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Abstract

This paper proposes a new model averaging estimator for the linear regression model with het-

eroskedastic errors. We address the issues of how to optimally assign the weights for candidate

models and how to make inference based on the averaging estimator. We derive the asymptotic

mean squared error (AMSE) of the averaging estimator in a local asymptotic framework, and then

choose the optimal weights by minimizing the AMSE. We propose a plug-in estimator of the optimal

weights and use these estimated weights to construct a plug-in averaging estimator of the parameter

of interest. We derive the asymptotic distribution of the plug-in averaging estimator and suggest a

plug-in method to construct confidence intervals. Monte Carlo simulations show that the plug-in

averaging estimator has much smaller expected squared error, maximum risk, and maximum regret

than other existing model selection and model averaging methods. As an empirical illustration, the

proposed methodology is applied to cross-country growth regressions.
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1 Introduction

In recent years, interest has increased in model averaging from the frequentist perspective. Unlike

model selection, which picks a single model among the candidate models, model averaging incor-

porates all available information by averaging over all potential models. Model averaging is more

robust than model selection since the averaging estimator considers the uncertainty across different

models as well as the model bias from each candidate model. The central questions of concern

are how to optimally assign the weights for candidate models and how to make inference based

on the averaging estimator. This paper proposes a plug-in averaging estimator to resolve both of

these issues. We derive the asymptotic mean squared error (AMSE) of the averaging estimator in a

local asymptotic framework. We show that the optimal model weights which minimize the AMSE

depend on the local parameters and the covariance matrix. The idea of the plug-in averaging esti-

mator is to estimate the infeasible optimal weights by minimizing the sample analog of the AMSE.

We show that the plug-in averaging estimator has a non-standard asymptotic distribution. Hence,

confidence intervals based on normal approximations lead to distorted inference in this context. We

suggest a plug-in method to construct confidence intervals, which have good finite-sample coverage

probabilities.

Empirical studies often must consider whether additional regressors should be included in the

baseline model. Adding more regressors reduces the model bias but causes a large variance. To

address the trade-off between bias and variance, this paper studies model averaging in a local

asymptotic framework where the regression coefficients are in a local n−1/2 neighborhood of zero.

Under drifting sequences of parameters, the AMSE of the averaging estimator remains finite and

provides a good approximation to the finite sample MSE. The O(n−1/2) framework is canonical

in the sense that both squared model biases and estimator variances have the same order O(n−1).

Therefore, the optimal model is the one that has the best trade-off between squared model biases and

estimator variances. The local-to-zero framework is crucial to analyze the asymptotic distribution

of the averaging estimator. If all regression coefficients are fixed, then the model bias term tends to

infinity and dominates the limiting distribution. In such a situation, the model which includes all

regressors is the only one we should consider. The local asymptotic framework also implies that all

of the candidate models are close to each other as the sample size increases. Hence, it is informative

to employ model averaging rather than model selection in this framework.

We first consider the fixed weights for candidate models and then derive the asymptotic distri-

bution of the averaging estimator in a local asymptotic framework, which allows us to characterize

the optimal weights. The optimal weights are found by numerical minimization of the AMSE.

We propose a plug-in estimator of the infeasible optimal weights. The optimal weights cannot be

estimated consistently because they depend on the local parameters which cannot be estimated

consistently. Estimated weights are asymptotically random, and this must be taken into account in

the asymptotic distribution of the plug-in averaging estimator. To address this issue, we first show

the joint convergence in distribution of all candidate models and the data-driven weights. Then,

we derive the asymptotic distribution of the plug-in estimator, which is a non-linear function of the
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normal random vector.

In addition to the plug-in averaging estimator, we also derive the asymptotic distributions of

the Akaike information criterion (AIC) selection estimator (Akaike, 1973), the smoothed AIC (S-

AIC) model averaging estimator (Buckland, Burnham, and Augustin, 1997), and the Jackknife

Model Averaging (JMA) estimator (Hansen and Racine, 2012) in the local asymptotic framework.

Although the asymptotic distribution of the averaging estimator with data-driven weights is non-

standard, it can be approximated by simulation. Numerical comparisons show that the plug-in

averaging estimator has substantially smaller risk than other data-driven averaging estimators in

most ranges of the parameter space.

The empirical literature tends to focus on one particular parameter instead of assessing the

overall properties of the model. In contrast to most existing model selection and model averaging

methods, our method is tailored to the parameter of interest. The proposed averaging estimator

is constructed based on the focus parameter instead of the global fit of the model. The focus

parameter is a smooth real-valued function of regression coefficients. Thus, we focus attention on

a low-dimension function of the model parameters. Also, we allow different model weights to be

chosen for different parameters of interest.

One straightforward way to construct the confidence interval for the focus parameter is to

employ the t-statistic. The confidence interval is constructed by inverting the t-statistic based

on the parameter of interest. We show that the asymptotic distribution of the model averaging

t-statistic depends on unknown local parameters, and thus cannot be directly used for inference.

We propose a plug-in method to construct the confidence interval based on a non-standard limiting

distribution. The idea is to simulate the limiting distribution of the model averaging t-statistic by

replacing the unknown parameters with plug-in estimators. The confidence interval is constructed

based on the 1− α quantile of the simulated distribution. Our simulations show that the coverage

probability of the plug-in confidence interval is close to the nominal level, while the confidence

interval based on normal approximations leads to distorted inference.

There is a growing body of literature on frequentist model averaging. Buckland, Burnham, and

Augustin (1997) suggest selecting the weights using the exponential AIC. Yang (2001) and Yuan

and Yang (2005) propose an adaptive regression by mixing models. Hansen (2007) introduces the

Mallows Model Averaging estimator for nested and homoskedastic models where the weights are

selected by minimizing the Mallows criterion. Wan, Zhang, and Zou (2010) extend the asymptotical

optimality of the Mallows Model Averaging estimator for continuous weights and a non-nested set-

up. Hansen and Racine (2012) propose the Jackknife Model Averaging estimator for non-nested and

heteroskedastic models where the weights are chosen by minimizing a leave-one-out cross-validation

criterion. Liang, Zou, Wan, and Zhang (2011) suggest selecting the weights by minimizing the trace

of an unbiased estimator of mean squared error. These papers propose methods of determining

weights without deriving the asymptotic distribution of the proposed estimator, which is difficult

to make inference based on their estimators. In contrast to frequentist model averaging, there is a

large body of literature on Bayesian model averaging (see Hoeting, Madigan, Raftery, and Volinsky

(1999) for a literature review).
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The idea of using the local asymptotic framework to investigate the limiting distributions of

model averaging estimators is developed by Hjort and Claeskens (2003) and Claeskens and Hjort

(2008). However, their work is limited to the likelihood-based model. Following Hjort and Claeskens

(2003), DiTraglia (2011) proposes a moment selection criterion and a moment averaging estimator

for the GMM framework. Like DiTraglia, we employ a drifting asymptotic framework to approxi-

mate the finite sample MSE. Unlike DiTraglia, we consider model averaging rather than moment

averaging, and we combine the models with valid moment conditions rather than potentially in-

valid moment conditions. Other work on the asymptotic properties of averaging estimators includes

Leung and Barron (2006), Pötscher (2006), and Hansen (2009, 2010). Leung and Barron (2006)

study the risk bound of the averaging estimator under a normal error assumption. Pötscher (2006)

analyzes the finite sample and asymptotic distributions of the averaging estimator for the two-

model case. Hansen (2009) evaluates the AMSE of averaging estimators for the linear regression

model with a possible structural break. Hansen (2010) examines the AMSE and forecast expected

squared error of averaging estimators in an autoregressive model with a near unit root in a local-

to-unity framework. Most of these studies, however, are limited to the two-model case and the

homoskedastic framework.

There is a large literature on inference after model selection, including Pötscher (1991), Kabaila

(1995, 1998), Leeb and Pötscher (2003, 2005, 2006, 2008). These papers point out that the coverage

probability of the confidence interval based on the model selection estimator is lower than the

nominal level. They also argue that the conditional and unconditional distribution of post-model-

selection estimators cannot be uniformly consistently estimated. In the model averaging literature,

Hjort and Claeskens (2003) and Claeskens and Hjort (2008) show that the traditional confidence

interval based on normal approximations leads to distorted inference. Pötscher (2006) argues that

the finite-sample distribution of the averaging estimator cannot be uniformly consistently estimated.

There are also alternatives to model selection and model averaging. Tibshirani (1996) introduces

the LASSO estimator, a method for simultaneous estimation and variable selection. Zou (2006)

proposes the adaptive LASSO approach and presents its oracle properties. White and Lu (2010)

propose a new Hausman (1978) type test of robustness for the core regression coefficients. They also

provide a feasible optimally combined GLS estimator. Hansen, Lunde, and Nason (2011) propose

the model confidence set which is constructed based on an equivalence test.

The outline of the paper is as follows. Section 2 presents the model and the averaging estimator

of the focus parameter. Section 3 presents the asymptotic distribution of the averaging estimator

with fixed weights in a local asymptotic framework. Section 4 introduces the plug-in averaging

estimator and derives the limiting distribution. Section 5 presents the asymptotic distributions

of AIC, S-AIC and JMA estimators. The results of the two-model case are presented. Section

6 evaluates the finite sample properties of the plug-in averaging estimator and other averaging

estimators. Section 7 discusses the confidence interval construction. Section 8 applies the plug-in

averaging estimator to cross-country growth regressions. Section 9 concludes. Proofs, figures, and

tables are included in the Appendix.
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2 Model and Estimation

Consider a linear regression model

yi = x′
iβ + z′iγ + ei, (2.1)

E(ei|xi, zi) = 0, (2.2)

E(e2i |xi, zi) = σ2(xi, zi), (2.3)

where yi is a scalar dependent variable, xi = (x1i, ..., xki)
′ and zi = (z1i, ..., zℓi)

′ are vectors of

regressors, ei is an unobservable regression error, and β(k×1) and γ(ℓ×1) are unknown parameter

vectors. The error term is allowed to be heteroskedastic and there is no further assumption on

the distribution of the error term. Here, xi are the core regressors which must be included in the

model based on theoretical grounds, while zi are the auxiliary regressors which may or may not be

included in the model. Note that xi may only include a constant term or even an empty matrix.

In matrix notation, we write the model as

y = Xβ + Zγ + e = Hθ + e (2.4)

where H = (X,Z) and θ = (β′,γ ′)′.

The parameter of interest is µ = µ(θ) = µ(β,γ), which is a smooth real-valued function. Unlike

the traditional model selection and model averaging approaches which assess the global fit of the

model, we evaluate the model based on the focus parameter µ. For example, µ may be an individual

coefficient or a ratio of two coefficients of regressors.

Let M be the number of submodels, where the submodel includes all core regressors X and

a subset of auxiliary regressors Z. The m’th submodel has k + ℓm regressors. If we consider a

sequence of nested models, then M = ℓ + 1. If we consider all possible submodels, then M = 2ℓ.

Let Πm be the ℓm × ℓ selection matrix which selects the included auxiliary regressors. Here, ℓm is

the number of auxiliary regressors zi included in the submodel m.

The least-squares estimator of θ for the full model, i.e. all auxiliary regressors are included in

the model, is

θ̂ =

(
β̂

γ̂

)
= (H′H)−1H′y, (2.5)

and the estimator for the submodel m is

θ̃m =

(
β̃m

γ̃m

)
= (H′

mHm)−1H′
my, (2.6)

where Hm = (X,ZΠ′
m) with m = 1, ...,M . Let I denote an identity matrix and 0 a zero matrix.

If Πm = Iℓ, then we have θ̃m = (H′H)−1H′y = θ̂, the least-squares estimator for the full model.

If Πm = 0, then we have θ̃m = (X′X)−1X′y, the least-squares estimator for the narrow model, or

the smallest model among all possible submodels.
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We now define the averaging estimator of the focus parameter µ. Let w = (w1, ..., wM )′ be a

weight vector with wm ≥ 0 and
∑M

m=1wm = 1. That is, the weight vector lies in the unit simplex

in R
M :

Hn =

{
w ∈ [0, 1]M :

M∑

m=1

wm = 1

}
.

The sum of the weight vector is required to be one. Otherwise, the averaging estimator is not

consistent. Let µ̃m = µ(θ̃m) = µ(β̃m, γ̃m) denote the submodel estimates. The averaging estimator

of µ is

µ̄(w) =
M∑

m=1

wmµ̃m. (2.7)

Here we want to point out that we have less restrictions on the weight function than other

existing methods. Leung and Barron (2006), Pötscher (2006), and Liang, Zou, Wan, and Zhang

(2011) assume the parametric form of the weight function. Hansen (2007) and Hansen and Racine

(2012) restrict the weights to be discrete. Contrary to these works, we allow continuous weights

without assuming any parametric form, which is more general and applicable than other approaches.

3 Asymptotic Properties

To establish the asymptotic distribution of the averaging estimator, we follow Hjort and Claeskens

(2003) and use a local-to-zero asymptotic framework where the auxiliary parameters γ are in a local

n−1/2 neighborhood of zero. Let hi = (x′
i, z

′
i)
′ andQ = E(hih

′
i) partitioned so that E (xix

′
i) = Qxx,

E (xiz
′
i) = Qxz, and E (ziz

′
i) = Qzz. Let Ω = limn→∞ n−1

∑n
i=1

∑n
j=1 E

(
hih

′
jeiej

)
partitioned so

that limn→∞ n−1
∑n

i=1

∑n
j=1E

(
xix

′
jeiej

)
= Ωxx, limn→∞ n−1

∑n
i=1

∑n
j=1 E

(
xiz

′
jeiej

)
= Ωxz, and

limn→∞ n−1
∑n

i=1

∑n
j=1 E

(
ziz

′
jeiej

)
= Ωzz. Note that if the error term ei is serially uncorrelated,

Ω can be simplified as Ω = E
(
hih

′
ie

2
i

)
.

Assumption 1. As n → ∞, n1/2γ = n1/2γn → δ ∈ R
ℓ.

Assumption 2. As n → ∞, n−1H′H
p−→ Q and n−1/2H′e

d−→ R ∼ N(0,Ω).

Assumption 1 is the key assumption to develop the asymptotic distribution. It is a common

assumption in the weak instrument literature, see Staiger and Stock (1997). This assumption says

the partial correlations between the auxiliary regressors and the dependent variable are weak. This

assumption implies that as the sample size increases, all of the submodels are close to each other.

Under this framework, it is informative to know if we can do better by averaging the candidate

models, instead of choosing one single model. Also note that the O(n−1/2) framework gives squared

model biases of the same order O(n−1) as estimator variances. Hence, the optimal model is the

one that achieve the best trade-off between bias and variance.
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Assumption 2 is a high-level condition which permits the application of cross-section, panel,

and time-series data. This condition holds under appropriate primitive assumptions. For example,

if yi is a stationary and ergodic martingale difference sequence with finite fourth moments, then the

condition follows from the weak law of large numbers and the central limit theorem for martingale

difference sequences.

Since the selection matrix Πm is non-random with elements either 0 or 1, for the submodel m

we have n−1H′
mHm

p−→ Qm where Qm is nonsingular with

Qm =

(
Qxx QxzΠ

′
m

ΠmQzx ΠmQzzΠ
′
m

)
,

and n−1/2H′
me

d−→ N(0,Ωm) with

Ωm =

(
Ωxx ΩxzΠ

′
m

ΠmΩzx ΠmΩzzΠ
′
m

)
.

Let θm = (β′,γ ′
m)′ = (β′,γ ′Π′

m)′. In this section, we concentrate on fixed weights. The

averaging estimator with data-driven weights is presented in the next section. The following lemmas

describe the asymptotic distributions of the least-squares estimators and the limiting distribution

of the focus parameter.

Lemma 1. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n
(
θ̂ − θ

)
d−→ Q−1R ∼ N

(
0,Q−1ΩQ−1

)
,

√
n
(
θ̃m − θm

)
d−→ Amδ +BmR ∼ N

(
Amδ, Q−1

m ΩmQ−1
m

)
,

where

Am = Q−1
m

(
Qxz

ΠmQzz

)
(
Iℓ −Π′

mΠm

)
, Bm = Q−1

m S′
m, and Sm =

(
Ik 0k×ℓm

0ℓ×k Π′
m

)
.

Note that Sm is an extended selection matrix of dimension (k + ℓ)× (k + ℓm). Denote Dθm =(
D′

β,D
′
γm

)′
, Dβ = ∂µ/∂β, and Dγm = ∂µ/∂γm with partial derivatives evaluated at the null

points (β′,0′)′.

Lemma 2. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n
(
µ(θ̃m)− µ(θ)

)
d−→ Λm = a′mδ + b′

mR ∼ N
(
a′mδ, D′

θm
Q−1

m ΩmQ−1
m Dθm

)
,

where

am =
(
Iℓ −Π′

mΠm

)
((

Qzx

QzzΠ
′
m

)
Q−1

m Dθm −Dγ

)
and bm = SmQ−1

m Dθm .

6



The main difference between Lemma 1 and 2 is the asymptotic distribution of the focus pa-

rameter involves the partial derivatives. Note that both Amδ and a′mδ represent the bias terms of

submodel estimators. To be more precise, the biases come from the omitted auxiliary regressors.

As we can see from (Iℓ −Π′
mΠm), this is the selection matrix which selects the omitted auxiliary

regressors.

Lemma 1 and 2 imply joint convergence in distribution of all submodels since all asymptotic

distributions of submodels can be expressed in terms of the same normal random vector R. The

following theorem shows the asymptotic normality of the averaging estimator with fixed weights.

Theorem 1. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n (µ̄(w)− µ)

d−→ N
(
a′δ, V

)

where

a =

M∑

m=1

wmam,

V =
M∑

m=1

w2
mD′

θm
Q−1

m ΩmQ−1
m Dθm + 2

∑

m<p

wmwpD
′
θm
Q−1

m Ωm,pQ
−1
p Dθp ,

Ωm,p =

(
Ωxx ΩxzΠ

′
p

ΠmΩzx ΠmΩzzΠ
′
p

)
,

and am is defined in Lemma 2.

Following by Theorem 1, we can derive the AMSE of the averaging estimator. Here, we define

the AMSE as AMSE(µ̂) = limn→∞E
(
n(µ̂−µ)2

)
. Then the AMSE of the averaging estimator (2.7)

is

AMSE(µ̄(w)) = w′ζw (3.1)

where ζ is an M ×M matrix with the (m, p)th element

ζm,p = δ′ama′pδ +D′
θm
Q−1

m Ωm,pQ
−1
p Dθp (3.2)

where am is defined in Lemma 2 and Ωm,p is defined in Theorem 1.

The optimal fixed-weight vector is the value which minimizes AMSE(µ̄(w)) over w ∈ Hn:

wo = argmin
w∈Hn

w′ζw. (3.3)

Although there is no closed-form solution to (3.3) when M > 2, the weight vector can be found

numerically via quadratic programming for which numerical algorithms are available for most pro-

gramming languages. The minimized AMSE gives a benchmark to compare the AMSE and MSE

of data-driven averaging estimators.
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4 Plug-In Averaging Estimator

The optimal fixed weights derived in the previous section are infeasible, since they depend on the

unknown parameters, Dθm , Qm, Ωm,p, am, and δ. Furthermore, the optimal fixed weights cannot

be estimated directly because there is no closed form expression when the number of models is

greater than two. A straightforward solution is to estimate the AMSE of the averaging estimator

given in (3.1) and (3.2), and to choose the data-driven weights by minimizing the sample analog of

the AMSE.

The plug-in estimator of AMSE(µ̄(w)) is w′ζ̂w where ζ̂ is the sample analog of ζ with the

(m, p)th element

ζ̂m,p = δ̂′âmâ′pδ̂ + D̂′
θm
Q̂−1

m Ω̂m,pQ̂
−1
p D̂θp .

The weight vector of the plug-in estimator is defined as

ŵpia = argmin
w∈Hn

w′ζ̂w. (4.1)

The plug-in averaging estimator is

µ̄(ŵpia) =

M∑

m=1

ŵpia,mµ̃m. (4.2)

We now discuss the plug-in estimator ζ̂m,p. We first consider the estimator of Dθm . Let

D̂θm = S′
mD̂θ and D̂θ = ∂µ(θ̂)/∂θ where Sm defined in Lemma 1 is a non-random selection

matrix and θ̂ is the estimate from the full model. By Lemma 1 and the continuous mapping

theorem, it follows that D̂θm is a consistent estimator of Dθm .

Next, we consider the estimators of Qm, Ωm,p, and am. Let Q̂m = S′
mQ̂Sm, Ω̂m,p = S′

mΩ̂Sp,

and

âm =
(
Iℓ −Π′

mΠm

)
((

Q̂zx

Q̂zzΠ
′
m

)
Q̂−1

m D̂θm − D̂γ

)
. (4.3)

Consistent estimators for Qm, Ωm,p, and am are available, since these unknown parameters are

functions of the covariance matrix Q and Ω. We use the method of moments estimators for Q

and Ω. Let Q̂ = n−1
∑n

i=1 hih
′
i and it follows that Q̂

p−→ Q. If the error term ei is serially

uncorrelated, then Ω can be estimated consistently by the heteroskedasticity-consistent covariance

matrix estimator

Ω̂ =
1

n

n∑

i=1

hih
′
iê

2
i , (4.4)

which is proposed by White (1980). Here êi = yi − x′
iβ̂− z′iγ̂ is the least squares residual from the

full model. If the error term ei is serially correlated, then Ω can be estimated consistently by the
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heteroskedasticity and autocorrelation consistent covariance matrix estimator

Ω̂ =

n∑

j=−n

k(j/Sn)Γ̂(j), (4.5)

Γ̂(j) =
1

n

n−j∑

i=1

hih
′
i+j êiêi+j , for j ≥ 0, (4.6)

Γ̂(j) = Γ̂(−j)′, for j < 0, (4.7)

where k(·) is a kernel function and Sn the bandwidth. Under some regularity conditions, it follows

that Ω̂
p−→ Ω; for serially uncorrelated errors, see White (1980) and White (1984), and for serially

correlated errors, see Newey and West (1987) and Andrews (1991b). By the continuous mapping

theorem and the fact that the selection matrix is non-random, it follows that Q̂m
p−→ Qm, Ω̂m,p

p−→
Ωm,p, and âm

p−→ am.

We now consider the estimator for the local parameter δ. Unlike Dθm , Qm, Ωm,p, and am,

there is no consistent estimator for the parameter δ. This implies that the optimal weights cannot

be estimated consistently. We propose to use the asymptotically unbiased estimator for δ. Let

δ̂ =
√
nγ̂ where γ̂ are the estimates from the full model. From Lemma 1, we have

δ̂ =
√
nγ̂

d−→ Rδ = δ +ΠℓQ
−1R ∼ N(δ,ΠℓQ

−1ΩQ−1Π′
ℓ) (4.8)

where Πℓ = (0ℓ×k, Iℓ). As shown above, δ̂ is an asymptotically unbiased estimator for δ. The

limiting distribution of the plug-in estimator δ̂ isRδ which is a linear function of the normal random

vector R. We use this result to establish the asymptotic distribution of the plug-in averaging

estimator.

Note that the first term of ζm,p can be rewritten as a′mδδ′ap. Hence, we can estimate δδ′

instead of δ. Since RδR
′
δ has mean δδ′ +ΠℓQ

−1ΩQ−1Π′
ℓ, another possible estimator is nγ̂γ̂ ′ −

ΠℓQ̂
−1Ω̂Q̂−1Π′

ℓ for δδ′. However, it might happen that the estimator of the squared bias terms,

the diagonal terms of δδ′, are negative. Furthermore, the asymptotic distribution of the squared

bias estimator is more complicated. Therefore, we only consider the estimator δ̂.

The following assumption is imposed on the estimator of the covariance matrix.

Assumption 3. There exists Ω̂ such that Ω̂
p−→ Ω.

Assumption 3 is a high-level condition on the estimator of the covariance matrix. Rather than

impose regularity conditions, we assume there exists a consistent estimator for Ω. The consistent

estimators for the covariance matrix are given in (4.4) and (4.5) for serially uncorrelated errors and

serially correlated errors, respectively. The sufficient condition for the consistency is ei is i.i.d. or

a martingale difference sequence with finite fourth moment. For serial correlation, data is a mean

zero α-mixing or ϕ-mixing sequence.

Theorem 2. Suppose Assumptions 1-3 hold. As n → ∞, we have

w′ζ̂w
d−→ w′ζ∗w

9



where ζ∗ is an M ×M matrix with the (m, p)th element

ζ∗m,p = R′
δama′pRδ +D′

θm
Q−1

m Ωm,pQ
−1
p Dθp

and Rδ = δ +ΠℓQ
−1R. Also, we have

ŵpia
d−→ w∗

pia = argmin
w∈Hn

w′ζ∗w, (4.9)

and

√
n
(
µ̄(ŵpia)− µ

) d−→
M∑

m=1

w∗
pia,mΛm (4.10)

where Λm = a′mδ + b′
mR.

Theorem 2 shows that the estimated weights are asymptotically random. In order to derive the

asymptotic distribution of the plug-in averaging estimator, we show that there is joint convergence

in distribution of all submodel estimators µ̃m and estimated weights ŵpia. The joint convergence in

distribution comes from the fact that both Λm and w∗
pia,m can be expressed in terms of the normal

random vector R. It turns out the limiting distribution of the plug-in averaging estimator is not

normally distributed. Instead, it is a non-linear function of the normal random vector R.

The non-normal nature of the limiting distribution of the averaging estimator with data-driven

weights is also pointed out by Hjort and Claeskens (2003) and Claeskens and Hjort (2008). The

result is useful to construct the confidence interval.

5 AIC, S-AIC and JMA Estimators

In this section, we present the asymptotic distributions of the AIC model selection estimator, the

S-AIC model averaging estimator, and the Jackknife Model Averaging estimator. The limiting dis-

tributions of AIC, S-AIC, and JMA estimators are non-standard in the local asymptotic framework.

We also present the results of the two-model case.

5.1 AIC and Smoothed AIC

The model selection estimator based on information criteria is a special case of the model averaging

estimator. The model selection puts the whole weight on the model with the smallest value of the

information criterion and give other models zero weight. Hence, the weight function of the model

selection estimator can be described by the indicator function.

The AIC for the linear regression model (2.4) is

AICm = n log(σ̃2
m) + 2(k + ℓm), m = 1, 2, ...,M,
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where σ̃2
m = n−1

∑n
i=1 ẽ

2
mi and ẽmi are the least squares residuals from the submodel m, that is,

ẽmi = yi − x′
iβ̃m − z′miγ̃m and zmi = Πmzi. The AIC model selection estimator is thus

µ̄(ŵaic) =

M∑

m=1

ŵaic,mµ̃m,

ŵaic,m = 1{AICm = min(AIC1,AIC2, ...,AICM )}.

Instead of estimating the regression function based on a single model, the S-AIC model av-

eraging estimator proposed by Buckland, Burnham, and Augustin (1997) assigns the weights of

each candidate models by using the exponential Akaike information criterion. The weight for each

submodel is proportional to the log-likelihood of model. The S-AIC model averaging estimator is

defined as

µ̄(ŵsaic) =
M∑

m=1

ŵsaic,mµ̃m, (5.1)

ŵsaic,m =
exp(−1

2AICm)
∑M

m=1 exp(−1
2AICm)

. (5.2)

The S-AIC weight is similar to the smoothed Bayesian information criterion (S-BIC) model av-

eraging where the weights are chosen by using the exponential Bayesian information criterion. The

S-BIC weight is exp(−1
2BICm)/

∑M
m=1 exp(−1

2BICm), where BICm = n log(σ̃2
m) + log(n)(k + ℓm).

The weights of the Bayesian model averaging are interpreted as the posterior model probabilities.

Therefore, the S-AIC weight may be interpreted as the model probability.

The S-AIC model averaging estimator is appealing because of its simplicity. Also, there is a

closed form expression of the S-AIC weights for any number of submodels. However, both AIC

and S-AIC are not robust for heteroskedastic regressions. The misspecification-robust version of

AIC is Takeuchi information criterion, see Burnham and Anderson (2002). Furthermore, the S-

AIC weights ignore the covariances between the submodel estimators. Also, the S-AIC weights

are formed based on the global fit of the model, and the weights does not adjust according to the

parameter of interest.

Hjort and Claeskens (2003) and Claeskens and Hjort (2008) show the limiting distributions

of the AIC model selection estimator and the S-AIC model averaging estimator in the likelihood

framework. Let AIC∅ be the AIC for the narrow model. Following Theorem 5.4 of Claeskens and

Hjort (2008), we can show that the

AIC∅ −AICm
d−→ R′

δΣmRδ − 2(k + ℓm) (5.3)

where Σm = V−1
δ Π′

m

(
ΠmV−1

δ Π′
m

)−1
ΠmV−1

δ and Vδ = ΠℓQ
−1ΩQ−1Π′

ℓ.

Note that (5.3) can be expressed as G′ΨmG− 2(k + ℓm) where G ∼ N(V
−1/2
δ δ, Iℓ) and Ψm =

V
−1/2
δ Π′

m

(
ΠmV−1

δ Π′
m

)−1
ΠmV

−1/2
δ . Here G′ΨmG has a noncentral chi-squared distribution with

ℓm degrees of freedom and non-centrality parameter λm = δ′V
−1/2
δ ΨmV

−1/2
δ δ. Similar to the plug-

in averaging estimator, the asymptotic distributions of the AIC model selection estimator and the

11



S-AIC model averaging estimator can be expressed as a non-linear functions of the normal random

vector R.

Theorem 3. Suppose Assumptions 1-2 hold. As n → ∞, the asymptotic distribution of the S-AIC

model averaging estimator is

√
n
(
µ̄(ŵsaic)− µ

) d−→
M∑

m=1

w∗
saic,mΛm

where

w∗
saic,m =

exp(12R
′
δΣmRδ − (k + ℓm))

∑M
m=1 exp(

1
2R

′
δΣmRδ − (k + ℓm))

and Λm = a′mδ + b′
mR.

5.2 Jackknife Model Averaging Estimator

The Jackknife Model Averaging estimator is proposed by Hansen and Racine (2012). They suggest

to select the weights by minimizing a leave-one-out cross-validation criterion. They show the

asymptotic optimality of the JMA estimator. That is, the average squared error of the JMA

estimator is asymptotic equivalent to the lowest expected squared error. The asymptotic optimality

of the cross-validation criterion is first established by Li (1987) for model selection in homoskedastic

regression with an infinite number of regressors. Following Li (1987), Andrews (1991a) shows

the asymptotic optimality of the cross-validation criterion for model selection for heteroskedastic

regressions. Hansen and Racine (2012) extend the asymptotic optimality from model selection

to model averaging. However, the optimality result of Theorem 1 in Hansen and Racine (2012)

requires the condition which there is no submodel m for which the bias is zero. Therefore, it cannot

apply to the context of the linear regression model with a finite number of regressors. In other

words, the JMA is not asymptotically optimal in our framework.

Define the leave-one-out cross-validation criterion for the averaging estimator for the linear

regression model (2.4) as follows:

CVn(w) =
1

n
w′ẽ′−iẽ−iw (5.4)

where ẽ−i = (ẽ1,−i, ..., ẽM,−i) is a n×M matrix of leave-one-out least-squares residuals and ẽm,−i

are the residuals of submodel m obtained by least-squares estimation without the i′th observation.

The weight vector of the JMA estimator is the value which minimizes CVn(w).

By adding and subtracting the sum of squared residuals of the full model 1
n ê

′ê, we can rewrite

(5.4) as

CVn(w) =
1

n
w′ξnw +

1

n
ê′ê (5.5)
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where ξn is an M ×M matrix with the (m, p)th element

ξm,p = ẽ′m,−iẽp,−i − ê′ê. (5.6)

Note that minimizing CVn(w) over w = (w1, ..., wM ) is equivalent to minimizing w′ξnw since 1
n ê

′ê

is not related to the weight vector w. In the following theorem, we show that ξm,p converges to a

non-linear function of the normal random vector R. The JMA estimator can be represented as

µ̄(ŵjma) =

M∑

m=1

ŵjma,mµ̃m, (5.7)

ŵjma = argmin
w∈Hn

w′ξnw. (5.8)

Here, the weight vector is defined as the minimizer of the quadratic function of w which can be

found by quadratic programming as the optimal fixed-weight vector and the plug-in weight vector.

However, unlike the plug-in averaging estimator where the weights are tailored to the parameter

of interest, the JMA estimator selects the weights based on the conditional mean function. One

disadvantage of the JMA estimator is the computational burden, which is substantial when both

the sample size and the number of regressors are large.

The following assumption is imposed on the data generating process.

Assumption 4. (a) {(yi,xi, zi) : i = 1, ..., n} are i.i.d. (b) E(e4i ) < ∞, E(x4ji) < ∞ for j = 1, ..., k,

and E(z4ji) < ∞ for j = 1, ..., ℓ.

Condition (a) in Assumption 4 is the i.i.d. assumption, which is also made in Hansen and Racine

(2012). The result in Theorem 4 can be extended to the stationary case. Condition (b) is the

standard assumption for the linear regression model. Note that Assumption 4 implies Assumption

2. Therefore, the results in Lemma 1, Lemma 2, and Theorem 1 hold under Assumptions 1 and 4.

Theorem 4. Suppose Assumptions 1 and 4 hold. As n → ∞, we have

w′ξnw
d−→ w′ξ∗w

where ξ∗ is an M ×M matrix with the (m, p)th element

ξ∗m,p = R̈′
mQR̈p + tr

(
Q−1

m Ωm

)
+ tr

(
Q−1

p Ωp

)
(5.9)

and R̈m = Ämδ + B̈mR with

Äm =

(
Π′

ℓ − SmQ−1
m

(
Qxz

ΠmQzz

))
(
Iℓ −Π′

mΠm

)
,

and

B̈m =
(
Q−1 − SmQ−1

m S′
m

)
.

13



Also, we have

ŵjma
d−→ w∗

jma = argmin
w∈Hn

w′ξ∗w, (5.10)

and

√
n
(
µ̄(ŵjma)− µ

) d−→
M∑

m=1

w∗
jma,mΛm (5.11)

where Λm = a′mδ + b′
mR.

5.3 Model Averaging for the Two-Model Case

In this section, we concentrate on a special case with only two candidate models. As we mentioned

in previous section, we have a closed-form solution for the weight vector when the number of total

models equals two. Pötscher (2006) also analyzes the asymptotic distribution of the averaging

estimator for the two-model case, but assumes the error term is normal distributed. Here, we

generalize his results by relaxing the assumption on the error term and also considering the case of

two non-nested candidate models.

Suppose the auxiliary regressors are partition as Z = (ZΠ′
1,ZΠ

′
2) = (Z1,Z2) where Π1 =

(Iℓ1 ,0ℓ1×ℓ2) and Π2 = (0ℓ2×ℓ1 , Iℓ2). Then the regression model (2.4) can be rewritten as

y = Xβ + Z1γ1 + Z2γ2 + e (5.12)

where γ1 is ℓ1 × 1, γ2 is ℓ2 × 1, and ℓ1 + ℓ2 = ℓ. We assume the Model 1 includes the regressors

X and Z1 while the Model 2 includes the regressors X and Z2. If ℓ2 = ℓ, then the Model 1 is the

restricted model and the Model 2 is the unrestricted model, which is the framework of Pötscher

(2006). If ℓ1 > 0 and ℓ2 > 0, then the Model 1 and 2 are two non-nested models.

We denote the estimators of the fucus parameter for the two candidate models by µ̃1 = µ(θ̃1) =

µ(β̃1, γ̃1,0) and µ̃2 = µ(θ̃2) = µ(β̃2,0, γ̃2) , respectively. Let w be the weight for µ̃1 and 1− w be

the weight for µ̃2. The averaging estimator for the two-model case is

µ̄(w) = wµ̃1 + (1− w)µ̃2. (5.13)

Let wo be the infeasible optimal fixed-weight. The following corollary describes the AMSE of

the averaging estimator with the infeasible optimal fixed-weight.

Corollary 1. Suppose Assumptions 1-2 hold. Then the AMSE of the averaging estimator for the

two-model case is

AMSE(µ̄(w)) = w2ζ1,1 + (1− w)2ζ2,2 + 2w(1 − w)ζ1,2
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where ζm,p is defined in (3.2). The weight w which minimizes AMSE(µ̄(w)) is

wo =





ζ2,2−ζ1,2
ζ1,1+ζ2,2−2ζ1,2

if ζ1,2 < min{ζ1,1, ζ2,2},
1 if ζ1,1 ≤ ζ1,2 < ζ2,2,

0 if ζ2,2 ≤ ζ1,2 < ζ1,1,

and the minimized AMSE is

AMSE(µ̄(wo)) =





ζ1,1ζ2,2−ζ2
1,2

ζ1,1+ζ2,2−2ζ1,2
if ζ1,2 < min{ζ1,1, ζ2,2},

ζ1,1 if ζ1,1 ≤ ζ1,2 < ζ2,2,

ζ2,2 if ζ2,2 ≤ ζ1,2 < ζ1,1.

The values of ζ1,1 and ζ2,2 in Corollary 1 represent the AMSE of the Model 1 and 2, respectively.

As long as ζ1,2 < min{ζ1,1, ζ2,2}, the AMSE of the averaging estimator with the optimal fixed-weight

is strictly less than the AMSE of any convex combination of the Model 1 and 2.

We now consider the averaging estimator with data-driven weights when there are only two

candidate models. Let ŵsaic, ŵpia and ŵjma be the weights chosen by the S-AIC model averaging

estimator, the plug-in averaging estimator, and the JMA estimator. From Theorem 3, it can be

shown that the AMSE of the S-AIC model averaging estimator µ̄(ŵsiac) is

AMSE
(
µ̄(ŵsaic)

)
= E

(
w∗2
saicζ1,1 +

(
1− w∗

saic

)2
ζ2,2 + 2w∗

saic

(
1− w∗

saic

)
ζ1,2

)

where w∗
saic = (exp(2−1R′

δΣ1Rδ − (k+ ℓ1)))/(
∑2

m=1 exp(2
−1R′

δΣmRδ − (k+ ℓm))). The following

corollary presents the AMSE of the plug-in averaging estimator and the JMA estimator.

Corollary 2. (a) Suppose Assumptions 1-3 hold. Then the AMSE of the plug-in averaging estima-

tor for the two-model case is AMSE
(
µ̄(ŵpia)

)
= E

(
w∗2
piaζ1,1 +

(
1−w∗

pia

)2
ζ2,2 +2w∗

pia

(
1−w∗

pia

)
ζ1,2
)

where

w∗
pia =





ζ∗
2,2−ζ∗

1,2

ζ∗
1,1+ζ∗

2,2−2ζ∗
1,2

if ζ∗1,2 < min{ζ∗1,1, ζ∗2,2},
1 if ζ∗1,1 ≤ ζ∗1,2 < ζ∗2,2,

0 if ζ∗2,2 ≤ ζ∗1,2 < ζ∗1,1,

and ζ∗m,p is defined in Theorem 2.

(b) Suppose Assumptions 1 and 4 hold. Then the AMSE of the Jackknife Model Averaging

estimator for the two-model case is AMSE
(
µ̄(ŵjma)

)
= E

(
w∗2
jmaξ1,1 +

(
1−w∗

jma

)2
ξ2,2 + 2w∗

jma

(
1−

w∗
jma

)
ξ1,2
)
where

w∗
jma =





ξ∗
2,2−ξ∗

1,2

ξ∗
1,1+ξ∗

2,2−2ξ∗
1,2

if ξ∗1,2 < min{ξ∗1,1, ξ∗2,2},
1 if ξ∗1,1 ≤ ξ∗1,2 < ξ∗2,2,

0 if ξ∗2,2 ≤ ξ∗1,2 < ξ∗1,1,

and ξ∗m,p is defined in Theorem 4.
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Note that wo, w∗
pia, and w∗

jma have the similar form but different interpretations. wo is non-

random since all ζ1,1, ζ2,2, and ζ1,2 are constants. Both w∗
pia and w∗

jma are random because ζ∗m,p

and ξ∗m,p are a non-linear function of the normal random vector R. The results also implies the

non-standard limiting distribution of the data-driven estimator in the simple two-model case.

6 Simulation Results

In this section, we investigate the finite sample mean square error of the plug-in averaging estimator

via Monte Carlo experiments.

6.1 Simulation Setup

We consider a linear regression model with a finite number of regressors

yi =

J∑

j=1

θjxji + ei, i = 1, ..., n. (6.1)

We let x1i and x2i be the core regressors and the remaining xji are the auxiliary regressors. We

set x1i = 1 to be the intercept. The random variables (x2i, ..., xJi)
′ are generated from a joint

normal distribution N(0,Σ) where the diagonal elements of Σ are 1, E(x2ixji) = ρ1 for j ≥ 3, and

E(xjixki) = ρ2 for j, k ≥ 3 and j 6= k. The error term ei is generated from a normal distribution

N(0, σ2
i ), where σ2

i = 1 for the homoskedastic simulation and σ2
i = x22i for the heteroskedastic

simulation.

The parameters are determined by the following two rules:

DGP1 : θ =

(√
n

8
,

√
n

8
, 1,

ℓ− 1

ℓ
, ...,

1

ℓ

)′

c/
√
n, (6.2)

DGP2 : θ =

(
−
√
n

8
,

√
n

8
,−1,

ℓ− 1

ℓ
, ...,−1

ℓ

)′

c/
√
n, (6.3)

where ℓ = J − 2. The parameter c is selected to control the population R2 = θ′
2Σθ2/(1 + θ′

2Σθ2)

where θ2 = (θ2, ..., θJ )
′ and R2 varies on a grid between 0.1 and 0.9. The local parameters are

determined by δj =
√
nθj = c(ℓ− j+3)/ℓ for j ≥ 3. The number of the regressors is varied between

J = 3, 5, 7, and 9. We consider all possible submodels, that is, the number of models is M = 2J−2.

6.2 Finite Sample Comparison

We consider six estimators: (1) AIC model selection estimator (labeled AIC), (2) BIC model

selection estimator (labeled BIC), (3) S-AIC model averaging estimator (labeled S-AIC), (4) S-

BIC model averaging estimator (labeled S-BIC), (5) Jackknife Model Averaging estimator (labeled

JMA), and (6) Plug-In averaging estimator (labeled Plug-In). The parameter of interest is µ =

θ2. To evaluate the finite behavior of the averaging estimators, we compute the risk based on

the quadratic loss function, i.e. E
(
n(θ̂2 − θ2)

2
)
. The risk (expected squared error) is calculated
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by averaging across 5, 000 random samples. We normalize the risk by dividing by the optimal

asymptotic risk. The optimal asymptotic risk is defined as wo′ζwo, where ζ and wo are defined in

(3.2) and (3.3). The sample sizes are 50, 100, 150, 200 for M = 2, 8, 32, and 128.

Figures 1 and 2 show the risk functions for DGP1 and DGP2 with (ρ1, ρ2) = (0.3, 0.1) in the

homoskedastic simulation and Figures 3 and 4 show the risk functions for DGP1 with (ρ1, ρ2) =

(0.3, 0.1) and (0.6, 0.4) in the heteroskedastic simulation.1 In each figure, the risk is displayed for

M = 2, 8, 32, and 128, respectively. The dotted line represents the AIC model selection estimator,

the solid line with asterisk represents the BIC model selection estimator, the dash-dotted line

represents the S-AIC model averaging estimator, the dash line with circle represents the S-BIC

model averaging estimator, the dashed lines represents the JMA estimator, and the solid line

represents the plug-in averaging estimator.

There are several remarks about the simulations results. First, the risk of all estimators in-

creases as the number of models increases. When we only consider the restricted and nonrestricted

models, i.e. M = 2, all estimators have similar risk. Second, it can be seen that the plug-in averag-

ing estimator dominates other estimators in most ranges of the population R2. The JMA estimator

has smaller risk than the S-AIC estimator for DGP2, but S-AIC achieves lower risk when M and

R2 are larger for DGP1. The S-BIC estimator and the BIC model selection estimator have poor

performance relative to the other methods in most cases. Also note that the model-averaging-type

estimators have lower risk than the model-selection-type counterpart estimators. Third, all estima-

tors have smaller normalized risk under heteroskedastic errors, but the ranking of the estimators

in the heteroskedastic simulation is quite similar to that in the homoskedastic simulation. Fourth,

the normalized risk of the plug-in estimator is close to 1 for DGP1, meaning that it is close to

that of the averaging estimator with infeasible optimal fixed weights. The normalized risk of the

plug-in estimator is getting far from 1 as the number of models increases for DGP2. Also note that

the risk of all estimators has smaller variation across the parameters R2 in DGP2 than those in

DGP1. Fifth, as ρ1 and ρ2 increase, the risk of all estimators increases. However, the ranking of

the estimators for (ρ1, ρ2) = (0.6, 0.4) is quite similar to that for (ρ1, ρ2) = (0.3, 0.1).

Tables 1 and 2 report the maximum risk and maximum regret of the estimators. Here we

define the regret as the difference between the risk of the estimator and the optimal asymptotic

risk (labeled Opt). The maximum regret is the largest value of the regret across the parameters

R2. The maximum risk is defined as the same way. It is clear that the plug-in averaging estimator

achieves the minimax risk and minimax regret in all simulation cases. One interesting observation

from Tables 1 and 2 is that the results between DGP1 and DGP2 are quite different. The maximum

risk of the averaging estimator with infeasible optimal fixed weights increases as the number of

models increases for DGP1, but decreases as the number of models increases for DGP2. Unlike

other estimators, the plug-in averaging estimator has relatively low maximum regret for DGP1.

Also note that the maximum risk/regert of all data-driven estimators are close to each other for

DGP2. Another interesting observation is that all estimators have larger maximum risk but smaller

1We report the results of the heteroskedastic simulations for DGP1 only for space considerations. All results are

available on request from the author.
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maximum regret in the heteroskedastic simulation than in the homoskedastic simulation.

6.3 Robust Simulation

We consider two extended setups to investigate the finite sample behavior of the plug-in averag-

ing estimator. The data generating process is based on (6.1) with (ρ1, ρ2) = (0.3, 0.1) and the

parameters are determined by the following:

DGP3 : θ =

(
−
√
n

8
,

√
n

8
,

(
−1,

ℓ− 1

ℓ
, ...,−1

ℓ

)a)′

c/
√
n, (6.4)

DGP4 : θ =

(
−
√
n

b
,

√
n

b
,−1,

ℓ− 1

ℓ
, ...,−1

ℓ

)′

c/
√
n, (6.5)

where ℓ = 5, a = {0.5, 1, 1.5, 2}, b = {4, 6, 8, 10}, and c is selected to control the population R2.

The sample size is 150. The number of simulations is 5000.

Figures 5 and 6 show the risk functions for DGP3 and DGP4, respectively. From Figure 5,

it can be seen that the magnitude of risk decreases as the parameter a increases. This implies

that when the coefficients of auxiliary regressors decline more quickly, i.e. a is larger, the risk of

all estimators are getting closer. Figure 6 shows the S-AIC, S-BIC, and JMA estimators achieves

lower risk than the plug-in averaging estimator when the parameter b and R2 are small. This

implies that when the auxiliary regressors have a greater influence on the model, i.e. b is larger,

the plug-in averaging estimator performs better than other averaging estimators. Table 3 reports

the maximum risk and maximum regret for DGP3 and DGP4. It shows that the plug-in averaging

estimator still achieves the minimax risk and minimax regret across the parameters a, b, and R2,

even if the plug-in averaging estimator has larger risk in some ranges of the population R2 displayed

in Figures 5 and 6.

7 Confidence Intervals

In this section, we propose a plug-in method to construct the confidence interval for the focus

parameter µ. Since µ is a scalar, the t-statistic is used to construct the confidence interval. Define

V̂ =
M∑

m=1

ŵ2
mD̂′

θm
Q̂−1

m Ω̂mQ̂−1
m D̂θm + 2

∑

m<p

ŵmŵpD̂
′
θm
Q̂−1

m Ω̂m,pQ̂
−1
p D̂θp , (7.1)

where ŵm could be the weight chosen by the plug-in averaging estimator, or other averaging esti-

mators with data-driven weights. The model averaging t-statistic for µ is

tn(µ) =
µ̄(ŵ)− µ

ŝen
(7.2)

where µ̄(ŵ) is the averaging estimators with data-driven weights ŵ and ŝen = (V̂ /n)1/2.
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Theorem 5. Suppose Assumptions 1, 3, and 4 hold. As n → ∞, we have

tn(µ)
d−→ (V ∗)−1/2

M∑

m=1

w∗
mΛm

where V ∗ =
∑M

m=1 w
∗2
mD′

θm
Q−1

m ΩmQ−1
m Dθm+2

∑
m<p w

∗
mw∗

pD
′
θm
Q−1

m Ωm,pQ
−1
p Dθp and Λm = a′mδ+

b′
mR.

Theorem 5 is a general statement for all averaging estimators with data-driven weights. For

example, if weights are chosen by the plug-in averaging estimator, then w∗
m = w∗

pia,m, where w∗
pia,m

is defined in Theorem 2. Theorem 5 states that the asymptotic distribution of the model averaging

t-statistic is not normally distributed. Instead, it is characterized by a non-linear function of the

normal random vector R.

Let CIn(α) denote the 1−α percent confidence interval for parameter µ where α is the nominal

size. By inverting the t-statistic, we construct the confidence interval with the nominal level 1− α

for the focus parameter µ as CIn(α) = {µ : tn(µ) ≤ cn,1−α} where cn,1−α is the critical value. The

naive way to construct the confidence interval is to use the 1− α quantile of the standard normal

distribution as the critical value. For a standard two-sided symmetric confidence interval, the naive

confidence interval is defined as

CI1n(α) = [µ̄(ŵ)− z1−α/2ŝen, µ̄(ŵ) + z1−α/2ŝen] (7.3)

where z1−α/2 is 1−α/2 quantile of the standard normal distribution. The naive confidence interval

based on normal approximations is easily to implement, but it is not a valid method since tn(µ) is

not normally distributed.

Buckland, Burnham, and Augustin (1997) propose a modified confidence interval which ad-

dresses the uncertainty involved in the model selection/averaging step. They assume perfect corre-

lation between any two models, which leads to a simplified formula for the variance. The confidence

interval suggested by Buckland, Burnham, and Augustin (1997) is defined as

CI2n(α) = [µ̄(ŵ)− z1−α/2s̃en, µ̄(ŵ) + z1−α/2s̃en] (7.4)

where s̃en =
∑M

m=1 wm(σ̃2
m/n+ (µ̃m − µ̄(ŵ))2)1/2 and σ̃2

m = D̂′
θm
Q̂−1

m Ω̂mQ̂−1
m D̂θm . Here we do not

need to estimate the covariance between any two submodels to calculate the standard error s̃en.

However, the confidence interval proposed by Buckland, Burnham, and Augustin (1997) may still

have incorrect coverage probabilities due to the non-standard distribution of the model averaging

t-statistic.

A straightforward way to construct the confidence interval with the correct coverage proba-

bilities is to set the critical value as the 1 − α quantile of the asymptotic distribution derived in

Theorem 5. However, this quantile depends on unknown local parameters δ, and δ cannot be

estimated consistently. This implies the quantile cannot be estimated consistently as well. Here

we propose a plug-in method to construct the confidence interval. We first estimate the full model
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and obtain the estimators δ̂, Q̂, Ω̂, and D̂θ. Second, we calculate the data-driven weights and

estimate the standard error based on (7.1). Third, we simulate the asymptotic distribution derived

in Theorem 5 based on the plug-in estimators δ̂, Q̂, Ω̂, and D̂θ. Then we set the critical value

as the 1 − α quantile from the simulation. Therefore, the plug-in symmetric two-sided confidence

interval is defined as

CI3n(α) = [µ̄(ŵ)− ĉn,1−αŝen, µ̄(ŵ) + ĉn,1−αŝen] (7.5)

where ĉn,1−α is the 1− α quantile of the simulated distribution.

7.1 Asymptotic Quantiles

As pointed out in Theorem 5, the asymptotic distribution of the model averaging t-statistic is non-

standard. Figures 7 and 8 show the quantile functions of the model averaging t-statistics for DGP1

and DGP2 under homoskedastic errors. We set α = 0.05. We simulate the asymptotic distribution

and compute the quantile function based on Theorem 5. The quantile function is approximated by

using 5, 000 random samples. The parameter of interest is µ = θ2 and the weights are chosen by

the plug-in averaging estimator.

In each figure, the quantile functions are displayed for M = 2, 8, 32, and 128, respectively.

The dashed lines represents the quantile function for (ρ1, ρ2) = (0.75, 0.75), the dash-dotted lines

represents the quantile function for (ρ1, ρ2) = (0.5, 0.5), the dotted lines represents the quantile

function for (ρ1, ρ2) = (0.25, 0.25), and the solid line represents the quantile function based on the

standard normal distribution.

The behavior of the quantile functions are quite similar across different number of the models.

It can be seen that the asymptotic quantiles of the t-statistics are far from those of the standard

normal distribution. This implies the confidence intervals using (−1.96, 1.96), the 95% quantile

of the standard normal distribution, as critical points have incorrect coverage probabilities. Also

note that the asymptotic quantile increases as ρ1 and ρ2 increase. One interesting observation from

Figures 7 and 8 is that the quantile functions are asymmetric. For DGP1, we have larger upper

critical values, while for DGP2, we have smaller lower critical values.

7.2 Coverage Probabilities

We now compare the coverage probabilities of the following methods: (1) Naive confidence interval

(labeled Naive), (2) Buckland, Burnham, and Augustin (1997)’ confidence interval (labeled BBA),

(3) Plug-In confidence interval (labeled Plug-In). The finite-sample coverage probabilities of the

nominal 90% and 95% symmetric two-sided confidence intervals for DGP1 and DGP2 under ho-

moskedastic errors with (ρ1, ρ2) = (0.75, 0.75) are reported in Table 4. The parameter of interest

is µ = θ2 and the weights are chosen by the plug-in averaging estimator. The number of repetition

is 1,000. For the plug-in confidence interval, the critical value is approximated by simulation using

1, 000 random samples.
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As we expected, the coverage probabilities of the Naive confidence intervals are lower than the

nominal level 90% and 95%. The Buckland, Burnham, and Augustin (1997)’ confidence intervals

have better performance than the naive confidence intervals, however in some cases, the coverage

probabilities of the Buckland, Burnham, and Augustin (1997)’ confidence intervals are larger than

the nominal values. The plug-in confidence intervals have the best performance among the three

methods, and the coverage probabilities of the plug-in confidence intervals are quite close to the

nominal values.

8 An Empirical Example

In this section, we apply the plug-in model averaging method to cross-country growth regressions.

The challenge of empirical research on economic growth is that one does not know exactly what

explanatory variables should be included in the true model. Many studies attempt to identify

the variables explaining the differences in growth rates across countries by regressing the average

growth rate of GDP per capita on a large set of potentially relevant variables, see Durlauf, Johnson,

and Temple (2005) for a literature review. Due to the limited number of the observations and a

large amount of the candidate variables, the empirical growth literature has been heavily criticized

for its kitchen-sink approach.

In order to take into account the model uncertainty, Bayesian model averaging techniques

have been applied to empirical growth, including Fernandez, Ley, and Steel (2001), Sala-i Martin,

Doppelhofer, and Miller (2004), Durlauf, Kourtellos, and Tan (2008), and Magnus, Powell, and

Prufer (2010). We apply frequentist model averaging approaches as an alternative to Bayesian

model averaging techniques to economic growth. We estimate the following cross-country growth

regression

gi = x′
iβ + z′iγ + ei (8.1)

where gi is average growth rate of GDP per capita between 1960 and 1996, xi are the Solow

variables from the neoclassical growth theory, and zi are fundamental growth determinants such

as geography, institutions, religion, and ethnic fractionalization from the new fundamental growth

theory. Here, xi are core regressors which appear in every submodels, while zi are the auxiliary

regressors which serve as controls of the neoclassical growth theory and may or may not be included

in the submodels.

We follow Magnus, Powell, and Prufer (2010) and consider two model specifications to compare

the neoclassical growth theory with the fundamental new growth theory. Model Setup A includes

six core regressors and four auxiliary regressors. The six core regressors are the constant term

(CONSTANT), the log of GDP per capita in 1960 (GDP60), the 1960-1985 equipment investment

share of GDP (EQUIPINV), the primary school enrollment rate in 1960 (SCHOOL60), the life

expectancy at age zero in 1960 (LIFE60), and the population growth rate between 1960 and 1990

(DPOP). The four auxiliary regressors are a rule of law index (LAW), a country’s fraction of tropical

area (TROPICS), an average index of ethnolinguistic fragmentation in a country (AVELF), and the
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fraction of Confucian population (CONFUC), see Magnus, Powell, and Prufer (2010) for a detailed

description of the data. Model Setup B contains only one core regressor, the constant term, and

all other variables in Model Setup A are auxiliary regressors. The parameter of interest is the

convergence term of the Solow growth model, that is, the coefficient of the log GDP per capita in

1960. The total number of observations is 74. We consider all possible submodels, that is, we have

16 submodels in Model Setup A and 512 submodels in Model Setup B.

We consider eight estimators: (1) the least-squares estimator for the full model (Full), (2) the

averaging estimator with equal weights (Equal), (3) AIC model selection estimator (AIC), (4) BIC

model selection estimator (BIC), (5) S-AIC model averaging estimator (S-AIC), (6) S-BIC model

averaging estimator (S-BIC), (7) Jackknife Model Averaging estimator (JMA), and (8) Plug-In

averaging estimator (Plug-In). The standard errors of data-driven model averaging estimators are

calculated by (7.1).

The estimation results for Model Setup A and B are given in Table 5 and 6, respectively. We

also repot the estimation results for weighted-average least-squares (WALS) estimator proposed

by Magnus, Powell, and Prufer (2010) for comparison. The WALS estimator is a Bayesian model

averaging technique which uses a Laplace distribution instead of the normal prior as the parameter

prior. The results in Table 5 and 6 show that all coefficients have the same signs across different

estimation methods. In model A, the coefficient estimate and standard error of GDP60 are similar

between Plug-In, Full, Equal, and JMA estimators. Also, the 90% plug-in confidence interval for

GDP60 is (−0.0206,−0.0107), which is close to the naive confidence interval (−0.0200,−0.0112).

In Model Setup B, the plug-in averaging estimate of GDP60 is quite close to the least-squares

estimate from the full model and is higher in absolute value than other estimates. The 90% plug-in

confidence interval for GDP60 is (−0.0205,−0.0102), which is wider than the naive confidence inter-

val (−0.0183,−0.0124). The equal-weight averaging estimator has the smallest coefficient estimate

and standard error of GDP60 because only half of submodels contains the regressor GDP60. The

important finding from our results is that the plug-in averaging estimator has the smaller standard

error of GDP60 than other estimators, except for the averaging estimator with equal weights.

It is also instructive to contrast the results of the Plug-In and WALS estimators. In Model

Setup A, the estimation results are similar between Plug-In and WALS. In Model Setup B, the

estimated coefficient of GDP60 is higher in absolute value for Plug-In than for WALS, while the

estimated standard error of GDP60 is much smaller for Plug-In than for WALS. Therefore, the

convergence speed of the growth model implied by our result is higher than that found by Magnus,

Powell, and Prufer (2010). Comparing the results between Model Setup A and Model Setup B,

we find that the plug-in averaging estimator chooses different fundamental growth determinants in

different model specifications. Therefore, our results support the findings of Durlauf, Kourtellos,

and Tan (2008) and Magnus, Powell, and Prufer (2010) that the fundamental variables are not

robustly correlated with growth.

Table 7 and 8 report the weights placed on each submodel, and the regressor sets for each

submodel are described in Table 9 and 10. We only report the results of AIC, BIC, JMA, and

Plug-In estimators, since both S-AIC and S-BIC weights are spread out across all submodels. From
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Table 7-10 we can see that AIC chooses a larger model than BIC in both model specifications, which

is consistent with the previous literature. One interesting observation is that JMA and Plug-In

choose completely different submodels in Model Setup A and B. The submodels chosen by JMA

cover all entire regressor set, while Plug-In excludes the regressors LAW and TROPICS in Model

Setup A and the regressors EQUIPINV, SCHOOL60, DPOP, and CONFUC in Model Setup B.

Note that Plug-In puts 30% weight on the smallest submodel in Model Setup B. This particular

model choice can explain the relatively small standard error of GDP60 of the plug-in estimate.

9 Conclusion

In this paper we study the frequentist model averaging estimator for heteroskedastic regressions in

a local asymptotic framework. We characterize the optimal weights of the model averaging esti-

mator and propose a plug-in estimator to estimate the infeasible optimal fixed weights. We derive

the asymptotic distribution of the plug-in averaging estimator and suggest a plug-in method to

construct the confidence interval. The simulation results show that the plug-in averaging estimator

has much lower expected squared error than other selection and averaging methods. Also, the

plug-in averaging estimator achieves the minimax risk and minimax regret in all simulations. We

apply the plug-in averaging estimator to cross-country growth regressions. Our estimator has the

smaller variance of the log GDP per capita in 1960, though our regression coefficient of the log

GDP per capita in 1960 is close to those of other estimators. Our results also find little evidence

of the new fundamental growth theory.
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Appendix

A Proofs

Proof of Lemma 1: We first show the asymptotic distribution of the least-squares estimator for

the full model. By Assumption 2 and the application of the continuous mapping theorem, it follows

that

√
n
(
θ̂ − θ

)
=

(
1

n
H′H

)−1( 1√
n
H′e

)
d−→ Q−1R ∼ N(0,Q−1ΩQ−1).

We next show the asymptotic distribution of the least-squares estimator for each submodel.

Define the extended selection matrix Sm as

Sm =

(
Ik 0k×ℓm

0ℓ×k Π′
m

)
.

Then we have Hm = (X,ZΠ′
m) = HSm and Ωm = S′

mΩSm. By some algebra, it follows that

θ̃m = (H′
mHm)−1H′

my

=
(
H′

mHm

)−1 (
H′

m

(
Xβ + ZΠ′

mΠmγ + Z(Iℓ −Π′
mΠm)γ + e

))

=
(
H′

mHm

)−1
H′

mHmθm +
(
H′

mHm

)−1
H′

mZ
(
Iℓ −Π′

mΠm

)
γ +

(
H′

mHm

)−1
H′

me

= θm +
(
H′

mHm

)−1
H′

mZ
(
Iℓ −Π′

mΠm

)
γ +

(
H′

mHm

)−1
S′
mH′e.

Therefore, by Assumptions 1-2 and the application of the continuous mapping theorem, we have

√
n
(
θ̃m − θm

)
=

(
1

n
H′

mHm

)−1( 1

n
H′

mZ

)(
Iℓ −Π′

mΠm

)√
nγ +

(
1

n
H′

mHm

)−1

S′
m

(
1√
n
H′e

)

d−→ Q−1
m

(
Qxz

ΠmQzz

)
(
Iℓ −Π′

mΠm

)
δ +Q−1

m S′
mR

= Amδ +BmR ∼ N
(
Amδ, Q−1

m ΩmQ−1
m

)

where

Am = Q−1
m

(
Qxz

ΠmQzz

)
(
Iℓ −Π′

mΠm

)
and Bm = Q−1

m S′
m.

This completes the proof. �

Proof of Lemma 2: Define γmc = {γ : γj /∈ γm, for j = 1, ..., ℓ}. That is, γmc is the set of

parameters γj which are not included in submodel m. Hence, we can write µ(θ) as µ(β,γm,γmc).

Also, µ(θm) = µ(β,γm,0).

Note that γ = O(n−1/2) by Assumption 1. Then by a standard Taylor series expansion of µ(θ)

about γmc = 0, it follows that

µ(β,γm,γmc) = µ(β,γm,0) +D′
γmcγmc +O(n−1)

= µ(β,γm,0) +D′
γ

(
Iℓ −Π′

mΠm

)
γ +O(n−1).
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That is, µ(θ)− µ(θm) = D′
γ (Iℓ −Π′

mΠm)γ + O(n−1). Thus, by Assumptions 1-2 and the appli-

cation of the delta method, we have

√
n
(
µ(θ̃m)− µ(θ)

)
=

√
n
(
µ(θ̃m)− µ(θm)

)
−

√
n
(
µ(θ)− µ(θm)

)

d−→ D′
θm

(Amδ +BmR)−D′
γ

(
Iℓ −Π′

mΠm

)
δ

= D′
θm
Amδ −D′

γ

(
Iℓ −Π′

mΠm

)
δ +D′

θm
BmR

=

(
D′

θm
Q−1

m

(
Qxz

ΠmQzz

)
−D′

γ

)
(
Iℓ −Π′

mΠm

)
δ +D′

θm
Q−1

m S′
mR

= a′mδ + b′
mR ≡ Λm ∼ N

(
a′mδ, D′

θm
Q−1

m ΩmQ−1
m Dθm

)
,

where

am =
(
Iℓ −Π′

mΠm

)
((

Qzx

QzzΠ
′
m

)
Q−1

m Dθm −Dγ

)
,

bm = SmQ−1
m Dθm .

This completes the proof. �

Proof of Theorem 1: From Lemma 2, there is joint convergence in distribution of all
√
n
(
µ(θ̃m)− µ(θ)

)
to Λm since all of Λm can be expressed in terms of R. Since the weights

are non-random, it follows that

√
n (µ̄(w)− µ) =

M∑

m=1

wm

√
n (µ̃m − µ)

d−→
M∑

m=1

wmΛm ≡ Λ.

Therefore, the asymptotic distribution of the averaging estimator is a weighted average of the

normal distributions which is also a normal distribution.

By Lemma 2 and standard algebra, we can show the mean of Λ as

E

(
M∑

m=1

wmΛm

)
=

M∑

m=1

wmE (Λm) =
M∑

m=1

wma′mδ = a′δ, and a =
M∑

m=1

wmam.

Next we want to show the variance of Λ. For any two submodels, we have

Cov(Λm,Λp) = E
((
a′mδ + b′

mR− E(a′mδ + b′
mR)

) (
a′pδ + b′

pR− E(a′pδ + b′
pR)

))

= E
(
b′
mRb′

pR
)

= b′
mE

(
RR′

)
bp

= D′
θm

Q−1
m S′

mΩSpQ
−1
p Dθp

= D′
θm

Q−1
m Ωm,pQ

−1
p Dθp

with

Ωm,p =

(
Ωxx ΩxzΠ

′
p

ΠmΩzx ΠmΩzzΠ
′
p

)
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where the second equality holds by the fact that am, bm, and δ are constant vectors and R ∼
N(0,Ω). Therefore, variance of Λ is

V = var

(
M∑

m=1

wmΛm

)

=
M∑

m=1

w2
mV ar(Λm) + 2

∑

m<p

wmwpCov(Λm,Λp)

=
M∑

m=1

w2
mD′

θm
Q−1

m ΩmQ−1
m Dθm + 2

∑

m<p

wmwpD
′
θm

Q−1
m Ωm,pQ

−1
p Dθp .

This completes the proof. �

Proof of Theorem 2: We first show D̂θm , Q̂m, Ω̂m,p, and âm are consistent estimators for

Dθm , Qm, Ωm,p, and am. By Lemma 1, we have θ̂
p−→ θ, which also implies that ∂µ(θ̂)/∂θ =

D̂θ
p−→ Dθ. By Assumption 2 and 3 and the fact that the selection matrix is non-random, we have

D̂θm

p−→ Dθm , Q̂m
p−→ Qm, and Ω̂m,p

p−→ Ωm,p. By Assumption 2 and the application of the

continuous mapping theorem, it follows that âm
p−→ am.

We next show the limiting distribution of ζ̂m,p. By Assumption 2 and 3 and the application of

the continuous mapping theorem, it follows that D̂′
θm

Q̂−1
m Ω̂m,pQ̂

−1
p D̂θp

p−→ D′
θm

Q−1
m Ωm,pQ

−1
p Dθp .

Recall that δ̂
d−→ Rδ = δ +ΠℓQ

−1R. Then by the application of Slutsky’s theorem, we have

ζ̂m,p = δ̂′âmâ′pδ̂ + D̂′
θm
Q̂−1

m Ω̂m,pQ̂
−1
p D̂θp

d−→ R′
δama′pRδ +D′

θm
Q−1

m Ωm,pQ
−1
p Dθp = ζ∗m,p.

Since all of ζ∗m,p can be expressed in terms of the normal random vector R, there is joint

convergence in distribution of all ζ̂m,p to ζ∗m,p. Hence, it follows that w
′ζ̂w

d−→ w′ζ∗w.

We now show the limiting distribution of ŵpia. Note that w′ζ∗w is a convex minimization

problem since w′ζ∗w is quadratic and ζ∗ is positive definite. Hence, the limiting process w′ζ∗w is

continuous in w and has a unique minimum. Also note that ŵpia = Op(1). By Theorem 3.2.2 of

Van der Vaart and Wellner (1996) or Theorem 2.7 of Kim and Pollard (1990), the minimizer ŵpia

converges in distribution to the minimizer of w′ζ∗w, which is w∗
pia.

Finally, we show the asymptotic distribution of the plug-in averaging estimator. Since both

Λm and w∗
pia,m can be expressed in terms of the same normal random vector R, there is joint

convergence in distribution of all µ̃m and ŵpia,m. By Lemma 2, (4.2), and (4.9), it follows that

√
n
(
µ̄(ŵpia)− µ

)
=

M∑

m=1

ŵpia,m

√
n (µ̃m − µ)

d−→
M∑

m=1

w∗
pia,mΛm.

This completes the proof. �

Proof of Theorem 3: By (5.2) and (5.3), it follows that ŵsaic,m
d−→ w∗

saic,m. Also, there

is joint convergence in distribution of all ŵwsaic,m and µ̃m. Thus, the limiting distribution of the

S-AIC model averaging estimator follows from (5.1) and (5.3). This completes the proof. �

26



Proof of Theorem 4: Define hi = h′
i(H

′H)−1hi. Notice that ê−i = êi(1− hi)
−1 ≈ êi(1 + hi)

where êi is the least-squares residuals and ê−i is the leave-one-out least-squares residual from the full

model. For the submodel m, we have hm,i = (x′
i, z

′
iΠm)′ = (x′

i, z
′
mi)

′, hm,i = h′
m,i(H

′
mHm)−1hm,i,

and ẽm,−i ≈ ẽm,i(1 + hm,i).

Then it follows that
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n
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(
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=
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n
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=
1
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ẽm,iẽp,i +
1

n
tr
(
Q̂−1

m Ω̃m,m,p

)
+

1

n
tr
(
Q̂−1

p Ω̃p,m,p
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+ o(1),

where

Q̂m =
1

n
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(
xi

zmi

)(
x′
i z′mi

)
,

Ω̃m,m,p =
1

n

n∑

i=1

(
xi

zmi

)(
x′
i z′mi

)
ẽm,iẽp,i.

Therefore, we have

ξm,p = ẽ′m,−iẽp,−i − ê′ê

=
(
ẽ′mẽp − ê′ê

)
+ tr

(
Q̂−1

m Ω̃m,m,p

)
+ tr

(
Q̂−1

p Ω̃p,m,p

)
+ o(1), (A.1)

where ê = y −Hθ̂ and ẽm = y −Hmθ̃m.

First, we consider the first terms of (A.1). Since ẽ′mê = ê′ê and ẽm − ê = H(Smθ̃m − θ̂), we

have

ẽ′mẽp − ê′ê = (ẽm − ê)′ (ẽp − ê)

=
√
n(θ̂ − Smθ̃m)′

(
1

n
H′H

)√
n(θ̂ − Spθ̃p).
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Define Πℓ = (0ℓ×k, Iℓ). Then from Lemma 1 it follows that

√
n(θ̂ − Smθ̃m) =
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=
(
Q−1 − SmQ−1

m S′
m

)
R+

(
Π′

ℓ − SmQ−1
m

(
Qxz

ΠmQzz

))
(
Iℓ −Π′

mΠm

)
δ

= Ämδ + B̈mR ≡ R̈m

where

Äm =

(
Π′

ℓ − SmQ−1
m

(
Qxz

ΠmQzz

))
(
Iℓ −Π′

mΠm

)
, and B̈m =

(
Q−1 − SmQ−1

m S′
m

)
.

Therefore, it follows that

ẽ′mẽp − ê′ê
d−→ R̈′

mQR̈p. (A.2)

Next, consider the second and third terms of (A.1). From Lemma 3 and the application of the

continuous mapping theorem, it follows that

tr(Q̂−1
m Ω̃m,m,p)

p−→ tr(Q−1
m Ωm), (A.3)

tr(Q̂−1
p Ω̃p,m,p)

p−→ tr(Q−1
p Ωp), (A.4)

Equation (5.9) then follows from (A.2), (A.3), and (A.4). Since all of ξ∗m,p can be expressed in

terms of the normal random vector R, there is joint convergence in distribution of all ξm,p to ξ∗m,p.

Hence, it follows that w′ξnw
d−→ w′ξ∗w.

Finally, we show the limiting distribution of ŵjma and µ̄(ŵjma). First, the limiting process

w′ξ∗w is continuous in w and has a unique minimum since w′ξ∗w is quadratic and ξ∗ is positive

definite. Second, ŵjma = Op(1) by the fact that Hn is convex. Therefore, by Theorem 3.2.2 of

Van der Vaart and Wellner (1996) or Theorem 2.7 of Kim and Pollard (1990), the minimizer ŵjma

converges in distribution to the minimizer of w′ξ∗w, which is w∗
jma. Equation (5.11) then follows

from the distribution result (5.10) and the fact that there is joint convergence in distribution of µ̃m

and ŵjma. This completes the proof. �

Lemma 3. Let ẽm,i = yi − x′
iβ̂m − z′miγ̂m denote the OLS residuals from the submodels and

Ω̃m,m,p =
1

n

n∑

i=1

(
xi

zmi

)(
x′
i z′mi

)
ẽm,iẽp,i

for m, p = 1, ...,M . Suppose Assumptions 1 and 4 hold. As n → ∞, we have

Ω̃m,m,p
p−→ Ωm.
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Proof of Lemma 3: Let ‖ · ‖ be the Euclidean norm. That is, for an m × n matrix X,

‖X‖ = (
∑m

i=1

∑n
j=1 x

2
ij)

1/2. Note that

ẽm,i = yi − x′
iβ̃ − z′miγ̃m

= ei − x′
i(β̃ − β)− (z′miγ̃m − z′iΠ

′
mΠmγ) + z′i(Iℓ −Π′

mΠm)γ

= ei −
(
x′
i(β̃ − β) + z′mi(γ̃m − γm)

)
+ z′mciγmc

where zmci = {zi : zji /∈ zmi, for j = 1, ..., ℓ} and γmc = {γ : γj /∈ γm, for j = 1, ..., ℓ}.
Thus,

Ω̃m,m,p =
1

n

n∑

i=1

(
xix

′
ie

2
i xiz

′
mie

2
i

zmix
′
ie

2
i zmiz

′
mie

2
i

)

+
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)(
xi

zmi

)′(
β̃ − β

γ̃m − γm

)(
xi

zpi

)′(
β̃ − β

γ̃p − γp

)

+
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
z′mciγmcz′pciγpc

− 1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)(
xiei

zmiei

)′(
β̃ − β

γ̃m − γm

)

− 1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)(
xiei

zpiei

)′(
β̃ − β

γ̃p − γp

)

− 1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
γ ′
pczpci

(
xi

zmi

)′(
β̃ − β

γ̃m − γm

)

− 1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
γ ′
mczmci

(
xi

zpi

)′(
β̃ − β

γ̃p − γp

)

+
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
eiz

′
mciγmc

+
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
eiz

′
pciγpc (A.5)

The strategy of the proof is to show that the first term of (A.5) converges in probability to

Ωm and the remaining terms of (A.5) converge in probability to zero. First consider the first

term of (A.5). The jl’th element of xix
′
ie

2
i is xjixlie

2
i . By Assumption 4 and the application of

Cauchy-Schwarz Inequality, it follows that

E
∣∣xjixlie2i

∣∣ ≤
(
Ex2jix

2
li

)1/2 (
Ee4i

)1/2 ≤
(
Ex4ji

)1/4 (
Ex4li

)1/4 (
Ee4i

)1/2
< ∞.

Similarly, we can show that the expectations of |xjizmli
e2i |, |zmji

xlie
2
i |, and |zmji

zmli
e2i | are finite.

Then by weak law of large numbers, we have

1

n

n∑

i=1

(
xix

′
ie

2
i xiz

′
mie

2
i

zmix
′
ie

2
i zmiz

′
mie

2
i

)
p−→
(

E
(
xix

′
ie

2
i

)
E
(
xiz

′
mie

2
i

)

E
(
zmix

′
ie

2
i

)
E
(
zmiz

′
mie

2
i

)
)

= Ωm.
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Next consider the second term of (A.5). By the Triangle Inequality and Schwarz Inequality, it

follows that
∥∥∥∥∥
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)(
xi

zmi

)′(
β̃ − β

γ̃m − γm

)(
xi

zpi

)′(
β̃ − β

γ̃p − γp

)∥∥∥∥∥

≤ 1

n

n∑

i=1

∥∥∥∥∥
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

∥∥∥∥∥

∣∣∣∣∣

(
β̃ − β

γ̃m − γm

)′(
xi

zmi

)∣∣∣∣∣

∣∣∣∣∣

(
β̃ − β

γ̃p − γp

)′(
xi

zpi

)∣∣∣∣∣

≤ 1

n

n∑

i=1

∥∥∥∥∥
xi

zmi

∥∥∥∥∥

3 ∥∥∥∥∥
xi

zpi

∥∥∥∥∥

∥∥∥∥∥
β̃ − β

γ̃m − γm

∥∥∥∥∥

∥∥∥∥∥
β̃ − β

γ̃p − γp

∥∥∥∥∥ . (A.6)

Since from Lemma 1
(

β̃ − β

γ̃m − γm

)
−→ 0

and

1

n

n∑

i=1

∥∥∥∥∥
xi

zmi

∥∥∥∥∥

3 ∥∥∥∥∥
xi

zpi

∥∥∥∥∥ −→ E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3 ∥∥∥∥∥
xi

zpi

∥∥∥∥∥


 < ∞

it follows that (A.6) converges in probability to zero. This shows that the second term of (A.5)

converges in probability to zero.

Next consider the third term of (A.5). By the Triangle Inequality and Schwarz Inequality, it

follows that
∥∥∥∥∥
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
z′mciγmcz′pciγpc

∥∥∥∥∥

≤ 1

n

n∑

i=1

∥∥∥∥∥
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

∥∥∥∥∥
∣∣z′mciγmc

∣∣ ∣∣z′pciγpc
∣∣

≤ 1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

2

‖zmci‖ ‖zpci‖


 ‖γmc‖ ‖γpc‖ .

By the Cauchy-Schwarz Inequality, it follows that

E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

2

‖zmci‖ ‖zpci‖


 ≤ E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

4



1/2

E
(
‖zmci‖2 ‖zpci‖2

)1/2
< ∞.

Then by Weak Law of Large Number,

1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

2

‖zmci‖ ‖zpci‖


 −→ E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

2

‖zmci‖ ‖zpci‖


 < ∞.

By Assumption 1, we have γmc → 0 and γpc → 0. Hence, the third term of (A.5) converges in

probability to zero.

30



Next consider the fourth term of (A.5). By the Triangle Inequality and Schwarz Inequality, it

follows that
∥∥∥∥∥
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)(
xiei

zmiei

)′(
β̃ − β

γ̃m − γm

)∥∥∥∥∥

≤ 1

n

n∑

i=1

(∥∥∥∥∥
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

∥∥∥∥∥

∥∥∥∥∥
xiei

zmiei

∥∥∥∥∥

)∥∥∥∥∥
β̃ − β

γ̃m − γm

∥∥∥∥∥

≤ 1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3

|ei|



∥∥∥∥∥

β̃ − β

γ̃m − γm

∥∥∥∥∥ . (A.7)

By Holder’s Inequality, we have

E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3

|ei|


 ≤ E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

4



3/4

(
E|e4i |

)1/4
< ∞.

Then by Weak Law of Large Number,

1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3

|ei|


 −→ E



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3

|ei|


 < ∞.

Therefore, (A.7) converges in probability to zero. This shows that the fourth term of (A.5)

converges in probability to zero. Similarly, we can show the fifth term of (A.5) converges in

probability to zero.

Next consider the sixth term of (A.5). By the Triangle Inequality and Schwarz Inequality, it

follows that
∥∥∥∥∥
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
γ ′
pczpi

(
xi

zmi

)′(
β̃ − β

γ̃m − γm

)∥∥∥∥∥

≤ 1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

3

‖zpci‖


 ‖γpc‖

∥∥∥∥∥
β̃ − β

γ̃m − γm

∥∥∥∥∥

−→ 0.

Therefore, the sixth term of (A.5) converges in probability to zero. Similarly, it shows that the

seventh term of (A.5) converges in probability to zero.

Next consider the eighth term of (A.5). By the Triangle Inequality and Schwarz Inequality, it

follows that
∥∥∥∥∥
1

n

n∑

i=1

(
xix

′
i xiz

′
mi

zmix
′
i zmiz

′
mi

)
eiz

′
mciγmc

∥∥∥∥∥

≤ 1

n

n∑

i=1



∥∥∥∥∥

xi

zmi

∥∥∥∥∥

2

‖zmci‖ |ei|


 ‖γmc‖

−→ 0.
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It follows that the eighth and ninth terms of (A.5) converge in probability to zero. This completes

the proof. �

Proof of Corollary 1: From Theorem 1, we can express the AMSE of the averaging estimator

for the two-model case as AMSE(µ̄(w)) = w2ζ1,1 + (1 − w)2ζ2,2 + 2w(1 − w)ζ1,2. The first-order

condition for the minimization is 0 = 2w(ζ1,1 + ζ2,2 − 2ζ1,2) − 2(ζ2,2 − ζ1,2), whose solution is

wo = (ζ2,2 − ζ1,2)/(ζ1,1 + ζ2,2 − 2ζ1,2). If this value is greater than one, then the constrained

minimizer is wo = 1. If this value is negative, then the constrained minimizer is wo = 0. This

completes the proof. �

Proof of Corollary 2: In Theorem 2, we show that ŵpia
d−→ w∗

pia = argmin
w∈Hn

w′ζ∗w. For

M = 2, we have w∗
pia = argmin

w∈Hn

(
w2ζ∗1,1+(1−w)2ζ∗2,2+2w(1−w)ζ∗1,2

)
= (ζ∗2,2−ζ∗1,2)/(ζ

∗
1,1+ζ∗2,2−2ζ∗1,2).

Therefore, AMSE(µ̄(ŵpia)) = E
(
w∗2
piaζ1,1+

(
1−w∗

pia

)2
ζ2,2+2w∗

pia

(
1−w∗

pia

)
ζ1,2
)
. The argument for

w∗
jma is similar. This completes the proof. �

Proof of Theorem 5: For any data-driven weights, we have ŵm
d−→ w∗

m where w∗
m is

a function of the random vector R. In Theorem 2, we show that D̂′
θm

Q̂−1
m Ω̂m,pQ̂

−1
p D̂θp

p−→
D′

θm
Q−1

m Ωm,pQ
−1
p Dθp . Then by the application of Slutsky’s theorem, we have V̂

d−→ V ∗. From

Theorems 2, 3, and 4, we show that
√
n(µ̄(ŵ)−µ)

d−→
∑M

m=1 w
∗
mΛm for some data-driven weights

ŵ. Therefore, there is joint convergence in distribution of V̂ and
√
n(µ̄(ŵ) − µ) since all of V ∗,

wm, and Λm can be expressed in terms of R. Finally, by the application of the continuous mapping

theorem, it follows that tn(µ)
d−→ (V ∗)−1/2

∑M
m=1 w

∗
mΛm. This completes the proof. �
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Figure 1: DGP1, σ
2

i = 1, ρ1 = 0.3, ρ2 = 0.1.
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Figure 2: DGP2, σ
2

i = 1, ρ1 = 0.3, ρ2 = 0.1.
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Figure 3: DGP1, σ
2

i = x2

2i, ρ1 = 0.3, ρ2 = 0.1.
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Figure 4: DGP1, σ
2

i = x2

2i, ρ1 = 0.6, ρ2 = 0.4.
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Figure 5: DGP3, σ
2

i = 1, ρ1 = 0.3, ρ2 = 0.1.
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Figure 6: DGP4, σ
2

i = 1, ρ1 = 0.3, ρ2 = 0.1.
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Figure 7: DGP1, σ
2

i = 1, α = 0.05.
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Figure 8: DGP2, σ
2

i = 1, α = 0.05.
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C Tables

Table 1: Maximum Risk

DGP M AIC BIC S-AIC S-BIC JMA Plug-In Opt

A. Homoskedastic error

1 2 2.4029 2.9376 2.1730 2.4257 2.0733 1.8919 1.5570

8 4.0453 6.3674 3.6617 5.2650 3.6230 2.8533 2.4557

32 5.7872 11.1803 5.2191 9.3306 5.5725 3.5633 3.1532

128 7.2794 16.7302 6.8562 14.0665 7.8083 4.3867 3.7290

2 2 2.2995 2.7909 2.0511 2.3132 1.9469 1.8717 1.5611

8 3.5464 4.0076 3.1097 3.4690 2.9640 2.6806 1.2386

32 4.3184 5.1901 3.8780 4.2957 3.6486 3.4532 1.1603

128 5.1320 6.1632 4.6347 5.2107 5.1819 4.6161 1.1236

B. Heteroskedastic error

1 2 4.1706 4.6361 3.9392 4.1876 3.8890 3.7151 3.5570

8 6.0116 8.2923 5.6419 7.2394 5.5690 4.8047 4.4557

32 7.7131 13.0020 7.1562 11.0792 7.5651 5.6508 5.1532

128 9.1700 18.4394 8.7134 15.8386 9.8053 6.3532 5.7290

2 2 4.0088 4.4651 3.8047 4.0485 3.8256 3.6676 3.5611

8 5.3354 5.8515 4.9670 5.2761 4.9241 4.5924 3.2386

32 6.2868 7.2808 5.9291 6.3404 5.7661 5.4059 3.1603

128 6.8859 8.0384 6.5151 7.0798 7.1793 6.4366 3.1236

Table 2: Maximum Regret

DGP M AIC BIC S-AIC S-BIC JMA Plug-In

A. Homoskedastic error

1 2 0.9369 1.4717 0.7071 0.9598 0.6073 0.4260

8 1.8198 4.1419 1.4363 3.0297 1.3320 0.6384

32 2.9441 8.3371 2.3216 6.4162 2.5958 0.8282

128 3.9048 13.2733 3.3993 10.6096 4.2170 1.0019

2 2 0.8318 1.3232 0.5834 0.8454 0.4792 0.3373

8 2.3289 2.7902 1.8791 2.2337 1.7335 1.4428

32 3.1657 4.0373 2.7253 3.1429 2.4887 2.2929

128 4.0135 5.0447 3.5144 4.0904 4.0582 3.4925

B. Heteroskedastic error

1 2 0.7047 1.1702 0.4733 0.7217 0.4190 0.2365

8 1.7861 4.0669 1.4165 3.0139 1.3435 0.5793

32 2.8699 8.1588 2.3130 6.1647 2.5310 0.7052

128 3.9034 12.9825 3.2565 10.3817 4.2141 0.8709

2 2 0.5411 0.9974 0.3370 0.5808 0.2967 0.1332

8 2.1179 2.6340 1.7364 2.0408 1.6935 1.3538

32 3.1340 4.1281 2.7764 3.1876 2.6063 2.2461

128 3.7656 4.9199 3.3948 3.9594 4.0557 3.3129
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Table 3: Maximum Risk and Regret

DGP AIC BIC S-AIC S-BIC JMA Plug-In

Maximum Risk 3 1.9428 2.3719 1.8376 2.0556 1.7060 1.5789

4 1.8158 2.0624 1.6916 1.8171 1.6250 1.5758

Maximum Regret 3 0.9168 1.3459 0.8116 1.0296 0.6800 0.5518

4 0.7916 1.0376 0.6669 0.7924 0.5993 0.5500

Table 4: Coverage Probabilities of 90% and 95% Confidence Intervals

for σ2
i = 1, and ρ1 = ρ2 = 0.75

90% 95%

M DGP R2 Naive BBA Plug-In Naive BBA Plug-In

2 1 0.1 0.7940 0.8540 0.8690 0.8650 0.9050 0.9150

2 1 0.5 0.8160 0.8720 0.8800 0.8760 0.9220 0.9270

2 1 0.9 0.8660 0.8910 0.8800 0.9200 0.9400 0.9330

2 2 0.1 0.8010 0.8700 0.8720 0.8660 0.9110 0.9250

2 2 0.5 0.8580 0.8990 0.8830 0.9210 0.9440 0.9350

2 2 0.9 0.8660 0.8810 0.8720 0.9290 0.9310 0.9330

8 1 0.1 0.7340 0.8090 0.8620 0.8100 0.8770 0.9190

8 1 0.5 0.8210 0.8620 0.9130 0.8760 0.9150 0.9540

8 1 0.9 0.8650 0.8790 0.8850 0.9160 0.9300 0.9310

8 2 0.1 0.7400 0.8320 0.8640 0.8130 0.8950 0.9080

8 2 0.5 0.7760 0.9610 0.9030 0.8390 0.9800 0.9460

8 2 0.9 0.7480 0.9960 0.8790 0.8300 0.9980 0.9330

32 1 0.1 0.7470 0.8180 0.8750 0.8100 0.8820 0.9200

32 1 0.5 0.8330 0.8660 0.9180 0.8930 0.9280 0.9650

32 1 0.9 0.8460 0.8710 0.8790 0.9190 0.9330 0.9430

32 2 0.1 0.7250 0.8350 0.8800 0.7950 0.9010 0.9310

32 2 0.5 0.7130 0.9460 0.8980 0.8040 0.9670 0.9430

32 2 0.9 0.7030 0.9980 0.8690 0.7770 0.9990 0.9420
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Table 5: Coefficient estimates and standard errors, Model Setup A

Full Equal AIC BIC S-AIC S-BIC JMA Plug-In WALS

CONSTANT 0.0609 0.0603 0.0518 0.0441 0.0526 0.0474 0.0559 0.0641 0.0594

(0.0193) (0.0192) (0.0214) (0.0210) (0.0200) (0.0204) (0.0201) (0.0182) (0.0221)

GDP60 -0.0155 -0.0157 -0.0145 -0.0138 -0.0144 -0.0135 -0.0156 -0.0156 -0.0156

(0.0030) (0.0028) (0.0031) (0.0031) (0.0030) (0.0030) (0.0029) (0.0027) (0.0033)

EQUIPINV 0.1366 0.1835 0.1377 0.1518 0.1501 0.1686 0.1511 0.2263 0.1555

(0.0400) (0.0361) (0.0397) (0.0394) (0.0383) (0.0363) (0.0390) (0.0349) (0.0551)

SCHOOL60 0.0170 0.0173 0.0191 0.0157 0.0168 0.0157 0.0181 0.0137 0.0175

(0.0085) (0.0081) (0.0081) (0.0082) (0.0082) (0.0081) (0.0081) (0.0085) (0.0097)

LIFE60 0.0008 0.0009 0.0008 0.0009 0.0008 0.0008 0.0009 0.0010 0.0009

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

DPOP 0.3466 0.1736 0.3275 0.1240 0.2433 0.1367 0.2465 0.0055 0.2651

(0.1911) (0.1706) (0.1853) (0.1797) (0.1784) (0.1699) (0.1760) (0.1718) (0.2487)

LAW 0.0174 0.0094 0.0167 0.0154 0.0142 0.0097 0.0166 0.0147

(0.0058) (0.0028) (0.0056) (0.0057) (0.0049) (0.0034) (0.0052) (0.0065)

TROPICS -0.0075 -0.0040 -0.0083 -0.0052 -0.0029 -0.0043 -0.0055

(0.0036) (0.0018) (0.0036) (0.0023) (0.0013) (0.0018) (0.0037)

AVELF -0.0077 -0.0048 -0.0033 -0.0015 -0.0026 -0.0104 -0.0053

(0.0066) (0.0033) (0.0026) (0.0011) (0.0016) (0.0065) (0.0048)

CONFUC 0.0562 0.0317 0.0596 0.0627 0.0600 0.0633 0.0430 0.0251 0.0443

(0.0129) (0.0062) (0.0129) (0.0129) (0.0126) (0.0123) (0.0088) (0.0045) (0.0163)

Note: Standard errors are reported in parentheses. The column labeled WALS displays the weighted-average least-squares

estimates of Magnus, Powell, and Prufer (2010, Table 2).

39



Table 6: Coefficient estimates and standard errors, Model Setup B

Full Equal AIC BIC S-AIC S-BIC JMA Plug-In WALS

CONSTANT 0.0609 0.0254 0.0674 0.0344 0.0556 0.0452 0.0526 0.0734 0.0560

(0.0193) (0.0097) (0.0182) (0.0138) (0.0156) (0.0140) (0.0146) (0.0106) (0.0215)

GDP60 -0.0155 -0.0060 -0.0146 -0.0120 -0.0138 -0.0126 -0.0137 -0.0153 -0.0136

(0.0030) (0.0011) (0.0031) (0.0029) (0.0028) (0.0027) (0.0025) (0.0018) (0.0033)

EQUIPINV 0.1366 0.1094 0.1484 0.1951 0.1510 0.1593 0.1322 0.1037

(0.0400) (0.0170) (0.0390) (0.0340) (90.0338) (0.0300) (0.0206) (0.0537)

SCHOOL60 0.0170 0.0115 0.0203 0.0117 0.0066 0.0139 0.0125

(0.0085) (0.0033) (0.0080) (0.0043) (0.0021) (0.0026) (0.0094)

LIFE60 0.0008 0.0004 0.0006 0.0012 0.0008 0.0010 0.0008 0.0010 0.0008

(0.0003) (0.0001) (0.0003) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0003)

DPOP 0.3466 0.0607 0.0666 0.0136 0.1804 0.2236

(0.1911) (0.0717) (0.0471) (0.0141) (0.0707) (0.2156)

LAW 0.0174 0.0092 0.0140 0.0119 0.0076 0.0151 0.0171 0.0137

(0.0058) (0.0022) (0.0053) (0.0040) (0.0024) (0.0032) (0.0031) (0.0063)

TROPICS -0.0075 -0.0037 -0.0064 -0.0034 -0.0015 -0.0042 -0.0032 -0.0055

(0.0036) (0.0017) (0.0034) (0.0017) (0.0008) (0.0017) (0.0025) (0.0039)

AVELF -0.0077 -0.0040 -0.0036 -0.0018 -0.0034 -0.0091 -0.0083

(0.0066) (0.0032) (0.0026) (0.0012) (0.0017) (0.0044) (0.0057)

CONFUC 0.0562 0.0419 0.0616 0.0728 0.0640 0.0688 0.0444 0.0451

(0.0129) (0.0057) (0.0128) (0.0120) (0.0123) (0.0121) (0.0080) (0.0163)

Note: Standard errors are reported in parentheses. The column labeled WALS displays the weighted-average least-squares

estimates of Magnus, Powell, and Prufer (2010, Table 3).

Table 7: Weights placed on each submodel, Model Setup A

Model AIC BIC JMA Plug-In

4 0.000 0.000 0.070 0.000

5 0.000 0.000 0.000 0.624

8 0.000 0.000 0.243 0.000

9 0.000 0.000 0.071 0.000

10 0.000 1.000 0.424 0.000

12 1.000 0.000 0.192 0.000

13 0.000 0.000 0.000 0.376
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Table 8: Weights placed on each submodel, Model Setup B

Model AIC BIC JMA Plug-In

1 0.000 0.000 0.000 0.300

72 0.000 0.000 0.087 0.000

168 0.000 0.000 0.269 0.000

234 0.000 0.000 0.000 0.700

259 0.000 0.000 0.026 0.000

268 0.000 1.000 0.190 0.000

296 0.000 0.000 0.033 0.000

368 1.000 0.000 0.000 0.000

378 0.000 0.000 0.394 0.000

Table 9: Regressor set of the submodel, Model Setup A

Model Regressor Set

4 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+LAW+TROPICS

5 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+AVELF

8 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+LAW+TROPICS+AVELF

9 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+CONFUC

10 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+LAW+CONFUC

12 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+LAW+TROPICS+CONFUC

13 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+DPOP+AVELF+CONFUC

Table 10: Regressor set of the submodel, Model Setup B

Model Regressor Set

1 CONSTANT

72 CONSTANT+GDP60+EQUIPINV+SCHOOL60+TROPICS

168 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LAW+AVELF

234 CONSTANT+GDP60+LIFE60+LAW+TROPICS+AVELF

259 CONSTANT+EQUIPINV+CONFUC

268 CONSTANT+GDP60+EQUIPINV+LIFE60+CONFUC

296 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LAW+CONFUC

368 CONSTANT+GDP60+EQUIPINV+SCHOOL60+LIFE60+LAW+TROPICS+CONFUC

378 CONSTANT+GDP60+LIFE60+DPOP+LAW+TROPICS+CONFUC
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