postexposition in order to terminate the reac-
tion and to consume the remaining colorant (Rose
Bengal). The H-PDLC film becomes nearly trans-
parent after sufficient postexposure.
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Fig. 5. Comparison between experimental and predicted values
of the temporal evolution of the refractive-index modulation for two
gratings.

Table 4. Comparison of Experimental and Predicted Values of the
Refractive-Index Modulations for Two Gratings Recorded in
Photopolymers

Exposure
IO (mW/sz) nzixp nllared ngxp ngred
13.6 0.01451 0.01435 0.00335 0.00359
21.81 0.01479 0.01451 0.00295 0.00305

Table 5. Composition of the Different H-PDLC Preparations

Preparation DPHPA HexF VN P-1 BL036
A 49.9 12.1 — 10.2 27.8
B 424 124 — 10.1 35.1
C 475 9.5 5.1 10.1 27.8
D 44.4 10.3 10.2 6 29.1

2. Comparison of the Preparations

We plot here the monitoring curves for the first-order
diffraction efficiency. The exposure energy was the
same for all samples.

In the case of the preparations A and B [Fig. 6(a)],
even if the curves have a maximum and a decrease,
there are no overmodulation effects as previously for
photopolymers. This has been proved by our mea-
suring angular selectivity and fitting with RCWA.
The fast-rising peak observed is due to an overexpo-
sure of the preparation. In this case, the rate of
formation of free radicals is faster than the diffusion
rate. It means that most of the monomers are poly-
merized before the diffusion process, and it results in
an inefficient index modulation. It is different for
preparations C and D [Fig. 6(b)] in which the evolu-
tion is quite smooth. The advantage of adding the
monomer VN is shown.

We will select for the following study the prepara-
tion D. In that one monomer species (DPHPA) is
primarily being used here, we will assume that we
will have only one monomer in the diffusion equa-
tions.

3. Dynamic Study for Preparation D

We made recordings for two different exposures (the
two gratings will be called G, and G; we have I, =
34.88 mW/cm? and 1,2 = 72.11 mW/cm?). We kept

0.7 T T T T T

First-order diffraction efficiency

First-order diffraction efficiency

0 20 40 60 80 100 120 140 160 180 200
Time (s)
(b)
Fig. 6. Temporal evolution of the first-order diffraction efficiency
for four different H-PDLC mixtures: (a) A and B and (b) C and D.
The composition of each mixture is given in Table 5.
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corresponding refractive-index modulation for the two gratings G,
and G, recorded by use of the H-PDLC mixture D at different
exposure energies.

the previous period of 882 nm. The monitoring
curves are given in Figs. 7(a) and 7(b). The index
modulation values are given in Table 6.

As for the photopolymers, we measured relative
efficiencies; Fresnel losses, material absorption, or
scattering losses are not taken into account. Spac-
ers of 18 pm were used for building the cells. An
average index modulation of 0.02 is obtained. We
note that the second harmonic decreases as a func-
tion of the exposure energy to reach values for which
the grating is not overmodulated.

4. Fitting Results

As for the results obtained with photopolymers, the
nonlocal model will be used. We use a proportion of
monomer for the initial value of b,. The distribution
of LC droplets will be evaluated by the mass conser-
vation law. Performing the same process as for pho-
topolymers, we obtain the fitted values of the
parameters: D, = 1 X 107 !° em?/s, ¢, = 5.09 X
10~* cm®/mol, and Vo = 80 nm. We can see the
fitting results on Figs. 8(a) and 8(b). We can remark
that, for the first exposure, fitting and experimental
data are in quite good accordance, but there are some
differences for the second exposure. The first parts
of the curves are correctly fitted, but differences occur
after. We explain this behavior by the fact that we
have several monomers in the H-PDLC solution of
H-PDLC and the one monomer model is no longer
applicable under a high exposure. The diffusion
equations have to be solved with several monomers
with different diffusion constants.

Table 6. Parameters of the Two Gratings Recorded in H-PDLC

Exposure I,

Grating (mW/cm?) nq Ny
1 34.88 0.021 0.0061
2 72.11 0.019 0.0049
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Fig. 8. Temporal evolution of the refractive-index modulation of
the two gratings G, and G,: (a) experimental results and (b)
values given by the diffusion model.

4. Conclusion

We have studied the dynamic formation of transmis-
sion gratings in classical photopolymers and in the
promising material of H-PDLCs.

Subsection 3.B helped us to validate the diffusion
model and to choose the optimization method, given
the fact that these materials have been studied
deeply. The proposed model could be improved by
use of two coefficients for the refractive-index profile
(one for the monomer and one for the polymer) or
taking into account the time decay of the diffusion
polymerization rate.

By comparing experiments and results predicted
by the theory, it appears that it is important to know
the values of the parameters of the secondary grating
(photopolymers or H-PDLCs) to obtain accurate val-
ues with the fitting procedure. Such multivariable
functions may have several local minima, which can
lead to wrong results. Taking into account an addi-
tional constraint on the second harmonic increases
the probability of obtaining correct values.

We compared the characteristics of different prep-
arations and retained the one that gave us the best
diffraction efficiency in the first order. More than
90% relative diffraction efficiency has been mea-
sured. The monitoring allows us to check the behav-
ior of the photopolymerization process and to avoid
too-fast-rising peaks that lead to weak index modu-
lations. The model for H-PDLCs is not as accurate
as for photopolymers. We obtained approximate
values that help us to predict the global behavior of
the recording process. The simple two-component
model presented here should be considerably im-
proved. First, the presence of several monomers
(with different viscosities) should be taken into ac-
count and, then, effects such as the anisotropic diffu-
sion of LCs if we want to approach the real refractive-



index profile. It will lead to an increase of the
number of equations and of the parameters to find
during the optimization process. Powerful routines
such as genetic algorithms may have to be used.

The authors acknowledge Yvon Renotte from the
laboratory “Hololab” of the Liege University for host-
ing the experiments concerning photopolymers.
dJ. L. Kaiser acknowledges Gregory P. Crawford for
useful discussions on the technology of the H-PDLC.
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