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Abstract 

Microreactors for the development of liquid-liquid processes are promising technologies since 
they are supposed to offer an enhancement of mass transfer compared to conventional devices 
due to the increase of the surface/volume ratio. But impact of the laminar flow should be 
negative and the effect is still to be evaluated. The present work focuses on the study of mass 
transfer in microchannels by means of 2D direct numerical simulations. We investigated 
liquid-liquid slug flow systems in square channel of 50 to 960 µm depth. The droplets 
velocity ranges from 0.0015 to 0.25 m/s and the ratio between the channel depth and the 
droplets length varies between 0.4 and 11.2. Droplet side volumetric mass transfer 
coefficients were identified from concentration field computations and the evolution of these 
coefficients as a function of the flow parameters and the channel size is discussed. This study 
reveals that mass transfer is strongly influenced by the flow structure inside the droplet. 
Moreover, it shows that the confinement of the droplets due to the channel size leads to an 
enhancement of mass transfer compared to cases where the droplets are not constrained by the 
walls. 
 
Keywords: microchannel; multiphase flow; mass transfer; computation; mathematical 
modelling 
 

 

 

1. Introduction 

 

Within the frame of processes intensification, the use of micro-technologies to carry out two-
phase operations has been intensively studied since they can strongly enhance mass transfer 
compared to conventional devices (Stankiewicz and Moulijn, 2000; Jänisch et al., 2004). This 
enhancement is mainly due to their ability to produce high interfacial area. Indeed, Yue et al. 
(2007) reviewed the specific interfacial area produced by different gas-liquid contactors: in 
conventional devices, it can reach up to around 2000 m2/m3, while Hessel et al. (2005) have 
generated interfacial area up to 20000 m2/m3 with gas-liquid slug flows in microstructured 
monoliths. In addition, as a result of the microchannels size, diffusion times are very short 
which minimizes the mass transport limitations to the benefit of chemistry.  
For the development of microreactors to carry out liquid-liquid processes, mass transfer 
coefficients must be consistently estimated to obtain a reliable process design. Few works 
focused on liquid-liquid mass transfer using slug flow in microchannels: Burns and Ramshaw 

                                                 
* Corresponding author. Tel.: +33 5 34 61 52 59; fax: +33 5 34 61 52 53 
E-mail address: Laurent.Prat@ensiacet.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12039881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

(2001) studied the titration of acid acetic which was controlled by the acid transfer from 
kerosene to a basic aqueous solution. This reaction was carried out in a square microchannel 
of 380 µm depth using slug flow. They obtained an increase of the global mass transfer 
coefficient with the flow velocity. Dummann et al. (2003) observed the same tendency while 
carrying out the nitration of single ring aromatics in circular capillaries of 0.5 and 1.0 mm 
diameter. However, no model was suggested to estimate mass transfer coefficients in such 
systems. Nevertheless, two cases have been intensively studied as described afterwards: (1) 
liquid-liquid mass transfer in macrochannels and (2) gas-liquid mass transfer in 
microchannels. 
For liquid-liquid mass transfer in macrochannels, numerous empirical correlations to predict 
dispersed phase mass transfer coefficients kd have been established (Knudsen et al., 1998; 
Slater, 1994). However, in order to approach microchannel flow conditions, we should focus 
on circulating droplets, i.e. with internal recirculation loops, with non-oscillating interface 
(Kashid et al., 2005). An empirical correlation was proposed by Skelland and Wellek (1964):  
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where dd is the diameter of a sphere with the same volume than the droplets, Dd the molecular 
diffusion coefficient of the solute in the dispersed phase. The dimensionless numbers are 
particle numbers, calculated with a characteristic length equals to dd. 
In the case of gas-liquid system in microchannels, we can distinguish two types of models: the 
first one based on empirical correlations, and the second one based on theory. Both of them 
allow the estimation of continuous phase mass transfer coefficients since the resistance to the 
transfer in the gas phase is negligible compared to the one in the liquid phase. Berčič and 
Pintar (1997) proposed to estimate liquid volumetric mass transfer coefficient kLa using the 
following correlation:  
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where Ud represents the bubble velocity, εG the gas hold-up, and LUC the unit cell length 
(Figure 1). They deduced this correlation from experimental results obtained in circular 
capillaries of 1.5 to 3.1 mm diameter. As it can be seen in Eq.2, it does not consider the 
influence of the channel diameter wC on the mass transfer coefficient. 
 

 
Fig. 1. Illustration of a unit cell for slug flow in a microchannel (Sarrazin et al., 2006). 
 
Irandoust et al. (1992), Kreutzer (2003) and van Baten and Krishna (2004) used a more 
fundamental approach to estimate kLa in monolith reactors with circular channels. They 
consider that gas-liquid mass transfer in those devices was the result of two contributions: 
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from the gas phase to the liquid film surrounding the bubbles kL,filmafilm, and to the liquid slugs 
through the two bubble caps kL,capacap: 
 

filmfilmL,capcapL,L akakak +=  (3) 

 
kL,cap is then calculated according to Higbie penetration theory, which leads to the following 
equation in circular channels: 
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This model assumes that the film is very thin compared to the channel diameter. Therefore, 
the slug diameter wd can be approximated by the channel diameter wC. Van Baten and 
Krishna (2004) estimated the film contribution by referring to the modelling of mass transfer 
from a bubble to a laminar falling film. Mass transfer coefficient in this case can be written in 
terms of Eq.5 or Eq.6 according to Fourier number Fofilm given by Eq.7. te,film stands for the 
contact time of a fresh liquid element at the film interface (Eq.9).  
 

( )
∆1

1/ln

tπ

D
2k

filme,

c
filmL, −

∆
⋅

=  Fofilm < 0.1 (short contact) (5) 

film

c
filmL, δ

D
3.41k =  Fofilm > 1 (long contact) (6) 

2
filmfilme,

c
film

δt

D
Fo

⋅
=  (7) 

...)Fo39.21exp(0.1001)Fo5.121exp(0.7857∆ filmfilm +⋅−⋅+⋅−⋅=  (8) 

d

film
filme, U

L
t =  (9) 

 
Finally, the film interfacial area afilm can be written in terms of Eq.10. 
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Van Baten and Krishna compared these correlations with gas-liquid mass transfer simulations 
in circular capillary. They obtained good predictions of kLa over a wide range of parameters 
values (wC = 1.5, 2 and 3 mm; LUC = 0.015 to 0.05 m; Ud = 0.15 to 0.55 m/s; εG = 0.136 to 
0.5). Vandu et al. (2005) fitted experimental results obtained with air and water in circular and 
square capillaries with van Baten and Krishna model: they showed that the film contribution 
was the major contribution to mass transfer with their operating conditions (wC = 1, 2 and 3 
mm; LUC = 0.005 to 0.06 m; Ud = 0.09 to 0.65 m/s). Indeed, they neglected the caps 
contribution and obtained a reasonable agreement between the model and their experiments 
when (Ud/Ld)

0.5 > 3 s-0.5 which corresponds to short contact times.  
Regarding liquid-liquid systems in microchannels, the hydrodynamic of the dispersed phase 
seems more complex compared to gas-liquid flows. Sarrazin et al. (2007) showed that the 
flow structures developed in droplets was strongly influenced by the Reynolds and the 
capillary numbers (internal velocity profiles, number of recirculation loops). This may lead to 
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different behaviours in terms of mass transfer. In the present work, two-dimensional (2D) 
direct numerical simulations allow the study of mass transfer in square microchannels for 
liquid-liquid slug flow. The influence of various flow parameters and the channel size on the 
mass transfer coefficient is considered in order to obtain a better understanding and prediction 
of this transport mechanism at such scale. The reliability of the existing models that are likely 
to estimate mass transfer coefficients in the system we studied is discussed. 
 

2. Numerical simulations 

 

2.1. General description of the method 

 

The simulations were carried out in two steps: at first, the hydrodynamic behaviour of the 
system is computed by mean of a research code developed in the Interface group at the 
Institute of Fluid Mechanics of Toulouse (IMFT - University of Toulouse, France): JADIM 
(Legendre and Magnaudet, 1998). This numerical tool allows the description of the physical 
mechanisms present in two-phase flows, resolving continuity and Navier-Stokes equations. In 
a second step, the concentration field of a solute initially present in the dispersed phase is 
computed with a code developed and executed with Matlab 7.4.  
The numerical method is an interface-capturing technique without any interface 
reconstruction. The equations and balances are integrated in space using a finite-volume 
method. The two-phase flow is described using the one-fluid approach where a continuous 
function φ, so called the volume fraction, allows the phases tracking: it equals zero in the 
continuous phase and one in the dispersed phase. 
Sarrazin et al. (2006) validated the reliability of JADIM code to obtain velocity fields in 
microchannels in the case of liquid-liquid slug flow. Indeed, a good agreement between 
simulation results and micro-particle image velocimetry (micro-PIV) measurements is 
observed. They also demonstrated that the hydrodymamic structure of slug flow in square 
microchannel could be well estimated using 2D simulations. Indeed, comparing the velocity 
fields computed with JADIM performing 3D and 2D simulations showed that the flow 
structures obtained with both kinds of simulations were similar. Consequently, this work 
exclusively focused on the calculation of hydrodynamic parameters and concentration field 
over 2D computational domains. The equations are computed over an orthogonal cell-centred 
mesh refined in the film over the y-axis (near the wall, i.e. y = 0 m), and uniform over the x-
axis as illustrated on Figure 2. The length of the computational domain corresponds to a unit 
cell. 
 

 
Fig. 2. 2D computational mesh. The thick line represents the fictitious interface obtained with JADIM. 

 
This method assumes that (1) the fluids in both phases are perfectly immiscible, (2) they are 
Newtonian and incompressible, (3) the physical properties of both phases are constant and not 
influenced by the solute transfer, (4) the solute transfer does not affect the flow structure: the 
computations of the system hydrodynamics and the concentration field are decoupled, (5) the 
gravity effects are negligible at such scale, (6) Marangoni effects are not taken into account, 
(7) the two-phase flow and the concentration field are planar symmetric (the computational 
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domain is half a unit cell as shown in Figure 2). The assumptions (3), (4) and (6) are 
consistent as far as the solute concentration is low. 
 

2.2. Hydrodynamics computation 

 
The hydrodynamics of the system is described using the one-fluid formulation of the 
continuity and Navier-Stokes equations respectively given by Eq.11 and Eq.12: 
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where u and P are the local velocity and pressure. T stands for the viscous stress tensor. n 
represents the unit vector normal to the interface (directed toward the continuous phase), and 
δI the Dirac-delta-function which equals one at the interface and zero elsewhere. The local 
density of the system ρ is evaluated using the local volume fraction φ which obeys Eq.13.  
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T is related to the velocity gradient by means of a fourth-order viscosity tensor which depends 
on a linear viscosity µl given by Eq.15 which allows the description of the stresses normal to 
the interface, and a harmonic one µh to insure the shear continuity at the interface (Eq.16). In 
the case of incompressible fluid and in a 2D representation, the expression of the viscous 
stress tensor coefficients can be written in terms of Eq.15, where S is the strain tensor and n 
the coefficients of the unit vector normal to the interface n. 
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The capillary force is transformed into a volume force using the continuum surface force 
model suggested by Brackbill et al. (1992): 
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The spatial discretisation and time-advancement algorithm used in JADIM code to solve the 
previous equations is detailed by Bonometti (2005). The spatial discretisation is performed 
using second-order centred differences. Time advancement is executed using a third-order 
Runge-Kutta method for the advective and the source terms, and a Crank-Nicholson method 
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for the viscous terms. The overall algorithm is second-order accurate in time and space. The 
study of a droplets chain is reduced to the study of a single droplet assuming periodic 
conditions at the boundaries normal to the flow. The volume of the two phases in the 
computational domain is initially set. The fluid motion is driven by imposing a pressure 
gradient between the two boundaries normal to the flow. The computation gives the velocity 
and pressure fields and the volume fraction. Then, these parameters are used to obtain the 
concentration field of a solute that transfers from the droplet to the continuous phase. 
 
2.3. Concentration field computation 

 

2.3.1. Mathematical formulation 

The concentration field C over the computational domain is governed by the general 
convective diffusive equations. The transferred flux is expressed using Fick’s law leading to 
the following balances in each phase: 
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where D is the mass diffusion coefficient. u’ is the velocity field in a frame of reference 
moving with the droplets. The subscripts d and c respectively stand for the dispersed and the 
continuous phases. The concentration at the interface obeys the interfacial equilibrium, m 
being the distribution coefficient of the solute considered as constant: 
 

cd mCC =     at the interface (20) 

 
To solve these equations according to the one-fluid approach, some transformations must be 
done to make the concentration at the interface continuous. For that purpose, it is proposed to 
operate some changes in the concentrations formulation such as: 
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This method is described by Yang and Mao (2005) who simulated interphase mass transfer 
using the level set approach. Using these transformations, Eq.18, Eq.19 and Eq.20 can be 
rewritten as follows: 
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Therefore, mass transport in the whole computational domain can be described by only one 
equation (Eq.25), transforming the parameters t, u and D as shown by Eq.26 to Eq.28. The 
concentration field is computed through the parameter Ĉ. 
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Initial condition 

The solute is initially present in the dispersed phase with a concentration C0. The continuous 
phase is pure: 
 

ϕ=
m
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0

    at t = 0 s (29) 

 
Boundary conditions 

At the wall and at the symmetry plan, there is no mass flux over the y-direction: 
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    for y = 0 and y = wC / 2 (30) 

 
For the boundaries normal to the flow, we introduce two fictitious columns outside the 
domain which are considered at the same concentration that the boundaries to calculate the 
convective and the diffusive terms. 
 
2.3.2. Numerical method and procedure 

Eq.25 is explicitly integrated over time. The computation algorithm is first-order accurate in 
time. The diffusive term is second order approximated. The convective term is discretised 
according to an upwind scheme.  
Due to the recirculation loops in the continuous phase between the droplets (see part 3), the 
solute transferred from one droplet to the continuous phase will impact on the solute transfer 
from the following droplet. Therefore the slugs can not be considered as single and a set of 
droplets needs to be simulated. For that purpose, the concentration field over one unit cell is 
computed according to an algorithm based on an eulerian framework. Considering the flow 
periodic, with a periodicity T, the algorithm compared the concentration field obtained in a 
cell at time tk = t0 + kT and tk+1 = t0 + (k+1)T. The steady state in the cell is supposed to be 
reached if for each node of the domain the following criterion is satisfied:  
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Once the steady state is reached, the same algorithm is applied to compute the concentration 
field over the following cell. 
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2.4. Validation of the numerical method 

 

The methodology previously described has been implemented on different grids. Half a 60 
µm depth channel with a computational length of 100 µm is described by a node number of 
125�30, 250�30, 125�75, 160�75 and 125�100 (x- direction � y- direction). The influence 
of the mesh grid size on both hydrodynamics and mass transfer computations is studied. For 
that purpose, several criteria are evaluated for each simulation case and compared: the 
droplets and the continuous phase velocities respectively calculated by means of Eq.33 and 
Eq.34, and the mass transfer coefficient which is directly correlated to the mean droplet 
concentration profile over time (its estimation from the computed concentration field is 
described in part 3.1). 
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Table 1 shows that the mesh grids where the depth of the computational domain is represented 
by means of only 30 nodes give results that are strongly different that those obtained with 
finer grids over the y-axis (at least 75 nodes). Indeed, while the computed velocities are not 
highly dependent on the mesh size (10% increase by doubling the node number over the y-
axis), the mass transfer coefficient decreases of more than 30% between the finest and the 
thickest mesh grids. This difference is mainly due to the truncation error implied by the 
discretisation of the advective term in Eq.25. This error acts like a diffusive term 
characterized by an artificial diffusion, so called numerical diffusion (Chung, 2002). Its value 
is directly linked to the mesh size: the smaller the mesh size, the lower the truncation error. 
This numerical diffusion adds to mass diffusion which leads to an overestimation of the mass 
fluxes. This effect is particularly significant at the droplets interface where the mass transport 
is purely diffusive and the concentration gradient important.  
 
Table 1.  Influence of the mesh grid size on simulations for a computational domain of 100 
µm � 30 µm. 
 

Node number 
∆x 
(µm) 

∆y 
(µm) 

Ud 
(m/s) 

Uc 
(m/s) 

dUCsimu,dd V)Vak(  

(s-1) 
125�30 0.80 0.30 to 1.66 0.1401 0.0877 122.6 
250�30 0.40 0.30 to 1.66 0.1391 0.0872 121.2 
125�75 0.80 0.40 0.1534 0.0945 95.7 
160�75 0.625 0.40 0.1533 0.0945 94.0 
125�100 0.80 0.30 0.1537 0.0949 91.4 
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Fig. 3. Mean droplet concentration profile for various mass diffusion coefficients: (a) Ud = 0.0977 m/s, Ld = 53 
µm, LUC = 300 µm, ∆x = 0.8 µm, ∆y = 0.3 to 1.66 µm; (b) Ud = 0.2314 m/s, Ld = 150.4 µm, LUC = 300 µm, ∆x = 
0.8 µm, ∆y = 0.3 to 1.66 µm. 

 
The numerical diffusion impact is highlighted on Figure 3. Indeed, it illustrates the mean 

droplet concentration profile dC  computed on a grid with 30 nodes (computational domain of 
30 µm depth), with different mass diffusion coefficients D (Dd=Dc=D). We can see that even 
when this coefficient equals zero, the solute transfers from one phase to the other: this is 
purely an effect of the numerical diffusion. The profile is independent of the mass diffusion 
coefficient value when it is lower than 10-9 m2/s. It means that the numerical diffusion for 
such a grid is in the order of magnitude of 10-9 m2/s which is in the same range that common 
mass diffusion coefficients in liquids.  
 
Figure 4 (a) reveals that when the computational domain of 30 µm depth is described by at 
least 75 nodes, the mean droplet concentration profile is independent of the mesh size for 
D=10-9 m2/s (33% increase in the node number over the y-axis produces less than 5% 
variation in the computation results). It suggests that the numerical diffusion with such grids 
is negligible compared to common mass diffusion coefficients in liquids. Figure 4 (b) also 
shows that the concentration field computed on the 125�30 mesh grid with D equals to 10-9 
m2/s was equivalent to the one obtained on the finest grid (125�100) when D was set to 5.10-9 
m2/s. It means that the numerical diffusion on the 125�30 mesh grid can be estimated at 4.10-
9 m2/s. Therefore the sum of numerical and mass diffusions is still in the good order of 
magnitude to represent diffusion in liquid phases. Consequently, in spite of the numerical 
diffusion, we decided to employ thick grids (half a channel depth represented by at least 30 
nodes) since it required reasonable computational times. 
 

 
Fig. 4. Impact of the mesh grid size on the mean droplet concentration profile computation. 
 

3. Results and discussions 
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As illustrated in Figure 5 (a), the hydrodynamic structures obtained in this study are 
analogous with those experimentally and numerically observed in previous works for slug 
flow in microchannels: internal vortices in both the continuous and dispersed phases and a 
thin film that wets the wall (Thulasidas et al., 1995; Kreutzer et al., 2005; Kashid et al., 2005; 
Taha and Cui, 2006). 
 

 
Fig. 5. Flow structures obtained by 2D computations with JADIM: (a) wC = 60 µm, Ud = 0.1837 m/s, Ld = 147.2 
µm, LUC = 300 µm; (b) wC = 480 µm, Ud = 0.0036 m/s, Ld = 924 µm, LUC = 1920 µm; (c) wC = 240 µm, Ud = 
0.0144 m/s, Ld = 87 µm, LUC = 300 µm. 
 
We also obtained two other flow structures depending on the flow parameters as it is shown in 
Table 2 and Figure 6 (Sarrazin et al., 2007): (1) with several recirculation nodes in the 
droplets as shown in Figure 5 (b): this phenomenon was notably observed for low capillary 
and Reynolds numbers (low velocity and high interfacial tension), (2) without any 
recirculation loops in the continuous phase because the droplet is not enough confined (see 
Figure 5 (c)). This last structure can be related to Stokes flow (isolated droplet in an infinite 
medium at low Reynolds number) where the streamlines close to the droplets follow the 
interface shape.  The impact of these structures on mass transfer will be afterwards discussed. 
              

 
Fig. 6. Flow structures as a function of the Reynolds and the capillary number. 
 
Table 2. Computations parameters 
 

wC 
(µm) 

Ud 
(m/s) 

LUC 
(µm) 

Ld 
(µm) 

wd 
(µm) 

σ 
(N/m) 

Flow 
Structure 

50 0.0514 200 100.8 43.9 0.038 (a) 
50 0.0616 300 154.4 43.9 0.038 (a) 
60 0.0977 300 52.8 43.0 0.01 (a) 
60 0.1199 300 54.4 43.0 0.01 (a) 
60 0.1326 300 54.4 41.1 0.01 (a) 
60 0.1653 300 56.0 41.1 0.01 (a) 
60 0.1312 300 143.2 43.0 0.01 (a) 
60 0.1312 900 143.2 43.0 0.01 (a) 
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60 0.1837 300 147.2 41.1 0.01 (a) 
60 0.2314 300 150.4 41.1 0.01 (a) 
60 0.1505 300 100.8 43.0 0.01 (a) 
60 0.1505 600 100.8 43.0 0.01 (a) 
60 0.1505 900 100.8 43.0 0.01 (a) 
60 0.1505 1200 100.8 43.0 0.01 (a) 
60 0.2500 195 151.2 41.1 0.01 (a) 
60 0.2098 300 160.8 37.1 0.005 (a) 
60 0.0121 300 126.4 49.4 0.005 (a) 
60 0.1291 300 128.0 49.4 0.038 (a) 
60 0.0398 240 119.2 53.3 0.038 (a) 
60 0.0095 240 118.4 54.3 0.038 (b) 
60 0.0386 300 121.6 53.3 0.038 (a) 
120 0.0142 480 234.0 110.6 0.038 (b) 
120 0.0221 300 84.8 78.6 0.038 (a) 
240 0.0058 960 458.0 225.8 0.038 (b) 
240 0.0144 300 87.0 79.9 0.038 (c) 
480 0.0036 1920 924.0 457.2 0.038 (b) 
960 0.0015 3840 1800.0 921.0 0.038 (b) 
960 0.0022 300 86.0 82.2 0.038 (c) 

 
 

 

3.1. Methodology for the identification of the mass transfer coefficient 

 
The code developed for the computation of the solute transport from the dispersed phase to 
the continuous phase allows the calculation of the local solute concentration all along the 
microchannel. Figure 7 illustrates the computed concentration profiles as a function of the 
residence time in the three volumes representative of slug flows: (1) the droplet, (2) the 
interval, which is the volume between two successive droplets, (3) and the film. The division 
of the continuous phase into two distinct volumes is pertinent since the concentrations in the 
interval and the film are very different: the film saturates faster than the interval.  
Moreover, it can be noticed that the concentration in the film can temporary overpass the 
steady state concentration. This phenomenon is particularly important for the case where the 
interval volume is high compared to the sum of the film and the droplet volumes (Figure 7 
(a)). This is due to the time the interval requires to enrich in solute: if this interval is important 
compared to the droplet and the film, it takes a long time for this volume to be charged in 
solute compared to the saturation time of the film. Therefore, the homogenisation of the 
concentration in the film and the droplet occurs before the interval is totally charged. Then, 
the homogenisation over the all unit cell leads to a decrease of the film and the droplet 
concentrations to the final steady state concentration. 
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Fig. 7. Mean concentration profiles in the three volumes identified in a unit cell: (a) wC = 60 µm; Ud = 0.1326 
m/s, Ld = 54.4 µm, LUC = 300 µm; (b) wC = 60 µm; Ud = 0.1837 m/s, Ld = 147.2 µm, LUC = 300 µm. The 
concentration field is depicted by means of a colour function (black for C = 0 kg.m-3; white for C=C0). 
 
A local mass transfer coefficient kdad,simu is identified from the computed concentration field. 
It is obtained from a mass balance in a droplet, where the flux through the interface is 
modelled using this coefficient, the mean solute concentration in the droplets and the final 
concentration Cd

* obtained for an infinite time (Eq.35). Vd and VUC respectively correspond to 
a droplet and a unit cell volume. The integrated formulation of Eq.35 directly leads to the 
mass transfer coefficient (Eq.36). 
 

( )*
ddUCsimu,dd

d
d CCVak

t

C
V −−=

∂
∂

 (35) 

t
V

Vak

CC

CC
ln

d
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d

0
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−
−

∗

∗

 (36) 

 
To obtain kd,simu, the specific interfacial area ad is calculated according to the capillary number 
Ca. In fact, Sarrazin et al. (2007) showed that the cross section shape of a droplet in square 
microchannels dependes on this number: for Ca higher than 0.04 the droplets body can be 
considered as cylindrical, while for Ca lower than 0.04 the dispersed phase tends to cling to 
the channel walls. This tendency was also suggested by Kreutzer et al. (2005) for gas-liquid 
slug flow. We consider the caps of the droplets have a spherical shape in both cases. 
Consequently, ad is estimated using the following equations: 
 

( )
2

CUC

2
dddd

d
wL

wwLw
a

⋅
⋅π+−⋅⋅π

=       for Ca > 0.04 (37) 

( )
2

CUC

2
dddd

d
wL

wwLw4
a

⋅
⋅π+−⋅⋅

=       for Ca < 0.04  (38) 

 
3.2. Model for mass transfer coefficient 

 

The influence of the flow parameters is determined through different simulation cases 
described in Table 2. The fluid properties are the same in all runs (ρc = 950 kg.m

-3, µc = 0.019 
Pa.s; ρd = 1000 kg.m

-3, µd = 0.001 Pa.s; µd / µc = 0.053), except the interfacial tension σ which 
determines the droplets shape. In all the simulations, the initial concentration is set at 10 
kg/m3, the mass diffusion coefficient in both phases is equal to 10-9 m2/s and the distribution 
coefficient m equal to 1. In order to study the relationship between the droplet side volumetric 
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mass transfer coefficient and the flow parameters, we assumed that this coefficient could be 
modelled in terms of Eq.39, where dd is the droplet volume equivalent diameter defined by 
Eq.40 and ε the ratio between the volume of a droplet and a unit cell (ε = Vd / VUC). 
 

5p4p3p
d

2p
C

1p
dd dwUk σ⋅ε⋅⋅⋅⋅α=   (39) 

3
dd V

4

3
2d

π
⋅=   (40) 

 
The parameters α and pi are identified to fit the simulation results. It lead to Eq.41, where the 
term kddd can be related to a Sherwood number, UdwC to a Reynolds number and (Ud / σ) to a 
capillary number. The term (wC / dd) shows the positive impact of the confinement on mass 
transfer. The power 0.69 that illustrates the dependency of Reynolds number on mass transfer 
is in the good order of magnitude. Indeed, we can relate it to the common dependency of 
discontinuous phase mass transfer coefficient in particle Reynolds number, where the power 
equals 0.371 (Eq.1). The proposed correlation shows that the mass transfer coefficient 
decreases when the capillary number increases. This tendency can be explained by the 
influence of this number on the flow structure in the droplets. In fact, for low values of the 
capillary numbers, Sarrazin et al. (2007) show that very small recirculation loops appear at the 
front of the droplets. This effect tends to increase the mixing efficiency in the dispersed phase, 
to the benefit of the mass transfer (reduction of the resistance to the transfer in the droplets). 
Nevertheless, regarding the dependency of the term (Ud / σ) on mass transfer, this effect has a 
minor influence compared to the Reynolds number and the confinement impact. The 
parameter α is equal to 2.77e-04 (Figure 8). However, this value is obtained by fitting 2D 
results, and would have probably been different if we had carried out 3D simulations. 
Moreover, this parameter value depends on the fluid properties. 
 

( )
75.0

d

C

07.0

d69.0
Cd

17.0
dd d

wU
wUdk 








⋅









σ
⋅⋅ε⋅α=

−

 (41) 

 
Figure 8 shows that this correlation allows a good fitting of the simulation results as far as the 
hydrodynamic behaviour of the droplets correspond to flow structure (a). Indeed, the 
correlation underestimates mass transfer for structure (b), and it overestimates it for structure 
(c). This can be explained by: (1) the recirculation nodes in flow structure (b) that increase the 
transfer by enhancing the mixing in the dispersed phase and (2) the lack of recirculation loops 
in the continuous phase in flow structure (c) that slows down the solute transport in that phase 
compared to the transport phenomenon in flow structure (a). However the global trends of the 
curves obtained for all flow structures are roughly the same. This means that mass transfer 
evolves with the flow parameters in the same way whatever is the flow structure. The main 
difference in the mass transfer coefficient estimation will be the value of the parameter α. 
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Fig. 8. Simulation results fitting with Eq.41. 
 
Finally, we compared the simulation results with the coefficients obtained from the models 
and correlations described in part 1 as illustrated in Figure 9. Regarding the correlation 
suggested by Skelland and Wellek, the difficulty is to use the pertinent characteristic 
parameters to calculate the dimensionless numbers. In order to have a correlation easy to be 
applied, we focused on parameters that can simply be estimated. Therefore, mass transfer 
coefficient with this correlation has been estimated using the following formulation of Eq.1: 
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where the particle Fourier number Fod depends on a contact time defined as the ratio between 
a contact length and the droplets velocity Ud. The contact length has been estimated as the 
length of the interface travelled by a fluid element of the droplets as shown in Eq.43 (i.e. a 
fluid element of the vortex external streamline). The characteristic length used is half a 
droplet diameter which represents the characteristic length of diffusion inside the droplets. 
 

2
de

d
d )2d(t

D
Fo =   (43) 

d

ddd
e U

2w)wL(
t

π+−
=   (44) 

 
As illustrated in Figure 9, this formulation leads to two different trends for low and high 
values of mass transfer coefficients. In fact, this correlation is used to model mass transfer 
within circulating droplets: it does not consider the difference in flow structure. Moreover, it 
was proposed for macrochannels where the droplets are not constrained by the channel wall 
while we noticed an enhancement of mass transfer with the confinement factor. The model of 
van Baten and Krishna suggested for gas-liquid slug flow leads to a good global trend. 
However, it allows the calculation of continuous phase side mass transfer coefficients. 
Therefore, it could possibly be used when the resistance to transfer in the droplets is 
negligible compared to the resistance in the continuous phase (flow structure (b) with high 
recirculation motion). Finally the correlation proposed by Bercic and Pintar leads to a high 
scattering when trying to fit the simulation results. Nevertheless, their correlation, which was 
suggested from experiments in channels of more than 1 mm diameter, is independent of the 
channel size while Vandu et al. (2005) shows the importance of this parameter on mass 
transfer. 
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Fig. 9. Comparison of the mass transfer coefficients obtained by simulation and with literature models. 
 
4. Conclusions 

 

In this study, liquid-liquid mass transfer in square microchannels was investigated using 2D 
simulations. The hydrodynamic and the concentration field computations were decoupled and 
Marangoni effects were not taken into account. However, it allowed the study of general 
tendencies, i.e. how mass transfer is influenced by the flow conditions and the channel size. 
This work showed that the confinement factor in microchannels allows an enhancement of 
mass transfer compared to what can be obtained in macrochannels. Moreover, this study 
reveals that the flow structures had a major impact on the mass transfer coefficient estimation. 
Indeed, while the general trend is the same for all flow structures (i.e. same dependencies of 
the mass transfer coefficients in the flow parameters), mass transfer is enhanced by the mixing 
efficiency in the droplets. This is logically linked to the number of recirculation nodes in the 
dispersed phase. However, flow structures with several recirculation nodes are obtained for 
low droplets velocities which do not favour mass transfer. 
In order to complete this work, the influence of the fluid properties has to be studied. We 
could also simulate mass transfer coupling hydrodynamics and mass transfer, i.e. taking into 
account the impact of the solute transfer on the hydrodynamics. This should notably allow a 
better prediction of this process with concentrated phase. Finally, an experimental study will 
be implemented in order to validate the correlation obtained. 
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Notation 

 

a specific interfacial area, m2.m-3 
Ca capillary number, dimensionless 
C local concentration in solute, kg.m-3 

Ĉ  transformed concentration in solute, kg.m-3 
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C  mean concentration in solute, kg.m-3 

d diameter, m 
D mass diffusion coefficient, m2.s-1 
Fo Fourier number, dimensionless 
k mass transfer coefficient, m.s-1 

L length, m 
m distribution coefficient 
n unit vector normal to the interface 
pi fitting parameters defined by Eq.39 
P pressure, Pa 
Re Reynolds number, dimensionless 
S Strain tensor, m.s-2 

Sc Schmidt number, dimensionless 
Sh Sherwood number, dimensionless 
t time or residence time, s 
t̂  transformed time, s 
te contact time, s 
T flow period, s 
T viscous stress tensor, N.m-2 

u velocity vector, m.s-1 
û  transformed velocity vector, m.s-1 
U velocity, m.s-1 

V volume, m3 
x coordinate over the length, m 
w width, m 
y  coordinate over the width, m 
 
Subscripts and Superscripts 

 

C channel 
c continuous phase 
cap refers to the droplets caps 
d dispersed phase (droplet or bubble) 
film refers to the film that wets the channel walls 
k computation cell index 
L liquid phase 
model refers to data calculated with a model 
simu refers to data obtained by simulations 
UC unit cell 
 
Superscripts 

 
0 refers to the initial time 
* refers to the equilibrium state 
‘ refers to the frame of reference moving with the droplets 
 
Greek letters 

 

α fit parameter 
δ thickness, m 
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δI Dirac-delta-function 
∆ parameter defined by Eq.8  
∆x computational cell length, m 
∆y computational cell width, m 
ε ratio between a droplet and a unit cell volume 
εG gas hold-up 
µl linear viscosity, Pa.s 
µh harmonic viscosity, Pa.s 
ρ density, kg.m-3 
σ interfacial tension, N.m 
φ local volume fraction 
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