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Abstract

When building stochastic models for electricity spot pricesthe problem of uttermost importance
is the estimation and consequent forecasting of a componentto deal with trends and seasonality
in the data. While the short-term seasonal components (daily, weekly) are more regular and less
important for valuation of typical power derivatives, the long-term seasonal components (LTSC;
seasonal, annual) are much more difficult to tackle. Surprisingly, in many academic papers dealing
with electricity spot price modeling the importance of the seasonal decomposition is neglected
and the problem of forecasting it is not considered. With this paper we want to fill the gap and
present a thorough study on estimation and forecasting of the LTSC of electricity spot prices. We
consider a battery of models based on Fourier or wavelet decomposition combined with linear or
exponential decay. We find that all considered wavelet-based models are significantly better in
terms of forecasting spot prices up to a year ahead than all considered sine-based models. This
result questions the validity and usefulness of stochasticmodels of spot electricity prices built on
sinusoidal long-term seasonal components.

Keywords: Electricity spot price, Long-term seasonal component, Robust modeling, Forecasting,
Wavelets.

1. Introduction

As pointed out by Tr̈uck et al. (2007) and Janczura et al. (2012), the first crucialstep in defining
a model for electricity spot price dynamics consists of finding an appropriate description of the
seasonal pattern. In the standard approach to seasonal decomposition the electricity spot price
seriesPt is decomposed into the trend-cycle or long-term seasonal component (LTSC)Tt, the
periodic short-term seasonal component (STSC)st and remaining variability, error, or stochastic
componentXt either in an additive (i.e.,Pt = Tt + st + Xt) or a multiplicative fashion (i.e.,Pt =

Tt · st · Xt; note that a multiplicative model for the prices is equivalent to an additive model for
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the logarithms of prices). The long-term seasonal component of electricity spot prices has been
treated in the energy economics literature in a number of ways including:

• piecewise constant functions or dummies, possibly combined with a linear trend (Bhanot,
2000; Fanone et al., 2012; Fleten et al., 2011; Gianfreda andGrossi, 2012; Haldrup et al.,
2010; Haugom and Ullrich, 2012; Higgs and Worthington, 2008; Keles et al., 2012a; Knittel
and Roberts, 2005; Lucia and Schwartz, 2002),

• sinusoidal functions or sums of sinusoidal functions of different frequencies (Benth et al.,
2012; Bierbrauer et al., 2007; Cartea and Figueroa, 2005; De Jong, 2006; Erlwein et al.,
2010; Geman and Roncoroni, 2006; Keles et al., 2012b; Lucia and Schwartz, 2002; Pilipovic,
1998; Seifert and Uhrig-Homburg, 2007; Weron, 2008),

• wavelets (Conejo et al., 2005; Janczura and Weron, 2010, 2012; Stevenson, 2001; Schlueter,
2010; Stevenson et al., 2006; Weron, 2006, 2009; Weron et al., 2004a,b) or other nonpara-
metric smoothing techniques (Bordignon et al., 2012).

However, to our best knowledge, there are only very few papers where the forecasting of the LTSC
is discussed and even fewer where it is actually performed and checked. Forecasting a piecewise
constant or a sinusoidal LTSC is straightforward, but it is either conducted for very short-term time
horizons (e.g., one day-ahead as in Erlwein et al., 2010) or not conducted at all, probably due to the
poor predictive power of such models outside carefully chosen time intervals and datasets. On the
other hand, forecasting a nonparametric seasonal component is particularly troublesome and some
authors actually evaluate only the out-of-sample prediction of the stochastic part (Bordignon et al.,
2012). With this paper we want to fill the gap and present a thorough empirical study on estimation
and forecasting of the LTSC of electricity spot prices. We consider a battery of models based
on Fourier or wavelet decomposition, including models commonly used in the energy finance
literature and a number of new suggestions.

The paper is structured as follows. In Section 2 we briefly describe the six datasets used in
this empirical study. In the following Section we review different procedures for deseasonalizing
the data and estimating the LTSC. In Section 4 we first outline the simulation setup, then present
in detail all seven model families. Tables 1-2 can be used as areference guide to the coding of
the 300 models tested in this study. The Section ends with thedefinitions of error measures used
later in the text. In Section 5 we report the results of our empirical study. We first discuss the
global performance (over all six forecasting horizons and all six datasets), then comment on the
performance across the forecasting horizons and finally discuss the results of a multiple compari-
son procedure which provides detailed information on whichmodels perform significantly worse
or significantly better than other models. In Section 6 we wrap up the results and comment on
alternative approaches.

2. The data

To make the analysis and the resulting conclusions as universal as possible, in this study we
use mean daily (baseload) spot prices from six major power markets:
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• New South Wales Electricity Market (NSW; Australia) from the period Jan 1, 2006 – Jul 31,
2011 (2038 daily observations);

• European Energy Exchange (EEX; Germany) from the period Jan1, 2001 – Apr 12, 2011
(3754 obs.);

• Nord Pool (NP; Norway) from the period Jan 1, 2000 – Nov 13, 2008 (3240 obs.);

• New England Power Pool (NEP; United States) from the period Jan 1, 2001 – Apr 28th,
2011 (3770 obs.);

• New York Independent System Operator (NYISO; United States) from the period Jan 1,
2004 – Jan 31, 2011 (2588 obs.);

• Pennsylvania–New Jersey–Maryland Market (PJM; United States) from the period Jan 1,
2006 – Apr 28, 2011 (1944 obs.).

The datasets are plotted in Figure 1. The annual seasonalityis generally irregular, if visible at all.
Note that this makes the probably most popular method of modeling the seasonal component with
sine and cosine functions highly questionable. On the otherhand, as shown by Janczura and Weron
(2010), the changes in electricity price dynamics can be quite well linked to changes in market
fundamentals. For instance, the electricity price hike in 2005 was largely due to higher natural gas
(NG) prices, see the EEX (observations 1600-1850), NEP (obs. 1600-1850) and NYISO (obs. 500-
750) price series. In Europe, the fuel prices were pushed up by the decline in North Sea production
and a cold winter of 2005/2006. The introduction of CO2 emission costs in January 2005 added
momentum (Benz and Trück, 2006). In the U.S., the NG prices doubled after hurricanes Katrina
and Rita damaged production, processing and transportationinfrastructure. This volatile period
was followed by roughly 18 months of more moderate prices andthe second ‘fuel bubble’, which
started in September/October 2007 and ended in July/August 2008 with the burst of the ‘oil bubble’
(Hamilton, 2009), see the EEX (obs. 2400-2900), NEP (obs. 2400-2900) and NYISO (obs. 1300-
1800) price series.

The more regular weekly periodicity cannot be seen too well at this time scale. However, if we
increase the resolution – as in Figure 4 – the five weekdays vs.weekend pattern is better visible.
The price spikes tend to dominate Figure 1 and are visible in all six cases. Yet there are significant
differences in the intensity and severity of the spikes. The NSW market is evidently the most spiky,
the EEX dataset is pretty volatile and even includes a few price drops with a negative mean daily
system price (for a discussion see, e.g., Fanone et al., 2012), while the NYISO market is the least
spiky.

3. Estimating the long-term seasonal component

We follow the ‘industry standard’ and represent the spot pricePt by a sum of two independent
parts: a stochastic componentXt and a (predictable) trend-seasonal componentft composed of
a weekly periodic partst (i.e., a short-term seasonal component, STSC) and a long-term trend-
seasonal component (LTSC)Tt, which represents the long-term non-periodic fuel price levels, the
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Figure 1: Mean daily (baseload) electricity spot prices from six major power markets (from top to bottom, left to
right): New South Wales Electricity Market (NSW, Australia), European Energy Exchange (EEX, Germany), Nord
Pool (NP, Scandinavia), New England Power Pool (NEP, U.S.),New York ISO (NYISO, U.S.) and Pennsylvania–
New Jersey–Maryland Market (PJM, U.S.). Note that for the Australian market the log-prices (and not the prices
themselves) are plotted. The logarithmic scale dampens theextreme spikiness of the NSW prices, which can reach up
to 10000 AUD/MWh during peak hours.
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changing climate/consumption conditions throughout the years and strategicbidding practices.
As mentioned in the Introduction, there are essentially three distinct suggestions in the energy
economics literature for dealing with the trend-seasonal componentft of electricity spot prices
(for a recent evaluation of the different approaches in terms of extracting the true seasonal pattern
see Janczura et al., 2012). Sample fits of the LTSC are illustrated in Figure 2.

The first is to fit piecewise constant functions or dummies, typically one for each month. Fore-
casting of such a LTSC is trivial. However, given the not veryperiodic behavior of spot prices
on the annual scale (recall Figure 1), the usefulness of thistechnique is questionable. Moreover,
while very simple, this approach yields a non-smooth trend-seasonal component with jumps be-
tween months. If this effect is not eliminated by an additional smoothing treatment,it may very
well introduce spurious seasonality and negatively influence the estimation of the stochastic com-
ponent. In our study we will use as benchmarks only very simple variants of this technique which
do not require additional smoothing, namely a constant and alinear LTSC.

The second approach is to model the trend-seasonal patternTt by a sum of sine and/or cosine
functions. Due to the rather complex annual pattern of spot electricity prices, except for a few
regular periods like the Jan 1997 – Apr 2000 period at Nord Pool analyzed by Weron (2008), the
LTSC cannot be modeled by a single sine function. The question whether the periods of other sine
or cosine functions of higher frequency should be harmonicsof the annual frequency or not is an
open one. In order to answer it we will consider here sinusoidal models forTt with up to four
summands with both regularly (harmonics) and irregularly spaced frequencies. Note that in both
cases the forecasting of such a LTSC is straightforward, since it is based on a simple extrapolation
of the sine and/or cosine functions with known frequency, phase shift and amplitude.

The third approach is to use wavelet decomposition and smoothing as more robust to outliers
and a less periodic alternative to Fourier analysis. Recall,that wavelets belong to families – like the
Daubechies and Coiflets families used here – and come in pairs of a father and a mother wavelet
for a given order (Ḧardle et al., 1998; Percival and Walden, 2000). The different families and
orders of wavelets make different trade-offs between how compactly they are localized in time and
their smoothness. Any function or signal (here,Pt) can be built up as a sequence of projections
onto one father wavelet and a sequence of mother wavelets:SJ + DJ + DJ−1 + ... + D1, where
2J is the maximum scale sustainable by the number of observations. At the coarsest scale the
signal can be estimated bySJ. At a higher level of refinement the signal can be approximated by
SJ−1 = SJ + DJ. At each step, by adding a mother waveletD j of a lower scalej = J − 1, J − 2, ...,
we obtain a better estimate of the original signal. This procedure, also known as lowpass filtering,
yields a traditional linear smoother. Here we useJ = 6, 7 and 8, which roughly correspond to
bimonthly (26 = 64 days), seasonal (27 = 128 days) and annual (28 = 256 days) smoothing. While
trigonometric or periodic functions – such as the sinusoidal LTSC or the monthly dummies – can
be easily extrapolated into the future, predicting the wavelet LTSC beyond the next few weeks is
a difficult task. This results from the fact that, in contrast to sines or cosines, individual wavelet
functions are quite localized in time or (more generally) inspace. In the following Section we will
address this issue and propose a few solutions. Note that also combining sinusoidal functions with
an exponentially weighted moving average (as in De Jong, 2006) complicates things very much,
because the moving average at timet + 1 is dependent on the unknown future pricePt+1.

The next and final step of seasonal decomposition would be to remove the weekly periodicity
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Figure 2: Sample LTSC estimation and forecasting results for the NEPOOL market and a two-year calibration window
Oct 28, 2003 – Oct 26, 2005. Clearly the sinusoidal LTSC (top panel) do not follow the trend-seasonal pattern of the
spot prices in the calibration window as well as the wavelet LTSC (bottom panel), even if the periods – as well as the
amplitudes and phases – of the sine waves are estimated within an optimization procedure (model 220021; for code
definitions see Section 4.2 and Tables 1-2).

st, typically by subtracting the ‘average week’ calculated asthe arithmetic mean of the LTSC-
deseasonalized prices (i.e.,Pt − Tt) corresponding to each day of the week, with public holidays
treated as the eighth day of the week. However, we will not explicitly estimate the weekly period-
icity here, since for the time horizons considered in this study (see below) it is of little importance.
Finally, note that the forecasting of such a periodic STSC isstraightforward, like in the case of a
LTSC build on piecewise constant functions (or dummies).

4. Forecasting the long-term seasonal component

4.1. The simulation setup

In the simulation study we use a rolling window scheme. At each estimation/forecasting step
both the starting and the ending date of the calibration sample is moved forward by one day. Each

6



of the 300 models we consider is estimated on twocalibration windows: a two-year (730-day) and
a three-year (1095-day). The following year (365 days) is used for the out-of-sample forecast and
is denoted in the text as theforecast window, see Figures 2-4. In order to have the same number of
forecasts for both calibration windows, the two-year window has a 365-day lag with respect to the
three-year window (i.e., it starts on the 366th observationof the three-year calibration window).
The rolling scheme lasts as long as we have at least 365 observations following the last day of
the calibration window. In this way we obtain 579 forecasts (from 1 to 365 days ahead) for the
NSW market, 2295 for the German EEX market, 1781 for the Scandinavian Nord Pool power
exchange, 2311 for the New England Power Pool, 1129 for the New York ISO and 485 for the
PJM market. After computing forecasts for all six datasets,all 300 models and all calibration
windows we calculate three measures of forecast accuracy – the mean absolute error (MAE), the
mean squared error (MSE) and the mean absolute percentage error (MAPE) – for each dataset,
each model and each of the six forecast horizons: 1-7 days, 8-30 days, 31-90 days, 91-182 days,
183-274 days and 275-365 days.

4.2. Models and their codes

To cope with the large number of models used in this study eachmodel is given a unique
6-digit code, see Tables 1 and 2. The first digit defines the model family, the second provides
information on the calibration window (two-year – ‘2’, three-year –‘3’). The remaining four digits
define family-specific characteristics. A star (‘*’) indicates that a certain digit can take one of a
few values and is used to represent subgroups of models.

4.2.1. Simple models (1*000*)
In Figures 2-4 we can observe that when 2, 3 or 4 sines are fittedto raw or spike-filtered spot

price data (models 2***00 and models 3****0, respectively;see Section 4.2.2 for details) the
price forecast tends to deviate significantly from a reasonable price range, especially for longer
time horizons. This is the reason for using conservative, simple techniques in this study. Initially
we started with three models:

• the mean of the spot price in the calibration window (models1*0001),

• linear regression of the spot price in the calibration window extrapolated into the forecasting
window (models1*0002) and

• the median of the spot price in the calibration window (models 1*0003).

All three models performed surprisingly well for long-termforecasts of six months or more and
the best of the three was the median. However, the short- and medium-term forecasts were signif-
icantly worse than those of the other models, mainly due to the price spikes and the heteroskedas-
ticity of the spot price. Hence, we decided to test three moresimple models:

• an exponential decay from the current spot price to the median (model1*0004 with the
decay parameterλ = 1

30 in formula (1) and model1*0005 with λ = 1
180) and

• a linear decay from the current spot price to the median (model 1*0006).
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Figure 3: Sample LTSC forecasting results for the Australian NSW market performed on Friday, Nov 27, 2009
(denoted by ‘*’). The two-year calibration window and the one-year forecast window are displayed in thetop panel.
12 different forecasting methods are illustrated in themiddleandbottom panelszooming in on the forecast day (Nov
27, 2009) and the forecast window (Nov 28, 2009 – Nov 27, 2010). For code definitions see Section 4.2 and Tables
1-2.
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Figure 4: Sample LTSC forecasting results for the Nord Pool market performed on Sunday, Oct 4, 2009 (denoted by
‘*’). The two-year calibration window and the one-year forecast window are displayed in thetop panel. 12 different
forecasting methods are illustrated in thelower panelszooming in on the forecast day (Oct 4, 2009) and the forecast
window (Oct 5, 2009 – Oct 4, 2010). For code definitions see Section 4.2 and Tables 1-2.
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Table 1: The six digit codes of the 300 models tested in this study, part I. A star (‘*’) indicates that a certain digit
can take one of a few values and is used to represent subgroupsof models. A square cup (‘⊔’) identifies the digit of
interest.

Digit Value Meaning
All models

*⊔**** 2 two year (730 day) calibration window
3 three year (1095 day) calibration window

Simple models(1*000*)→ 12 models in total
1*000⊔ 1 mean price in the calibration window

2 extrapolated linear regression of prices in the calibration window
3 median price in the calibration window
4 exponential decay to the median with the decay parameterλ = 1

30
5 exponential decay to the median with the decay parameterλ = 1

180
6 linear decay to the median

Sines fitted to raw prices(2***00) → 24 models
2*⊔*00 1,...,4 number of sines used to represent the LTSC
2**⊔00 1 periods of all sines estimated

2 period of the 1st sine estimated, remaining periods set to 1,1
2 and 1

3 of a year
3 periods set to 1,12, 1

3 and 1
4 of a year

Sines fitted to spike-filtered prices(3****0) → 48 models
3*⊔**0 1,...,4 number of sines used to represent the LTSC
3**⊔*0 1 periods of all sines estimated

2 period of the 1st sine estimated, remaining periods set to 1,1
2 and 1

3 of a year
3 periods set to 1,12, 1

3 and 1
4 of a year

3*** ⊔0 1 spikes replaced by the mean of the deseasonalized prices
2 spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices

Wavelets with an exponential decay to the median fitted to rawprices(4***0*) → 48 models
4*⊔*0* 1 Daubechies wavelet family of order 12 (‘db12’)

2 Daubechies wavelet family of order 24 (‘db24’)
3 Coiflets wavelet family of order 2 (‘coif2’)
4 Coiflets wavelet family of order 4 (‘coif4’)

4**⊔0* 1 S6 approximation level
2 S7 approximation level
3 S8 approximation level

4***0 ⊔ 1 exponential decay to the median with the decay parameterλ = 1
30

2 exponential decay to the median with the decay parameterλ = 1
180

Wavelets with a linear decay to the median fitted to raw prices(5***00) → 24 models
5*⊔*00 1 Daubechies wavelet family of order 12 (‘db12’)

2 Daubechies wavelet family of order 24 (‘db24’)
3 Coiflets wavelet family of order 2 (‘coif2’)
4 Coiflets wavelet family of order 4 (‘coif4’)

5**⊔00 1 S6 approximation level
2 S7 approximation level
3 S8 approximation level
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Table 2: The six digit codes of the 300 models tested in this study, part II.

Digit Value Meaning
Wavelets with an exponential decay to the median fitted to spike-filtered prices(6*****) → 96 models
6*⊔*** 1 Daubechies wavelet family of order 12 (‘db12’)

2 Daubechies wavelet family of order 24 (‘db24’)
3 Coiflets wavelet family of order 2 (‘coif2’)
4 Coiflets wavelet family of order 4 (‘coif4’)

6**⊔** 1 S6 approximation level
2 S7 approximation level
3 S8 approximation level

6*** ⊔* 1 spikes replaced by the mean of the deseasonalized prices
2 spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices

6**** ⊔ 1 exponential decay to the median with the decay parameterλ = 1
30

2 exponential decay to the median with the decay parameterλ = 1
180

Wavelets with an exponential decay to the median fitted to spike-filtered prices(7****0) → 48 models
7*⊔**0 1 Daubechies wavelet family of order 12 (‘db12’)

2 Daubechies wavelet family of order 24 (‘db24’)
3 Coiflets wavelet family of order 2 (‘coif2’)
4 Coiflets wavelet family of order 4 (‘coif4’)

7**⊔*0 1 S6 approximation level
2 S7 approximation level
3 S8 approximation level

7*** ⊔0 1 spikes replaced by the mean of the deseasonalized prices
2 spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices

All three models connect the last day of the calibration period – the current spot price – and the
last day of the forecast window – the median of the spot pricesin the calibration window. The
exponential decay function is normalized in the following way:

fexp(x) = (x0 − xT) ×
exp(−λx) − exp(−λxT)

1− exp(−λxT)
+ xT , (1)

wherex0 is the last observation in the calibration window (i.e., on the day the prediction in made),
xT is the median of the spot prices in the calibration window (onthe last day of the forecast
window) andλ = 1

30 or 1
180. Since exp(−λx) is the tail of the exponential distribution with mean1

λ
,

the forecast of model 1*0004 decays to the median much faster(i.e., its mean lifetime is 30 days
or one month) than that of model 1*0005 (whose mean lifetime is 180 days or half a year).

4.2.2. Sines fitted to raw (2***00) or spike-filtered prices (3****0)
The second family of models considered in this study and denoted by 2***00 used sine func-

tions to represent the LTSC. In these models a sum of one to foursines is fitted via nonlinear least
squares to the spot price in the calibration window – the third digit in the model code (2*⊔*00)
stands for the number of sines used to represent the LTSC (1, 2, 3 or 4). Each considered sine func-
tion has three parameters to estimate – the amplitude, the period and the phase shift. To address
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the question whether the periods of the sine functions of higher frequency should be harmonics of
the annual frequency or not we consider three subgroups of models:

• models where the periods of all sines (up to four) are estimated within the least squares
procedure (models2**100, i.e., with ‘1’ as the fourth digit),

• models where the period of the first sine function is estimated within the least squares pro-
cedure and the periods of the remaining sine functions (if any) are set to a year, half a year
and a third of a year (models2**200, i.e., with ‘2’ as the fourth digit) and

• models where the periods are set to a year, half a year, a thirdof a year and a quarter of a
year (models2**300, i.e., with ‘3’ as the fourth digit).

Note that in all three cases the forecasting of such a LTSC is straightforward, since it is based on a
simple extrapolation of the sine functions with known frequency, phase shift and amplitude. Note
also that the latter method should not outperform the other two; even if the fixed periods were
optimal then they should be estimated within the least squares procedure for the first two methods.
Yet, the obtained forecasting results do not match our expectations. Most likely, the nonlinear least
squares optimization procedure has problems with finding the global maximum due to the large
number of parameters to be estimated (up to 12).

In a recent empirical study Janczura et al. (2012) showed that improved robustness of the
electricity spot price model could be achieved by filtering the data with some reasonable procedure
for outlier (i.e., spike) detection, and then using classical estimation techniques for the seasonal
pattern on the filtered data. While no single best method for outlier detection could be identified,
in a vast majority of cases all of the considered filtering techniques significantly outperformed the
‘no filter’ approach that used the original spot price. Out ofthe seven filtering techniques tested
in this study, the simple-to-implement2.5% variable price thresholds(VPT1) method yielded
reasonable improvement over the ‘no filter’ approach, both with respect to estimating the seasonal
pattern (LTSC and STSC) and the parameters of the stochastic component. In this method 2.5%
highest and 2.5% lowest deseasonalized prices are treated as outliers and are replaced by ‘more
normal’ values. The deseasonalization is performed by firstsubtracting a wavelet smoother of
level 6 (i.e.,S6, see Section 3; or a sine function combined with an exponentially weighted moving
average) from the spot prices, then by computing the ‘average week’ (with holidays treated as the
eighth day of the week) and removing it from the LTSC-detrended data. Janczura et al. (2012)
used the seasonal pattern as the ‘more normal’ values – they substituted the identified spikes in the
deseasonalized series by the mean of the deseasonalized prices.

We have decided to use this technique in our study. The sine-based models fitted to spike-
filtered prices constitute the third family of models (3****0). The third and the fourth digit in the
model code define the same characteristics as in the standardsine-based models (2***00). The
fifth digit defines the ‘more normal’ values used to substitute the identified spikes:

• models3***10 are fitted to price series where the identified spikes a replaced by the mean
of the deseasonalized prices, as in Janczura et al. (2012),

• whereas models3***20 are fitted to price series where the identified spikes are replaced by
the threshold itself (i.e., the upper or lower 2.5% quantileof the deseasonalized prices).
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Note that the latter approach is similar in spirit to thelimiting spike preprocessing scheme used in
the engineering literature (Shahidehpour et al., 2002; Weron, 2006).

4.2.3. Wavelets (4***0*, 5***00, 6*****, 7****0)
The next four families of models we consider consist of wavelet-based LTSC. They differ in

the way the signal is extrapolated before applying the Discrete Wavelet Transform (DWT) and the
choice of the input signal (raw or spike-filtered prices). Since the lengths of the two- and the three-
year calibration windows are not powers of two, the estimation procedure requires that the signal
is artificially extended before applying the DWT, so that its length is the nearest power of two
(Härdle et al., 1998; Percival and Walden, 2000). However, thecommonly used extension modes,
like constant extension (in Matlab denoted by ‘sp0’) and first derivative extrapolation (‘sp1’) at
the edges, do not perform satisfactorily in case of spiky electricity prices. Other, more appropriate
techniques have to be applied.

On the other hand, a characteristic feature of wavelets is that – unlike sines and cosines –
the individual wavelet functions are localized in time, i.e., they tend to zero for large (positive
or negative) arguments. In the context of extrapolating thesignal into the future this means that
some additional assumptions have to be made on how to extrapolate the smoothed signalS j and/or
the detail series of lower orders. There have been a few suggestions in the literature on how to
deal with this problem. For the lower detail levels, which are of high frequency and oscillatory
in nature, Yousefi et al. (2005) used trigonometric fits in a study of oil prices while Conejo et al.
(2005) calibrated ARIMA models when forecasting day-ahead electricity spot prices in the Span-
ish market. Frýzlewicz et al. (2003) proposed yet a more technical concept –the locally stationary
wavelet process, where the price process is written as a linear combination using wavelets as basis
functions. Although appealing from the theoretical point of view, it performed very poorly in a
recently published short-term forecasting study of Schlueter and Deuschle (2010). In fact, the au-
thors observed that for signals with a strong random component – like the UK power prices – all
tested wavelet-based methods at best generated only littleimprovements over the more traditional
time series approaches.

For the much smoother and less periodic approximations (like theS6, S7 or S8 approximations
used in this study) and the higher detail levels other techniques have to be applied. To extend the
signal beyond the calibration window, Yousefi et al. (2005) used a spline fit, Wong et al. (2003)
applied polynomial extrapolation, while Stevenson (2001)and Stevenson et al. (2006) utilized
predictions of threshold autoregressive models (TAR) fittedto smoothed (via wavelet shrinkage)
spot prices from the Australian electricity market. To our best knowledge, the latter two papers
are the only ones where wavelets have been used to forecast electricity prices for horizons of more
than a few days ahead. Yet both papers used prices from the out-of-sample period to extend the
signal to the nearest power of two and avoid edge extension problems; hence the predictions were
not trulyex-anteforecasts. This is a pretty controversial approach which clearly cannot be used in
real world applications.

Taking into account that in this study we are only interestedin ex-anteforecasts with a rela-
tively long time horizon, none of the methods mentioned above could be applied; the spline- or
polynomial extrapolation-based forecasts of electricityspot prices behaved unpredictably over pe-
riods of a few hundred days. Hence, we decided to extrapolatethe smoothed signal similarly as in
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the case of sine-based models, i.e., by fitting a sum of up to four sines toS j in the calibration win-
dow and simply extrapolating the sines 365 days into the future. Unfortunately, this too resulted
in unreasonably fluctuating predictions of future electricity spot prices. In the next attempt – mo-
tivated by the surprisingly good long-term forecasts of thesimple models (recall the discussion in
Section 4.2.1) and the relatively good short-term forecasts of all wavelet models compared to the
simple (1*000*) and sine-based models (2***00, 3****0) – weintroduced two new families:

• wavelets with an exponential decay to the median (4***0*) and

• wavelets with a linear decay to the median (5***00).

Two further families of models are their analogues fitted to spike-filtered prices:6***** and
7****0, respectively. Like for the sine-based models (i.e., 3****0), the fifth digit defines the
‘more normal’ values used to substitute the identified spikes:

• models6***1* and7***10 are fitted to price series where the identified spikes a replaced
by the mean of the deseasonalized prices, as in Janczura et al. (2012),

• whereas models6***2* and7***20 are fitted to price series where the identified spikes are
replaced by the threshold itself (i.e., the upper or lower 2.5% quantile of the deseasonalized
prices).

Instead of using the ‘sp0’ or ‘sp1’ extension modes at the edges, in these new models the cali-
bration windows are first extended one year forward using an exponentially or a linearly decaying
to the median deterministic function. This is done analogously as in models 1*0004, 1*0005
and 1*0006: we connect the last day of the calibration period(on the time axis) and the current
spot price (on the price axis) with the last day of the forecast window (on the time axis; observa-
tion 1095 for the two-year calibration window and observation 1460 for the three-year calibration
window) and the median of the spot prices in the calibration window (on the price axis). The ex-
ponential decay function is given by formula (1), either with λ = 1

30 (models4***01 and6****1)
or 1

180 (models4***02 and6****2). Once the data series are extended to 1095 (or 1460) observa-
tions we apply the DWT. Note that the wavelet estimation procedure again has to extend the series
so that its length is a power of two – this time to 2048 observations for both calibration windows.
However, now the constant extension at the edges (i.e., ‘sp0’) does not influence the shape of the
wavelet smoother too much since the last observation of the initially extended series (of 1095 or
1460 observations) is the median. Finally, we simply take asour forecast the 365 values of the
obtained wavelet smoother corresponding to the forecast window.

For each wavelet-based model family we use four types of wavelets which make different
trade-offs between how compactly they are localized in time and their smoothness: two from the
Daubechies family (of order 12 and 24; in Matlab and later in the text denoted by ‘db12’ and
‘db24’, respectively) and two from the Coiflets family (of order 2 and 4; denoted by ‘coif2’ and
‘coif4’, respectively). The third digit in the model code (**⊔***) defines the wavelet: ‘1’ stands
for ‘db12’, ‘2’ for ‘db24’, ‘3’ for ‘coif2’ and ‘4’ for ‘coif4 ’. Finally, for each wavelet-based family
the fourth digit in the model code (***⊔**) defines the wavelet approximation level: ‘1’ stands
for S6, ‘2’ for S7 and ‘3’ for S8. Note that the three approximation levels used roughly correspond
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to bimonthly (26 = 64 days), seasonal (27 = 128 days) and annual (28 = 256 days) smoothing,
respectively.

4.3. Error measures
Six datasets, over 17 thousand observations and as many as 300 models tested lead us to a

fundamental question: how to select the best LTSC forecasting technique(s)? To address this
question we calculate three measures of forecast accuracy –the mean absolute error (MAE), the
mean squared error (MSE) and the mean absolute percentage error (MAPE) – for each dataset,
each model and each forecast horizon. Then we rank the modelsfrom 1 to 300 based on the values
of MAEh,d or MSEh,d:

• separately for each of the six forecast horizons:h = 1 (1-7 days), 2 (8-30 days), 3 (31-90
days), 4 (91-182 days), 5 (183-274 days) and 6 (275-365 days)and

• each of the six datasetsd = 1 (NSW), 2 (EEX), 3 (NP), 4 (NEP), 5 (NYISO) and 6 (PJM).

To obtain the aggregate rank (over all six datasets) of a model for a given time horizonh we
calculate the geometric mean – denoted by GM(MAEh,∗) or GM(MSEh,∗) – of the six ranks for each
of the six datasets for this time horizon. Note that comparedto the arithmetic mean, the geometric
mean penalizes poor rankings and emphasizes good rankings.Next, we compute an average rank
over all time horizons: we rank the models from 1 to 300 based on the values of GM(MAEh,∗) or
GM(MSEh,∗) for each of the six time horizons and compute the geometric mean of those six ranks.
The resulting two global measures are denoted by GM(MAE∗,∗) and GM(MSE∗,∗).

Furthermore, since the ranks do not provide quantitative information about a given method’s
forecasting accuracy we use two aggregate measures based onthe individual mean absolute per-
centage errors (MAPEh,d with h,d = 1, ...,6). Namely, for a given time horizonh we calculate the
weighted arithmetic mean

MAPEh,∗ =

6
∑

d=1

wd ·MAPEh,d, (2)

wherew =
(

579
8580,

2295
8580,

1781
8580,

2311
8580,

1129
8580,

485
8580

)

is the vector of weights such that each dataset has a
weight proportional to its length. Next, we compute the average over all time horizons:

MAPE∗,∗ =
6
∑

h=1

vh ·MAPEh,∗, (3)

wherev =
(

7
365,

23
365,

60
365,

92
365,

92
365,

91
365

)

is the vector of weights such that each forecasting horizon
has a weight proportional to its length. For a given model theglobal error measure MAPE∗,∗ is the
mean absolute percentage error over all datasets and all forecasting horizons.

5. Results

5.1. Global performance
In Table 3 we list the top 20 models according to each of the three global forecast error mea-

sures: GM(MAE∗,∗), GM(MSE∗,∗) and MAPE∗,∗. Nearly all models in the top 20 list are from
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Table 3: Top 20 models according to each of the three global forecast error measures: GM(MAE∗,∗) in columns 2-
3, GM(MSE∗,∗) in columns 4-5 and MAPE∗,∗ in columns 6-7. The best three models in terms of each measureare
emphasized in bold with the index indicating their rank:a,b,c for GM(MAE∗,∗), 1,2,3 for GM(MSE∗,∗) and A,B,C for
MAPE∗,∗. Note that all models in the top 20 list are from families 6***** and 7****0; the best models from the
remaining five families are listed in the bottom rows of the table. See Section 4.2 for model codes and Section 5 for
error measure definitions.

No. GM(MAE∗,∗) Model GM(MSE∗,∗) Model MAPE∗,∗ Model
1 14.58 733110a,B 14.19 6223221 29.36% 734110c,A

2 15.40 731310b,E 15.02 6243222 29.38% 733110a,B

3 20.48 734110c,A 16.73 6233223 29.41% 732110e,C

4 21.00 633122d 17.91 6313124 29.44% 731110D

5 22.26 732110e,C 18.07 6313225 29.57% 731310b,E

6 22.59 6313124 27.24 633122d 29.73% 734210
7 22.97 634122 28.05 621322 29.74% 733210
8 27.88 734120 28.47 634122 29.76% 732310
9 29.37 722110 28.98 624122 29.77% 731320
10 30.23 6313225 33.70 621122 29.78% 734120
11 32.40 631222 33.95 731310b,E 29.80% 734310
12 33.45 733120 34.45 721120 29.82% 731120
13 33.66 6233223 34.68 623122 29.84% 733120
14 33.94 731110D 34.71 722320 29.84% 732210
15 33.96 721110 35.58 632322 29.85% 732320
16 34.04 623122 35.86 431302 29.86% 732120
17 34.73 731120 36.48 722220 29.86% 731210
18 35.90 723320 37.24 424302 29.87%6313225

19 36.73 624122 37.52 724320 29.90% 633112
20 36.98 724110 38.50 734120 29.91% 734320
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

55 55.11 431302 . . . .
68 . . . . 30.28% 431302
72 . . . . 30.35% 531300
79 . . 73.15 524200 . .
80 68.95 521300 . . . .
87 71.75 120005 . . . .
110 . . 90.89 120005 . .
137 . . . . 31.21% 120005
201 . . 162.73 333110 . .
203 . . 163.29 231110 . .
221 191.50 333110 . . . .
223 . . . . 36.53% 221300
227 203.12 233100 . . . .
229 . . . . 37.98% 331110
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Figure 5: Histograms showing how many times models from a given family (1*000*, 2***00, 3****0, 4***0*,
5***00, 6*****, 7****0) are ranked in the top 5 (top row), top 20 (center row) and top 50 (bottom row) of all 300
models according toGM(MAEh,∗), GM(MS Eh,∗) and MAPEh,∗ (in columns, from left to right) for each of the six
forecast horizonsh = 1, ...,6. Clearly models from families 6***** and 7****0 dominate the rankings. Note the
different scale in the right column (i.e., forMAPEh,∗).

families6***** and7****0. Models from the remaining five families are generally much further
down the list, see the bottom rows in Table 3. The best models from families 4***0* and 5***00
are respectively ranked at no. 55 and 80 for GM(MAE∗,∗), 16 and 79 for GM(MSE∗,∗) and 68 and
72 for MAPE∗,∗. Next in line are the simple models (1*000*) – no. 87, 110 and 137 for the three
error measures, respectively. Finally, the sine based models (2***00 and 3****0) close the list
with ranks below 200, i.e., they are classified among the 33% worst performing models.

The best five models in terms of each global measure are emphasized in bold with an index
indicating their rank:a,b,c,d,e for GM(MAE∗,∗), 1,2,3,4,5 for GM(MSE∗,∗) andA,B,C,D,E for MAPE∗,∗.
Three out of the top five models according to GM(MAE∗,∗) are from the73*110 subfamily, i.e.,
wavelets with a linear decay to the median, calibrated on a three-year window using approximation
S6 and with spikes replaced by the mean of the deseasonalized prices; they only differ in the
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choice of the wavelet family. The top four models according to MAPE∗,∗ are from the same small
subfamily (73*110), while the top 17 models are from the73***0 subfamily. Clearly the three-
year calibration window leads to better forecasts as measured by MAPE∗,∗. On the other hand,
the ranking according to GM(MSE∗,∗) is dominated by 6***** models. Four out of the top five
models models are from the62*322 subfamily, i.e., wavelets with an exponential decay to the
median with the decay parameterλ = 1

180, calibrated on a two-year window using approximation
S8 and with spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices; they
only differ in the choice of the wavelet family.

Generally models 6***** with an exponential decay to the median perform better if the spikes
are replaced by the upper/lower 2.5% quantiles of the deseasonalized prices (models with ‘2’
as the 5th digit), while models 7****0 perform better if the spikes are replaced by the mean of
the deseasonalized prices (with ‘1’ as the 5th digit). This may indicate that for the former the
exponential decay is too fast (even for the small decay parameterλ = 1

180) and has to start at a
more extreme level, while for models with a linear decay to the median the decay is too slow and
the decay should start at a more typical, less extreme level.

These observations are confirmed by the results presented inFigure 5 where we plot histograms
showing how many times models from a given family are ranked in the top 5 (which roughly
corresponds to top 2%), top 20 (or 7%) and top 50 (or 17%) of all300 models according to
GM(MAEh,∗), GM(MS Eh,∗) andMAPEh,∗ for each of the six forecast horizonsh = 1, ...,6. To be
more precise, the ‘top 5’ histogram forGM(MAEh,∗) is constructed based on the five best models
for the first forecast horizon and all six datasets, i.e., according toGM(MAE1,∗), the five best
models for the second forecast horizon and all six datasets,i.e., according toGM(MAE2,∗), etc. In
total 5× 6 = 30 models are considered. Note that the models do not have to be unique as some of
them may be ranked in the ‘top 5’ for more than one forecast horizon. For instance, model 732110
is 4th according toGM(MAE4,∗) and 2nd according toGM(MAE5,∗), see Table 5.

Like in Table 3, also in Figure 5 models from families 6***** and 7****0 dominate the rank-
ings – with family 6***** performing better in terms ofGM(MS Eh,∗) and family 7****0 in terms
of GM(MAEh,∗) andMAPEh,∗. On the other hand, not a single sine-based model (families 2***00
and 3****0) is ranked in the ‘top 50’. Note also that in terms of MAPEh,∗ the three-year calibration
window is preferred, while for the other two error measures the evidence is not that clear.

5.2. Performance across the forecasting horizons

The performance of the models is not uniform across the forecasting horizons, see Tables 4
and 5 where we list the top five models over all six datasets according to the three error measures:
GM(MAEh,∗), GM(MSEh,∗) and MAPEh,∗ for h = 1 to 6. For instance, the top four models accord-
ing to GM(MSE∗,∗) make it to the ‘top 5’ lists for the intermediate forecasting horizons of 31 to
182 days, but none of them makes it to the ‘top 5’ lists for the very short-term horizon (1-7 days)
nor the long-term horizons (183-365 days). On the other hand, the top four models according to
MAPE∗,∗ are listed in the ‘top 5’ rankings for horizons of 91 to 274 days (i.e., the second and the
third quarter of the one-year forecasting window), but noneof them are listed in the ‘top 5’ list for
the very short-term horizon (1-7 days) nor the very long-term horizon (275-365 days). Apparently
the very short and the very long end of the one year forward curve requires other models. Only
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one of the emphasized in Table 3 models, i.e.633122, is listed in the ‘top 5’ for the shortest fore-
casting horizon. This model also performs very well for the second horizon (8-30 days), but not
for any of the longer horizons. In contrast to all other highly ranked in Table 3 models from family
6*****, this model is based on the more sensitive to price changes approximationS6 (i.e., with ‘1’
as the 4th digit), rather than on the more smooth approximationS8 (with ‘3’ as the 4th digit). This
increased sensitivity to local price fluctuations is a common feature of all ‘top 5’ ranked models
for the very short term horizon, see the upper part of Table 4.

It also seems that the exponential decay to the median is too fast for the 3rd quarter of the
forecast year (despite the small decay parameterλ = 1

180), but much better than the linear decay
for the horizon of 31 to 90 days. Finally, if we were to look forone ‘best performing model’ then
only one of the emphasized in Table 3 models, i.e.733110, could be found in the ‘top 5’ lists
for four out of the six forecasting horizons. This model is also globally ranked best or second
best with respect to GM(MAE∗,∗) and MAPE∗,∗. It is a member of the well performing 73*110
subfamily, i.e., it is a Coiflets wavelet of order 2 (‘coif2’) with a linear decay to the median,
calibrated on a three-year window using approximationS6 and with spikes replaced by the mean
of the deseasonalized prices. The best model from family 6***** in this competition is631312,
i.e, a Daubechies wavelet of order 12 (‘db12’) with an exponential decay to the median with the
decay parameterλ = 1

180, calibrated on a three-year window using approximationS8 and with
spikes replaced by the mean of the deseasonalized prices. Itis one of only two 6***1* models
in the ‘top 20’ lists in Table 3. The substitution of spikes bythe mean of the deseasonalized
prices (‘1’ as the fifth digit) tends to make the price forecast less extreme for the intermediate time
horizons.

For the forecasting horizon of 1 to 7 days only models from the6**12* and 7**12* subfamilies
are listed in Table 4, i.e., wavelets with an exponential or alinear decay to the median, calibrated
using the more sensitive approximationS6 and with spikes replaced by the upper/lower 2.5%
quantiles of the deseasonalized prices. This outcome for the short end of the forward curve could
have been expected – the more sensitive approximation levelallows for a better local fit and, hence,
a better short term forecast. On the other hand, for the forecasting horizon of 275 to 365 days (i.e.,
the ‘4th quarter’) all but one model are from family 7****0, see Table 5. The exception is a simple
model – 120001 with the mean price in the calibration window as the forecast – which is ranked
poorly according to the linear error measures, but very good(2nd) with respect to GM(MSE6,∗).

5.3. Significance of the results

Finally, we may ask how significant are the differences between the models. In particular,
does the domination of models from families 6***** and 7****0 observed in Tables 3-5 mean
that models from the other families are inferior? To check this we performed a Friedman test
to examine significant differences between the forecasting performance of selected models. The
Friedman test is a nonparametric version of the classical two-way analysis of variance (ANOVA),
and tests the null hypothesis that all matched samples are drawn from the same population, or
equivalently, from different populations with the same distribution (Hochberg andTamhane, 1987;
Sprent and Smeeton, 2001). Unlike a classical ANOVA, the test does not require the assumption
that all samples come from a population with a normal distribution. Examining the distribution
of the forecasting errors, the assumption of normality for the population would not be justified.
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Table 4: Top five models according to the three error measuresand over all six datasets. The models are ranked with
respect to MAPEh,∗, independently for each of the three shorter forecasting horizons: 1-7 days, 8-30 days and 31-90
days. The best five models in terms of each of the global error measures, i.e., GM(MAE∗,∗), GM(MSE∗,∗), MAPE∗,∗),
are emphasized in bold; the index indicates their rank, see Table 3. Additionally, the only three models in Tables 4-5
not belonging to families 6***** or 7****0 are marked with a dagger (‘†’).

Forecasting horizon 1-7 days
Model GM(MAE1,∗) rank GM(MSE1,∗) rank MAPE1,∗ rank
734120 9.14 1 16.02 3 16.08% 1
634122 12.09 3 16.54 5 16.09% 2
633122d 28.76 17 21.55 12 16.20% 3
732120 14.20 4 14.34 1 16.21% 4
731120 10.63 2 19.16 9 16.21% 5
631122 14.39 5 16.65 6 16.26% 8
721120 21.65 11 14.68 2 16.30% 10
621122 27.91 15 16.49 4 16.35% 12

Forecasting horizon 8-30 days
Model GM(MAE2,∗) rank GM(MSE2,∗) rank MAPE2,∗ rank
633112 40.99 10 60.50 53 20.26% 1
733110a,B 40.07 8 70.99 73 20.29% 2
633122d 26.03 1 27.95 3 20.42% 3
733120 32.59 4 50.32 30 20.61% 4
632112 59.54 56 82.61 98 20.68% 5
634222 40.35 9 31.19 5 20.88% 17
731310b,E 30.87 3 34.90 7 21.05% 38
632222 35.43 5 38.85 14 21.05% 39
631222 30.32 2 35.47 10 21.10% 43
6313124 37.25 6 26.97 2 21.30% 62
6313225 38.53 7 18.68 1 21.40% 69
431302† 43.38 15 30.10 4 21.80% 95

Forecasting horizon 31-90 days
Model GM(MAE3,∗) rank GM(MSE3,∗) rank MAPE3,∗ rank
731310b,E 20.44 2 26.33 11 24.96% 1
6313124 18.01 1 14.49 1 25.00% 2
6233223 22.78 4 18.36 3 25.20% 3
6313225 21.47 3 15.27 2 25.21% 4
733110a,B 29.68 9 58.82 53 25.36% 5
6243222 29.72 10 21.65 5 25.45% 10
6223221 37.90 20 20.58 4 25.58% 19
631222 24.88 5 32.14 16 25.64% 25
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Table 5: Top five models according to the three error measuresand over all six datasets. The models are ranked with
respect to MAPEh,∗, independently for each of the three longer forecasting horizons: 91-182 days, 182-274 days and
275-365 days. The best five models in terms of each of the global error measures, i.e., GM(MAE∗,∗), GM(MSE∗,∗),
MAPE∗,∗), are emphasized in bold; the index indicates their rank, see Table 3. Additionally, the only three models in
Tables 4-5 not belonging to families 6***** or 7****0 are marked with a dagger (‘†’).

Forecasting horizon 91-182 days (2nd quarter)
Model GM(MAE4,∗) rank GM(MSE4,∗) rank MAPE4,∗ rank
734110c,A 12.11 1 24.63 11 28.71% 1
731310b,E 17.96 2 18.92 7 28.71% 2
731110D 18.22 3 27.17 16 28.74% 3
732110e,C 18.91 4 28.65 17 28.77% 4
733110a,B 20.46 5 34.97 25 28.83% 5
6313124 23.46 7 17.87 4 28.97% 7
632322 27.81 11 17.68 3 29.13% 9
6243222 26.57 10 12.86 1 29.46% 19
6233223 27.88 13 18.03 5 29.55% 27
6223221 33.23 21 16.10 2 29.70% 43

Forecasting horizon 183-274 days (3rd quarter)
Model GM(MAE5,∗) rank GM(MSE5,∗) rank MAPE5,∗ rank
734110c,A 23.87 7 42.80 24 31.84% 1
732110e,C 19.83 2 39.44 17 31.87% 2
731110D 25.28 8 43.11 27 31.89% 3
733110a,B 22.47 4 45.31 34 31.94% 4
731120 37.87 28 63.47 60 32.16% 5
722110 19.74 1 34.11 9 32.33% 17
721110 22.82 5 34.44 11 32.36% 18
721310 23.02 6 22.29 4 32.50% 21
721320 19.97 3 24.46 5 32.51% 23
621322 29.35 15 10.49 1 32.56% 27
421302† 43.61 36 16.26 2 32.83% 57
621312 39.32 32 20.42 3 32.86% 62

Forecasting horizon 275-365 days (4th quarter)
Model GM(MAE6,∗) rank GM(MSE6,∗) rank MAPE6,∗ rank
732220 98.36 110 114.47 125 33.14% 1
734220 105.44 122 117.99 132 33.17% 2
723220 14.67 1 29.13 5 33.17% 3
733220 107.36 129 122.03 140 33.18% 4
734120 108.34 131 126.94 149 33.18% 5
724220 17.24 3 22.11 3 33.18% 9
724210 24.49 4 35.87 8 33.19% 11
723210 25.14 5 45.70 19 33.20% 16
721220 25.98 6 27.39 4 33.23% 22
722220 16.59 2 18.98 1 33.23% 23
120001† 74.27 66 19.02 2 36.68% 225
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Table 6: The table provides results for the multiple comparison procedure using Tukey’s HSD criterion, indicating
for each of the models which of the other models performs significantly worse/ significantly better for the considered
criterion, at theα = 0.05 significance level. For each forecasting horizonh = 1, ...,6 the results are based on
bootstrapped subsamples of 1000 MAPEh,∗ errors. MAPEh,∗ errors based on the whole sample are also reported; the
lowest for each forecasting horizon is emphasized in bold. The seven models used in the comparison were selected
as those performing best in each model family (1*000*, 2***00, 3****0, 4***0*, 5***00, 6*****, 7****0) with
respect to the global measure MAPE∗,∗, see the last two columns in Table 3.

Model MAPE1,∗ Worse/ Better MAPE2,∗ Worse/ Better MAPE3,∗ Worse/ Better
120005 19.59% {2,3} / – 24.30% {2,3} / {5,6,7} 28.10% {2,3} / {4,5,6,7}
221300 29.58% –/ All 31.09% –/ {1,4,5,6,7} 34.52% –/ {1,4,5,6,7}
331110 26.35% {2} / {1,4,5,6,7} 28.03% –/ {1,4,5,6,7} 31.67% –/ {1,4,5,6,7}
431302 18.74% {2,3} / {5,7} 21.80% {2,3} / – 25.55% {1,2,3} / –
531300 18.51% {2,3,4} / – 22.01% {1,2,3} / – 26.26% {1,2,3} / –
6313225 18.59% {2,3} / – 21.40% {1,2,3} / – 25.21% {1,2,3,7} / –
734110c,A 16.84% {2,3,4} / – 20.82% {1,2,3} / – 25.38% {1,2,3} / {6}
Model MAPE4,∗ Worse/ Better MAPE5,∗ Worse/ Better MAPE6,∗ Worse/ Better
120005 31.53% {2,3} / {4,5,6,7} 33.42% {2,3} / {7} 33.35% {2,3,4,6} / –
221300 36.91% –/ {1,4,5,6,7} 37.61% –/ {1,4,5,6,7} 38.28% {3} / {1,5,7}
331110 35.20% –/ {1,4,5,6,7} 43.98% –/ {1,4,5,6,7} 42.30% –/ All
431302 29.44% {1,2,3} / – 33.27% {2,3} / {5,7} 34.26% {3} / {1,5,7}
531300 29.91% {1,2,3} / – 33.15% {2,3,4,6} / – 33.65% {2,3,4,6} / –
6313225 29.06% {1,2,3} / – 32.85% {2,3} / {5,7} 33.75% {3} / {1,5,7}
734110c,A 28.71% {1,2,3} / – 31.84% {1,2,3,4,6} / – 33.26% {2,3,4,6} / –

Furthermore, both ANOVA and the Friedman test make an assumption of independence. And this
clearly is not met by the model errors in our empirical study as we use a rolling window scheme.
To cope with this and break the dependence structure, we usedbootstrapped subsamples of 1000
errors instead of the full samples of 8580 errors; recall from Section 4.1 that for all six datasets
we have 8580 forecasting windows in total. The bootstrappedsubsamples contained matched
errors, i.e., for each forecasting horizon (h = 1, ...,6) errors for the same randomly chosen 1000
forecasting windows were selected for each model. Seven best performing models in terms of
MAPE∗,∗ were selected for the significance test – one from each model family (1*000*, 2***00,
3****0, 4***0*, 5***00, 6*****, 7****0), see the last two columns in Table 3. For instance,
model 734110 is the best according to MAPE∗,∗ and third best according to GM(MAE∗,∗) while
model 631322 is fifth best according to GM(MSE∗,∗) and the best of all 6***** family models in
terms of MAPE∗,∗.

Rejecting the null of the Friedman test only provides statistical evidence for at least one of the
samples being from a population with a different distribution. However, the test does not provide
detailed information on which of the samples are significantly different. A test that can do so
is called a multiple comparison procedure. In this study we use Tukey’s honestly (or wholly)
significant difference test (Tukey’s HSD or Tukey’s WSD) which is optimal for the comparison of
groups with equal sample sizes (Hochberg and Tamhane, 1987;Maxwell and Delaney, 2004). For
each of the seven models Table 6 indicates which of the other models perform significantly worse
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or significantly better in terms of MAPEh,∗, at theα = 0.05 significance level and independently
for each forecasting horizonh = 1, ...,6. Note that when all other models were significantly better
(or worse) than a particular model this is indicated by ‘All’, while ‘–’ indicates that none of the
other models provided significantly better (or worse) results. Being based on a nonparametric test
statistic, it can be expected that the multiple comparison procedure will not be able to distinguish
significant differences between all of the considered models. However, manyof the differences
between the models observed earlier in this Section are identified as significant.

The best sine-based models (221300 and 331110) perform significantly worse than the best
simple model (120005) and the best wavelet-based models (431302, 531300, 631322 and 734110)
across all six forecasting horizons; except for model 221300 in the most distant horizonh = 6
(i.e., 275-365 days ahead) which is not found to be significantly worse than the spike unfiltered
wavelet-based models 431302 and 531300. The simple model 120005 performs surprisingly well
for the closest (h = 1) and the two most distant (h = 5,6) forecasting horizons. Interestingly, if we
repeat the analysis but take the worst performing models in terms of MAPE∗,∗ from the simple and
wavelet-based families (namely, models 120002, 423101, 523100, 622111 and 721220) and com-
pare them with the best sine-based models we obtain that all four wavelet-based models perform
significantly better across all six forecasting horizons than the remaining three models (120002,
221300 and 331110)! On the other hand, the worst simple model(120002 – linear regression of
the spot price in the two-year calibration window extrapolated into the forecasting window) per-
forms much worse than the best simple model (120005) and is generally comparable to the best
sine-based models.

Furthermore, models 531300 and 734110 (i.e., wavelets witha linear decay to the median)
perform significantly better than models 431302 and 631322 (i.e., wavelets with an exponential
decay to the median) for the two longer horizons of 183-365 days ahead (h = 5,6). However,
model 631322 is significantly better than model 734110 for horizon h = 3 (i.e., 31-90 days) and
comparable to it for horizonsh = 1,2 and 4. Model 531300 is the only one that has no significantly
better competitors for all six forecasting horizons, however, model 734110 yields lower MAPEh,∗

for all h = 1, ...,6 and has a larger number of competing models performing significantly worse
for horizonh = 5. Overall we can conclude that model 734110 is the best performing model, with
model 631322 trailing closely by. Moreover, any of the wavelet-based models is better than the
sine-based models.

6. Conclusions

In this paper we have presented the results of a thorough study on estimation and forecasting of
the long-term seasonal component (LTSC) of electricity spotprices. We have considered a battery
of models:

• 12 simple linear models, including models with a deterministic function linearly or expo-
nentially decaying from the last observed spot price to the median in the forecasting window
(model family 1*000*),

• 24 sine-based models fitted to raw prices (2***00),
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• 48 sine-based models fitted to spike-filtered prices (3****0),

• 48 wavelet-based models fitted to raw prices and a function exponentially decaying to the
median in the forecasting window (4***0*),

• 24 wavelet-based models fitted to raw prices and a function linearly decaying to the median
in the forecasting window (5***00),

• 96 wavelet-based models fitted to spike-filtered prices and afunction exponentially decaying
to the median in the forecasting window (6*****),

• 48 wavelet-based models fitted to spike-filtered prices and afunction linearly decaying to
the median in the forecasting window (7****0).

The models differ in the length of the calibration window, the number and theperiods of the sine
functions, the wavelet families and approximation levels,etc. For details see Tables 1-2.

Using daily baseload spot prices from six major power markets – NSW in Australia, EEX and
Nord Pool in Europe, NEPOOL, NYISO and PJM in the U.S. – we find that wavelet-based models
(families 4***0*, 5***00, 6***** and 7****0) are better in t erms of forecasting spot prices up
to a year ahead than sine-based models (families 2***00 and 3****0). This observation is valid
for all three error measures (MAE, MSE, MAPE) both globally over all forecasting horizons (see
Table 3) as well as individually across the six forecasting horizons (see Tables 4-5 and Figure 5).
The statistical significance of this finding is confirmed in Table 6 using MAPE errors and Tukey’s
HSD multiple comparison test.

This result questions the validity and usefulness of stochastic models of spot electricity prices
built on sinusoidal long-term seasonal components. It alsogives a clear recommendation for using
wavelet-based models for estimating and forecasting the LTSC. Not only are these models able
to provide a good in-sample fit in the calibration window (andgenerally much better than that of
sine-based models with a reasonable number of sine functions), but also yield significantly better
forecasts up to a year ahead.

Overall we can conclude that model 734110 (i.e., a Coiflets wavelet of order 4 with a linear
decay to the median, calibrated on a three-year window usingapproximationS6 and with spikes
replaced by the mean of the deseasonalized prices) is the best performing model, with model
631322 (i.e., a Daubechies wavelet of order 12 with an exponential decay to the median with the
decay parameterλ = 1

180, calibrated on a three-year window using approximationS8 and with
spikes replaced by the upper/lower 2.5% quantiles of the deseasonalized prices) trailing closely
by. However, as the results reported in Section 5.3 indicate, the choice of the wavelet family –
Coiflets or Daubechies – is not critical. Nor is the choice of the remaining parameters, despite
some subtle differences discussed in Section 5.

Surprisingly, some simple models (including 120005, i.e.,a deterministic function exponen-
tially decaying in the forecasting window from the last observed spot price to the median spot
price in the two-year calibration window) perform very wellfor the closest (1-7 days) and the two
most distant (183-365 days) forecasting horizons. On the other hand, some simple models (like
120002, i.e., linear regression of the spot price in the two-year calibration window extrapolated
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into the forecasting window) perform much worse and generally comparable over all forecasting
horizons to the poorly performing sine-based models. Unfortunately, the better performing simple
models are discontinuous (on the day the forecast is made) and, hence, can be used for forecasting
the spot price up to a year ahead but should not be used for deseasonalizing the electricity spot
price series before fitting the stochastic model.

Finally, let us comment on two alternative approaches to modeling and forecasting the LTSC
which were briefly mentioned by Janczura and Weron (2010, 2012) in the context of wavelet-based
models. The first is to use forward looking information, likesmoothed forward electricity curves
(Benth et al., 2007; Borak and Weron, 2008). While this is a potentially promising approach, it
has to be taken into account that forward prices include riskpremia, which should somehow be
separated from the spot price forecast for it to be useful. And this is not an easy task since risk pre-
mia vary over time (Botterud et al., 2010; Huisman and Kilic, 2012; Weron, 2008). There are also
some discouraging examples. For instance, Stevenson et al.(2006) used consensus forecasts of
wholesale electricity spot prices issued by the AustralianFinancial Market Association (AFMA).
Given the lack of liquidity in electricity derivative contracts traded on the Sydney Futures Ex-
change (SFE) at the time of their study, the accepted market forward price was the AFMA price
rather than a market traded price. As Stevenson et al. report, the AFMA (forward) prices turned
out to be misleading, strongly biased estimates of the future spot price. In a related study Redl et al.
(2009) observe that also in the German EEX and the Scandinavian Nord Pool markets differences
between forward prices in the trading period and spot pricesin the delivery period are significant.
They further note that trading strategies of market participants seem to rely heavily on current spot
prices instead of fundamental modeling approaches. These results question the predictive power of
forward prices. The second alternative approach is to utilize fundamental information like weather
(Jabłónska et al., 2011), generation and demand (Cartea et al., 2009) or inventory levels (Douglas
and Popova, 2008). There are, however, some problems related with this. The most important one
being the limited availability of good quality forecasts ofthese fundamental factors for longer time
horizons. In particular, Redl et al. (2009) provide evidencefor misjudgment of future fundamental
generation and demand conditions by market participants.

Taking all this into account we may conclude that the wavelet-based LTSC models considered
in this study provide relatively simple and accurate means of describing and forecasting the LTSC
of spot electricity prices. The fact that these models are calibrated to publicly available historical
data makes them an attractive building block of stochastic models of spot electricity prices.
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Janczura, J., Trüeck, S., Weron, R., Wolff, R. (2012). Identifying spikes and seasonal components in electric-

ity spot price data: A guide to robust modeling, submitted. Working paper version available from MPRA:
http://mpra.ub.uni-muenchen.de/39227/.
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