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Abstract

This paper investigates the existence of pure strategy, dominant strategy, and mixed strat-

egy Nash equilibria in discontinuous games. We introduce a new notion of weak continuity,

called weak transfer quasi-continuity, which is weaker than most known weak notions of con-

tinuity, including diagonal transfer continuity in Baye et al (1993) and better-reply security

in Reny (1999), and holds in a large class of discontinuous games. We show that it, together

with strong diagonal transfer quasiconcavity introduced in the paper, is enough to guarantee

the existence of Nash equilibria in compact and convex normal form games. We provide suf-

ficient conditions for weak transfer quasi-continuity by introducing notions of weak transfer

continuity, weak transfer upper continuity, and weak transfer lower continuity. Moreover, an

analogous analysis is applied to show the existence of dominant strategy and mixed strategy

Nash equilibria in discontinuous games.
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1 Introduction

The concept of Nash equilibrium in Nash (1950, 1951) is probably the most important solution

in game theory. It is immune from unilateral deviations, that is, each player has no incentive to

deviate from his/her strategy given that other players do not deviate from theirs. Nash (1951)

proved that a finite game has a Nash equilibrium in mixed strategies. Debreu (1952) then showed

that games possess a pure strategy Nash equilibrium if (1) the strategy spaces are nonempty, con-

vex and compact, and (2) players have continuous and quasiconcave payoff functions. However,

in many important economic models, such as those in Bertrand (1883), Hotelling (1929), Mil-

grom and Weber (1982), Dasgupta and Maskin (1986), and Jackson (2005), etc., and payoffs are

discontinuous and/or non-quasiconcave.

Economists then seek weaker conditions that can guarantee the existence of equilibrium.

Some seek to weaken the quasiconcavity of payoffs or substitute it with some forms of transitiv-

ity/monotonicity of payoffs (cf. McManus (1964), Roberts and Sonnenschein (1976), Nishimura

and Friedman (1981), Topkis (1979), Vives (1990), and Milgrom and Roberts (1990)), some seek

to weaken the continuity of payoff functions (cf. Dasgupta and Maskin (1986), Simon (1987),

Simon and Zame (1990), Tian (1992a, 1992b, 1992c, 1994), Reny (1999), Bagh and Jofre (2006),

Reny (2009), while others seek to weaken both quasiconcavity and continuity (cf. Baye, Tian, and

Zhou (1993), and Barelli and Soza (2009), McLennan, Monteiro, and Tourky (2009)).

This paper investigates the existence of pure strategy, dominant strategy, and mixed strategy

Nash equilibria in discontinuous games. We introduce a new notion of very weak continuity,

called weak transfer quasi-continuity, which is weaker than most known weak notions of continu-

ity, including diagonal transfer continuity in Baye et al (1993) and better-reply security in Reny

(1999), and holds in a large class of discontinuous games. Roughly speaking, a game is weakly

transfer quasi-continuous if for every nonequilibrium strategy x∗, there exists a neighborhood and

a securing strategy profile such that for every strategy profile in the neighborhood, there is player

i who is strictly better off by using his securing strategy.

Weak transfer quasi-continuity is indeed very weak. Recently, Tian (2009) extends the notion

of weak transfer quasi-continuity to its transitive closure, called recursive weak transfer quasi-

continuity. It is shown that recursive weak transfer quasi-continuity is necessary and sufficient

for the existence of Nash equilibria in general games with any number of players that may be

finite, infinite, or even uncountable; arbitrary strategy spaces that may be discrete, continuum,

non-compact or non-convex; payoffs that may be discontinuous or do not have any form of quasi-

concavity. Weak transfer quasi-continuity holds in many economic games. Besides those known

sufficient conditions such as diagonal transfer continuity and better-reply security, we give four

additional sets of sufficient conditions, each of which implies weak transfer quasi-continuity: (1)

transfer continuity, (2) weak transfer continuity, (3) weak transfer upper continuity and payoff
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security,1 and (4) upper semicontinuity and weak transfer lower continuity. These conditions are

satisfied in many economic games and are often simple to check.

We also introduce the notions of strong diagonal transfer quasiconcavity and weak diagonal

transfer quasiconcavity, which are stronger and weaker than diagonal transfer quasiconcavity in-

troduced in Baye et al (1993), respectively. Strong diagonal transfer quasiconcavity, diagonal

transfer quasiconcavity, weak diagonal transfer quasiconcavity are all very weak notions of qua-

siconcavity. A game is (strongly/weakly) diagonal transfer quasiconcave provided it has a pure

strategy Nash equilibrium.

We show that weak transfer quasi-continuity, together with strong diagonal transfer quasicon-

cavity, guarantees the existence of pure strategy Nash equilibrium in convex and compact games.

We then show that shows that weak transfer continuity, together with quasiconcavity (or weak

diagonal transfer quasiconcavity), guarantees the existence of pure strategy Nash equilibrium in

bounded, compact and convex games. Moreover, by introducing the notion of weak dominant

transfer upper continuity, an analogous analysis is applied to show the existence of dominant strat-

egy and mixed strategy Nash equilibria in discontinuous games.

The remainder of the paper is organized as follows. Section 2 describes the notation, and

provides a number of preliminary definitions. Section 3 introduces the notions of weak transfer

continuity/quasi-continuity and weak/strong diagonal transfer quasiconcavity, and provides the

main results on the existence of pure strategy Nash equilibrium. Examples and applications il-

lustrating the theorems are also given. Section 4 considers the existence of dominant strategy

equilibrium by introducing a similar condition, weak dominant transfer continuity. Section 5 con-

siders the existence of mixed strategy Nash equilibrium by applying the main results obtained in

Section 3 on the existence of pure strategy Nash equilibrium. It is shown there that the mixed strat-

egy theorems of Nash (1950), Glicksberg (1951), Dasgupta and Maskin (1986), Robson (1994),

Simon (1987) and Reny (1999) imply our main results presented in Section 5. Concluding remarks

are offered in Section 6. The proofs of the theorems and propositions are presented in Appendix.

2 Preliminaries

Consider the following noncooperative game in a normal form:

G = (Xi, ui)i∈I (2.1)

where I = {1, ..., n} is a finite set of players, Xi is player i’s strategy space that is a nonempty

subset of a topological space Ei, and ui is player i’s payoff function from the set of strategy
1It is worth pointing out that, while reciprocal upper semicontinuity combined with payoff security implies better-

reply security, here weak transfer upper semicontinuity combined with payoff security implies weak transfer continuity.
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profiles X =
∏
i∈I

Xi to R. For each player i ∈ I , denote by −i all players rather than player i.

Also denote by X−i =
∏
j 6=i

Xj the set of strategies of the players in coalition −i.

We say that a game G = (Xi, ui)i∈I is compact, convex, bounded, and semi-continuous,

respectively if, for all i ∈ I , Xi is compact and convex, and ui is bounded and semi-continuous

on X , respectively. We say that a game G = (Xi, ui)i∈I is quasiconcave if, for every i ∈ I , Xi is

convex and the function ui is quasiconcave in xi.

We say that a strategy profile x∗ ∈ X is a pure strategy Nash equilibrium of a game G if,

ui(yi, x
∗
−i) ≤ ui(x∗) ∀i ∈ I, ∀yi ∈ Xi.

We say that a strategy profile x∗ ∈ X is a pure dominant strategy equilibrium of a game G if,

∀(yi, y−i) ∈ X, ui(yi, y−i) ≤ ui(x∗i , y−i) ∀i ∈ I.

Define a function U : X ×X → R by

U(x, y) =
n∑

i=1

ui(yi, x−i), ∀(x, y) ∈ X ×X. (2.2)

Baye et al (1993) study the existence of pure strategy Nash equilibria in games with possi-

bly discontinuous and nonquasiconcave payoffs by introducing the concepts of diagonal transfer

continuity and diagonal transfer quasiconcavity of U .

DEFINITION 2.1 A game G = (Xi, ui)i∈I is diagonally transfer continuous if whenever x is

not an equilibrium, there exist a strategy profile y ∈ X and a neighborhood V(x) ⊂ X of x such

that U(z, y) > U(z, z) for all z ∈ V(x).

REMARK 2.1 The point y in the above definition can be termed as a securing profile of strategies

since whenever a strategy profile x is not an equilibrium, it secures a strictly higher utility for

all strategy profiles in some neighborhood of x. It is clear that continuity of U implies diagonal

transfer continuity of U .

DEFINITION 2.2 A game G = (Xi, ui)i∈I is diagonally transfer quasiconcave if, for any

finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite subset Xm =

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, we have min
1≤l≤s

U(x, ykl
) ≤ U(x, x).

Theorem 1 in Baye et al (1993) shows that, a game that is compact, convex, diagonally transfer

continuous, and diagonally transfer quasiconcave must possess a pure strategy Nash equilibrium.

Reny (1999) studies the existence of pure strategy Nash equilibria in discontinuous games by

introducing the concepts of payoff security and better-reply security.
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The graph of the game is Γ = {(x, u) ∈ X × Rn : ui(x) = ui, ∀i ∈ I}. The closure of Γ in

X × Rn is denoted by cl Γ. The frontier of Γ, which is the set of points that are in cl Γ but not in

the interior of Γ, is denoted by Fr(Γ).

DEFINITION 2.3 A game G = (Xi, ui)i∈I is payoff secure if for every x ∈ X , every ε > 0, and

every player i, there exists xi ∈ Xi such that ui(xi, y−i) ≥ ui(x) − ε for all y−i in some open

neighborhood of x−i.

DEFINITION 2.4 A game G = (Xi, ui)i∈I is better-reply secure if whenever (x∗, u∗) ∈ cl Γ

and x∗ is not an equilibrium, there is a player i and a strategy xi ∈ Xi such that ui(xi, y−i) > u∗i
for all y−i in some open neighborhood of x−i.

DEFINITION 2.5 A game G = (Xi, ui)i∈I is reciprocally upper semicontinuous if, whenever

(x, u) ∈ cl Γ and ui(x) ≤ ui for every player i, ui(x) = ui for every player i.

The following notions are introduced by Bagh and Jofre (2006) and Morgan and Scalzo (2007),

respectively.

DEFINITION 2.6 A game G = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous, if for any

(x, u) ∈ Fr(Γ), there is a player i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.

DEFINITION 2.7 Let Z be a topological space and f be an extended real-valued function de-

fined on Z. f is upper pseudocontinuous at z0 if for all z ∈ Z such that f(z0) < f(z), we have

lim sup
y→z0

f(y) < f(z). f is said to be lower pseudocontinuous at z0 if −f is upper pseudocontinu-

ous at z0. f is said to be pseudocontinuous if it is both upper and lower pseudocontinuous.

Theorem 3.1 in Reny (1999) shows that a game G = (Xi, ui)i∈I possesses a Nash equilibrium

if it is compact, bounded, quasiconcave and better-reply secure. Reny (1999) and Bagh and Jofre

(2006) provided sufficient conditions for a game to be better-reply secure. Reny (1999) showed

that a game G = (Xi, ui)i∈I is better-reply secure if it is payoff secure and reciprocally upper

semicontinuous. Bagh and Jofre (2006) further showed that G = (Xi, ui)i∈I is better-reply secure

if it is payoff secure and weakly reciprocal upper semicontinuous. Morgan and Scalzo (2007)

showed that G = (Xi, ui)i∈I is better-reply secure if ui is pseudocontinuous, ∀i ∈ I .

REMARK 2.2 Since payoff security requires taking an open neighborhood in the upper contour

set of a given level of payoff, it is a weak notion of lower semicontinuity. Also, since better-reply

security requires the limit payoff resulting from strategies to approach a nonequilibrium point, it

is a weak notion of continuity (which displays a certain form of both lower semicontinuity and

upper semicontinuity). In addition, both notions use the same idea of transferring nonequilibrium

strategy profile to a securing strategy profile that results in a strictly better-off payoff, and thus

they actually fall in the forms of transfer continuity.
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3 Existence of Nash Equilibria

In this section we investigate the existence of pure strategy Nash equilibria in discontinuous games.

We then show how our main existence results are applied to some important economic games.

3.1 Nash Equilibria in Discontinuous Games

We start by introducing some weak forms of continuities.

DEFINITION 3.1 A game G = (Xi, ui)i∈I is said to be weakly transfer quasi-continuous if

whenever x ∈ X is not an equilibrium, there exist a strategy profile y ∈ X and a neighborhood

V(x) of x so that for every x′ ∈ V(x), there exists a player i such as ui(yi, x
′
−i) > ui(x′).

Roughly speaking, weak transfer quasi-continuity means whenever a strategy profile is not

an equilibrium, there exist some of its neighborhood and a securing strategy profile such that for

every strategy profile in the neighborhood, some player will be strictly better off by using his

securing strategy. Note that the notion of weak transfer quasi-continuity only requires for every

strategy profile in the neighborhood, there is some player, but not all players, such that is upset by

the securing strategy profile.

The following notions of transfer continuity are clearly sufficient conditions for weak transfer

quasi-continuity.

DEFINITION 3.2 A game G = (Xi, ui)i∈I is said to be transfer continuous if for all player i, ui

is transfer continuous in x with respect to Xi, i.e., if ui(zi, x−i) > ui(x) for zi ∈ Xi and x ∈ X ,

then there is some neighborhood V(x) of x and yi ∈ Xi such that ui(yi, x
′
−i) > ui(x′) for all

x′ ∈ V(x).

DEFINITION 3.3 A game G = (Xi, ui)i∈I is said to be weakly transfer continuous if whenever

x ∈ X is not an equilibrium, there exist player i, yi ∈ Xi and a neighborhood V(x) of x such that

ui(yi, x
′
−i) > ui(x′) for all x′ ∈ V(x).

Note that transfer continuity clearly implies weak transfer continuity which in turn implies

weak transfer quasi-continuity, but the reverse may not be true. We will give such examples in

the next subsection. However, for one-player game, transfer continuity, weak transfer continuity,

weak transfer quasi-continuity, and diagonal transfer continuity all become the same.

PROPOSITION 3.1 If a game G = (Xi, ui)i∈I is weakly transfer continuous, diagonally transfer

continuous or better reply secure, then it is weakly transfer quasi-continuous.
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REMARK 3.1 Define a correspondence F : X → 2X by F (y) = {x ∈ X : ui(yi, x−i) ≤
ui(x), ∀i ∈ I}. Then F is transfer closed-valued if and only if the game is weakly transfer

quasi-continuous.2

We now introduce the notion of strong diagonal transfer quasiconcavity.

DEFINITION 3.4 A game G = (Xi, ui)i∈I is said to be strongly diagonal transfer quasi-

concave if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, there exists yh ∈ {yk1
, ..., yks} so that

ui(ykh

i , x−i) ≤ ui(x) ∀i ∈ I. (3.1)

Strong diagonal transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, its convex

combinations are not upset by all deviation profiles in Xm̃ for all players simultaneously. Note

that a game is diagonally transfer quasiconcave if it is strongly diagonal transfer quasiconcave.

Indeed, summing up (3.1), we have min
1≤l≤s

U(x, ykl
) ≤ U(x, x).

REMARK 3.2 It is clear that F is transfer FS-convex if and only if the game is strongly diagonal

transfer quasiconcave.3

We then have the following result.

THEOREM 3.1 If a game G = (Xi, ui)i∈I is convex, compact, weakly transfer quasi-continuous,

and strongly diagonal transfer quasiconcave, then it possesses a pure strategy Nash equilibrium.

While weak transfer quasi-continuity in Theorem 3.1 is weaker than the better-reply security

and diagonal transfer continuity, it requires that the game be strongly diagonal transfer quasicon-

cave. Can strong diagonal transfer quasiconcavity in the theorem be replaced by conventional

quasiconcavity? Unfortunately, the answer is no. Recently, Reny (2009) shows this by giving a

counterexample (Example 3.1 in his paper) where a game G = (Xi, ui)i∈I is convex, compact,

bounded, quasiconcave and weakly transfer quasi-continuous, but it may not possess a pure strat-

egy Nash equilibrium. However, for each player i ∈ I , defining a function ϕi : Xi × X → R
by

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

2A correspondence H : X → 2X is transfer closed-valued on X if for every y ∈ X , x 6∈ H(y) implies that there

exists a point y′ ∈ X such that x 6∈ clH(y).
3A correspondence H : X → 2X is transfer FS-convex if for any finite subset {y1, ..., ym} ⊂ X , there exists a

corresponding finite subset {x1, ..., xm} ⊂ X such that for each J ⊂ {1, ..., m}, we have co{xj , j ∈ J} ⊂ ⋃
j∈J

H(yj).
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where Ω(y) is the set of all neighborhoods of y, and then applying the weak transfer quasi-

continuity to ϕi
4, Reny (2009) shows that the game G possesses a Nash equilibrium if it is

bounded, convex, compact, quasiconcave, and has the lower single-deviation property.

Nevertheless, if we strengthen weak transfer quasi-continuity to weak transfer continuity, we

can replace the strong diagonal transfer quasiconcavity by quasiconcavity, and obtain the following

theorem.

THEOREM 3.2 If a game G = (Xi, ui)i∈I is convex, compact, bounded, quasiconcave, and

weakly transfer continuous, then it possesses a pure strategy Nash equilibrium.

It may be remarked that this theorem neither implies nor is implied by Baye et al (1993)

and Reny (1999). With strong diagonal transfer quasiconcavity, the proof of Theorem 3.1 is much

simpler than that of Theorem 3.2. Strong diagonal transfer quasiconcavity can be further weakened

if one is willing to impose the boundedness of payoffs and weak transfer continuity. Indeed, we

can do so by introducing weak diagonal transfer quasiconcavity.

Let m ∈ N∗5 and the following special simplex: 6

∆(n,m) = {λ = (λi,j)i=1,...,n
j=1,...,m

∈MR(n,m) : λi,j ≥ 0 and
∑

i,j

λi,j = 1}.

DEFINITION 3.5 A game G = (Xi, ui)i∈I is said to be weakly diagonal transfer quasiconcave if

for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂ X

such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have

min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0, with J = {(i, j) : λi,j > 0}. (3.2)

REMARK 3.3 Definition 3.5 is equivalent to the following definition: A game G = (Xi, ui)i∈I

is weakly diagonal transfer quasiconcave if and only if for any finite subset {y1, ..., ym} ⊂ X ,

there exists a corresponding finite subset {x1, ..., xm} ⊂ X such that for each λ ∈ ∆(n,m), there

exists a player i ∈ I such that

min
j∈J(i)

ui(y
j
i , x̃−i) ≤ ui(x̃),

where J(i) = {j = 1, ..., m : λi,j > 0} and x̃ =
∑
i,j

λi,jx
j .

Weak diagonal transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, there exists

4Reny (2009) calls this condition lower single-deviation property.
5N∗ is the set of strictly positive integer numbers.
6MR(n, m) is the matrix space with n lines, m columns and scalars in R.
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some player i so that its convex combinations are not upset by those deviation profiles in Xm̃ that

have nonzero weights.

Weak diagonal transfer quasiconcavity is also weaker than diagonal transfer quasiconcavity as

shown in the following proposition.

PROPOSITION 3.2 If the aggregate function defined by (2.2) is diagonally transfer quasiconcave,

then the game G is weakly diagonal transfer quasiconcave.

THEOREM 3.3 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer contin-

uous, and weakly diagonal transfer quasiconcave, then it possesses a pure strategy Nash equilib-

rium.

REMARK 3.4 Strong diagonal transfer quasiconcavity, diagonal transfer quasiconcavity as well

as weak diagonal transfer quasiconcavity are all very weak notions of quasiconcavity, and in fact,

similar to the proof of Theorem 3.1 in Baye et al (1993), a game must be (strongly/weakly) diag-

onal transfer quasiconcave as long as it possesses a pure strategy Nash equilibrium.7

3.2 Discussion and Examples

Various notions of continuity presented in our results, such as transfer continuity, weak transfer

continuity, weak transfer quasi-continuity, diagonal transfer continuity, better-reply security, etc.,

are quite weak, which hold in a large class of discontinuous games. In this subsection we illustrate

the relationships of these weak notions of continuity and show the usefulness of our main results

with examples.

It is clear that a game G is weakly transfer continuous if it is transfer continuous. However,

the following example shows the reverse may not be true.

EXAMPLE 3.1 Consider a two-player game with X1 = X2 = [0, 1] and

u1(x1, x2) =

{
2 + x1 + x2, if x1 = x2,

x1 + x2, otherwise,
and u2(x) = x1 + x2.

This game is weakly transfer continuous. Indeed, since the unique Nash equilibrium is given

by x1 = x2 = 1, any nonequilibrium strategy profile (x1, x2) contains a component that is not

equal to one.

If x2 < 1, let y2 = 1. Then, for any neighborhood V(x) of x where V(x) ⊂ [0, 1] × [0, 1)

such that for all z ∈ V(x), we have u2(z1, y2) = 1 + z1 > u2(z1, z2) = z1 + z2.

7Strong diagonal transfer quasiconcavity, diagonal transfer quasiconcavity, and weak diagonal transfer quasicon-

cavity all become the same for one-player games.
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If x2 = 1, then x1 < 1. Letting y1 = 1, then for any neighborhood V(x) of x such that

V(x) ⊂ [0, 1) × [0, 1] and for all z ∈ V(x), z1 < z2, we have u1(y1, z2) = 3 + z2 if z2 = 1 and

u1(y1, z2) = 1 + z2 otherwise. Thus u1(y1, z2) > z1 + z2 = u1(z1, z2) for all z2.

Hence, the game is weakly transfer continuous. However, it is not transfer continuous. To see

this, consider the nonequilibrium x = (1, 0). Then, for any y1 ∈ [0, 1] and any neighborhood

V(x) ⊂ X of x, choosing z ∈ V(x) with z1 = 1 and 1 6= z2 6= y1, we then have u1(y1, z2) =

y1 + z2 ≤ 1 + z2 = u1(1, z2). Thus, u1 is not transfer continuous.

Also, weak transfer quasi-continuity is strictly weaker than weak transfer continuity and better-

reply security. To see this, consider the following example.

EXAMPLE 3.2 Consider the two-player game with the following payoff functions defined on

X = [0, 1]× [0, 1].

u1(x1, x2) =





0 if x1 ∈ (0, 1)

1 if x1 = 0 and x2 ∈ Q
1 if x1 = 1 and x2 /∈ Q
0 otherwise

, and u2(x1, x2) = x1 − x2

where Q = {x ∈ [0, 1] : x is a rational number}.

The payoff function of player 1 is taken from Barelli and Soza (2009). This game is neither

weakly transfer continuous, better-reply secure, nor diagonally transfer continuous, but is weakly

transfer quasi-continuous.

To show the game is not weakly transfer continuous, consider the nonequilibrium x = (1, 0).

Then, for any y1 ∈ [0, 1] and any neighborhood V(x) ⊂ X of x, choosing z ∈ V(x) with z1 = 1

and z2 6∈ Q, we have u1(y1, z2) ≤ u1(z1, z2) = 1. Also, for any y2 ∈ [0, 1] and any neighborhood

V(x) ⊂ X of x, choosing z ∈ V(x) with z2 = 0, we have u2(z1, y2) = z1−y2 ≤ z1 = u2(z1, z2).

So it is not weakly transfer continuous.

To show the game is not better-reply secure either, consider x = (1, 0) and u = (0, 1). Clearly

(x, u) is in the closure of the graph of its vector function, and x is not a Nash equilibrium. We

show that player 1 cannot obtain a payoff strictly above u1 = 0. Indeed, for all y1 ∈ [0, 1] and

any neighborhood V(x2) ⊂ [0, 1] of x2, choosing z2 ∈ V(x2)\Q if y1 = 0, or z2 = 0 otherwise,

we then have u1(y1, z2) = 0 ≤ u1 = 0. Player 2 cannot obtain a payoff strictly above u2 = 1

either. To see this, for all y2 ∈ [0, 1] and any neighborhood V(x1) ⊂ [0, 1] of x1, we have

u2(z1, y2) = z1 − y2 ≤ z1 ≤ 1 = u2 for z1 ∈ V(x1). Thus, this game is not better-reply secure,

so Theorem 3.1 of Reny (1999) cannot be applied.

Now we show the game is not diagonally transfer continuous. Let x = (1, 0) and y = (0, 0).

Then, U(x, y) = u1(y1, x2) + u2(x1, y2) = u1(0, 0) + u2(1, 0) = 2 > U(x, x) = u1(1, 0) +

u2(1, 0) = 1. However, for all y
′ ∈ [0, 1] × [0, 1] and any neighborhood V(x) ⊂ X of x,
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choosing z ∈ V(x) with z1 = 1 and z2 /∈ Q if y′1 < 1, or z2 = 0 otherwise, we then have:

(1) If y′1 < 1, then z2 /∈ Q. Thus, u1(y
′
1, z2) = 0, u1(z1, z2) = 1, u2(z1, y

′
2) = 1 − y

′
2 and

u2(z1, z2) = 1 − z2. Therefore U(z, y
′
) = 1 − y

′
2 ≤ 2 − z2 = U(z, z). (2) If y′1 = 1, then

z2 = 0. Thus, u1(y
′
1, z2) = 0, u1(z1, z2) ≤ 1, u2(z1, y

′
2) = 1− y

′
2 and u2(z1, z2) = 1. Therefore

U(z, y
′
) = 1 − y

′
2 ≤ 1 + u1(z1, z2) = U(z, z). Thus, this game is not diagonally transfer

continuous, so Theorem 1 of Baye et al (1993) cannot be applied.

However, it is weakly transfer quasi-continuous. Indeed, let (x1, x2) be a nonequilibrium

strategy profile with at least one non-zero coordinate. There are two cases to be considered.

1. x2 > 0. Letting y = (y1, 0) and taking a neighborhood V(x) ⊂ [0, 1]× (0, 1] of x, then for

each z ∈ V(x) and player i = 2, we have u2(z1, z2) = z1 − z2 < z1 = u2(z1, y2).

2. x2 = 0 and x1 > 0. Letting y = (0, 0) and taking a neighborhood V(x) ⊂ (0, 1] × [0, 1]

of x, then for each z ∈ V(x), we have u1(z1, z2) = 0 < 1 = u1(y1, z2) for player 1 when

z2 ∈ Q and u2(z1, z2) = z1 − z2 < z1 = u2(z1, y2) for player 2 when z2 /∈ Q.

Since the game is also convex, compact, and strongly diagonal transfer quasiconcave, by Theo-

rem 3.1, the game considered possesses a Nash equilibrium.

Although diagonal transfer continuity, better-reply security, weak transfer (quasi-)continuity

are all transfer types of continuities that are satisfied by many discontinuous economic games, a

main difference among them is that, while better-reply security takes an open neighborhood of

strategy profiles only for opponents’ strategies rather than those of deviation player i, diagonal

transfer continuity and weak transfer (quasi-)continuity take open neighborhoods of the strategy

profile x for all players to the aggregate payoff function U and individual payoffs ui, respectively.

Also, although weak transfer quasi-continuity is implied by better-reply security in Reny

(1999) or diagonal transfer continuity in Baye et al (1993), weak transfer continuity neither im-

plies nor is implied by better-reply security in Reny (1999) or diagonal transfer continuity in Baye

et al (1993). The following examples show this.

EXAMPLE 3.3 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0, 1] studied by Carmona (2008).

ui(x1, x2) =

{
ϕi(x1, x2), if x1 = x2,

ψi(x1, x2), otherwise,

where ϕi, ψi : [0, 1]2 → R are continuous functions. In addition, assume that G is bounded and

quasiconcave and satisfies the following conditions:

• (i) For each i ∈ I , ε > 0 and y ∈ [0, 1], there exist x̄ ∈ [0, 1] and a neighborhood V(y) ⊂
[0, 1] of y with x̄ /∈ V(y) such that ψi(x̄, z) ≥ ϕi(y, y)− ε for each z ∈ V(y).
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• (ii) If for each x, y ∈ [0, 1] with x 6= y and for some i, ψi(x, y) > ϕi(y, y), then there

exist a player j, x̄ 6= y ∈ [0, 1] and a neighborhood V(y, y) ⊂ [0, 1]2 of (y, y) such that

ψj(x̄, y) > uj(z) for each z ∈ V(y, y).

Carmona (2008) shows that the functions ϕi and ψi can be chosen so as to violate diagonal transfer

continuity and/or better-reply security.

However, under conditions (i)-(ii), we can show that the game is weakly transfer continuous

so that it has a Nash equilibrium by Theorem 3.2. Indeed, suppose x is not a Nash equilibrium.

Then there exist a player i and a strategy yi ∈ [0, 1] such that ui(yi, x−i) > ui(x).

1. If x1 = x2 = x, then ψi(yi, x) > ϕi(x, x). By condition (ii), there exist a player j, x̄j 6=
x ∈ [0, 1], and a neighborhood V(x1, x1) ⊂ [0, 1]2 of (x1, x2) such that ψj(x̄j , x) > uj(z)

for each z ∈ V(x1, y2). Let ε > 0 such that ψj(x̄j , x)− ε > sup uj(z). Since x̄j 6= x and

the function ψj(x̄j , .) is continuous, then there exists a neighborhood V(x) ⊂ [0, 1] such

that x̄j /∈ V(x) and ψj(x̄j , x) − ε ≤ ψj(x̄j , z−j) for all z−j ∈ V(x). Thus, there exist a

player j, a neighborhood V(x1, x1) ⊂ [0, 1]2, and a strategy x̄j ∈ [0, 1] with x̄j 6= z−j such

that uj(x̄j , z−j) > uj(z) for all z ∈ V(x1, x1).

2. If x1 6= x2, then ui(yi, x−i) − ε > ψi(x1, x2) for some ε > 0. If yi 6= x−i, then by

continuity of ψi, there exists a V(x1, x2) such that for all z ∈ V(x1, x1), z1 6= z2 and

ui(yi, z−i) > ui(z).

If yi = x−i, then ϕi(yi, yi) − ε > ψi(x1, x2). By condition (i), there exist

x̄i ∈ [0, 1] and a neighborhood V(yi) ⊂ [0, 1] of yi with x̄i /∈ V(yi) such that

ψi(x̄i, z) ≥ ϕi(yi, yi) − ε
2 for each z ∈ V(yi). Since the function ψj(., .) is continuous,

then there exists a neighborhood V(x1, x2) ⊂ [0, 1]2 such that for all z ∈ V(x1, x2),

z1 6= z2 and ψi(x1, x2) + ε
2 ≥ ψi(zj , z−j). Thus, for each z ∈ V(x1, x2), we have

ψi(zj , z−j) ≤ ψi(x1, x2) + ε
2 < ϕi(yi, yi) − ε

2 ≤ ψi(x̄i, z−i) = ui(x̄i, z−i), i.e.,

ui(x̄i, z−i) > ui(z).

3.3 Sufficient Conditions for Weak Transfer (Quasi-)Continuity

In this subsection we provide some new sufficient conditions for weak transfer (quasi-)continuity.

While it is simple to verify weak transfer continuity, it is sometimes even simpler to verify other

conditions leading to it and consequently weak transfer quasi-continuity. In addition to the fact

that diagonal transfer continuity, better-reply security, transfer continuity, and weak transfer con-

tinuity all imply weak transfer quasi-continuity, weak transfer upper continuity and weak transfer

lower continuity introduced below, when combined respectively with payoff security and upper

semicontinuity, they also imply weak transfer continuity, and consequently weak transfer quasi-

continuity.
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DEFINITION 3.6 A game G = (Xi, ui)i∈I is said to be weakly transfer upper continuous if

whenever x ∈ X is not an equilibrium, there exist player i, x̂i ∈ Xi and a neighborhood V(x) of

x such that ui(x̂i, x−i) > ui(x′) for all x′ ∈ V(x).

REMARK 3.5 If a game G is upper semicontinuous, then G is weakly transfer upper continuous.

Indeed, suppose x is not a Nash equilibrium, then there exist a player i and a strategy yi such

that ui(yi, x−i) > ui(x). Choose ε > 0 such that ui(yi, x−i) − ε > ui(x). Since G is upper

semicontinuous, then there exists a neighborhood V(x) of x such that ui(yi, x−i) − ε > ui(x) ≥
ui(x′)− ε, for each x′ ∈ V(x).

DEFINITION 3.7 A game G = (Xi, ui)i∈I is said to be weakly transfer lower continuous if x

is not a Nash equilibrium, which implies that there exist a player i, yi ∈ Xi, and a neighborhood

V(x−i) of x−i such that ui(yi, x
′
−i) > ui(x) for all x′−i ∈ V(x−i).

REMARK 3.6 If a game G is payoff secure, then G is weakly transfer lower continuous. To

see this, suppose x ∈ X and x is not a Nash equilibrium, then there exists a player i that has

a strategy x̂i such that ui(x̂i, x−i) > ui(x). Choose ε > 0 such that ui(x̂i, x−i) − ε > ui(x).

Since G is payoff secure, then there exist a strategy yi and a neighborhood V(x−i) of x−i such

that ui(yi, x
′
−i) ≥ ui(x̂i, x−i)− ε > ui(x), for each x′−i ∈ V(x−i).

We then have the following propositions that provide sufficient conditions for weak transfer

(quasi-)continuity.

PROPOSITION 3.3 If a game G = (Xi, ui)i∈I is weakly transfer upper continuous and payoff

secure, then it is weakly transfer continuous.

PROPOSITION 3.4 If a game G = (Xi, ui)i∈I is weakly transfer lower continuous and upper

semicontinuous, then it is weakly transfer continuous.

Propositions 3.3-3.4, together with Theorem 3.2 or Theorem 3.3, immediately yield the fol-

lowing useful results.

COROLLARY 3.1 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer upper

continuous, payoff secure, and quasiconcave or weakly diagonal transfer quasiconcave, then it

possesses a pure strategy Nash equilibrium.

COROLLARY 3.2 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer lower

continuous, upper semicontinuous, and quasiconcave or weakly diagonal transfer quasiconcave,

then it possesses a pure strategy Nash equilibrium.

As an application of the above proposition, consider the following well-known noisy game.
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EXAMPLE 3.4 Consider the two-player, nonzero sum, noisy game with the following payoff

functions defined from [0, 1]× [0.1].

fi(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(x−i), if xi > x−i,

where li(.), mi(.) and φi(.) are upper semicontinuous over [0, 1], li(.) is strictly nondecreasing on

[0, 1] and satisfies the following additional conditions:

a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood V(x) of x such that φi(x) ≥
max(li(z),mi(z))− ε, for every z ∈ V(x).

b) if mi(x) > φi(x) with x < 1, then there exists a neighborhood V(x) ⊂ [0, 1) of x such that

mi(z) > φi(x), for every z ∈ V(x).

c) if φi(x) > mi(x) with x < 1, then there exists a neighborhood V(x) ⊂ [0, 1) of x such that

φi(z) > mi(x), for every z ∈ V(x).

It is clear that this game G is compact and convex. Suppose that G is quasiconcave. The

condition a) and the upper semicontinuity of li(.), mi(.) and φi(.) over [0, 1] imply that the noisy

game is upper semicontinuous. The conditions b) and c) imply that the game is weakly transfer

lower continuous. Then, the game considered is weakly transfer continuous by Proposition 3.4.8,

and thus it has a Nash equilibrium by Theorem 3.2.

REMARK 3.7 All the definitions of weak transfer quasi-continuity, weak transfer continuity,

weak transfer upper continuity, weak transfer lower continuity and upper semicontinuity can be

easily extended to the quasi-symmetric games and to get the existence results on symmetric Nash

equilibrium.

3.4 Applications

In this subsection we show how our main existence results are applied to some important economic

games. We provide two applications: one is in the shared resource games that is intensively studied

by Rothstein (2007), and the other is in the classic Bertrand price competition games.

3.4.1 The Shared Resource Games

Rothstein (2007) studies a class of shared resource games with discontinuous payoffs, which in-

cludes a wide class of games such as the canonical game of fiscal competition for mobile capital. In

these games, players compete for a share of a resource that is in fixed total supply, except perhaps
8As Reny (1999) showed, if φi(x) ∈ co{li(x), mi(x)} and li(x) is nondecreasing, then the game is quasiconcave.
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at certain joint strategies. Each player’s payoff depends on her opponents’ strategies only through

the effect those strategies have on the amount of the shared resource that the player obtains.

Formally, for such a game G = (Xi, ui)i∈I , each player i has a convex and compact strategy

space Xi ⊂ Rl and a payoff function ui that associates the sharing rule defined by Si : X → [0, s]

with s ∈ (0,+∞). That is to say, each player has a payoff function ui : X → R with the form

ui(xi, x−i) = Fi[xi, Si(xi, x−i)] where Fi : Xi × [0, s] → R and ui is bounded.9.

Define Di ⊂ X to the set of joint strategies at which Si is discontinuous and let the set ∆ =
⋃
i∈I

Di then be all of the joint strategies at which one or more of the sharing rules are discontinuous.

The set X\∆ is all of the joint strategies at which all of the sharing rules are continuous.

Rothstein (2007) shows a shared resource game possesses a pure strategy Nash equilibrium if

the following conditions are satisfied:

(1) X is compact and convex;

(2) ui is continuous on X and quasiconcave in xi,

(3) Si satisfies:

(3.i) For all x ∈ X \∆,
∑n

i=1 Si(x) = s̄;

(3.ii) There exists s ∈ [0, s̄] such that for all x ∈ ∆,
∑n

i=1 Si(x) = s;

(3.iii) For all i, all (xi, x−i) ∈ Di and every neighborhood of xi , there

exists x′i ∈ Xi such that (x′i, x−i) ∈ X \Di;

(3.iv) For all i, there exists a constant s̃ satisfying s̄ ≥ s̃ > s̄/n such

that for all (xi, x−i) ∈ ∆ and all (xi, x−i) ∈ X \Di, Si(x′i, x−i ≥
si ≥ Si(xi, x−i).

(4) For all i, Fi satisfies:

(4.i) Fi is continuous;

(4.ii) For all xi ∈ Xi, Fi(xi, ·) is nondecreasing in si;

(4.iii) Given any si > s̄/n, max
xi∈Xi

Fi(x′i, si) > max
xi∈Xi

Fi(xi, s̄/n).

In the following, we will give an existence result with much simpler conditions:

Assumption 1: For each i ∈ I , Xi is convex and compact, and ui(., x−i) is bounded and quasi-

concave for each x−i ∈ X−i.

Assumption 2: If (yi, x−i) ∈ Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then there

exist some player j ∈ I and y′j such that (y′j , x−j) ∈ X\Dj and Fj(y′j , Sj(y′j , x−j)) >

Fj(xj , Sj(x)).

9For more details on this model, see Rothstein (2007).
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Assumption 3: If (yi, x−i) ∈ X\Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then

there exist a player j ∈ I , a deviation strategy profile y′ and a neighborhood V(x) of x such

that for each z ∈ V(x), we have Fj(y′j , Sj(y′j , z−j)) > Fj(zj , Sj(z)).

Assumption 1 is standard. A well-known sufficient condition for a composed function ui =

Fi[xi, Si(xi, x−i)] to be quasiconcave is that Fi is quasiconcave and nondecreasing in si, and

Si is concave. Assumption 2 means that if x is not an equilibrium and can be improved at a

discontinuous strategy profile (yi, x−i) when player i uses the deviation strategy yi, then there

exists a player j such that it must also be improved by a continuous strategy profile (y′i, x−i) when

player j uses the deviation strategy y′i. Assumption 3 means that if a strategy profile x is not an

equilibrium and can be improved by a continuous strategy profile (yi, x−i) when player i uses

a deviation strategy yi, then there exist a securing strategy profile y′ and a neighborhood of x

such that all points in the neighborhood cannot be equilibria. Note that, if Fi is continuous, then

Assumption 3 is satisfied.

We then have the following result.

PROPOSITION 3.5 Each shared resource game possesses a pure strategy Nash equilibrium if it

satisfies Assumptions 1-3.

3.4.2 The Bertrand Price Competition Games

Bertrand competition is a normal form game in which each of n ≥ 2 firms, i = 1, 2, ..., n,

simultaneously sets a price pi ∈ Pi = [0, p]. Under the assumption of profit maximization, the

payoff to each firm i is

πi(pi, p−i) = piDi(pi, p−i)− Ci(Di(pi, p−i)),

where p−i denotes the vector of prices charged by all firms other than i, Di(pi, p−i) represents the

total demand for firm i’s product at prices (pi, p−i), and Ci(Di(pi, p−i)) is firm i’s total cost of

producing the output Di(pi, p−i). A Bertrand equilibrium is a Nash equilibrium of this game.

Let Ai ⊂ X = Π
i∈I

Pi be the set of joint strategies at which πi is discontinuous, ∆ =
⋃
i∈I

Ai

be the set of all of the joint strategies at which one or more of the payoffs are discontinuous, and

X\∆ be the set of all joint strategies at which all of the payoffs are continuous.

We make the following assumptions:

Assumption 1: For each i ∈ I , πi(., p−i) is quasiconcave for each p−i ∈ X−i.

Assumption 2: If (qi, p−i) ∈ Ai and πi(qi, p−i) > πi(pi, p−i) for i ∈ I , then there exist a firm

j ∈ I , and q′j such that (q′j , p−j) ∈ X\Aj and πj(q′j , p−j) > πj(pj , p−j).

We then have the following result.
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PROPOSITION 3.6 Each Bertrand price competition game has a pure strategy Nash equilibrium

if it satisfies (A1)-(A2).

PROOF. It is similar to the proof of Proposition 3.5.

EXAMPLE 3.5 Consider a two-player Bertrand price competition game on the square [0, a] ×
[0, a], with a > 0. Assume that the demand function is discontinuous and is defined by

Di(pi, p−i) =





αif(pi) if pi < p−i

βif(pi) if pi = p−i

γif(pi) if pi > p−i

where f : R+ → R+ is a continuous function, αi, βi > 0, γi ≥ 0 and αi > βi. Suppose that the

total cost of production is zero for each firm. Then, the payoff of each firm i becomes

πi(pi, p−i) =





αipif(pi) if pi < p−i

βipif(pi) if pi = p−i

γipif(pi) if pi > p−i

.

We show that Assumption 2 is satisfied. To see this, note that A1 = A2 = {(p1, p2) : p1 = p2 ∈
[0, a]}. Suppose (qi, qi) ∈ Ai and πi(qi, qi) > πi(pi, qi) for some pi ∈ [0, a], we then must have

qi = 0. Thus

βiqif(qi) > πi(pi, qi), (3.3)

and therefore f(qi) > 0. Since the function xf(x) is continuous, then for ε = qif(qi)/θ > 0 with

θ = αi
αi−βi

, there exists δ > 0 such as for all x with qi − δ < x < qi + δ, qif(qi)− ε ≤ xf(x) ≤
qif(qi) + ε. Thus, there exists q

′
i ∈ [0, a] such that

0 < q
′
i < qi and αiq

′
if(q

′
i) ≥ βiqif(qi). (3.4)

(3.3) and (3.4) imply that there exists q
′
i ∈ [0, a] such that (q

′
i, p−i) ∈ X\Ai and πi(q

′
i, p−i) >

πi(pi, p−i). Then, by Proposition 3.6, the game has a pure strategy Nash equilibrium if it is

quasiconcave.

4 Existence of Dominant Strategy Equilibria

In this section we investigate the existence of dominant strategy equilibria in discontinuous. We

start by reviewing some of the basic definitions and results introduced and obtained in Baye et al

(1993).

DEFINITION 4.1 A game G = (Xi, ui)i∈I is transfer upper semicontinuous if for each i ∈
I , xi ∈ Xi and y ∈ X , ui(y) > ui(xi, y−i) implies that there exist a point y′ ∈ X and a

neighborhood V(xi) of xi such that ui(y′) > ui(x′i, y
′
−i), for all x′i ∈ V(xi).
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DEFINITION 4.2 A game G = (Xi, ui)i∈I is uniformly transfer quasiconcave on X if, for

each i ∈ I and any finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite

subset {x1
i , ..., x

m
i } ⊂ Xi such that for any subset {yk1

i , yk2

i , ..., yks

i }, 1 ≤ s ≤ m, and any

xi ∈ co{xk1

i , xk2

i , ..., xks

i }, we have min
1≤l≤s

{ui(ykl
)− ui(xi, y

kl

−i)} ≤ 0.

Baye et al (1993) showed that a game G = (Xi, ui)i∈I that is convex, compact and trans-

fer upper continuous must possess a dominant strategy equilibrium if and only if it is uniformly

transfer quasiconcave.

In the following, we provide a new result on the existence of dominant strategy equilibria

in discontinuous games. We start by introducing the notion of weak dominant transfer upper

continuity.

DEFINITION 4.3 A game G = (Xi, ui)i∈I is said to be weakly dominant transfer upper contin-

uous if whenever x ∈ X is not a dominant strategy equilibrium, there exist a player i, a strategy

y ∈ X and a neighborhood V(xi) of xi such that ui(y) > ui(zi, y−i), for each zi ∈ V(xi).

A game is weakly dominant transfer upper continuous if for every nondominant strategy equi-

librium x∗, some player i has a strategy yi that dominates all other strategy zi in a neighborhood

of x∗i when other players play y−i.

An even weaker form of dominant transfer continuity is presented below.

DEFINITION 4.4 A game G = (Xi, ui)i∈I is said to be weakly dominant transfer upper quasi-

continuous if x is not a dominant strategy equilibrium, then there exist a strategy y ∈ X and a

neighborhood V(x) of x so that for each z ∈ V(x) there exists a player i ∈ I such as ui(y) >

ui(zi, y−i).

A game is weakly dominant transfer upper quasi-continuous if for every nondominant strat-

egy equilibrium x, there is a neighborhood V(x) of x that does not contain a dominant strategy

equilibrium.

REMARK 4.1 It is clear that if the game G is weakly dominant transfer upper continuous or

transfer upper semicontinuous (See Definition 4.1), then it is weakly dominant transfer upper

quasi-continuous.

DEFINITION 4.5 A game G = (Xi, ui)i∈I is said to be strongly uniformly transfer quasi-

concave if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, there exists yh ∈ {yk1
, ..., yks} so that

ui(ykh
) ≤ ui(xi, y

kh

−i) ∀i ∈ I. (4.1)
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Strong uniform transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm} of

candidate profiles such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, its convex com-

binations are not dominated simultaneously by all deviations in Xm̃ for all players. We will see

from Theorem 4.1 below that strong uniform transfer quasiconcavity is necessary for the existence

of a dominant strategy equilibrium of a game when it is weakly dominant transfer upper quasi-

continuous. It is clear that a game is uniformly transfer quasiconcave if it is strongly uniformly

transfer quasiconcave. Indeed, by (4.1), we have min
1≤l≤s

{ui(ykl
)− ui(xi, y

kl

−i)} ≤ 0.

REMARK 4.2 Define a correspondence F : X → 2X by F (y) = {x ∈ X : ui(y) ≤
ui(xi, y−i), ∀i ∈ I}. Then it is transfer FS-convex if and only if the game is strongly uniformly

transfer quasiconcave.

The following theorem characterizes the existence of dominant strategy equilibrium if the

game is weakly dominant transfer upper quasi-continuous and the strategy spaces of players are

convex.

THEOREM 4.1 If a game G = (Xi, ui)i∈I is convex, compact, weakly dominant transfer upper

quasi-continuous, and strongly uniformly transfer quasiconcave, then it possesses a dominant

strategy equilibrium.

Let m ∈ N∗ and the following special simplex:

∆(n,m) = {λ = (λi,j)i=1,...,n
j=1,...,m

∈MR(n,m) : λi,j ≥ 0 and
∑

i,j

λi,j = 1}.

DEFINITION 4.6 A game G = (Xi, ui)i∈I is said to be weakly uniformly transfer quasiconcave

if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂
X such that for each x̃ =

∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have

min
(i,j)∈J

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0, (4.2)

where J = {(i, j) : λi,j > 0}.

REMARK 4.3 Definition 4.6 is equivalent to the following definition: A game G = (Xi, ui)i∈I

is weakly transfer quasiconcave if and only if for any finite subset {y1, ..., ym} ⊂ X , there exists

a corresponding finite subset {x1, ..., xm} ⊂ X such that for each λ ∈ ∆(n,m), there exists a

player i ∈ I such that

min
j∈J(i)

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0,

where J(i) = {j = 1, ..., m : λi,j > 0} and x̃ =
∑
i,j

λi,jx
j .
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Weak uniform transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, there exists

some player i so that its convex combinations are not dominated by all deviations in Xm̃ that have

nonzero weights. We will see from Theorem 4.2 below that weak uniform transfer quasiconcavity

is necessary for the existence of a dominant strategy equilibrium of a game when it is weakly dom-

inant transfer upper continuous. If a game G is strongly uniformly transfer quasiconcave, then it

is weakly uniformly transfer quasiconcave.

The following theorem characterizes the existence of dominant strategy equilibrium if a game

is weakly dominant transfer upper continuous and the strategy spaces of players are convex.

THEOREM 4.2 If a game G = (Xi, ui)i∈I is compact, bounded, convex, weakly uniformly trans-

fer quasiconcave, and weakly dominant transfer upper continuous, then it has a dominant strategy

equilibrium.

The following proposition provides sufficient conditions for a game to be weakly dominant

transfer upper continuous.

PROPOSITION 4.1 Any of the following conditions implies that the game G = (Xi, ui)i∈I is

weakly dominant transfer upper continuous.

(a) ui is continuous in xi.

(b) ui is upper semi-continuous in xi.

(c) ui is transfer upper continuous in xi.

5 Nash Equilibria in Mixed Strategies

In this section, we consider the existence of mixed strategy Nash equilibrium by applying the pure

strategy existence results derived in the previous sections. Assume that each Xi is a compact

Hausdorff space. Let ui be bounded and measurable for all i ∈ I and Mi be the regular, countably

additive probability measures on the Borel subsets of Xi, then Mi is compact in the weak* topol-

ogy. Let us consider Ui to be the extension of ui to M = Π
i∈I

Mi by defining Ui(µ) =
∫
X

ui(x)dµ(x)

for all µ ∈ M with dµ(x) = dµ1(x1)×dµ2(x2)× ...×dµn(xn), and let G = (Mi, Ui)i∈I denote

the mixed extension of G.

DEFINITION 5.1 A mixed strategy Nash equilibrium of the game G is an n-tuple of probability

measures (µ∗1, ..., µ
∗
n) ∈ M such that for all i ∈ I

Ui(µ∗) =
∫

X

ui(x)dµ∗(x) ≥ max
µi∈Mi

∫

X

ui(x)dµ∗1(x1)× ...× dµi(xi)× ....× dµ∗n(xn).
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The definitions of weak transfer continuity, weak transfer upper continuity, weak transfer lower

continuity, upper semicontinuity, payoff security, etc. given in Subsection 3.1 apply in obvious

ways to the mixed extension G by replacing Xi with Mi in each definition. However, it may

be noted that weak transfer continuity (resp., weak transfer upper continuity, weak transfer lower

continuity, payoff security) of G neither implies nor is implied by weak transfer continuity (resp.,

weak transfer upper continuity, weak transfer lower continuity, payoff security) of G.

LEMMA 5.1 If G is upper semicontinuous, then the mixed extension of G is also upper semicon-

tinuous.

PROOF. See the proof of Proposition 5.1 in Reny (1999) page 1052.

Nash (1950) and Glicksberg (1952) show that a game that is compact, Hausdorff and contin-

uous possesses mixed strategy Nash equilibrium. Robson (1954) proves that in a compact game

with metric strategy spaces, if each player’s payoff is upper semicontinuous in all players’ strate-

gies, and continuous in other players’ strategies, then the game possesses a mixed strategy Nash

equilibrium.

The following theorem strictly generalizes the mixed strategy Nash equilibrium existence re-

sults of Nash (1950), Glicksberg (1952), Dasgupta and Maskin (1986), Robson (1994), Simon

(1987) and Reny (1999) by weakening continuity conditions.

We now present the mixed strategy implications of Theorem 3.1 and Corollaries 3.2-3.3.

THEOREM 5.1 Suppose that G = (Xi, ui)i∈I is a compact, Hausdorff game. Then G has a

mixed strategy Nash equilibrium if its mixed extension G is weakly transfer quasi-continuous.

Moreover, G is weakly transfer quasi-continuous if it is 1) weakly transfer continuous, 2) better

reply secure, 3) weakly transfer upper continuous and payoff secure, or 4) weakly transfer lower

continuous and upper semicontinuous.

REMARK 5.1 The first part of Theorem 5.1 is a particular case of Reny’s theorem (Theorem 2.9

in Reny (2009)).

Reny (2009) introduced the finite deviation property and proved if the mixed extension of G

has the finite deviation property, then it possesses a mixed strategy Nash equilibrium.

DEFINITION 5.2 The game G has the finite deviation property if whenever x∗ is not a Nash

equilibrium, there exist x1, ..., xK ∈ X , and a neighborhood V(x∗) of x∗ so as for all z ∈ V(x∗),

there exist a player i and k such that ui(xk
i , z−i) > ui(z).

REMARK 5.2 If the game G is weakly transfer quasi-continuous, then it has the finite deviation

property. Indeed, we can take K = 1 in Definition 5.2.
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Monteiro and Page (2007) introduce the concept of uniform payoff security for games that

are compact, Hausdorff, bounded and measurable. They show that if a game is compact and

uniformly payoff secure, then its mixed extension Ḡ is payoff secure, but the reverse may not be

true, as shown by an example in Carmona (2005).

DEFINITION 5.3 The game G is uniformly payoff secure if for each i ∈ I , xi ∈ Xi, and every

ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i, there exists a neighborhood

V(y−i) of y−i such that ui(xi, z−i) ≥ ui(xi, y−i)− ε, for all z−i ∈ V(y−i).

DEFINITION 5.4 The game G is said to be uniformly transfer continuous if for each i ∈ I ,

xi ∈ Xi, and every ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i, there exists a

neighborhood V(xi, y−i) of (xi, y−i) such that

ui(xi, z−i) + ε ≥ ui(xi, y−i) ≥ ui(z)− ε, for all z ∈ V(xi, y−i).

Thus, a game G is uniformly transfer continuous if for any strategy xi ∈ Xi, player i can

choose a strategy xi ∈ Xi to secure a payoff of ui(xi, y−i)− ε against deviations by other players

in some neighborhood of y−i ∈ X−i, and would be better off at (xi, y−i) even if all players deviate

slightly from (xi, y−i) for all strategy profiles y−i ∈ X−i.

PROPOSITION 5.1 If a game G = (Xi, ui)i∈I is 1) uniformly payoff secure and upper semi-

continuous or 2) uniformly transfer continuous, then the mixed extension G is weakly transfer

continuous.

Proposition 5.1, together with Theorem 5.1, immediately yields the following useful result.

COROLLARY 5.1 If a game G = (Xi, ui)i∈I is compact, bounded, Hausdorff, and 1) uniformly

payoff secure and upper semicontinuous or 2) uniformly transfer continuous, then it possesses a

mixed strategy Nash equilibrium.

As an application of the above proposition, consider the following well-known concession

game.

EXAMPLE 5.1 Let us consider i = 1, 2 and x1, x2 ∈ [0, 1] with:

ui(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(xi), if xi > x−i.

We make the following assumption on ui:

ASSUMPTION 5.1
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a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood V(x) of x such that φi(x) ≥
max(mi(z), li(z))− ε, for every z ∈ V(x).

b) ∀x ∈ [0, 1], ∀ε > 0, there exists y ∈ [0, 1] such that min{φi(y),mi(y), li(y)} ≥
max{φi(x),mi(x), li(x)} − ε.

Then we have the following result.

PROPOSITION 5.2 Suppose the concession game satisfies Assumption 5.1, and the functions

li(.), mi(.) and φi(.) are upper semicontinuous on [0, 1]. Then, the game has a mixed strategy

Nash equilibrium.

6 Conclusion

In this paper, we investigate the existence of equilibria in possibly discontinuous games. We offer

new existence results on Nash equilibrium for a large class of discontinuous games by introducing

a new notion of very weak continuity, called weak transfer (quasi-)continuity.

These results permit us to significantly weaken the continuity condition for the existence of

Nash equilibrium. We also provide examples and economic applications where our general results

are applicable, but the existing theorems for pure strategy, dominant strategy, and mixed strategy

Nash equilibria fail to hold. These new results help us understand the existence or non-existence

of pure strategy, dominant strategy, and mixed strategy Nash equilibria in discontinuous games.
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Appendix

PROOF OF PROPOSITION 3.1. It is clear that a game G is weakly transfer quasi-continuous if

it is weakly transfer continuous. We only need to prove either of diagonal transfer continuity and

better-reply security implies weak transfer quasi-continuity.

We first consider the case of diagonal transfer continuity. Suppose x∗ ∈ X is not an equilib-

rium. Then, by diagonal transfer continuity of U , there exist a strategy ȳ ∈ X and a neighborhood

V(x∗) of x∗ such that U(z, ȳ) > U(z, z) for each z ∈ V(x∗), i.e.,
∑
i∈I

[ui(ȳi, z−i) − ui(z)] > 0

for each z ∈ V(x∗). Thus, for each z ∈ V(x∗), there exists a player i ∈ I such as

ui(ȳi, z−i)− ui(z) > 0.

We now consider the case of better-reply security. Suppose, by way of contradiction, that the

game is not weakly transfer quasi-continuous. Then, there exists a nonequilibrium x∗ ∈ X such

that for every ȳ ∈ X and every neighborhood V(x∗) of x∗, there exists z ∈ V(x∗) with

ui(ȳi, z−i) ≤ ui(z) for all i ∈ I. (6.1)

Letting ū be the limit of the vector of payoffs corresponding to some sequence of strategies con-

verging to x∗, and U∗ be the set of all such points, which is a compact set by the boundedness

of payoffs, we have (x∗, ū) ∈ cl Γ for all ū ∈ U∗. Then, by better-reply security, for each

(x∗, ū) ∈ cl Γ with ū ∈ U∗, there exist a player i, a strategy ȳi, and a neighborhood V̄(x∗−i) of

x∗−i such that ui(ȳi, z−i) > ūi for all z−i ∈ V̄(x∗−i). Then, we have ϕi(ȳi, x
∗
−i) > ūi

10. Choose

ε > 0 with ϕi(ȳi, x
∗
−i) > ūi + ε. Since ϕi(ȳi, .) is lower semi-continuous (cf. Reny, 1999), then

ui(ȳi, z−i) > ūi + ε, for each z−i ∈ V∗(x∗−i).

Let U∗
i be the projection of U∗ to coordinate i and u∗i = sup{ūi ∈ U∗

i : ui(ȳi, z−i) > ūi +

ε for all z−i ∈ V̄(x∗−i)}. Then, for ε/2 > 0, there is a y∗i such that ui(y∗i , z−i) > (u∗i +ε)−ε/2 =

u∗i + ε/2 for all z−i ∈ V∗(x∗−i).

Now, since the game is not weakly transfer quasi-continuous, for such a securing strategy y∗i ,

we can find a directed system of neighborhoods {Vα(x∗)}α∈Λ and a net zα ∈ Vα(x∗) such that

zα →α x∗ and

ui(y∗i , z
α
−i) ≤ ui(zα) →α ūi ≤ u∗i .

Thus, for ε/2 > 0, there exists α1 such that whenever α > α1, we have

ui(y∗i , z
α
−i) ≤ u∗i + ε/2 < ui(y∗i , z−i), for each z−i ∈ V∗(x∗−i). (6.2)

10The function ϕi(yi, x−i) is defined by ϕi(yi, x−i) = sup
V∈Ω(x−i)

inf
z−i∈V

ui(yi, z−i) (cf. Reny, 1999).
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Since the net {zα}α∈Λ also converges to x∗, then for each V(x∗) of x∗ with

Proj−i(V(x∗)) j V(x∗−i),
11 there exists α2 such that zα ∈ V(x∗) for α > α2. Con-

sequently, zα
−i ∈ Proj−i(V∗(x∗)) with α > max(α1, α2). Thus, by (6.2), we obtain

ui(y∗i , z
α
−i) ≤ u∗i + ε < ui(y∗i , z

α
−i), a contradiction. Hence, the game must be weakly transfer

quasi-continuous.

PROOF OF THEOREM 3.1. For each y ∈ X , let

F (y) = {x ∈ X : ui(yi, x−i) ≤ ui(x), ∀i ∈ I}.

By Remark 3.1, G is weakly transfer quasi-continuous if and only if F is transfer closed-valued.

For y ∈ X , let F̄ (y) = cl F (y). Then F̄ (y) is closed, and by the strong diagonal transfer

quasiconcavity (Remark 3.4), it is also transfer FS-convex. From Lemma 1 in Tian (1993), we

deduce
⋂

y∈X

F (y) =
⋂

y∈X

F̄ (y) 6= ∅. Thus, there exists a strategy profile x ∈ X such that

ui(yi, x−i) ≤ ui(x), for all y ∈ X and i ∈ I.

Thus x is a pure strategy Nash equilibrium of the game G.

To prove Theorems 3.2-3.3, we need the following lemma.

A correspondence C : X → 2Y is open inverse-image or have lower open sections if the set

{x ∈ X : y ∈ C(x)} is open in X , for all y ∈ Y .

LEMMA 6.1 (See Theorem 3a, page 264 in Deguire and Lassonde (1995)) Let Xi be a nonempty,

compact and convex space, i ∈ J and {Ci : X → Xi, i ∈ J} be a family of correspondences

such that:

(1) for all i ∈ J , Ci(x) is convex for every x ∈ X ,

(2) for all i ∈ J , Ci is open inverse-image,

(3) for each x ∈ X , there exists i ∈ J such that Ci(x) 6= ∅.

Then, there exists x ∈ X and i ∈ J such that xi ∈ Ci(x).

PROOF OF THEOREM 3.2. For each player i ∈ I and every (xi, y) ∈ Xi ×X , let

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

where Ω(y) is the set of all open neighborhoods of y.

11Proji(A) is the projection of A on space Xi.
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For each i and every xi ∈ Xi, the function ϕi(xi, .) is real-valued by boundedness of payoff

function. We show it is also lower semicontinuous over X . Indeed, for each i ∈ I , let xi ∈ Xi

and V be an open neighborhood. Consider the following function

gi
V(xi, y) =





inf
z∈V

[ui(xi, z−i)− ui(z)], if y ∈ V,

−∞, otherwise.

We want to show that gi
V(xi, .) is lower semicontinuous on X , which is equivalent to showing the

set

A(xi) = {y ∈ X : gi
V(xi, y) ≤ α}, α ∈ R

is closed for all xi ∈ Xi. Suppose that there exists a point y ∈ X such that y is in the closure

of A(xi), but not in A(xi). Then, there exists a net {yp}p∈Λ ⊂ A(xi) converging to y. Since

y /∈ A(xi), inf
z∈V

[ui(xi, z−i)− ui(z)] > α. If y /∈ V , then −∞ > α, which is impossible, and thus

y ∈ V and gi
V(xi, y) > α. Thus, we have {yp}p∈Λ ⊂ A(xi), and then gi

V(xi, y
p) ≤ α for every

p ∈ Λ. If there exists p̄ ∈ Λ such that yp̄ ∈ V , then inf
z∈V

[ui(xi, z−i)−ui(z)] ≤ α, which contradicts

the fact that inf
z∈V

[ui(xi, z−i) − ui(z)] > α. Thus, for all p ∈ Λ, yp /∈ V . Since the net {yp}p∈Λ

converges to y ∈ V , there exists η ∈ Λ such that for all p ≥ η, yp ∈ V , which contradicts the fact

that yp /∈ V for all p ∈ Λ. Thus, A(xi) is closed, which means that the function gi
V(xi, .) is lower

semicontinuous over X . Since the function ϕi(xi, .) is the pointwise supremum of a collection of

lower semicontinuous functions on X , by Lemma 2.39, page 43 in Aliprantis and Border (1994),

ϕi(xi, .) is lower semicontinuous on X .

Let us consider the following sets:

For each y ∈ X , let

G(y) = {x ∈ X : ϕi(yi, x) ≤ 0, ∀i ∈ I},

and for each x ∈ X and i ∈ I , let

Ci(x) = {yi ∈ Xi : ϕi(yi, x) > 0}.

Since ϕi(xi, .) is lower semicontinuous on X , then G(y) is closed.

We now show {Ci}i∈I is convex and open inverse-image for all i ∈ I . Indeed, let i ∈ I , x ∈
X , yi, yi be two elements of Ci(x) and θ ∈ [0, 1]. Since yi and yi are in Ci(x), ϕi(yi, x) > 0 and

ϕi(yi, x) > 0. Then, there exist V1(x) and V2(x) of x such that for all (z1, z2) ∈ V1(x)×V2(x),
{

ui(yi, z
1
−i) > ui(z1)

ui(yi, z
2
−i) > ui(z2).

Thus, there exists a neighborhood V(x) = V1(x) ∩ V2(x) such that

min{ui(yi, z−i), ui(yi, z−i)} > ui(z), ∀z ∈ V(x).
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Since G is quasiconcave in xi, then min{ui(yi, z−i), ui(yi, z−i)} ≤ ui(θyi + (1− θ)yi, z−i), for

each z−i. Therefore, ui(θyi+(1−θ)yi, z−i) > ui(z), ∀z ∈ V(x). Thus, θyi+(1−θ)yi ∈ Ci(x).

Also, let i ∈ I . Since ϕi(yi, .) is lower semicontinuous, the set {x ∈ X : ϕi(yi, x) > 0} is open

in X , for each yi ∈ Xi, which means Ci is open inverse-image.

Now suppose, by way of contradiction, that for each x ∈ X , there exists a player i ∈ I such

that Ci(x) 6= ∅. Then, by Lemma 6.1, there exist a point x̃ ∈ X and i ∈ I such that x̃i ∈ Ci(x̃),

i.e., ϕi(x̃i, x̃) > 0. Thus, by lower semicontinuity of ϕi(xi, .), there exists a neighborhood V(x̃)

of x̃ such that ui(x̃i, z−i) > ui(z), for each z ∈ V(x̃). Letting z = x̃ in the last inequality, we

obtain ui(x̃) > ui(x̃), which is impossible. Thus, there exists x ∈ X such that for each i ∈ I , we

have Ci(x) = ∅. Therefore, for each i ∈ I and each yi ∈ Xi, ϕi(yi, x) ≤ 0. Hence,

x ∈
⋂

y∈X

G(y) (6.3)

if x is not a Nash equilibrium. Since the game G is weakly transfer continuous, then there exists

player i, ȳi, and a neighborhood V of x such that ui(ȳi, z−i) > ui(z), for all z ∈ V . Then,

ϕ(ȳi, x) > 0, which contradicts (6.3). Therefore, x is a Nash equilibrium.

PROOF OF PROPOSITION 3.2. Suppose that the aggregate function U(x, y) =
n∑

i=1
ui(yi, x−i)

is diagonally transfer quasiconcave. Then, for any finite subset Y m = {y1, ..., ym} ⊂ X ,

there exists a corresponding finite subset Xm = {x1, ..., xm} ⊂ X such that for each

x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have min

s∈J1

U(x, ys) ≤ U(x, x) where

J1 = {j = 1, ..., m :
∑
i∈I

λi,j > 0} and λ ∈ ∆(n,m). Thus, min
s∈J1

n∑
i=1

[ui(ys
i , x−i) − ui(x)] ≤ 0.

Therefore, there exists (i, j) ∈ J = {(i, j) : λi,j > 0} such that ui(y
j
i , x−i) − ui(x) ≤ 0. We

conclude that min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0 with J = {(i, j) : λi,j > 0}.

PROOF OF THEOREM 3.3. For each player i ∈ I and every (xi, y) ∈ Xi ×X , let

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

where Ω(y) is the set of all open neighborhoods of y. For each i and every xi ∈ Xi, the function

ϕi(xi, .) is lower semicontinuous over X from the proof of Theorem 3.2.

Let us consider the following set: for each y ∈ X , let

G(y) = {x ∈ X : ϕi(yi, x) ≤ 0, ∀i ∈ I}.

Since the function ϕi(xi, .) is lower semicontinuous over X , then G(y) is closed. If x ∈ ⋂
y∈X

G(y),

then x is a Nash equilibrium (because G is weakly transfer continuous).
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Now, suppose, by way of contradiction, that
⋂

y∈X

G(y) = ∅. Then, we have

∀x ∈ X, there exists y ∈ X, i ∈ I such that ϕi(yi, x) > 0. (6.4)

Thus, X can be covered by the following subsets

θi,y = {x ∈ X : ϕi(yi, x) > 0}, i ∈ I and y ∈ X.

Since ϕi(yi, .) is lower semicontinuous on X , the subset θi,y is open in X , for each i ∈ I and y ∈
X . Also, since X is compact, it can be covered by a finite number of subsets {θi,yj : i =

1, ..., n and j = 1, ..., m}. Consider a continuous partition of unity {αi,j}i=1,...,n
j=1,...,m

associated to the

finite covering {θ1,y1 , ..., θn,ym}.

Since G is weakly diagonal transfer quasiconcave, there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m} and if J = {(i, j) :

λi,j > 0}, then

min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0. (6.5)

Let us now consider the following function defined on X into X by

f(x) =
∑

i,j

αi,j(x)xj .

Since the functions αi,j are continuous over the compact convex X into X , by Brouwer Fixed-

Point Theorem, there exists x̃ = f(x̃) =
∑
i,j

αi,j(x̃)xj . Let J(x̃) = {(i, j) : αi,j(x̃) > 0}.

If (i, j) ∈ J(x̃), then x̃ ∈ supp(αi,j) ⊂ θi,yj . Thus, ϕi(y
j
i , x̃) > 0 for each (i, j) ∈ J(x̃).

Therefore,

min
(i,j)∈J(x̃)

ϕi(y
j
i , x̃) > 0. (6.6)

Since ϕi(y
j
i , x̃) ≤ ui(y

j
i , x̃−i) − ui(x̃), then inequalities (6.5) and (6.6) imply 0 <

min
(i,j)∈J(x̃)

ϕi(y
j
i , x̃) ≤ 0, which is impossible. Therefore,

∅ 6=
⋂

y∈X

G(y).

Thus, x ∈ X such that x ∈ ⋂
y∈X

G(y) is a Nash equilibrium.

PROOF OF PROPOSITION 3.3. Suppose x ∈ X is not a Nash equilibrium. Then, by weak

transfer upper continuity, some player i has a strategy x̂i ∈ Xi and a neighborhood V(x) of x such

that ui(x̂i, x−i) > ui(z) for all z ∈ V(x). Choose ε > 0 such that ui(x̂i, x−i)− ε > sup
z∈V(x)

ui(z).
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The payoff security of G implies that there exist a strategy yi and a neighborhood Ṽ(x−i) of x−i

such that ui(yi, z−i) ≥ ui(x̂i, x−i) − ε for all z−i ∈ Ṽ(x−i). Thus, there exist yi ∈ Xi and a

neighborhood V̂(x) of x such that ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

PROOF OF PROPOSITION 3.4. Suppose x ∈ X is not a Nash equilibrium. Then, by

weak transfer lower continuity, some player i has a strategy x̂i ∈ Xi and a neighborhood

V(x−i) of xi such that ui(x̂i, z−i) > ui(x) for all z−i ∈ V(x−i). Choose ε > 0 such that

inf
z−i∈V(x−i)

ui(x̂i, z−i) > ui(x) + ε. The upper semicontinuity of G implies that there exists a

neighborhood Ṽ(x) of x such that ui(x) + ε ≥ ui(z) for all z ∈ Ṽ(x). Thus, there exist yi ∈ Xi

and a neighborhood V̂(x) of x such that ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

PROOF OF PROPOSITION 3.5. Suppose x is not an equilibrium. Then some player i

has a strategy yi such that ui(yi, x−i) > ui(x), i.e., Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)).

If (yi, x−i) ∈ X\Di, then by Assumption 3, there exist a strategy profile y′ and a neigh-

borhood V(x) of x so that for each z ∈ V(x), there exists a player j ∈ I such as

Fj(y′j , Sj(y′j , z−j)) > Fj(zj , Sj(z)), i.e., uj(y′j , z−j) > uj(z). If (yi, x−i) ∈ Di, then

by Assumption 2, there exist a player j ∈ I and y
′
j such that (y′j , x−j) ∈ X\Dj and

Fj(y′j , Sj(y′j , x−j)) > Fj(xj , Sj(x)). Thus, by Assumption 3, there exist a player k ∈ I ,

a strategy profile ỹ and a neighborhood V(x) of x so that for each z ∈ V(x), we have

Fk(ỹk, Sk(ỹk, z−k)) > Fj(zk, Sk(z)), i.e., uk(ỹk, z−k) > uk(z). Thus, the game is weakly

transfer continuous. It is also convex, compact, bounded and quasiconcave, then by Theorem 3.2

it has a pure strategy Nash equilibrium.

PROOF OF THEOREM 4.1. For each y ∈ X , let

F (y) = {x ∈ X : ui(y) ≤ ui(xi, y−i), ∀i ∈ I}.

We first prove that F is transfer closed valued. Let x, y ∈ X with x /∈ F (y). Then x is not

a dominant strategy equilibrium. By the weak dominant transfer upper quasi-continuity of the

game G, there exist a strategy y′ ∈ X and a neighborhood V(x) of x so that for every z ∈ V(x),

there exists a player i such as ui(y
′
) > ui(zi, y

′
−i). Therefore, for all z ∈ V(x), z /∈ F (y′), i.e.,

x /∈ cl F (y′).

For y ∈ X , let F̄ (y) = cl F (y). Then F̄ (y) is closed, and by the strong uniform transfer

quasiconcavity (Remark 4.3), it is also transfer FS-convex. From Lemma 1 in Tian (1993), we

deduce
⋂

y∈X

F (y) =
⋂

y∈X

F̄ (y) 6= ∅. Thus, there exists a strategy profile x ∈ X such that

ui(y) ≤ ui(xi, y−i), for all y ∈ X and i ∈ I.

29



Thus x is a dominant strategy equilibrium of the game G.

PROOF OF THEOREM 4.2. For each player i ∈ I and every (y, xi) ∈ X ×Xi, let

πi(y, xi) = sup
V∈Ω(xi)

inf
zi∈V

[ui(y)− ui(zi, y−i)]

where Ω(xi) is the set of all open neighborhoods of xi.

For each i and every y ∈ X , the function πi(y, .) is both real-valued and lower semicontinuous

over Xi (see the proof of Theorem 3.3).

If there exists x̄ ∈ X such that for all i ∈ I ,

sup
y∈X

πi(y, x̄i) ≤ 0,

then x̄ is a dominant strategy equilibrium.

Now, suppose, by way of contradiction, that for any strategy profile x ∈ X , x is not a dominant

strategy equilibrium. Then, by weak dominant transfer upper continuity, there exist a player i, a

strategy y ∈ X and a neighborhood V(xi) of xi such that ui(y) − ui(zi, y−i) > 0 for each

zi ∈ V(xi). Thus,

∀x ∈ X, there exists y ∈ X, i ∈ I such that πi(y, xi) > 0.

Thus, X can be covered by the following open subsets:

θi,y = {xi ∈ Xi : πi(y, xi) > 0} ×X−i.

Since X is compact, then it can be covered by a finite number of subsets {θi,yj : i ∈ I and j =

1, ..., m}. Consider a continuous partition of unity {αi,j}i=1,...,n
j=1,...,m

associated to the finite covering

{θ1,y1 , ..., θn,ym}.

Since G is strongly uniformly transfer quasiconcave, then there exists a corresponding finite

subset {x1, ..., xm} ⊂ X such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m} and if

J = {(i, j) : λi,j > 0}, then

min
(i,j)∈J

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0. (6.7)

Let us now consider the following function defined on X into X by

f(x) =
∑

i,j

αi,j(x)xj .

Since the functions αi,j are continuous over the compact convex X into X , then by Brouwer

Fixed-Point Theorem, there exists x̃ = f(x̃) =
∑
i,j

αi,j(x̃)xj . Let J(x̃) = {(i, j) : αi,j(x̃) > 0}.
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If (i, j) ∈ J(x̃), then x̃ ∈ supp(αi,j) ⊂ θi,yj . Thus, πi(yj , x̃i) > 0 for each (i, j) ∈ J(x̃).

Therefore,

min
(i,j)∈J(x̃)

πi(yj , x̃i) > 0. (6.8)

Since πi(yj , x̃i) ≤ ui(yj) − ui(x̃i, y
j
−i), then inequalities (6.7) and (6.8) imply

0 < min
(i,j)∈J(x̃)

πi(yj , x̃i) ≤ 0, which is impossible.

PROOF OF PROPOSITION 5.1. Suppose µ ∈ X is not a mixed strategy Nash equilibrium. Then,

there exist a player i, a measure µ∗i ∈ Mi and a ε > 0 such that

Ui(µ∗i , µ−i)− ε =
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)− ε > Ui(µ) =
∫

X

ui(x)dµ(x). (6.9)

Since the game G is uniformly transfer continuous, then the function ui is upper semicon-

tinuous over X and uniformly payoff secure. According to Proposition 5.1 of Reny (1999), the

function
∫
X

ui(x)dµ(x) is upper semicontinuous in µ. Thus, there exists V1(µ) such that:

∫

X

ui(x)dµ(x) ≥
∫

X

ui(x)dµ(x)− ε/2, for all µ ∈ V1(µ). (6.10)

Also, according to the proof of Theorem 1 in Monteiro and Page (2007), there exist a measure

µ̃i ∈ Mi and a neighborhood V2(µ−i) of µ−i such that
∫

X

ui(x)dµ̃i(xi)dµ−i(x−i) ≥
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)−ε/2, for all µ−i ∈ V2(µ−i). (6.11)

Combining (6.9), (6.10) and (6.11), we conclude: there exist a measure µ̃i ∈ Mi and a neigh-

borhood V(µ) of µ such that for all µ ∈ V(µ), we have

∫
X

ui(x)dµ̃i(xi)dµ−i(x−i) + ε/2 ≥ ∫
X

ui(x)dµ∗i (xi)dµ−i(x−i)

>
∫
X

ui(x)dµ(x) + ε

≥ ∫
X

ui(x)dµ(x) + ε/2

Thus, the mixed game G is weakly transfer continuous.

PROOF OF PROPOSITION 5.2. Upper semicontinuity of li(.), mi(.) and φi(.), together with

condition a) in Assumption 5.1, implies that the concession game is upper semicontinuous. Con-

dition b) implies that for each xi ∈ Xiand ε > 0, there exists a strategy xi ∈ Xi such that for

every yi ∈ X−i, there exists a neighborhood V(yi) of yi such that ui(xi, zi) ≥ ui(xi, yi) − ε, for

all zi ∈ V(yi). Then, it is uniformly transfer continuous. It is clear that this game G is compact,

then by Corollary 5.1, we conclude that the game has a mixed strategy Nash equilibrium.
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