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Abstract 

This paper by applying a sporting production function evaluates 229 professional 

tennis players’ career performance. By applying Data Envelopment Analysis (DEA) 

the paper produces a unified measure of nine performance indicators into a single 

career performance index. In addition bootstrap techniques have been applied for bias 

correction and the construction of confidence intervals of the efficiency estimates. 

The results reveal a highly competitive environment among the tennis players with 

thirty nine tennis players appearing to be efficient.  
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1. Introduction 

The economic theory behind sporting activity is based on the work of 

Rottenberg (1956). However, Scully (1974) was the first to apply a production 

function in order to provide empirical evidence for the performance of baseball 

players. Since then several scholars have used frontier production function in order to 

measure teams’ performance and which has been described on the works of Zak, 

Huang and Siegfried (1979), Porter and Scully (1982) and Fizel and D’Itri (1996, 

1997).  

Similarly, Dawson, Dobson and Gerrard (2000a) applied stochastic frontier 

approach (SFA), measuring managers’ efficiency for a panel of managers in English 

Football (soccer) Premier league. The study by Haas (2003a) was one of the first 

studies which applied data envelopment analysis (DEA) in order to measure team 

efficiency of twenty English Premier League clubs. More recently, Barros and Leach 

(2006a, 2006b, 2007) applied a stochastic Cobb-Douglas production frontier and DEA 

in order to measure the performance of football clubs in the English F.A. Premier 

League.  

Even though several studies have used DEA methodology to evaluate mostly 

football teams’ efficiency levels, there are not any studies proposing a similar 

production function approach for evaluating professional tennis players’ efficiency 

levels. Recently a study by Rámon, Ruiz and Sirvent (2012) proposed a DEA model 

with no inputs and a common set of weights in order to evaluate professional tennis 

players’ efficiency levels. In contrast to the pre-mentioned study this study uses a 

sports production function approach in a DEA framework in order to evaluate 229 

professional tennis players’ career efficiency levels. In that respect our paper 
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contributes to the existing literature by providing a DEA based multi-criteria indicator 

of tennis players’ performance evaluation.  

The structure of our paper is the following. Sections two and three present 

respectively a brief literature review and the data and the methodology adopted in the 

study respectively. Section four discusses the derived empirical results, whereas the 

last section concludes the paper.   

 

2. Literature review 

The production function in professional team sports is based on full technical 

efficiency in a sense that output can be maximized given a level of inputs or the inputs 

can be minimized given a set of outputs
1
. However, according to Dawson, Dobson 

and Gerrard (2000b) professional teams are not behaving as profit maximisers due to 

the existence of principal-agent relationships and therefore, fail to minimize costs and 

thus to be technical efficient. 

According to Rottenberg (1956) the “product” in sporting production function 

is the admission revenue generated by the sporting contest but, according to Dawson, 

Dobson and Gerrard (2000b) the modeling idea of treating revenues as an output have 

not been supported by researchers in the field of sport economics. However, Scully’s 

(1974) specification of treating as input individual players performance and team 

performance as output became an acceptable modeling strategy of the sporting 

production function.  

According to Dawson, Dobson and Gerrard (2000a, 2000b) there are two 

important limitations for the studies following this approach. First, the use of OLS 

regression analysis represents the average efficiency rather than the absolute creating 

                                                 
1
 For an extensive analysis and literature review of sports production function see Dawson, Dobson and 

Gerrard (2000b) and Lee and Berri (2008). 
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several measurement problems for policy evaluation
2
. Secondly, Scully’s production 

function excludes the impact of coaches which according to several studies play a 

major role of teams’ performance (Zech, 1981; Carmichael & Thomas, 1995).  

However, to our opinion still there are other aspects affecting directly teams’ 

performance and can not be captured due to lack of information. These may well be 

the history of the team, the spirit or other capital and labor related factors such as the 

physiatrists, doctors, training staff, training centers and their explicit personnel, youth 

academies and their personnel, etc.    

Several studies have applied efficiency analysis on sport teams’ 

performances
3
. Though the economic framework of professional sporting activity is 

based on the works of Rottenberg (1956), Neale (1964), Jones (1969) and Sloane 

(1969, 1971, 1976). In addition the first empirical evidence in an average production 

function framework was found in the work of Scully (1974) who investigated the 

performance of baseball players. By using the percentage of matches won in order to 

model teams’ output and management, capital and team spirit as inputs, Scully’s 

empirical work was the first to apply a production function in order to provide 

empirical evidence. The sporting production process has been modeled by several 

others in a similar way (among others Zech, 1981; Atkinson, Stanley & Tschirart 

1988; Schofield, 1988).  

 The application of frontier production function in order to measure teams’ 

performance has been dated back on the works of Zak, Huang and Siegfried (1979), 

Porter and Scully (1982) and Fizel and D’Itri (1996, 1997). Additionally, over the last 

                                                 
2
 Dawson, Dobson and Gerrard (2000b) suggest that stochastic frontier approach (SFA) is more 

suitable for measuring teams’ performance compared to OLS approach. However as noted by Lee and 

Berri (2008)  the time-varying stochastic frontier models with the identical temporal pattern assumption 

cannot be used in the analysis of team efficiency in sports. 

 
3
 For a literature review on the subject matter see Barros and Garcia-del-Barrio (2008). 
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two decades several scholars have been applying parametric and nonparametric 

frontier analysis to establish football teams’ performance and their determinants. 

Dawson, Dobson and Gerrard (2000a), applying stochastic frontier approach (SFA), 

measure managers’ efficiency for a panel of managers in English soccer’s Premier 

league using as output the percentage of matches won and as inputs several player 

quality variables, for the time period of 1992 to 1998.  

Haas (2003b) applied a data envelopment analysis (DEA) measuring team 

efficiency of the USA Major League Soccer (MLS). In a DEA setting and for the year 

2000, Haas used head coaches’ and players’ wages as inputs and revenues, points 

awarded and number of spectators as outputs. In addition Haas (2003a) in a similar 

DEA setting performed an efficiency analysis for twenty English Premier League 

clubs for the year 2000-2001. Furthermore, Barros and Leach (2006a, 2006b, 2007) 

applying a stochastic Cobb-Douglas production frontier and DEA measured the 

performance of football clubs in the English F.A. Premier League for the time periods 

1989-1990 to 2002-2003. They applied a combination of sport and financial data in 

order to measure football clubs’ efficiency levels.  

Frick and Simmons (2008) by applying SFA on data for German premier 

soccer league (Bundesliga) showed that managerial compensation impact positively 

on team success. In addition using the recent developments of efficiency measurement 

Barros, Assaf and Sá-Earp (2010) by applying Simar and Wilson’s (2007) DEA 

bootstrap procedure analyzed the performance of the Brazilian first league football 

clubs. Similarly, Barros and Garcia-del-Barrio (2011) measured the efficiency of the 

Spanish football clubs for the seasons 1996–1997 and 2003–2004 by applying the 

two-stage procedure (Simar & Wilson, 2007).  
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In terms of professional tennis related studies, several of them have 

concentrated on predicting tennis matches’ outcomes. For instance, del Corral and 

Prieto-Rodríguez (2010) by estimating probit models and applying bootstrapping 

techniques using Grand Slam tennis match data from 2005 to 2008 test whether the 

differences in rankings between individual players are good predictors for Grand Slam 

tennis outcomes. Several other predicting models for tennis matches outcomes have 

been also presented over the years (Boulier & Stekler, 1999; Clarke & Dyte, 2000; 

Klaassen & Magnus, 2003; Scheibehenne & Broder, 2007; McHale & Morton, 2011).  

Moreover, in a different study Coate and Robbins (2001) haven’t found any 

evidence that top-ranked male tennis professionals are more dedicated to their careers 

compared to the top-ranked female professionals. In addition Wozniak (2012) by 

using data from the International Tennis Federation (ITF) provides evidence that 

gender differences are smaller in a very competitive setting and that the effects of 

previous performance are dependent on gender and the time the previous competition 

took place. Rohm, Chatterjee and Habibullah (2004) proposed an approach for 

measuring competitive dynamics for major tennis championships providing evidences 

that competitiveness at Wimbledon has been extremely high.  

Nevertheless, the only study applying DEA methodology in order to evaluate 

professional tennis players’ efficiency levels is the one conducted by Rámon, Ruiz 

and Sirvent (2012). By using data from Association of Tennis Professional (ATP) 

they evaluated the efficiency level of 53 professional tennis players who played more 

than 40 matches. Rámon, Ruiz and Sirvent (2012) proposed a DEA model with no 

input specifications and nine performance outputs using the assumption of constant 

returns to scale (CRS) and a common set of weights. As a result their derived final 

player ranking was similar to the one proposed from the ATP.  
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Finally, in contrast to the pre-mentioned study, our study uses a sports 

production function setting in a DEA context evaluating career performance of 229 

professional tennis players. Moreover, different economic assumptions have been 

used in our setting and bootstrapped techniques have also been applied in order for 

our results to be corrected from sample bias. 

 

3. Data and Methodology 

3.1 Description of the variables 

We are using career data from the Association of Tennis Professional (ATP) 

for 229 world tennis players (see appendix A1) for the time period between January 

1991 and July 2012
4
. The ATP data concern 10 performance factors recorded for 

three types of tennis courts (clay, grass and hard courts)  such as: career matches 

(input), career break points saved (output), career aces (output), career 1st serve points 

won (output), career 2nd serve points won (output), career service games won 

(output), career 1st serve return points won (output), career 2nd serve return points 

won (output), career break points converted-points won (output) and career return 

games won (output). We are using these factors in a sports’ production function 

framework having one input (career matches) and nine different outputs (performance 

determinants).  

According to Rámon, Ruiz and Sirvent (2012, p.4885) the factors provided 

from the ATP rankings are based on players’ performances on world tournaments 

during different seasons by providing to the players a different amount of points based 

on the rounds they reach in such tournaments. Therefore, ATP rankings are 

determined according to the total points a tennis player gets in a specific season. As 

                                                 
4
 The data are available from the official site of the Association of Tennis Professional (ATP) at: 

http://www.atpworldtour.com/ 
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such they reflect players’ competitive position but in contrast to our study do not 

reflect players’ efficiency performance of their career games
5
.  

As can be observed in our setting of tennis players’ production function we are 

using one input (career matches) and nine performance indicators. Figure 1 provides 

us with kernel conditional density estimate using local polynomial estimation 

following Hyndman, Bashtannyk and Grunwald (1996) and Hyndman and Yao 

(2002)
6
. The conditional density plots are computed for tennis players’ nine different 

output performance measures
7
 and their career matches. Unlike standard descriptive 

tables, the density plots can provide us with complete picture of the underlying 

processes generating the selected outputs. All subfigures reveal a positive relationship 

between tennis players’ career matches and the nine selected output performance 

indicators. Indicating that as the input performance increase (career matches) the 

output performance indicators are also increasing.  

Besides, Figure 1 presents large dispersions among the nine different outputs 

used. For instance, a large dispersion at high number of career matches in the 

relationship between Career break points saved and career matches is reported 

(subfigure 1a). In addition for the career aces and career matches relationship the 

dispersion is more pronounced with evidence of bi-modality (subfigure 2b). 

Dispersions among the input and the outputs used can also be observed in most of the 

cases.  

                                                 
5
 Scheibehenne and Broder (2007) provided evidence that the official ATP rankings do not provide 

useful information predicting the outcomes of tennis matches. 

 
6
 The bandwidths have been computed using normal reference rules described in Bashtannyk and 

Hyndman (2001) and Hyndman and Yao (2002). 

 
7
 These are: career break points saved-subfigure 1a, career aces-subfigure 1b, career 1st serve points 

won-subfigure 1c, career 2nd serve points won-subfigure 1d, career service games won-subfigure 1e, 

career 1st serve return points won-subfigure 1f, career 2nd serve return points won-subfigure 1g, career 

break points converted-points won-subfigure 1h and career return games won-subfigure 1i. 
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Moreover, in accordance with figure 1, table 1 provides the descriptive 

statistics of the input and the outputs used. Finally, it can be realized when looking at 

the high standard deviation values there are a lot of dissimilarities among the output 

performance indicators of the 229 professional tennis players.  

 

Figure 1: Conditional density plots of tennis players’ career matches and output 

performance determinants 

 

 

 

1a

1b  

1c

 
1d
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Table 1: Descriptive statistics of the input and outputs used (one input and nine 

outputs) 

 

  Career matches -Input Career break points saved-Output Career aces-Output 

Mean 433.454 1678.271 2363.904 

Std 181.090 666.213 1689.066 

Min 200.000 668.000 248.000 

Max 1045.000 4008.000 10183.000 

  Career service games won-Output Career 1st serve return points won-Output Career 2nd serve return points won-Output 

Mean 3953.148 5848.258 6789.956 

Std 1822.707 2625.554 3119.360 

Min 1380.000 1932.000 2352.000 

Max 11272.000 16344.000 16743.000 

  Career 1st serve points won-Output Career 2nd serve points won-Output Career break points converted-Output 

Mean 13893.476 6675.681 1228.913 

Std 6128.319 3033.200 621.132 

Min 5113.000 2050.000 306.000 

Max 36871.000 16931.000 3390.000 

  Career return games won-Output     

Mean 1228.913   

Std 621.132   

Min 306.000   

Max 3390.000     

 

 

3.2 The economic model  

Having a list of inputs p and outputs q in an economic analysis framework the 

performance evaluation of tennis players in a sense of a productivity unit can be 

defined as a set of pointsΨ , which in turn defines the tennis players’ production set in 

the Euclidean space qpR +
+ as

8
:  

( ) ( ){ }feasible is ,,,, yxRyRxyx qp

++ ∈∈=Ψ        (1), 

the input vector is indicated by x and the output vector by y . Then the output 

correspondence set (for all Ψ∈x ) can be defined as: 

( ) ( ){ }Ψ∈∈= + yxRyxP q ,          (2). 

According to Farrell (1957) the efficient boundaries of Ψ can be defined in the 

output space in radial terms as: 

                                                 
8
 In this section we follow the notation by Daraio and Simar (2007). 
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( ) ( ) ( ) ( ){ }1,, >∀∉∈=∂ λλ xPyxPyyxP        (3). 

In addition following Shephard (1970) we assume the economic axioms of no 

free lunch, free disposability, bounded, closeness and convexity. Then we can define 

the efficiency level of a tennis player operating at the level of ( )00 , yx by calculating 

the distance of these points to the frontiers. Based on the work of Debreu (1951), 

Farrell (1957) suggested a radial distance in order for the distance from a point to the 

corresponding frontier to be calculated. In our case we define the frontier in the output 

direction where the efficient subset is characterized by ( )xP∂ . Then Farrell’s output 

measure of efficiency can be defined as: 

( ) ( ){ } ( ){ }Ψ∈=∈= 000000 ,supsup, yxxPyyx λλλλλ      (4). 

According to Daraio and Simar (2007)  ( ) 1, 00 ≥yxλ is the proportionate increase of 

output which a tennis player should achieved in order to be determined as efficient
9
. 

Finally, we are using the inverse of these radial distances known as Shephard’s 

output distance functions (Shephard, 1970) and can be defined as: 

( ) ( ){ } ( )( ) 11 ,,0inf,
−− ≡Ψ∈>= yxyxyxout λλλδ       (5), 

for all ( ) ( ) 1,  ,, ≤Ψ∈ yxyx outδ , then for a ( ) 1, =yxoutδ , then ( )yx,  belongs to the 

frontier Ψ . 

 

3.3 The Data Envelopment Analysis (DEA) estimator 

Farrell (1957) was the first to indicate that linear programming can be used in 

order to find the frontier and estimate efficiency score. However the linear 

programming estimators were first operationalized by Charnes, Cooper and Rhodes 

(1978) presenting a linear program (known as the CCR model) for calculating 

                                                 
9
 This implies that ( )( )0000 ,, yyxx λ  is on the frontier. 
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efficiency scores under the assumption of constant returns to scale (CRS)
10
. Later, 

Banker, Charnes and Cooper (1984) introduced a DEA estimator (known as the BCC 

model) allowing for variable returns to scale (VRS). The measurement of efficiency 

for a given tennis player ( )yx,  relative to the boundary of the convex hull of 

( ){ }niYX ii ,...,1,, ==Χ can be defined as: 

( ) ( )





=≥=





≥≤∈=Ψ
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+
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n
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 The DEA

∧

Ψ  allows variable returns to scale. However, if we want to allow 

constant returns to scale the restriction ∑
=

=
n

i

i

1

1ξ needs to be dropped from equation 

(6). Then the DEA estimator of the output efficiency score for a given tennis player 

( )00 , yx is obtained by solving the following linear program: 

( ) ( )






 Ψ∈=

∧∧

DEADEA yxyx 0000 ,sup, λλλ       (7) 
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i
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    (8) 

In addition by applying the methodology introduced by Simar and Wilson (1998, 

2000a, 2000b) we perform the bootstrap procedure for DEA estimators in order to 

obtain biased corrected results (see appendix A2 for details). More analytically the 

biased corrected estimations can be obtained from: 

                                                 
10
 For interesting remarks raised regarding the history and originality of DEA models see the work of 

Førsund and Sarafoglou (2002) and Førsund, Kittelsen and Krivonozhko (2009).  
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( ) ( ) ( )
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Then by expressing the output oriented efficiency in terms of the Shephard 

(1970) output distance function as ( ) ( )( ) 1

0000 ,,
−

∧

= yxyx
out

DEA λδ  we can construct 

bootstrap confidence intervals for ( )00 , yx
out

DEA

∧

δ  as:  

( ) ( ) 2/002/100 ,,, αα αδαδ
∧∧

−

∧∧

−− yxyx
out

DEA

out

DEA               (10). 

Finally we follow the bootstrap test developed by Simar and Wilson (2002) in order to 

test whether the CRS or VRS formulation is appropriate to our analysis. The null 

hypothesis of the test can be developed as 0 :H λΨ   is globally CRS against 1 :H λΨ is 

globally VRS.  Then the test statistic mean of the ratios of the efficiency scores is then 

provided by: 

,

1
,

( , )1
( )

( , )

n
CRS n i i

n

i
VRS n i i

X Y
T X

n X Y

λ

λ

∧

∧
=

= ∑                                       (11).  

At the same time the p-value of the null-hypothesis can be obtained as: 

))(( 0 trueisHTXTprobvaluep obsn ≤=−
                (12) 

where obsT
 is the value of T computed on the original observed sample nX .The p-

value can be approximated by the proportion of bootstrap values of 
bT *
 less the 

original observed value of obsT
 such as: 

( )
∑
=

≤ℑ
≈−

B

b

obs

b

B

TT
valuep

1

*

  .                (13). 
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4. Empirical findings 

According to O’ Donnell (2012) the main advantages of DEA is the 

construction of a surface that envelops the data points taking into account the 

underline assumptions of the production technology (i.e. convexity) having no 

assumptions regarding the functional form of the production frontier. On top, DEA 

can accommodate multiple inputs and outputs with no assumptions of the error terms, 

no statistical issues (e.g., endogeneity) associated with estimating technologies and it 

does not require a priori assignments of weights to tennis players’ performance 

dimensions used in order to evaluate their career efficiency levels (Barros, 2003).  

Nevertheless, the main weaknesses lie on the fact that DEA can not distinguish 

inefficiency from noise, it is sensitive to outliers and for small samples the results are 

biased upwards. Simar and Wislon (1998, 2000a, 2000b) proposed a bootstrap method 

for inference about the obtained DEA estimators providing in such a way biased free 

estimators in a multivariate framework.  

In our case the DEA methodology is more suitable compared to the 

econometric approach of efficiency measurement (i.e. stochastic frontier approach-

SFA) since we do not know the underlying functional form of tennis players’ sport 

production function and since we combine in our analysis multiple outputs (nine 

output performance measures) which are difficult to be modelled in a SFA 

framework.  

In addition as has been previously analysed we are using an output orientation 

in our analysis. Therefore, tennis players’ efficiency is based on the ability of the 

players to expand proportionally their outputs quantities without altering the input 

quantities used. Coelli, Rao, O’Donnell and Battese (2005) suggest that the choice of 

orientation is based according to which quantities (inputs or outputs) the decision 
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maker has most control over. As a result, in our case the tennis players have a better 

control (due to their skills possessed) of their output performance indicators compared 

to the number of their career matches (input variable)
11
.   

Table 2 presents the efficiency scores of the professional tennis players 

assuming constant returns to scale (CRS). The results present that thirty nine players 

are reported to be efficient (i.e. with efficiency score equal to 1) and a hundred and 

ninety tennis players are reported to be inefficient (i.e. efficiency scores less than 1).  

Moreover table 2 presents also the thirty nine players with the lowest performance 

over the years. In addition to the original estimates, the third column presents the 

biased corrected estimates (BCCRS), fourth the estimated bias (Bias), the fifth column 

presents the standard deviation of the bias (Std) and the sixth and seventh columns 

present the lower (LB) and upper (UB) bounds of the 95% bootstrap intervals 

following the methodology by Simar and Wilson (1998, 2000a, 2000b).  

It is reported that for the efficient tennis players under the assumption of CRS 

the largest deviation between the original and the biased corrected estimates have 

been reported for Roger Federer, Patrick McEnroe, Todd Martin, Lleyton Hewitt, 

Richard Krajicek, Andy Murray, Guillermo Coria, John Isner, Ivo Karlovic, and 

Wayne Arthurs.   

Similarly, table 3 presents the results obtained under the variable returns to 

scale assumption (VRS). In this case sixty four tennis players are reported to be 

efficient (i.e. efficiency score equal to 1) and a hundred and sixty five players are 

reported to be inefficient (i.e. efficiency scores less than 1). Moreover, table 3 

presents the last sixty four performers along side with their biased corrected efficiency 

estimates and 95% lower and upper bootstrapped confidence intervals. In addition the 

                                                 
11
 Nevertheless it must be mentioned that under the assumption of constant returns to scale the output  

and input oriented measures of technical efficiency are equivalent (Färe and Lovell, 1978)  
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higher deviations between the original and the biased corrected efficiency estimates 

under the VRS assumption (BCVRS) are reported for Ivan Lendl, Guillermo Coria, 

Wayne Arthurs, Fabrice Santoro, Roger Federer, Paul Goldstein, John Isner, 

Goran Ivanisevic, Ivo Karlovic and Jeremy Chardy.   

 

Table 2: Original and bias corrected efficiency estimates along side with their 95% 

bootstrap intervals based on the CRS assumption 

 

Players CRS BCcrs Bias Std LB UB Players CRS BCcrs Bias Std LB UB 

Aaron Krickstein 1.000 0.974 0.026 0.000 0.962 0.998 Hernan Gumy 0.898 0.889 0.009 0.000 0.883 0.896 

Alberto Berasategui 1.000 0.970 0.030 0.000 0.953 0.998 Igor Kunitsyn 0.898 0.883 0.015 0.000 0.871 0.897 

Alex O'Brien 1.000 0.977 0.023 0.000 0.965 0.998 Renzo Furlan 0.898 0.888 0.010 0.000 0.880 0.896 

Andre Agassi 1.000 0.962 0.038 0.000 0.942 0.999 Marcelo Rios 0.895 0.878 0.017 0.000 0.863 0.893 

Andrew Ilie 1.000 0.964 0.036 0.000 0.941 0.998 Adrian Voinea 0.894 0.880 0.015 0.000 0.871 0.893 

Andy Murray 1.000 0.949 0.051 0.001 0.914 0.998 Max Mirnyi 0.894 0.880 0.015 0.000 0.866 0.893 

Bernd Karbacher 1.000 0.974 0.026 0.000 0.960 0.998 Benjamin Becker 0.894 0.875 0.019 0.000 0.857 0.892 

Boris Becker 1.000 0.974 0.026 0.000 0.952 0.998 Andrea Gaudenzi 0.892 0.878 0.013 0.000 0.869 0.890 

Brad Gilbert 1.000 0.981 0.019 0.000 0.971 0.998 Karim Alami 0.891 0.879 0.012 0.000 0.870 0.889 

Bryan Shelton 1.000 0.971 0.029 0.000 0.956 0.998 Fernando Meligeni 0.891 0.880 0.011 0.000 0.873 0.889 

David Wheaton 1.000 0.965 0.035 0.000 0.949 0.998 Ernests Gulbis 0.891 0.876 0.015 0.000 0.863 0.889 

Dmitry Tursunov 1.000 0.983 0.017 0.000 0.974 0.998 Jerome Golmard 0.890 0.879 0.010 0.000 0.872 0.888 

Fernando Verdasco 1.000 0.976 0.024 0.000 0.965 0.998 Byron Black 0.889 0.872 0.017 0.000 0.855 0.888 

Fernando Vicente 1.000 0.977 0.023 0.000 0.964 0.998 Brett Steven 0.889 0.877 0.011 0.000 0.870 0.887 

Gael Monfils 1.000 0.965 0.035 0.000 0.940 0.999 Daniel Vacek 0.889 0.874 0.014 0.000 0.863 0.887 

Gianluca Pozzi 1.000 0.972 0.028 0.000 0.951 0.998 Stefan Koubek 0.886 0.876 0.010 0.000 0.869 0.884 

Guillermo Coria 1.000 0.944 0.056 0.001 0.902 0.998 Raemon Sluiter 0.884 0.873 0.011 0.000 0.862 0.883 

Hendrik Dreekmann 1.000 0.962 0.038 0.000 0.940 0.998 Nicolas Massu 0.883 0.871 0.012 0.000 0.864 0.881 

Ivan Lendl 1.000 0.970 0.030 0.000 0.948 0.998 Kenneth Carlsen 0.882 0.868 0.014 0.000 0.857 0.880 

Ivo Karlovic 1.000 0.939 0.061 0.003 0.865 0.998 Mariano Puerta 0.877 0.866 0.011 0.000 0.858 0.875 

Jan-Michael Gambill 1.000 0.969 0.031 0.000 0.952 0.998 Marc Rosset 0.875 0.859 0.016 0.000 0.846 0.874 

John Isner 1.000 0.944 0.056 0.002 0.887 0.998 Janko Tipsarevic 0.869 0.856 0.013 0.000 0.845 0.867 

Lleyton Hewitt 1.000 0.959 0.041 0.001 0.929 0.998 Andrei Pavel 0.865 0.852 0.013 0.000 0.842 0.864 

Marat Safin 1.000 0.976 0.024 0.000 0.961 0.999 Sebastien Lareau 0.864 0.851 0.013 0.000 0.839 0.862 

Mark Philippoussis 1.000 0.967 0.033 0.000 0.944 0.998 Paradorn Srichaphan 0.863 0.851 0.012 0.000 0.843 0.861 

Michael Chang 1.000 0.966 0.034 0.000 0.946 0.998 Florian Mayer 0.862 0.853 0.009 0.000 0.849 0.860 

Mikael Tillstrom 1.000 0.977 0.023 0.000 0.962 0.998 Kristof Vliegen 0.855 0.847 0.009 0.000 0.841 0.853 

Novak Djokovic 1.000 0.975 0.025 0.000 0.957 0.998 Marcelo Filippini 0.851 0.836 0.015 0.000 0.824 0.850 

Patrick McEnroe 1.000 0.961 0.039 0.000 0.937 0.998 Filip Dewulf 0.851 0.839 0.012 0.000 0.830 0.849 

Paul Goldstein 1.000 0.971 0.029 0.000 0.946 0.999 Christophe Rochus 0.848 0.826 0.022 0.000 0.805 0.846 

Pete Sampras 1.000 0.962 0.038 0.000 0.936 0.998 Carl-Uwe Steeb 0.845 0.838 0.007 0.000 0.833 0.844 

Rafael Nadal 1.000 0.966 0.034 0.000 0.942 0.998 Shuzo Matsuoka 0.845 0.830 0.015 0.000 0.818 0.843 

Richard Fromberg 1.000 0.983 0.017 0.000 0.970 0.999 Christian Ruud 0.841 0.828 0.012 0.000 0.819 0.839 

Richard Krajicek 1.000 0.958 0.042 0.001 0.930 0.998 Jakob Hlasek 0.838 0.826 0.012 0.000 0.818 0.836 

Roger Federer 1.000 0.961 0.039 0.000 0.940 0.999 Yen-Hsun Lu 0.834 0.822 0.012 0.000 0.813 0.833 

Scott Draper 1.000 0.972 0.028 0.000 0.955 0.998 Daniel Nestor 0.821 0.805 0.016 0.000 0.792 0.820 

Todd Martin 1.000 0.961 0.039 0.000 0.937 0.998 Hyung-Taik Lee 0.805 0.799 0.007 0.000 0.794 0.804 

Tomas Carbonell 1.000 0.969 0.031 0.000 0.954 0.998 Luis Horna 0.798 0.785 0.013 0.000 0.773 0.796 

Wayne Arthurs 1.000 0.939 0.061 0.002 0.871 0.998 Ramon Delgado 0.759 0.746 0.012 0.000 0.737 0.757 
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Table 3: Original and bias corrected efficiency estimates along side with their 95% 

bootstrap intervals based on the VRS assumption  

 

Players VRS BCvrs Bias Std LB UB Players VRS BCvrs Bias Std LB UB 

Aaron Krickstein 1.000 0.964 0.036 0.000 0.938 0.998 Igor Andreev 0.934 0.925 0.009 0.000 0.918 0.932 

Alberto Berasategui 1.000 0.964 0.036 0.000 0.941 0.999 Olivier Rochus 0.934 0.920 0.014 0.000 0.908 0.932 

Alex Corretja 1.000 0.979 0.021 0.000 0.959 0.999 Philipp Kohlschreiber 0.933 0.924 0.008 0.000 0.920 0.932 

Alex O'Brien 1.000 0.975 0.025 0.000 0.958 0.998 Sergi Bruguera 0.933 0.918 0.015 0.000 0.904 0.931 

Andre Agassi 1.000 0.954 0.046 0.001 0.897 0.999 Juan Martin Del Potro 0.931 0.912 0.019 0.000 0.892 0.930 

Andrei Medvedev 1.000 0.983 0.017 0.000 0.972 0.999 Bohdan Ulihrach 0.929 0.912 0.016 0.000 0.899 0.928 

Andrew Ilie 1.000 0.953 0.047 0.002 0.899 0.999 Amos Mansdorf 0.928 0.909 0.019 0.000 0.889 0.927 

Andy Murray 1.000 0.956 0.044 0.001 0.915 0.999 Karel Novacek 0.928 0.917 0.011 0.000 0.910 0.926 

Bernd Karbacher 1.000 0.973 0.027 0.000 0.956 0.999 Jurgen Melzer 0.926 0.915 0.011 0.000 0.907 0.925 

Bjorn Phau 1.000 0.966 0.034 0.001 0.926 0.999 Richard Gasquet 0.926 0.912 0.014 0.000 0.899 0.925 

Boris Becker 1.000 0.976 0.024 0.000 0.953 0.999 Taylor Dent 0.926 0.911 0.015 0.000 0.900 0.924 

Brad Gilbert 1.000 0.966 0.034 0.000 0.943 0.999 Benjamin Becker 0.924 0.903 0.020 0.000 0.879 0.922 

Bryan Shelton 1.000 0.955 0.045 0.001 0.909 0.999 Nicolas Lapentti 0.923 0.909 0.014 0.000 0.895 0.922 

Carlos Moya 1.000 0.964 0.036 0.001 0.919 0.999 Mario Ancic 0.924 0.906 0.018 0.000 0.891 0.922 

Chris Woodruff 1.000 0.956 0.044 0.001 0.916 0.999 Jaime Yzaga 0.923 0.909 0.015 0.000 0.894 0.922 

David Ferrer 1.000 0.981 0.019 0.000 0.965 0.999 Emilio Sanchez 0.921 0.909 0.012 0.000 0.900 0.919 

David Sanchez 1.000 0.965 0.035 0.001 0.924 0.999 Andrei Cherkasov 0.919 0.897 0.022 0.000 0.872 0.918 

David Wheaton 1.000 0.967 0.033 0.000 0.946 0.998 Hicham Arazi 0.919 0.904 0.014 0.000 0.893 0.917 

Dmitry Tursunov 1.000 0.978 0.022 0.000 0.966 0.999 Paul Haarhuis 0.916 0.904 0.012 0.000 0.896 0.915 

Fabrice Santoro 1.000 0.949 0.051 0.002 0.884 0.999 Albert Montanes 0.916 0.907 0.009 0.000 0.902 0.915 

Feliciano Lopez 1.000 0.975 0.025 0.000 0.959 0.999 Kenneth Carlsen 0.916 0.899 0.017 0.000 0.887 0.914 

Fernando Verdasco 1.000 0.972 0.028 0.000 0.954 0.999 Olivier Delaitre 0.916 0.899 0.017 0.000 0.882 0.914 

Fernando Vicente 1.000 0.973 0.027 0.000 0.955 0.999 Karol Kucera 0.913 0.898 0.014 0.000 0.884 0.912 

Francisco Clavet 1.000 0.976 0.024 0.000 0.957 0.999 Daniel Vacek 0.913 0.901 0.012 0.000 0.892 0.911 

Gael Monfils 1.000 0.969 0.031 0.000 0.939 0.998 Juan Antonio Marin 0.912 0.889 0.023 0.000 0.850 0.910 

Gaston Gaudio 1.000 0.986 0.014 0.000 0.974 0.999 Byron Black 0.911 0.897 0.015 0.000 0.883 0.910 

Gianluca Pozzi 1.000 0.964 0.036 0.001 0.939 0.999 Andrea Gaudenzi 0.911 0.899 0.012 0.000 0.891 0.910 

Gilles Simon 1.000 0.986 0.014 0.000 0.976 0.999 Filippo Volandri 0.910 0.893 0.017 0.000 0.875 0.908 

Goran Ivanisevic 1.000 0.948 0.052 0.002 0.866 0.999 Tomas Berdych 0.909 0.896 0.012 0.000 0.884 0.907 

Guillermo Coria 1.000 0.950 0.050 0.002 0.887 0.999 Jose Acasuso 0.908 0.897 0.011 0.000 0.889 0.907 

Hendrik Dreekmann 1.000 0.959 0.041 0.001 0.910 0.999 Arnaud Boetsch 0.908 0.896 0.011 0.000 0.887 0.906 

Ivan Lendl 1.000 0.951 0.049 0.002 0.899 0.999 Max Mirnyi 0.907 0.892 0.014 0.000 0.880 0.905 

Ivo Karlovic 1.000 0.947 0.053 0.003 0.865 0.999 Hernan Gumy 0.906 0.891 0.015 0.000 0.876 0.904 

Jan-Michael Gambill 1.000 0.969 0.031 0.000 0.947 0.999 Renzo Furlan 0.905 0.895 0.011 0.000 0.887 0.904 

Jeff Tarango 1.000 0.982 0.018 0.000 0.970 0.999 Marc Rosset 0.904 0.885 0.018 0.000 0.868 0.902 

Jeremy Chardy 1.000 0.947 0.053 0.002 0.871 0.999 Fernando Meligeni 0.900 0.888 0.012 0.000 0.880 0.899 

John Isner 1.000 0.948 0.052 0.002 0.867 0.998 Igor Kunitsyn 0.900 0.885 0.015 0.000 0.871 0.899 

Jordi Arrese 1.000 0.965 0.035 0.001 0.934 0.999 Stefan Koubek 0.900 0.885 0.014 0.000 0.871 0.898 

Juan Carlos Ferrero 1.000 0.981 0.019 0.000 0.967 0.999 Adrian Voinea 0.899 0.886 0.013 0.000 0.877 0.898 

Juan Ignacio Chela 1.000 0.978 0.022 0.000 0.963 0.999 Marcelo Rios 0.898 0.883 0.015 0.000 0.864 0.897 

Lleyton Hewitt 1.000 0.957 0.043 0.001 0.911 0.999 Nicolas Massu 0.898 0.882 0.016 0.000 0.867 0.897 

Marat Safin 1.000 0.968 0.032 0.000 0.942 0.999 Ernests Gulbis 0.897 0.880 0.017 0.000 0.864 0.896 

Marcel Granollers 1.000 0.968 0.032 0.000 0.939 0.999 Karim Alami 0.891 0.877 0.014 0.000 0.866 0.890 

Marcos Baghdatis 1.000 0.985 0.015 0.000 0.973 0.999 Jerome Golmard 0.890 0.879 0.011 0.000 0.871 0.889 

Mark Philippoussis 1.000 0.969 0.031 0.000 0.942 0.998 Brett Steven 0.889 0.876 0.013 0.000 0.867 0.888 

Michael Chang 1.000 0.961 0.039 0.001 0.919 0.999 Raemon Sluiter 0.886 0.871 0.015 0.000 0.854 0.884 

Mikael Tillstrom 1.000 0.967 0.033 0.000 0.940 0.999 Andrei Pavel 0.882 0.868 0.013 0.000 0.857 0.881 

Novak Djokovic 1.000 0.978 0.022 0.000 0.957 0.999 Mariano Puerta 0.878 0.865 0.013 0.000 0.854 0.877 

Patrick McEnroe 1.000 0.962 0.038 0.001 0.930 0.999 Kristof Vliegen 0.877 0.859 0.018 0.000 0.840 0.876 

Paul Goldstein 1.000 0.948 0.052 0.002 0.869 0.999 Christophe Rochus 0.876 0.861 0.015 0.000 0.847 0.875 
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Pete Sampras 1.000 0.952 0.048 0.001 0.896 0.999 Janko Tipsarevic 0.869 0.855 0.014 0.000 0.844 0.868 

Rafael Nadal 1.000 0.963 0.037 0.001 0.928 0.999 Paradorn Srichaphan 0.866 0.854 0.012 0.000 0.846 0.865 

Richard Fromberg 1.000 0.968 0.032 0.000 0.950 0.999 Sebastien Lareau 0.864 0.849 0.015 0.000 0.836 0.863 

Richard Krajicek 1.000 0.960 0.040 0.001 0.921 0.998 Florian Mayer 0.863 0.853 0.010 0.000 0.847 0.862 

Roger Federer 1.000 0.948 0.052 0.002 0.870 0.998 Marcelo Filippini 0.855 0.841 0.014 0.000 0.826 0.854 

Sandon Stolle 1.000 0.977 0.023 0.000 0.954 0.999 Filip Dewulf 0.853 0.837 0.015 0.000 0.821 0.851 

Scott Draper 1.000 0.973 0.027 0.000 0.951 0.999 Shuzo Matsuoka 0.849 0.832 0.017 0.000 0.813 0.848 

Thomaz Bellucci 1.000 0.960 0.040 0.001 0.916 0.999 Carl-Uwe Steeb 0.845 0.831 0.014 0.000 0.820 0.844 

Todd Martin 1.000 0.959 0.041 0.001 0.926 0.998 Christian Ruud 0.844 0.831 0.013 0.000 0.817 0.843 

Tomas Carbonell 1.000 0.970 0.030 0.000 0.950 0.999 Yen-Hsun Lu 0.840 0.823 0.016 0.000 0.807 0.839 

Vincent Spadea 1.000 0.967 0.033 0.001 0.926 0.999 Jakob Hlasek 0.838 0.826 0.012 0.000 0.816 0.837 

Wayne Arthurs 1.000 0.949 0.051 0.002 0.868 0.999 Hyung-Taik Lee 0.808 0.799 0.008 0.000 0.795 0.807 

Wayne Ferreira 1.000 0.975 0.025 0.000 0.953 0.999 Luis Horna 0.798 0.785 0.013 0.000 0.772 0.797 

Yevgeny Kafelnikov 1.000 0.971 0.029 0.000 0.937 0.999 Ramon Delgado 0.769 0.750 0.019 0.000 0.727 0.768 

 

 

Additionally to table 3, table 4 provides us with the descriptive statistics of the 

obtained efficiency estimates under the VRS and CRS case both for the original and 

biased corrected estimates along side with their 95% bootstrapped confidence 

intervals. The descriptive statistics reveal that biased corrected efficiency estimates 

are lower compared to the original efficiency scores both for the CRS and the VRS 

case.  

The VRS scores are also higher compared to the CRS scores since the number 

of tennis players reported to be efficient are greater for the VRS case. The standard 

deviations values presents that the efficiency variations among the 229 tennis players 

are not so large indicating a high competitive environment among the professional 

tennis players.  

Figure 2 presents the density plots of the estimated efficiency scores both for 

the CRS and VRS scales. The black lines indicate the CRS efficiency estimates 

(original-solid line and biased corrected-dashed line) whereas the blue lines indicate 

the VRS efficiency estimates (original-dotted line and biased corrected-dash dotted 

line). As can be observed for the distribution of the original CRS efficiency estimates 
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appears to be platykurtic (i.e. having a negative excess kurtosis) indicating a lower, 

wider peak around tennis players’ mean efficiency estimates.  

 

Table 4: Descriptive statistics of professional tennis players efficiency scores 

 

Constant returns to scale model-CRS 

 CRS BCcrs Bias Std LB UB 

max 1.000 0.983 0.061 0.003 0.974 0.999 

min 0.759 0.746 0.007 0.000 0.737 0.757 

mean 0.944 0.927 0.018 0.000 0.913 0.943 

std 0.047 0.043 0.009 0.000 0.042 0.047 

Variable returns to scale model-VRS 

 VRS BCvrs Bias Std LB UB 

max 1.000 0.986 0.053 0.003 0.976 0.999 

min 0.769 0.750 0.008 0.000 0.727 0.768 

mean 0.956 0.935 0.021 0.000 0.915 0.954 

std 0.046 0.042 0.011 0.000 0.041 0.046 

 

 

But the distribution of the biased corrected efficiency estimates for the CRS 

case appeared to be leptokurtic having a sharp peak around tennis players’ mean 

efficiency estimates. Moreover, under the assumption of VRS it appears that the 

distribution of tennis players’ efficiency has a tendency towards a polarization of twin 

peaks (i.e. of tennis players having an efficiency score of 0.95 and of those having an 

efficiency score equal to 1). However the tendency of the twin-peakedness effect 

disappears when looking at the distribution for the biased corrected estimates under 

the VRS case which appear to be leptokurtic.   

Finally, following the methodology proposed by Simar and Wilson (2002) we 

test whether the CRS or VRS assumption is better suited for our efficiency analysis. 

In our application we have one input and nine outputs and we obtained for this test a 

p-value of 0.3187> 0.05 (with B=2000) hence, we can not reject the null hypothesis of 
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CRS. Therefore, the results which are more suitable in our analysis are the ones based 

on the CCR model assuming constant returns to scale
12
.  

 

Figure 2: Density plots of the original and biased corrected efficiency scores for the 

CRS and the VRS case. 

 

 

 

Therefore the thirty nine professional players who are efficient under the CRS 

assumption (efficiency 1= ) in alphabetical order are: Aaron Krickstein, Alberto 

Berasategui, Alex O'Brien, Andre Agassi, Andrew Ilie, Andy Murray, Bernd 

Karbacher, Boris Becker, Brad Gilbert, Bryan Shelton, David Wheaton, Dmitry 

Tursunov, Fernando Verdasco, Fernando Vicente, Gael Monfils, Gianluca Pozzi, 

                                                 
12
 The analytical results for the CRS and VRS case are available upon request. 
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Guillermo Coria, Hendrik Dreekmann, Ivan Lendl, Ivo Karlovic, Jan-Michael 

Gambill, John Isner, Lleyton Hewitt, Marat Safin, Mark Philippoussis, Michael 

Chang, Mikael Tillstrom, Novak Djokovic, Patrick McEnroe, Paul Goldstein, Pete 

Sampras, Rafael Nadal, Richard Fromberg, Richard Krajicek, Roger Federer, Scott 

Draper, Todd Martin, Tomas Carbonell and Wayne Arthurs. 

 

5. Conclusions 

This paper evaluates the performance of 229 professional tennis players using 

career data from the ATP database. By using a sports production framework it 

provides unified performance indicators incorporating nine performance measures 

into a single efficiency indicator. Moreover, by using the DEA methodology the 

proposed efficiency indicator measures tennis players’ career performance by 

applying an input –output setting.  

Therefore the career matches along side with nine different output measures 

are modelled accordingly under the two basic economic assumptions (i.e. constant and 

variable returns to scale)
13
. Moreover, bootstrap techniques have been applied for bias 

correction of the calculated efficiency estimates and for the construction of 95% 

confidence intervals of the efficiency estimates.  

In addition a bootstrap test has been used indicating the appropriateness of the 

CRS model when analysing the obtained efficiency scores. The results reveal that 39 

tennis players appear to be efficient. Finally, the results reveal a high competitive 

environment between the 229 professional tennis players reflected on their relative 

small differences among the estimated efficiencies.  

                                                 
13
 However it must be highlighted that other essential factors (external to the proposed sports 

production function) like coaching provision and coaching development (Kellett, 1999), countries’ elite 

sport policies and systems (Sotiriadou and Shilbury 2009, De Bosscher et al. 2012) and countries 

mechanisms of talent identification at a young age (Brouwers, De Bosscher & Sotiriadou, 2012) can 

influence indirectly tennis players’ career efficiency levels. 



 22 

APPENDIX A 

Appendix A.1  

The 229 professional tennis players in alphabetical order as extracted from the 

Association of Tennis Professional (ATP) 

Aaron Krickstein, Adrian Voinea, Agustin Calleri, Albert Costa, Albert Montanes, 

Albert Portas, Alberto Berasategui, Alberto Martin, Alex Corretja, Alex O'Brien, 

Alexander Volkov, Amos Mansdorf, Andre Agassi, Andrea Gaudenzi, Andreas Seppi, 

Andrei Cherkasov, Andrei Chesnokov, Andrei Medvedev, Andrei Olhovskiy, 

Andrei Pavel, Andrew Ilie, Andy Murray, Andy Roddick, Antony Dupuis, 

Arnaud Boetsch, Arnaud Clement, Benjamin Becker, Bernd Karbacher, Bjorn Phau, 

Bohdan Ulihrach, Boris Becker, Brad Gilbert, Brett Steven, Bryan Shelton, 

Byron Black, Carlos Costa, Carlos Moya, Carl-Uwe Steeb, Cedric Pioline, 

Chris Woodruff, Christian Ruud, Christophe Rochus, Daniel Nestor, Daniel Vacek, 

David Ferrer, David Nalbandian, David Prinosil, David Sanchez, David Wheaton, 

Davide Sanguinetti, Dmitry Tursunov, Dominik Hrbaty, Emilio Sanchez, 

Ernests Gulbis, Fabio Fognini, Fabrice Santoro, Feliciano Lopez, Felix Mantilla, 

Fernando Gonzalez, Fernando Meligeni, Fernando Verdasco, Fernando Vicente, 

Filip Dewulf, Filippo Volandri, Florent Serra, Florian Mayer, Francisco Clavet, 

Franco Squillari, Gael Monfils, Galo Blanco, Gaston Gaudio, Gianluca Pozzi, 

Gilbert Schaller, Gilles Muller, Gilles Simon, Goran Ivanisevic, Greg Rusedski, 

Guillaume Raoux, Guillermo Canas, Guillermo Coria, Guillermo Garcia-Lopez, 

Gustavo Kuerten, Guy Forget, Hendrik Dreekmann, Hernan Gumy, Hicham Arazi, 

Hyung-Taik Lee, Igor Andreev, Igor Kunitsyn, Ivan Lendl, Ivan Ljubicic, 

Ivo Karlovic, Jacco Eltingh, Jaime Yzaga, Jakob Hlasek, James Blake, Jan Siemerink 

Janko Tipsarevic, Jan-Michael Gambill, Jarkko Nieminen, Jason Stoltenberg, 

Javier Frana, Javier Sanchez, Jeff Tarango, Jeremy Chardy, Jerome Golmard, 

Jim Courier, Jiri Novak, John Isner, Jonas Bjorkman, Jonathan Stark, Jordi Arrese, 

Jordi Burillo, Jose Acasuso, Jo-Wilfried Tsonga, Juan Antonio Marin, Juan 

Carlos Ferrero, Juan Ignacio Chela, Juan Martin Del Potro, Juan Monaco, 

Julien Benneteau, Jurgen Melzer, Justin Gimelstob, Karel Novacek, Karim Alami, 

Karol Kucera, Kenneth Carlsen, Kristof Vliegen, Lars Burgsmuller, Lleyton Hewitt, 

Luis Horna, Magnus Gustafsson, Magnus Larsson, Magnus Norman, 

MaliVai Washington, Marat Safin, Marc Rosset, Marcel Granollers, 

Marcelo Filippini, Marcelo Rios, Marc-Kevin Goellner, Marcos Baghdatis, 

Marcos Ondruska, Mardy Fish, Mariano Puerta, Mariano Zabaleta, Marin Cilic, 

Mario Ancic, Mark Philippoussis, Mark Woodforde, Martin Damm, Max Mirnyi, 

Michael Chang, Michael Llodra, Michael Stich, Mikael Tillstrom, Mikhail Youzhny, 

Nicklas Kulti, Nicolas Almagro, Nicolas Escude, Nicolas Kiefer, Nicolas Lapentti, 

Nicolas Mahut, Nicolas Massu, Nikolay Davydenko, Novak Djokovic, 

Olivier Delaitre, Olivier Rochus, Omar Camporese, Paradorn Srichaphan, 

Patrick McEnroe, Patrick Rafter, Paul Goldstein, Paul Haarhuis, Paul-Henri Mathieu, 

Pete Sampras, Petr Korda, Philipp Kohlschreiber, Potito Starace, Radek Stepanek, 

Raemon Sluiter, Rafael Nadal, Rainer Schuettler, Ramon Delgado, Renzo Furlan, 

Richard Fromberg, Richard Gasquet, Richard Krajicek, Richey Reneberg, 

Robby Ginepri, Robin Soderling, Roger Federer, Ronald Agenor, Sam Querrey, 

Sandon Stolle, Sargis Sargsian, Scott Draper, Sebastien Grosjean, Sebastien Lareau, 
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Sergi Bruguera, Shuzo Matsuoka, Sjeng Schalken, Slava Dosedel, 

Stanislas Wawrinka, Stefan Edberg, Stefan Koubek, Stefano Pescosolido, 

Taylor Dent, Thomas Enqvist, Thomas Johansson, Thomas Muster, Thomaz Bellucci, 

Tim Henman, Todd Martin, Todd Woodbridge, Tomas Berdych, Tomas Carbonell, 

Tommy Haas, Tommy Robredo, Victor Hanescu, Viktor Troicki, Vincent Spadea, 

Wally Masur, Wayne Arthurs, Wayne Ferreira, Xavier Malisse, Yen-Hsun Lu, 

Yevgeny Kafelnikov and Younes El Aynaoui. 

 

 

Appendix A.2  

A synoptic representation of Simar and Wilson’s (1998, 2000a, 2000b) bootstrap 

algorithm 

In order to implement the homogenous bootstrap algorithm for a set of 

bootstrap estimates ( )
*

, 1,...,b x y b Bλ
∧ 

= 
 

for a given fixed point ( ),x y  the following 

eight steps must be carried out: 

1. From the original data set we compute DEA

∧

λ . 

2. Then we apply the “rule of thump” (Silverman 1986, p.45-48) to obtain the 

bandwidth parameter h . 

3. We generate * *

1 ,..., nβ β  by drawing with replacement from the set 

1 1,..., , 2 ,..., 2 .n nλ λ λ λ
∧ ∧ ∧ ∧    − −    
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probability density function used for the kernel function. In addition *

iλ can 

then be computed as: 

*** ***

*

***

2 1

 otherwise

i i

i

i

β β
λ

β

 − ∀ <
= 


. 

6. The bootstrap sample is created 

as: ( ){ } ( )
1

* * * * *, 1,...,  where in i i i i i i ix y i n x x y xλ λ λ
∂ −∧ ∧

Χ = = = = . 

7. We compute the DEA efficiency estimates ( )
*

,i i ix yλ
∧

for each of the original 

sample observations using the reference set *

nΧ in order to obtain a set of 

bootstrap estimates. 

8. Finally, we repeat steps 3 to 7 B times (at least 2000 times) to obtain a set of 

bootstrap estimates ( )
*

, 1,...,b x y b Bλ
∧ 

= 
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