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Abstract

When building stochastic models for electricity spot prites problem of uttermost importance
is the estimation and consequent forecasting of a compdoetaal with trends and seasonality
in the data. While the short-term seasonal components (aedlgkly) are more regular and less
important for valuation of typical power derivatives, tlumd)-term seasonal components (LTSC,;
seasonal, annual) are much morgidult to tackle. Surprisingly, in many academic papers deali
with electricity spot price modeling the importance of tleasonal decomposition is neglected
and the problem of forecasting it is not considered. Witls fraper we want to fill the gap and
present a thorough study on estimation and forecastingedf TISC of electricity spot prices. We
consider a battery of models based on Fourier or waveletdposition combined with linear or
exponential decay. We find that all considered waveletdbasedels are significantly better in
terms of forecasting spot prices up to a year ahead than adlidered sine-based models. This
result questions the validity and usefulness of stochastidels of spot electricity prices built on
sinusoidal long-term seasonal components.

Keywords: Electricity spot price, Long-term seasonal component, Rotmodeling, Forecasting,
Wavelets.

1. Introduction

As pointed out by Tiick et al. (2007) and Janczura et al. (2012), the first crgtégl in defining
a model for electricity spot price dynamics consists of figdan appropriate description of the
seasonal pattern. In the standard approach to seasonahplesition the electricity spot price
seriesP; is decomposed into the trend-cycle or long-term seasomapoaent (LTSC)T;, the
periodic short-term seasonal component (STS@nd remaining variability, error, or stochastic
componentX; either in an additive (i.eP; = T; + s + X;) or a multiplicative fashion (i.eP; =
T: - s - X¢; note that a multiplicative model for the prices is equivle an additive model for
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the logarithms of prices). The long-term seasonal compiooieelectricity spot prices has been
treated in the energy economics literature in a number ofwagtuding:

e piecewise constant functions or dummies, possibly contbwmigh a linear trend (Bhanot,
2000; Fanone et al., 2012; Fleten et al., 2011; GianfredaGaodsi, 2012; Haldrup et al.,
2010; Haugom and Ullrich, 2012; Higgs and Worthington, 2008es et al., 2012a; Knittel
and Roberts, 2005; Lucia and Schwartz, 2002),

e sinusoidal functions or sums of sinusoidal functions dfedent frequencies (Benth et al.,
2012; Bierbrauer et al., 2007; Cartea and Figueroa, 2005; Deg, 2D06; Erlwein et al.,
2010; Geman and Roncoroni, 2006; Keles et al., 2012b; Luci&ahwartz, 2002; Pilipovic,
1998; Seifert and Uhrig-Homburg, 2007; Weron, 2008),

e wavelets (Conejo et al., 2005; Janczura and Weron, 2010, 3d@2enson, 2001; Schlueter,
2010; Stevenson et al., 2006; Weron, 2006, 2009; Weron,&2@04a,b) or other nonpara-
metric smoothing techniques (Bordignon et al., 2012).

However, to our best knowledge, there are only very few map@ere the forecasting of the LTSC
is discussed and even fewer where it is actually performedchecked. Forecasting a piecewise
constant or a sinusoidal LTSC is straightforward, but iitlse¥ conducted for very short-term time
horizons (e.g., one day-ahead as in Erlwein et al., 2010ptozonducted at all, probably due to the
poor predictive power of such models outside carefully endsne intervals and datasets. On the
other hand, forecasting a nonparametric seasonal compigrgarticularly troublesome and some
authors actually evaluate only the out-of-sample preatictif the stochastic part (Bordignon et al.,
2012). With this paper we want to fill the gap and present aoiingin empirical study on estimation
and forecasting of the LTSC of electricity spot prices. Wasider a battery of models based
on Fourier or wavelet decomposition, including models camiy used in the energy finance
literature and a number of new suggestions.

The paper is structured as follows. In Section 2 we brieflycdbes the six datasets used in
this empirical study. In the following Section we reviewfdrent procedures for deseasonalizing
the data and estimating the LTSC. In Section 4 we first outleesimulation setup, then present
in detail all seven model families. Tables 1-2 can be usedrageaence guide to the coding of
the 300 models tested in this study. The Section ends witdefiaitions of error measures used
later in the text. In Section 5 we report the results of our ieicgd study. We first discuss the
global performance (over all six forecasting horizons alhgia datasets), then comment on the
performance across the forecasting horizons and finalgudssthe results of a multiple compari-
son procedure which provides detailed information on whinddels perform significantly worse
or significantly better than other models. In Section 6 wepaup the results and comment on
alternative approaches.

2. Thedata

To make the analysis and the resulting conclusions as wwaivas possible, in this study we
use mean daily (baseload) spot prices from six major poweketst
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e New South Wales Electricity Market (NSW; Australia) fronetperiod Jan 1, 2006 — Jul 31,
2011 (2038 daily observations);

e European Energy Exchange (EEX; Germany) from the periodlJ2001 — Apr 12, 2011
(3754 obs.);

e Nord Pool (NP; Norway) from the period Jan 1, 2000 — Nov 13,8(B240 obs.);

e New England Power Pool (NEP; United States) from the perad1] 2001 — Apr 28th,
2011 (3770 obs.);

e New York Independent System Operator (NYISO; United S)aftesn the period Jan 1,
2004 — Jan 31, 2011 (2588 obs.);

e Pennsylvania—New Jersey—Maryland Market (PJM; UnitedeS)drom the period Jan 1,
2006 — Apr 28, 2011 (1944 obs.).

The datasets are plotted in Figure 1. The annual seasorsadjgnerally irregular, if visible at all.
Note that this makes the probably most popular method of tragthe seasonal component with
sine and cosine functions highly questionable. On the dtaed, as shown by Janczura and Weron
(2010), the changes in electricity price dynamics can bé&quell linked to changes in market
fundamentals. For instance, the electricity price hiked@%2was largely due to higher natural gas
(NG) prices, see the EEX (observations 1600-1850), NEPR, (30-1850) and NYISO (obs. 500-
750) price series. In Europe, the fuel prices were pushed tipdodecline in North Sea production
and a cold winter of 2002006. The introduction of COemission costs in January 2005 added
momentum (Benz and Tick, 2006). In the U.S., the NG prices doubled after huresakatrina
and Rita damaged production, processing and transportati@structure. This volatile period
was followed by roughly 18 months of more moderate pricesthadecond ‘fuel bubble’, which
started in Septemb#@ctober 2007 and ended in JiAyigust 2008 with the burst of the ‘oil bubble’
(Hamilton, 2009), see the EEX (obs. 2400-2900), NEP (ob802P00) and NYISO (obs. 1300-
1800) price series.

The more regular weekly periodicity cannot be seen too vidiia time scale. However, if we
increase the resolution — as in Figure 4 — the five weekdayw®&skend pattern is better visible.
The price spikes tend to dominate Figure 1 and are visiblé giacases. Yet there are significant
differences in the intensity and severity of the spikes. The N&¥etis evidently the most spiky,
the EEX dataset is pretty volatile and even includes a fesepirops with a negative mean daily
system price (for a discussion see, e.g., Fanone et al.) 20be the NYISO market is the least

spiky.

3. Estimating the long-term seasonal component

We follow the ‘industry standard’ and represent the spatgdfi by a sum of two independent
parts: a stochastic componexitand a (predictable) trend-seasonal comporfesbmposed of
a weekly periodic pars (i.e., a short-term seasonal component, STSC) and a longttend-
seasonal component (LTST), which represents the long-term non-periodic fuel priselg the
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Figure 1: Mean daily (baseload) electricity spot pricesrireix major power marketdrom top to bottom, left to
right): New South Wales Electricity Market (NSW, Australia), Bpean Energy Exchange (EEX, Germany), Nord
Pool (NP, Scandinavia), New England Power Pool (NEP, UM}y York ISO (NYISO, U.S.) and Pennsylvania—
New Jersey—Maryland Market (PJM, U.S.). Note that for thestfalian market the log-prices (and not the prices
themselves) are plotted. The logarithmic scale dampenetineme spikiness of the NSW prices, which can reach up
to 10000 AUDMWh during peak hours.



changing climat&eonsumption conditions throughout the years and strateigiding practices.
As mentioned in the Introduction, there are essentiallgdhdlistinct suggestions in the energy
economics literature for dealing with the trend-seasoonalmonentf; of electricity spot prices
(for a recent evaluation of theftierent approaches in terms of extracting the true seasottatpa
see Janczura et al., 2012). Sample fits of the LTSC are ditestiin Figure 2.

The first is to fit piecewise constant functions or dummiegicdgily one for each month. Fore-
casting of such a LTSC is trivial. However, given the not vpeyiodic behavior of spot prices
on the annual scale (recall Figure 1), the usefulness otelsnique is questionable. Moreover,
while very simple, this approach yields a non-smooth tre@dsonal component with jumps be-
tween months. If thisféect is not eliminated by an additional smoothing treatmigmhay very
well introduce spurious seasonality and negatively infbeetihe estimation of the stochastic com-
ponent. In our study we will use as benchmarks only very sepliants of this technique which
do not require additional smoothing, namely a constant dimekar LTSC.

The second approach is to model the trend-seasonal pdttbyna sum of sine arndr cosine
functions. Due to the rather complex annual pattern of sfemttiécity prices, except for a few
regular periods like the Jan 1997 — Apr 2000 period at Nord Boalyzed by Weron (2008), the
LTSC cannot be modeled by a single sine function. The questlether the periods of other sine
or cosine functions of higher frequency should be harmooii¢cee annual frequency or not is an
open one. In order to answer it we will consider here sinudaidbodels forT; with up to four
summands with both regularly (harmonics) and irregulapigced frequencies. Note that in both
cases the forecasting of such a LTSC is straightforwardesinis based on a simple extrapolation
of the sine an@r cosine functions with known frequency, phase shift anglaude.

The third approach is to use wavelet decomposition and dnmgpas more robust to outliers
and a less periodic alternative to Fourier analysis. Rettalt wavelets belong to families — like the
Daubechies and Coiflets families used here — and come in daargather and a mother wavelet
for a given order (Hrdle et al., 1998; Percival and Walden, 2000). Th&edent families and
orders of wavelets makeftierent trade-fis between how compactly they are localized in time and
their smoothness. Any function or signal (heRg) can be built up as a sequence of projections
onto one father wavelet and a sequence of mother wavegts: Dy + D;_; + ... + Dy, where
2’ is the maximum scale sustainable by the number of obsengtidt the coarsest scale the
signal can be estimated I84. At a higher level of refinement the signal can be approxiohate
S;.1 =S, + D;. At each step, by adding a mother wavdlgtof a lower scalg =J-1,J-2, ...,
we obtain a better estimate of the original signal. This pdate, also known as lowpass filtering,
yields a traditional linear smoother. Here we uke 6, 7 and 8, which roughly correspond to
bimonthly (2 = 64 days), seasonal{2 128 days) and annual{2 256 days) smoothing. While
trigonometric or periodic functions — such as the sinuddid&C or the monthly dummies — can
be easily extrapolated into the future, predicting the WetMel SC beyond the next few weeks is
a difficult task. This results from the fact that, in contrast ta@sior cosines, individual wavelet
functions are quite localized in time or (more generally3@ace. In the following Section we will
address this issue and propose a few solutions. Note tlat@hsbining sinusoidal functions with
an exponentially weighted moving average (as in De JongsR€@mplicates things very much,
because the moving average at timel is dependent on the unknown future prigig; .

The next and final step of seasonal decomposition would bentove the weekly periodicity
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Figure 2: Sample LTSC estimation and forecasting resulth®NEPOOL market and a two-year calibration window
Oct 28, 2003 — Oct 26, 2005. Clearly the sinusoidal LTS8 pane) do not follow the trend-seasonal pattern of the
spot prices in the calibration window as well as the wavele8C (pottom panél even if the periods — as well as the
amplitudes and phases — of the sine waves are estimateah \&ittoptimization procedure (model 220021, for code
definitions see Section 4.2 and Tables 1-2).

s, typically by subtracting the ‘average week’ calculatedtss arithmetic mean of the LTSC-
deseasonalized prices (i.8,— T;) corresponding to each day of the week, with public holidays
treated as the eighth day of the week. However, we will notieily estimate the weekly period-
icity here, since for the time horizons considered in thislgt(see below) it is of little importance.
Finally, note that the forecasting of such a periodic STS&rimightforward, like in the case of a
LTSC build on piecewise constant functions (or dummies).

4. Forecasting the long-term seasonal component

4.1. The simulation setup

In the simulation study we use a rolling window scheme. Atheastimatioyforecasting step
both the starting and the ending date of the calibration $ampnoved forward by one day. Each
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of the 300 models we consider is estimated on ¢taitbration windows a two-year (730-day) and
a three-year (1095-day). The following year (365 days) elusr the out-of-sample forecast and
is denoted in the text as tlierecast windowsee Figures 2-4. In order to have the same number of
forecasts for both calibration windows, the two-year wiwdwas a 365-day lag with respect to the
three-year window (i.e., it starts on the 366th observatibtne three-year calibration window).
The rolling scheme lasts as long as we have at least 365 @besay following the last day of
the calibration window. In this way we obtain 579 forecastsri 1 to 365 days ahead) for the
NSW market, 2295 for the German EEX market, 1781 for the Soamthn Nord Pool power
exchange, 2311 for the New England Power Pool, 1129 for the Xk ISO and 485 for the
PJM market. After computing forecasts for all six datasatls300 models and all calibration
windows we calculate three measures of forecast accurdoy méan absolute error (MAE), the
mean squared error (MSE) and the mean absolute percentagé APE) — for each dataset,
each model and each of the six forecast horizons: 1-7 da$6,dys, 31-90 days, 91-182 days,
183-274 days and 275-365 days.

4.2. Models and their codes

To cope with the large number of models used in this study eaatiel is given a unique
6-digit code, see Tables 1 and 2. The first digit defines theeinfaanily, the second provides
information on the calibration window (two-year — ‘2’, tlergrear —'3’). The remaining four digits
define family-specific characteristics. A star (**’) indies that a certain digit can take one of a
few values and is used to represent subgroups of models.

4.2.1. Simple models (1*000%)

In Figures 2-4 we can observe that when 2, 3 or 4 sines are fiittesv or spike-filtered spot
price data (models 2***00 and models 3****0, respectivelsee Section 4.2.2 for details) the
price forecast tends to deviate significantly from a reablenprice range, especially for longer
time horizons. This is the reason for using conservativaepk techniques in this study. Initially
we started with three models:

e the mean of the spot price in the calibration window (mod&R001),

e linear regression of the spot price in the calibration wimdxtrapolated into the forecasting
window (modelsl*0002) and

e the median of the spot price in the calibration window (med&D003).

All three models performed surprisingly well for long-teforecasts of six months or more and
the best of the three was the median. However, the short- &dilm-term forecasts were signif-
icantly worse than those of the other models, mainly duedqtite spikes and the heteroskedas-
ticity of the spot price. Hence, we decided to test three rsonple models:

e an exponential decay from the current spot price to the meffieodel 1* 0004 with the
decay parametet =  in formula (1) and model*0005 with A = 75) and

e alinear decay from the current spot price to the median (iInbd06).
7
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Figure 3: Sample LTSC forecasting results for the Austraé&SW market performed on Friday, Nov 27, 2009
(denoted by *'). The two-year calibration window and theseyear forecast window are displayed in tbp panel

12 different forecasting methods are illustrated intfiddleandbottom panelzooming in on the forecast day (Nov
27, 2009) and the forecast window (Nov 28, 2009 — Nov 27, 20E0) code definitions see Section 4.2 and Tables

1-2.
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Table 1: The six digit codes of the 300 models tested in thidystpart I. A star (") indicates that a certain digit
can take one of a few values and is used to represent subgubupzdels. A square cupL(’) identifies the digit of

interest.

Digit

Value Meaning

* u****

2

3

All models
two year (730 day) calibration window
three year (1095 day) calibration window

1*000u

OO0k, WN PR

Simple model§1*000*) — 12 models in total
mean price in the calibration window
extrapolated linear regression of prices in the calibratvindow
median price in the calibration window
exponential decay to the median with the decay paran?lei:egl—ER

exponential decay to the median with the decay parametefg;
linear decay to the median

2*1*00
2**0100

Sines fitted to raw price@***00) — 24 models
number of sines used to represent the LTSC
periods of all sines estimated
period of the ¥ sine estimated, remaining periods set t(% Ja,nd% of ayear
periods set to 13,  and; of a year

30
3110

3*** |_|0

11

1
2
3
1

2

4

Sines fitted to spike-filtered pricé3****0) — 48 models

number of sines used to represent the LTSC

periods of all sines estimated

period of the ' sine estimated, remaining periods set tg &nd3 of a year
periods setto 1, 1 and$ of a year

spikes replaced by the mean of the deseasonalized prices

spikes replaced by the upflewer 2.5% quantiles of the deseasonalized prices

Wavelets with an exponential decay to the median fitted tqpréves(4***0*) — 48 models

4*|_|*O*

4%% L0

470 Ly

NFRWNRFRE MNP

Daubechies wavelet family of order 12 (‘db12’)
Daubechies wavelet family of order 24 (‘db24’)
Coiflets wavelet family of order 2 (‘coif2”)
Coiflets wavelet family of order 4 (‘coif4’)

Se approximation level

Sy approximation level

Sg approximation level

exponential decay to the median with the decay pararvlete%

?

exponential decay to the median with the decay parametefg,

Wavelets with a linear decay to the median fitted to raw pr{&&%*00) — 24 models

5**00

5000

WN PR AhWN P

Daubechies wavelet family of order 12 (‘db12’)
Daubechies wavelet family of order 24 (‘db24’)
Coiflets wavelet family of order 2 (‘coif2’)
Coiflets wavelet family of order 4 (‘coif4’)

Se approximation level

S approximation level

Sg approximation level

10



Table 2: The six digit codes of the 300 models tested in thidystpart II.

Digit Value Meaning
Wavelets with an exponential decay to the median fitted t@djtered priceg6*****) — 96 models
B*LIx** 1 Daubechies wavelet family of order 12 (‘db12")
Daubechies wavelet family of order 24 (‘db24’)
Coiflets wavelet family of order 2 (‘coif2’)
Coiflets wavelet family of order 4 (‘coif4’)
Sg approximation level
S7 approximation level
Sg approximation level
spikes replaced by the mean of the deseasonalized prices
spikes replaced by the upgewer 2.5% quantiles of the deseasonalized prices
exponential decay to the median with the decay pararneﬁei}
exponential decay to the median with the decay pararnﬁe{%)
Wavelets with an exponential decay to the median fitted t@djtered priceg7****0) — 48 models
70 Daubechies wavelet family of order 12 (‘db12’)
Daubechies wavelet family of order 24 (‘db24’)
Coiflets wavelet family of order 2 (‘coif2’)
Coiflets wavelet family of order 4 (‘coif4’)
Se approximation level
S7 approximation level
Sg approximation level
spikes replaced by the mean of the deseasonalized prices
spikes replaced by the upgewer 2.5% quantiles of the deseasonalized prices

6** I_,**

6*** |_|*

6**** L

NENPFRPONMP NN

7**u*0

754 110

NRWNRFRPANWONP

All three models connect the last day of the calibrationqukr the current spot price — and the
last day of the forecast window — the median of the spot priicgbe calibration window. The
exponential decay function is normalized in the followingyw

expEAx) — expEAxy)
1—explEaxy)

fexp(X) = (%o — %) X + X7, (1)
wherex, is the last observation in the calibration window (i.e., ba tlay the prediction in made),
X is the median of the spot prices in the calibration window {loa last day of the forecast
window) andl = & or . Since exp¢.Ax) is the tail of the exponential distribution with mean
the forecast of model 1*0004 decays to the median much fésterits mean lifetime is 30 days

or one month) than that of model 1*0005 (whose mean lifetisnE80 days or half a year).

4.2.2. Sines fitted to raw (2***00) or spike-filtered pric&(**0)

The second family of models considered in this study and @ehoy 2***00 used sine func-
tions to represent the LTSC. In these models a sum of one tioes is fitted via nonlinear least
squares to the spot price in the calibration window — thedtdigit in the model code2¢ Li* 00)
stands for the number of sines used to represent the LTSCZDr2l). Each considered sine func-
tion has three parameters to estimate — the amplitude, tihedpend the phase shift. To address

11



the question whether the periods of the sine functions dfdridrequency should be harmonics of
the annual frequency or not we consider three subgroups délso

e models where the periods of all sines (up to four) are estichatithin the least squares
procedure (model8**100, i.e., with ‘1" as the fourth digit),

e models where the period of the first sine function is estichatghin the least squares pro-
cedure and the periods of the remaining sine functions {ij are set to a year, half a year
and a third of a year (model*200, i.e., with ‘2’ as the fourth digit) and

e models where the periods are set to a year, half a year, adhad/ear and a quarter of a
year (model®2**300, i.e., with ‘3’ as the fourth digit).

Note that in all three cases the forecasting of such a LTS@aghtforward, since it is based on a
simple extrapolation of the sine functions with known fregay, phase shift and amplitude. Note
also that the latter method should not outperform the otier even if the fixed periods were
optimal then they should be estimated within the least spuarocedure for the first two methods.
Yet, the obtained forecasting results do not match our ¢afiens. Most likely, the nonlinear least
squares optimization procedure has problems with findieggtbbal maximum due to the large
number of parameters to be estimated (up to 12).

In a recent empirical study Janczura et al. (2012) showeditt@roved robustness of the
electricity spot price model could be achieved by filtering tlata with some reasonable procedure
for outlier (i.e., spike) detection, and then using clasisastimation techniques for the seasonal
pattern on the filtered data. While no single best method fdrevuetection could be identified,
in a vast majority of cases all of the considered filterindnteques significantly outperformed the
‘no filter’ approach that used the original spot price. Outha seven filtering techniques tested
in this study, the simple-to-implemet5% variable price thresholdéVPT1) method yielded
reasonable improvement over the ‘no filter’ approach, bath vespect to estimating the seasonal
pattern (LTSC and STSC) and the parameters of the stochastipanent. In this method 2.5%
highest and 2.5% lowest deseasonalized prices are treqtatleers and are replaced by ‘more
normal’ values. The deseasonalization is performed by suibtracting a wavelet smoother of
level 6 (i.e.,Sg, see Section 3; or a sine function combined with an expoakntveighted moving
average) from the spot prices, then by computing the ‘aeevagek’ (with holidays treated as the
eighth day of the week) and removing it from the LTSC-detrehdata. Janczura et al. (2012)
used the seasonal pattern as the ‘more normal’ values —tihsyitsited the identified spikes in the
deseasonalized series by the mean of the deseasonalizesl. pri

We have decided to use this technique in our study. The siseebmodels fitted to spike-
filtered prices constitute the third family of models (3*8¥. The third and the fourth digit in the
model code define the same characteristics as in the stasd@&-tbased models (2***00). The
fifth digit defines the ‘more normal’ values used to substitilie identified spikes:

e models3***10 are fitted to price series where the identified spikes a redldy the mean
of the deseasonalized prices, as in Janczura et al. (2012),

e whereas model3***20 are fitted to price series where the identified spikes arecepl by
the threshold itself (i.e., the upper or lower 2.5% quartfléhe deseasonalized prices).
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Note that the latter approach is similar in spirit to timiting spike preprocessing scheme used in
the engineering literature (Shahidehpour et al., 2002pWe2006).

4.2.3. Wavelets (4***0*, 5***Q0, 6***** 7****(Q)

The next four families of models we consider consist of watrbased LTSC. They filer in
the way the signal is extrapolated before applying the Biecwavelet Transform (DWT) and the
choice of the input signal (raw or spike-filtered priceshc®ithe lengths of the two- and the three-
year calibration windows are not powers of two, the estiomafirocedure requires that the signal
is artificially extended before applying the DWT, so that gadth is the nearest power of two
(Hardle et al., 1998; Percival and Walden, 2000). Howeverctimemonly used extension modes,
like constant extension (in Matlab denoted by ‘sp0’) and filerivative extrapolation (‘spl’) at
the edges, do not perform satisfactorily in case of spikgtalgty prices. Other, more appropriate
techniques have to be applied.

On the other hand, a characteristic feature of waveletsat-thunlike sines and cosines —
the individual wavelet functions are localized in time,.,i.hey tend to zero for large (positive
or negative) arguments. In the context of extrapolatingsigeal into the future this means that
some additional assumptions have to be made on how to ekdtajloe smoothed sign8l andor
the detail series of lower orders. There have been a few stiggs in the literature on how to
deal with this problem. For the lower detail levels, whicle af high frequency and oscillatory
in nature, Yousefi et al. (2005) used trigonometric fits inualgtof oil prices while Conejo et al.
(2005) calibrated ARIMA models when forecasting day-ahdadtecity spot prices in the Span-
ish market. Frglewicz et al. (2003) proposed yet a more technical concém focally stationary
wavelet process, where the price process is written as arlgwnbination using wavelets as basis
functions. Although appealing from the theoretical poihview, it performed very poorly in a
recently published short-term forecasting study of Sdeluand Deuschle (2010). In fact, the au-
thors observed that for signals with a strong random compuonéke the UK power prices — all
tested wavelet-based methods at best generated onlyripil@vements over the more traditional
time series approaches.

For the much smoother and less periodic approximations {fi&Se, S; or Sg approximations
used in this study) and the higher detail levels other tepias have to be applied. To extend the
signal beyond the calibration window, Yousefi et al. (20083dia spline fit, Wong et al. (2003)
applied polynomial extrapolation, while Stevenson (20844 Stevenson et al. (2006) utilized
predictions of threshold autoregressive models (TAR) fittedmoothed (via wavelet shrinkage)
spot prices from the Australian electricity market. To oesbknowledge, the latter two papers
are the only ones where wavelets have been used to foreeastaty prices for horizons of more
than a few days ahead. Yet both papers used prices from thaf-gainple period to extend the
signal to the nearest power of two and avoid edge extensmirigms; hence the predictions were
not truly ex-anteforecasts. This is a pretty controversial approach whiehrty cannot be used in
real world applications.

Taking into account that in this study we are only interesieelx-anteforecasts with a rela-
tively long time horizon, none of the methods mentioned aboould be applied; the spline- or
polynomial extrapolation-based forecasts of electrisfipt prices behaved unpredictably over pe-
riods of a few hundred days. Hence, we decided to extrapthiatemoothed signal similarly as in
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the case of sine-based models, i.e., by fitting a sum of upuodines tdS; in the calibration win-
dow and simply extrapolating the sines 365 days into theréutWnfortunately, this too resulted
in unreasonably fluctuating predictions of future eledlyispot prices. In the next attempt — mo-
tivated by the surprisingly good long-term forecasts ofgimeple models (recall the discussion in
Section 4.2.1) and the relatively good short-term forexatall wavelet models compared to the
simple (1*000*) and sine-based models (2***00, 3****0) — wetroduced two new families:

e wavelets with an exponential decay to the med#rf f0*) and
e wavelets with a linear decay to the medi&t*(* 00).

Two further families of models are their analogues fitted fikkes-filtered prices:6***** and
7****(, respectively. Like for the sine-based models (i.e., 3T)*the fifth digit defines the
‘more normal’ values used to substitute the identified spike

e models6***1* and7***10 are fitted to price series where the identified spikes a regdlac
by the mean of the deseasonalized prices, as in Janczurd20H2),

e whereas model6***2* and7***20 are fitted to price series where the identified spikes are
replaced by the threshold itself (i.e., the upper or lowBf#2quantile of the deseasonalized
prices).

Instead of using the ‘sp0’ or ‘sp1’ extension modes at theeedon these new models the cali-
bration windows are first extended one year forward using<poreentially or a linearly decaying
to the median deterministic function. This is done analaefjpas in models 1*0004, 1*0005
and 1*0006: we connect the last day of the calibration peftrdthe time axis) and the current
spot price (on the price axis) with the last day of the foreeasdow (on the time axis; observa-
tion 1095 for the two-year calibration window and obsewati460 for the three-year calibration
window) and the median of the spot prices in the calibratiamaw (on the price axis). The ex-
ponential decay function is given by formula (1), eithertwit= 3i0 (models4***01 and6**** 1)
or 1—20 (models4***02 and6****2). Once the data series are extended to 1095 (or 1460) observa
tions we apply the DWT. Note that the wavelet estimation pdoce again has to extend the series
so that its length is a power of two — this time to 2048 obs&wmatfor both calibration windows.
However, now the constant extension at the edges (i.e.’))‘'dp@s not influence the shape of the
wavelet smoother too much since the last observation ofritially extended series (of 1095 or
1460 observations) is the median. Finally, we simply takewsforecast the 365 values of the
obtained wavelet smoother corresponding to the forecastaw.

For each wavelet-based model family we use four types of letssevhich make dierent
trade-dfs between how compactly they are localized in time and tmeoathness: two from the
Daubechies family (of order 12 and 24; in Matlab and laterhi@ text denoted by ‘db12’ and
‘db24’, respectively) and two from the Coiflets family (of @rd2 and 4; denoted by ‘coif2’ and
‘coif4’, respectively). The third digit in the model cod&*(U***) defines the wavelet: ‘1’ stands
for ‘db12’, ‘2’ for ‘db24’, ‘3’ for ‘coif2’ and ‘4’ for ‘coif4 . Finally, for each wavelet-based family
the fourth digit in the model codé{*L**) defines the wavelet approximation level: ‘1’ stands
for Sg, ‘2" for S; and ‘3’ for Sg. Note that the three approximation levels used roughlyespond
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to bimonthly (2 = 64 days), seasonal {2 128 days) and annual{2 256 days) smoothing,
respectively.

4.3. Error measures

Six datasets, over 17 thousand observations and as manyas@iels tested lead us to a
fundamental question: how to select the best LTSC forezgdachnique(s)? To address this
guestion we calculate three measures of forecast accurdm®y mean absolute error (MAE), the
mean squared error (MSE) and the mean absolute percentagé APE) — for each dataset,
each model and each forecast horizon. Then we rank the miodei4 to 300 based on the values
of MAE 4 or MSE, 4:

e separately for each of the six forecast horizolns: 1 (1-7 days), 2 (8-30 days), 3 (31-90
days), 4 (91-182 days), 5 (183-274 days) and 6 (275-365 adeank)

e each of the six datasetis= 1 (NSW), 2 (EEX), 3 (NP), 4 (NEP), 5 (NYISO) and 6 (PJM).

To obtain the aggregate rank (over all six datasets) of a hfode given time horizorh we
calculate the geometric mean — denoted by GM(MABr GM(MSE, .) — of the six ranks for each
of the six datasets for this time horizon. Note that comp#&vele arithmetic mean, the geometric
mean penalizes poor rankings and emphasizes good rankiegs.we compute an average rank
over all time horizons: we rank the models from 1 to 300 basethe values of GM(MAE..) or
GM(MSE,.) for each of the six time horizons and compute the geometei@mof those six ranks.
The resulting two global measures are denoted by GM(MABnd GM(MSE.,).

Furthermore, since the ranks do not provide quantitatif@mnation about a given method’s
forecasting accuracy we use two aggregate measures based iowlividual mean absolute per-
centage errors (MARE with h,d = 1, ...,6). Namely, for a given time horizdmwe calculate the
weighted arithmetic mean

6
MAPE, = " Wy - MAPEg, )
d=1

— (579 2295 1781 2311 1129 485) ; i
wherew = (8580, S50 8530 8280 35807 8580) is the vector of weights such that each dataset has a

weight proportional to its length. Next, we compute the agerover all time horizons:

6
MAPE.. = > Vi - MAPE,., (3)
h=1

(7 23 60 92 92 91\ ; H H H
wherev = (3—65 366 365 365" 3650 3—65) is the vector of weights such that each forecasting horizon

has a weight proportional to its length. For a given modebiobal error measure MARE is the
mean absolute percentage error over all datasets andedbfsting horizons.

5. Results

5.1. Global performance

In Table 3 we list the top 20 models according to each of theetlglobal forecast error mea-
sures: GM(MAE..), GM(MSE..) and MAPE .. Nearly all models in the top 20 list are from
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Table 3: Top 20 models according to each of the three glolvatést error measures: GM(MAFB in columns 2-

3, GM(MSE, ) in columns 4-5 and MAPE. in columns 6-7. The best three models in terms of each measere
emphasized in bold with the index indicating their rafc for GM(MAE...), %2 for GM(MSE...) and~B€ for
MAPE. .. Note that all models in the top 20 list are from families 6***and 7****0; the best models from the
remaining five families are listed in the bottom rows of thigléa See Section 4.2 for model codes and Section 5 for
error measure definitions.

No. GM(MAE,,) Model GM(MSE.,) Model MAPE., Model
1 1458  733110°B 1419 6223228  29.36% 734110°"
2 15.40  731310°E 15.02 6243222  29.38% 733110°B
3 20.48  734110°A 16.73  623322°  29.41% 732110°C
4 21.00 633122 17.91  631312*  29.44% 731110°
5 2226  732110°C 18.07 6313225  29.57% 731310PE
6 2259 631312 2724 6331229  29.73% 734210
7 22.97 634122 28.05 621322 29.74% 733210
8 27.88 734120 28.47 634122 29.76% 732310
9 29.37 722110 28.98 624122 29.77% 731320
10 30.23 6313225 33.70 621122 20.78% 734120
11 32.40 631222 33.95 731310 29.80% 734310
12 33.45 733120 34.45 721120 20.820% 731120
13 33.66 623322 34.68 623122 20.84% 733120
14 33.94  731110° 34.71 722320 20.84% 732210
15 33.96 721110 35.58 632322 20.85% 732320
16 34.04 623122 35.86 431302 20.86% 732120
17 34.73 731120 36.48 722220 20.86% 731210
18 35.90 723320 37.24 424302 29.87%631322°
19 36.73 624122 37.52 724320 20.90% 633112
20 36.98 724110 38.50 734120 20.91% 734320
55 55.11 431302 . . . .
68 . . . . 30.28% 431302
72 . . . . 30.35% 531300
79 . . 73.15 524200
80 68.95 521300
87 71.75 120005 . .
110 . . 90.89 120005 . .
137 . . . . 31.21% 120005
201 . . 162.73 333110
203 . . 163.29 231110
221 191.50 333110 . . . .
223 . . . . 36.53% 221300
227 203.12 233100 . . . .
229 . . . . 37.98% 331110
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Figure 5: Histograms showing how many times models from argifamily (1*000*, 2***00, 3****0, 4***0*,
5%*00, 6***** T7***Q) are ranked in the top 5top row), top 20 ¢enter row) and top 50 ifottom rovy of all 300
models according t& M(MAE; ), GM(MS K, .) and MAPE, . (in columns, from left to rightfor each of the six
forecast horizoné = 1,...,6. Clearly models from families 6***** and 7****0 dominatehe rankings. Note the
different scale in the right column (i.e., fMAPE,.).

families6***** and7****0. Models from the remaining five families are generally muatttfer
down the list, see the bottom rows in Table 3. The best modets families 4***0* and 5***00
are respectively ranked at no. 55 and 80 for GM(MAE16 and 79 for GM(MSE,) and 68 and
72 for MAPE., .. Next in line are the simple models (1*000*) — no. 87, 110 aBd for the three
error measures, respectively. Finally, the sine based m¢a&*00 and 3****Q) close the list
with ranks below 200, i.e., they are classified among the 38¥stperforming models.

The best five models in terms of each global measure are emptlas bold with an index
indicating their rank:2>¢de for GM(MAE., ), +%34% for GM(MSE..) and*BCP-E for MAPE.,,...
Three out of the top five models according to GM(MAare from the73* 110 subfamily, i.e.,
wavelets with a linear decay to the median, calibrated oneetlyear window using approximation
Se and with spikes replaced by the mean of the deseasonalitegspthey only dier in the
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choice of the wavelet family. The top four models accordm$MAPE, . are from the same small
subfamily (73*110), while the top 17 models are from #8%**0 subfamily. Clearly the three-
year calibration window leads to better forecasts as medsoy MAPE. .. On the other hand,
the ranking according to GM(MSE) is dominated by 6***** models. Four out of the top five
models models are from thg2* 322 subfamily, i.e., wavelets with an exponential decay to the
median with the decay parameterE -, calibrated on a two-year window using approximation
Sg and with spikes replaced by the upfi@wver 2.5% quantiles of the deseasonalized prices; they
only differ in the choice of the wavelet family.

Generally models 6***** with an exponential decay to the maatdperform better if the spikes
are replaced by the uppkwer 2.5% quantiles of the deseasonalized prices (modiths ‘@
as the 5th digit), while models 7****Q perform better if th@ikes are replaced by the mean of
the deseasonalized prices (with ‘1’ as the 5th digit). Thesyrmdicate that for the former the
exponential decay is too fast (even for the small decay petem = 1—§0) and has to start at a
more extreme level, while for models with a linear decay ®niedian the decay is too slow and
the decay should start at a more typical, less extreme level.

These observations are confirmed by the results preserféglire 5 where we plot histograms
showing how many times models from a given family are rankethe top 5 (which roughly
corresponds to top 2%), top 20 (or 7%) and top 50 (or 17%) oB@ll models according to
GM(MAE;.), GM(MS E,.) andMAPE,_ for each of the six forecast horizohs= 1, ...,6. To be
more precise, the ‘top 5’ histogram f&M(MAE;_.) is constructed based on the five best models
for the first forecast horizon and all six datasets, i.e.ostiog to GM(MAE,.), the five best
models for the second forecast horizon and all six datasetsaccording t& M(MAE;..), etc. In
total 5x 6 = 30 models are considered. Note that the models do not haveuaique as some of
them may be ranked in the ‘top 5’ for more than one forecastbor For instance, model 732110
is 4th according t&M(MAE,.) and 2nd according t6 M(MAEs ), see Table 5.

Like in Table 3, also in Figure 5 models from families 6****na 7****0 dominate the rank-
ings — with family 6***** performing better in terms o6 M(MS g, .) and family 7****0 in terms
of GM(MAE;.) andMAPE,.. On the other hand, not a single sine-based model (famifte6@
and 3****Q) is ranked in the ‘top 50’. Note also that in termEMAPE, . the three-year calibration
window is preferred, while for the other two error measuhesdvidence is not that clear.

5.2. Performance across the forecasting horizons

The performance of the models is not uniform across the &stérg horizons, see Tables 4
and 5 where we list the top five models over all six datasetsrdowy to the three error measures:
GM(MAE;.), GM(MSE,.) and MAPE,. for h = 1 to 6. For instance, the top four models accord-
ing to GM(MSE. ) make it to the ‘top 5’ lists for the intermediate forecagtimorizons of 31 to
182 days, but none of them makes it to the ‘top 5’ lists for theyxshort-term horizon (1-7 days)
nor the long-term horizons (183-365 days). On the other hdredtop four models according to
MAPE... are listed in the ‘top 5’ rankings for horizons of 91 to 274 sldiye., the second and the
third quarter of the one-year forecasting window), but nof#em are listed in the ‘top 5’ list for
the very short-term horizon (1-7 days) nor the very longrtlorizon (275-365 days). Apparently
the very short and the very long end of the one year forwardectegquires other models. Only
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one of the emphasized in Table 3 models, 683122, is listed in the ‘top 5’ for the shortest fore-
casting horizon. This model also performs very well for teemd horizon (8-30 days), but not
for any of the longer horizons. In contrast to all other hygtainked in Table 3 models from family
6***** this model is based on the more sensitive to price sbas approximatioBg (i.e., with ‘1’

as the 4th digit), rather than on the more smooth approxan&yg (with ‘3’ as the 4th digit). This
increased sensitivity to local price fluctuations is a comrfeature of all ‘top 5’ ranked models
for the very short term horizon, see the upper part of Table 4.

It also seems that the exponential decay to the median isagiddr the 3rd quarter of the
forecast year (despite the small decay paramét:erl—éo), but much better than the linear decay
for the horizon of 31 to 90 days. Finally, if we were to look fare ‘best performing model’ then
only one of the emphasized in Table 3 models, 183110, could be found in the ‘top 5’ lists
for four out of the six forecasting horizons. This model iscaglobally ranked best or second
best with respect to GM(MAE) and MAPE.... It is a member of the well performing 73*110
subfamily, i.e., it is a Coiflets wavelet of order 2 (‘coif2’)itw a linear decay to the median,
calibrated on a three-year window using approximaggrand with spikes replaced by the mean
of the deseasonalized prices. The best model from family*&*h this competition is 631312,
i.e, a Daubechies wavelet of order 12 (‘db12’) with an expdiad¢ decay to the median with the
decay parametet = 5, calibrated on a three-year window using approximaigrand with
spikes replaced by the mean of the deseasonalized pricesone of only two 6***1* models
in the ‘top 20’ lists in Table 3. The substitution of spikes tye mean of the deseasonalized
prices (‘1 as the fifth digit) tends to make the price for@dass extreme for the intermediate time
horizons.

For the forecasting horizon of 1 to 7 days only models frontttté 2* and 7**12* subfamilies
are listed in Table 4, i.e., wavelets with an exponential bnear decay to the median, calibrated
using the more sensitive approximati®g and with spikes replaced by the upfiewer 2.5%
guantiles of the deseasonalized prices. This outcome éostibrt end of the forward curve could
have been expected — the more sensitive approximationd#gels for a better local fit and, hence,
a better short term forecast. On the other hand, for the &stety horizon of 275 to 365 days (i.e.,
the ‘4th quarter’) all but one model are from family 7****Qgs Table 5. The exception is a simple
model — 120001 with the mean price in the calibration windewte forecast — which is ranked
poorly according to the linear error measures, but very d@ad) with respect to GM(MSE).

5.3. Significance of the results

Finally, we may ask how significant are thefdrences between the models. In particular,
does the domination of models from families 6***** and 7**& observed in Tables 3-5 mean
that models from the other families are inferior? To chedk the performed a Friedman test
to examine significant eierences between the forecasting performance of selectddlsaorhe
Friedman test is a nonparametric version of the classiaahay analysis of variance (ANOVA),
and tests the null hypothesis that all matched samples awendirom the same population, or
equivalently, from diterent populations with the same distribution (HochbergBardhane, 1987;
Sprent and Smeeton, 2001). Unlike a classical ANOVA, thedess not require the assumption
that all samples come from a population with a normal distrdm. Examining the distribution
of the forecasting errors, the assumption of normality Fer population would not be justified.
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Table 4: Top five models according to the three error meagsmé®ver all six datasets. The models are ranked with
respect to MAPE., independently for each of the three shorter forecastimgs: 1-7 days, 8-30 days and 31-90
days. The best five models in terms of each of the global ersasures, i.e., GM(MAE.), GM(MSE. ), MAPE, ..),

are emphasized in bold; the index indicates their rank, abéeT3. Additionally, the only three models in Tables 4-5
not belonging to families 6***** or 7****Q are marked with a dgger (*’).

Forecasting horizon 1-7 days

Model GM(MAE;.) rank GM(MSE.) rank MAPE;. rank
734120 9.14 1 16.02 3 16.08% 1
634122 12.09 3 16.54 5 16.09% 2
6331224 28.76 17 21.55 12 16.20% 3
732120 14.20 4 14.34 1 16.21% 4
731120 10.63 2 19.16 9 16.21% 5
631122 14.39 5 16.65 6 16.26% 8
721120 21.65 11 14.68 2 16.30% 10
621122 27.91 15 16.49 4 16.35% 12
Forecasting horizon 8-30 days
Model GM(MAE;.) rank GM(MSE,.) rank MAPE;,. rank
633112 40.99 10 60.50 53 20.26% 1
73311028 40.07 8 70.99 73 20.29% 2
6331224 26.03 1 27.95 3 20.42% 3
733120 32.59 4 50.32 30 20.61% 4
632112 59.54 56 82.61 98 20.68% 5
634222 40.35 9 31.19 5 20.88% 17
731310°F 30.87 3 34.90 7 21.05% 38
632222 35.43 5 38.85 14 21.05% 39
631222 30.32 2 35.47 10 21.10% 43
631312* 37.25 6 26.97 2 21.30% 62
631322° 38.53 7 18.68 1 21.40% 69
431302 43.38 15 30.10 4 21.80% 95
Forecasting horizon 31-90 days

Model GM(MAE;z,) rank GM(MSE,) rank MAPEsz,. rank
731310PF 20.44 2 26.33 11 24.96% 1
631312* 18.01 1 14.49 1 25.00% 2
6233223 22.78 4 18.36 3 25.20% 3
631322° 21.47 3 15.27 2 25.21% 4
73311028 29.68 9 58.82 53 25.36% 5
6243222 29.72 10 21.65 5 25.45% 10
6223221 37.90 20 20.58 4 25.58% 19
631222 24.88 5 32.14 16 25.64% 25
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Table 5: Top five models according to the three error measmé®ver all six datasets. The models are ranked with
respect to MAPE., independently for each of the three longer forecastingzbos: 91-182 days, 182-274 days and
275-365 days. The best five models in terms of each of the bévbar measures, i.e., GM(MAE), GM(MSE, ..),
MAPE., .), are emphasized in bold; the index indicates their rark Tedle 3. Additionally, the only three models in
Tables 4-5 not belonging to families 6***** or 7****0 are maed with a dagger (*).

Forecasting horizon 91-182 days (2nd quarter)

Model GM(MAE4.) rank GM(MSE,) rank MAPE,,. rank
734110°A 12.11 1 24.63 11 28.71% 1
731310°F 17.96 2 18.92 7 28.71% 2
731110° 18.22 3 27.17 16 28.74% 3
732110%C 18.91 4 28.65 17 28.77% 4
7331102B 20.46 5 34.97 25 28.83% 5
631312* 23.46 7 17.87 4 28.97% 7
632322 27.81 11 17.68 3 29.13% 9
6243222 26.57 10 12.86 1 29.46% 19
6233223 27.88 13 18.03 5 29.55% 27
6223221 33.23 21 16.10 2 29.70% 43
Forecasting horizon 183-274 days (3rd quarter)
Model GM(MAEs.) rank GM(MSE,.) rank MAPEs,. rank
734110°A 23.87 7 42.80 24 31.84% 1
7321108¢ 19.83 2 39.44 17 31.87% 2
731110° 25.28 8 43.11 27 31.89% 3
73311028 22.47 4 45.31 34 31.94% 4
731120 37.87 28 63.47 60 32.16% 5
722110 19.74 1 34.11 9 32.33% 17
721110 22.82 5 34.44 11 32.36% 18
721310 23.02 6 22.29 4 32.50% 21
721320 19.97 3 24.46 5 32.51% 23
621322 29.35 15 10.49 1 32.56% 27
421302 43.61 36 16.26 2 32.83% 57
621312 39.32 32 20.42 3 32.86% 62
Forecasting horizon 275-365 days (4th quarter)

Model GM(MAEg.) rank GM(MSE,.) rank MAPEg,. rank
732220 98.36 110 114.47 125  33.14% 1
734220 105.44 122 117.99 132 33.17% 2
723220 14.67 1 29.13 5 33.17% 3
733220 107.36 129 122.03 140 33.18% 4
734120 108.34 131 126.94 149  33.18% 5
724220 17.24 3 22.11 3 33.18% 9
724210 24.49 4 35.87 8 33.19% 11
723210 25.14 5 45.70 19 33.20% 16
721220 25.98 6 27.39 4 33.23% 22
722220 16.59 2 18.98 1 33.23% 23
120001 74.27 66 19.02 2 36.68% 225
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Table 6: The table provides results for the multiple congmariprocedure using Tukey’s HSD criterion, indicating
for each of the models which of the other models performsifsogmtly worse/ significantly better for the considered
criterion, at thew = 0.05 significance level. For each forecasting horizos 1, ...,6 the results are based on
bootstrapped subsamples of 1000 MARErrors. MAPE . errors based on the whole sample are also reported; the
lowest for each forecasting horizon is emphasized in bolie §even models used in the comparison were selected
as those performing best in each model family0Q0*, 2***00, 3****0, 4***0* 5***Q0, G***** 7****Q) with
respect to the global measure MARESsee the last two columns in Table 3.

Model MAPE,. Worse/ Better MAPE,. Worse/Better MAPE. Worse/ Better
120005 19.59% 2,3 /- 24.30% {2,3//{5,6,7 28.10% {2,3//{4,5,6,%
221300 29.58% +All 31.09% —/{1,4,56,7 34.52% —-/{1,4,5,6,7
331110 26.35% {2}/{1,4,5,6,7 28.03% —{1,45,6,7 31.67% —-4/{1,4,5,6,7
431302 18.74%  {2,3}/{5,7} 21.80% 2,3/ - 25.55% {1,2,3/-
531300 18.51% {2,3,4 /- 22.01% {1,2,3/- 26.26% {1,2,3/-
631322° 18.59% 2,31/ — 21.40% {1,2,3/- 25.21% {1,2,3,%4/ -
734110~  16.84% {2,3,4 /- 20.82% {1,2,3 /- 25.38% {1,2,3/ {6}
Model MAPE,. Worse/ Better MAPE,. Worse/Better MAPE. Worse/ Better

120005 31.53% {2,31/{4,5,6,F 33.42% 2,3 /{7} 33.35% {2,346/ -
221300 36.91%  +{1,45,6,7 37.61% —{1,4,56,7 38.28% {3} /{1,5,%

331110 35.20%  +{1,4,56,7 43.98% /{1,456, 42.30% — All

431302 29.44%  {1,2,3/- 33.27% {2,31/15,7}  34.26%  {3}/{1,5,7
531300 29.91%  {1,2,3/- 33.15% {2,3,4,6/—  33.65% {2,3.4,6/—
6313225  29.06% = {1,2,3/- 32.85% {2,3/{57  33.75%  {31/{1,5,7
7341104 28.71% 1,23/—  3184% {1,2,3,4,6/— 3326%  {2,3,4,6/-

Furthermore, both ANOVA and the Friedman test make an assom@f independence. And this
clearly is not met by the model errors in our empirical studyw use a rolling window scheme.
To cope with this and break the dependence structure, weha#dtrapped subsamples of 1000
errors instead of the full samples of 8580 errors; recalinfi®ection 4.1 that for all six datasets
we have 8580 forecasting windows in total. The bootstrappdsamples contained matched
errors, i.e., for each forecasting horizdn= 1, ..., 6) errors for the same randomly chosen 1000
forecasting windows were selected for each model. Sevenpeefrming models in terms of
MAPE. . were selected for the significance test — one from each madglyf (1*000*, 2***Q0,
JEF*Q, 4rexQx 500, eF** 7***(Q) see the last two columns in Table 3. For instance,
model 734110 is the best according to MARENd third best according to GM(MAE) while
model 631322 is fifth best according to GM(MSEand the best of all 6***** family models in
terms of MAPE...

Rejecting the null of the Friedman test only provides stasevidence for at least one of the
samples being from a population with dfdrent distribution. However, the test does not provide
detailed information on which of the samples are signifigadifferent. A test that can do so
is called a multiple comparison procedure. In this study we Tiukey’s honestly (or wholly)
significant diference test (Tukey’s HSD or Tukey’s WSD) which is optimal fug tomparison of
groups with equal sample sizes (Hochberg and Tamhane, M8&yell and Delaney, 2004). For
each of the seven models Table 6 indicates which of the otbdeta perform significantly worse
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or significantly better in terms of MARE, at thea = 0.05 significance level and independently
for each forecasting horizdm= 1, ..., 6. Note that when all other models were significantly better
(or worse) than a particular model this is indicated by ‘AWhile ‘- indicates that none of the
other models provided significantly better (or worse) rssiBeing based on a nonparametric test
statistic, it can be expected that the multiple comparisoegdure will not be able to distinguish
significant diterences between all of the considered models. However, wfate diferences
between the models observed earlier in this Section ardifigeinas significant.

The best sine-based models (221300 and 331110) perfornficagutly worse than the best
simple model (120005) and the best wavelet-based model8023531300, 631322 and 734110)
across all six forecasting horizons; except for model 2P1i80the most distant horizoh = 6
(i.e., 275-365 days ahead) which is not found to be signifigamorse than the spike unfiltered
wavelet-based models 431302 and 531300. The simple mo@80D52%erforms surprisingly well
for the closestlf{ = 1) and the two most distar & 5, 6) forecasting horizons. Interestingly, if we
repeat the analysis but take the worst performing modetsrmg of MAPE . from the simple and
wavelet-based families (namely, models 120002, 423103132, 622111 and 721220) and com-
pare them with the best sine-based models we obtain thaiwalMiavelet-based models perform
significantly better across all six forecasting horizorantithe remaining three models (120002,
221300 and 331110)! On the other hand, the worst simple m@@0I002 — linear regression of
the spot price in the two-year calibration window extrapediainto the forecasting window) per-
forms much worse than the best simple model (120005) andnisrglly comparable to the best
sine-based models.

Furthermore, models 531300 and 734110 (i.e., wavelets avlthear decay to the median)
perform significantly better than models 431302 and 631822 (vavelets with an exponential
decay to the median) for the two longer horizons of 183-36fsddeadl{ = 5,6). However,
model 631322 is significantly better than model 734110 faidom h = 3 (i.e., 31-90 days) and
comparable to it for horizons= 1,2 and 4. Model 531300 is the only one that has no significantly
better competitors for all six forecasting horizons, hogremodel 734110 yields lower MARE
forallh = 1,...,6 and has a larger number of competing models performingdfigntly worse
for horizonh = 5. Overall we can conclude that model 734110 is the best peifig model, with
model 631322 trailing closely by. Moreover, any of the watddased models is better than the
sine-based models.

6. Conclusions

In this paper we have presented the results of a thorougk studstimation and forecasting of
the long-term seasonal component (LTSC) of electricity ppiaes. We have considered a battery
of models:

e 12 simple linear models, including models with a deterntiniinction linearly or expo-
nentially decaying from the last observed spot price to thdian in the forecasting window
(model family 1*000%),

e 24 sine-based models fitted to raw prices (2***00),
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e 48 sine-based models fitted to spike-filtered prices (3*}**0

e 48 wavelet-based models fitted to raw prices and a functipomentially decaying to the
median in the forecasting window (4***Q*),

e 24 wavelet-based models fitted to raw prices and a functimally decaying to the median
in the forecasting window (5***00),

e 96 wavelet-based models fitted to spike-filtered prices dnd&ion exponentially decaying
to the median in the forecasting window (6*****),

e 48 wavelet-based models fitted to spike-filtered prices ahahetion linearly decaying to
the median in the forecasting window (7****Q).

The models dter in the length of the calibration window, the number andgégods of the sine
functions, the wavelet families and approximation levets, For details see Tables 1-2.

Using daily baseload spot prices from six major power markedflSW in Australia, EEX and
Nord Pool in Europe, NEPOOL, NYISO and PJM in the U.S. — we firad tvavelet-based models
(families 4***Q*, 5***Q0, 6***** and 7****Q) are better in t erms of forecasting spot prices up
to a year ahead than sine-based models (families 2***00 afd(. This observation is valid
for all three error measures (MAE, MSE, MAPE) both globaNgpall forecasting horizons (see
Table 3) as well as individually across the six forecastinog2ons (see Tables 4-5 and Figure 5).
The statistical significance of this finding is confirmed iblEa6 using MAPE errors and Tukey’s
HSD multiple comparison test.

This result questions the validity and usefulness of stsiihanodels of spot electricity prices
built on sinusoidal long-term seasonal components. Itgilges a clear recommendation for using
wavelet-based models for estimating and forecasting ti&CQ.TNot only are these models able
to provide a good in-sample fit in the calibration window (assherally much better than that of
sine-based models with a reasonable number of sine fuisgtibat also yield significantly better
forecasts up to a year ahead.

Overall we can conclude that model 734110 (i.e., a Coifletselea\of order 4 with a linear
decay to the median, calibrated on a three-year window wsgdpgoximationSg and with spikes
replaced by the mean of the deseasonalized prices) is thhgbéderming model, with model
631322 (i.e., a Daubechies wavelet of order 12 with an expiiadedecay to the median with the
decay parametet = 5, calibrated on a three-year window using approximatigrand with
spikes replaced by the upplexver 2.5% quantiles of the deseasonalized prices) tadinsely
by. However, as the results reported in Section 5.3 indidate choice of the wavelet family —
Coiflets or Daubechies — is not critical. Nor is the choice @& tbmaining parameters, despite
some subtle dierences discussed in Section 5.

Surprisingly, some simple models (including 120005, eedeterministic function exponen-
tially decaying in the forecasting window from the last atveel spot price to the median spot
price in the two-year calibration window) perform very wigt the closest (1-7 days) and the two
most distant (183-365 days) forecasting horizons. On therdtand, some simple models (like
120002, i.e., linear regression of the spot price in the y&ar calibration window extrapolated
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into the forecasting window) perform much worse and gehecalmparable over all forecasting
horizons to the poorly performing sine-based models. Unfately, the better performing simple
models are discontinuous (on the day the forecast is madehance, can be used for forecasting
the spot price up to a year ahead but should not be used foastasaizing the electricity spot
price series before fitting the stochastic model.

Finally, let us comment on two alternative approaches toetiog and forecasting the LTSC
which were briefly mentioned by Janczura and Weron (201 p@lhe context of wavelet-based
models. The first is to use forward looking information, I&®oothed forward electricity curves
(Benth et al., 2007; Borak and Weron, 2008). While this is a gty promising approach, it
has to be taken into account that forward prices include prgknia, which should somehow be
separated from the spot price forecast for it to be usefutl thrs is not an easy task since risk pre-
mia vary over time (Botterud et al., 2010; Huisman and Kili@12; Weron, 2008). There are also
some discouraging examples. For instance, Stevenson (@086) used consensus forecasts of
wholesale electricity spot prices issued by the Austrdfismancial Market Association (AFMA).
Given the lack of liquidity in electricity derivative comtcts traded on the Sydney Futures Ex-
change (SFE) at the time of their study, the accepted maoketfd price was the AFMA price
rather than a market traded price. As Stevenson et al. rgperAFMA (forward) prices turned
out to be misleading, strongly biased estimates of thedésgpot price. In arelated study Redl et al.
(2009) observe that also in the German EEX and the Scandim&ard Pool markets flerences
between forward prices in the trading period and spot piitéise delivery period are significant.
They further note that trading strategies of market pgréicts seem to rely heavily on current spot
prices instead of fundamental modeling approaches. Tlesséds question the predictive power of
forward prices. The second alternative approach is taatilindamental information like weather
(Jabtaska et al., 2011), generation and demand (Cartea et al.) 2008%/entory levels (Douglas
and Popova, 2008). There are, however, some problemsdelétethis. The most important one
being the limited availability of good quality forecaststbése fundamental factors for longer time
horizons. In particular, Redl et al. (2009) provide evidefacenisjudgment of future fundamental
generation and demand conditions by market participants.

Taking all this into account we may conclude that the waviebeted LTSC models considered
in this study provide relatively simple and accurate medmescribing and forecasting the LTSC
of spot electricity prices. The fact that these models alibregied to publicly available historical
data makes them an attractive building block of stochastidets of spot electricity prices.
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