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Abstract

The paper proposes statistics to test the null hypothesis of no cointegration in panel
data when common factors drive the cross-section dependence. We consider both the case in
which regressors are independent of the common factors and the case in which regressors are
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independent of the common factors, making it possible to pool the individual statistics.
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1 Introduction

The literature on panel cointegration has experienced a huge development since the 90’s. Earlier
analysis assumed cross-section independence when designing the inference procedures.1 This
assumption is convenient because it allows the application of the central limit theorem over
the cross sections to achieve asymptotic normality for the underlying statistics. A key fea-
ture of cointegration is co-movement of economic variables, or existence of common stochastic
trends. While cross-section independence allows within-unit common stochastic trends, it can-
not capture the cross-section (global) common stochastic trends, thereby limiting the model’s
applicability. To tackle this problem, we follow a similar framework as in Bai and Ng (2004)
and Bai (2009), who use the approximate common factor model to characterize common shocks
and common stochastic trends; also see Moon and Perron (2004). We consider a model of the
form:

Yi,t = µi + γi t+X ′i,tβi + F ′tλi + ei,t

i = 1, 2, ..., N ; t = 1, 2, ..., T

where µi + γi t describes the deterministic component, Xi,t is a vector of observable I(1) regres-
sors, Ft is a vector of unobservable common shocks whose impact varies over cross sections via
λi. The ei,t are the idiosyncratic errors.

We refer to Ft, when it is I(1), as unobservable cross-section common stochastic trend. When
ei,t are I(0), then Yi,t, Xi,t, Ft are cointegrated, even though Yi,t and Xi,t are not cointegrated.
So this paper considers cointegration between Yit and Xi,t up to a small number of unobservable
common stochastic trends. When both ei,t and Ft are I(0), Yi,t and Xi,t are cointegrated. In
this case, we may regard Ft as common shocks, which capture the cross-section correlations.

A similar framework has been adopted by a number of recent panel cointegration studies.
Banerjee and Carrion-i-Silvestre (2006), Gengenbach, Palm and Urbain (2006), Westerlund
(2008), and Westerlund and Edgerton (2008) extend the residual-based Engle-Granger approach
to panel data with common factors. Gengenbach, Urbain and Westerlund (2008) focus on the
error correction model with common factors. Groen and Kleinberger (2003) and Breitung
(2005) use the vector error correction specification to test the presence of cointegration, where
dependence is considered through the residual covariance matrix. Finally, Carrion-i-Silvestre
and Surdeanu (2009) propose a panel cointegration rank test with global stochastic trends.
A recent survey of the field is provided by Baltagi (2008), Breitung and Pesaran (2008), and
Banerjee and Wagner (2009).

Panel cointegration with cross-section dependence has important empirical applications.
Gengenbach, Palm and Urbain (2005) test the PPP hypothesis using panel cointegration tech-
niques that allow for common factors. Banerjee and Carrion-i-Silvestre (2006) analyze the
long-run exchange rate pass-through for the euro area. Constantini and Lupi (2006) estimate
the long-run relationship between Italian regional unemployment rates. Westerlund (2008) an-
alyzes the Fisher effect, while Gengenbach, Urbain and Westerlund (2009) examine both the
Fisher effect and the monetary exchange rates. Moverover, Banerjee and Wagner (2009) study
the environmental Kuznets curve; Holly, Pesaran and Yamagata (2009) examine the long-run
relationship between housing prices and incomes, and Carrion-i-Silvestre and Surdeanu (2009)
focus on money demand.2

1See, e.g., McCoskey and Kao (1998), Kao (1999), Pedroni (2000, 2004) and Larsson, Lyhagen and Löthgren
(2001).

2There is also a related literature using common factors when estimating panel cointegration relationships.
For instance, Pedroni (2007) estimates an augmented neoclassical Solow growth model, and Tosetti and Moscone
(2007) for a health-care demand model, using the approach in Pesaran (2006). Westerlund (2007) estimates a
panel model based on the forward rate unbiasedness hypothesis and Costantini and Destefanis (2009) estimate
the Italian regional production functions, using the approach in Bai and Kao (2006).
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Few of the above studies consider the case where the common factors are allowed to be cor-
related with stochastic regressors. Correlation between the common factors and I(1) regressors
arises in practice since common factors that affect the endogenous variable, in general, also
affect the stochastic regressors. Not only do we want to control for cross-sectional correlation,
but also we want to determine if the unobserved component Ft is integrated. If Ft is integrated,
then yt and xit are not cointegrated directly, but may be cointegrated up to a small number
of cross-sectional unobserved stochastic trends. Our analysis permits Ft to contain both I(1)
and I(0) components. We do not regard cross-section dependence as nuisance or a burden on
inference, but rather a structure that is potentially informative about the way in which the
panel data are linked. A further difference between our framework from the previous panel
cointegration studies is the use of the modified Sargan-Bhargava (MSB) statistic. The MSB
statistic possesses some optimality properties within the class of tests that are invariant to het-
erogeneous trends, as is shown by Ploberger and Phillips (2004). Our analysis complements
the analysis in Bai and Kao (2006), and Bai, Kao and Ng (2009), who assume the existence of
cointegration.3

Under the null hypothesis of no cointegration, the disturbances eit are I(1). To consistently
estimate the factors and residuals, we follow Bai and Ng (2004) by taking the first order dif-
ference of the data. After estimating the factors and residuals from the differenced data, we
re-cumulate them and construct test statistics based on these estimated quantities. This pro-
cedure has notable advantages. The individual statistics do not depend on the dimension of
the stochastic regressors. Therefore, there is no need for many tables of critical values. Nor do
the individual statistics depend on the common factors. This implies that the individual statis-
tics are cross-sectionally independent as long as the idiosyncratic errors are cross-sectionally
independent. This allows pooled statistics to be constructed.

We find it useful to distinguish two setups: one having Xi,t and Ft to be independent, and
the other having Xi,t and Ft to be correlated. The first setup permits a simpler procedure
when constructing the test statistics. For the second setup, an iterated procedure is needed to
consistently estimate the slope parameters and the common factors in order to construct the
test statistics.

The paper is organized as follows. Section 2 describes the model and the underlying as-
sumptions. We distinguish two situations depending on whether the stochastic regressors are
strictly exogenous or non-strictly exogenous with respect to the idiosyncratic errors. Limiting
distributions of the test statistics are derived in this section. Section 3 considers the case in
which regressors are correlated with the unobservable common factors. Section 4 studies pooled
test statistics. Section 5 conducts Monte Carlo simulations to investigate the finite sample
properties of proposed statistics. Section 6 concludes. All proofs are collected in the appendix.

2 Heterogeneous panel cointegration

Let {Yi,t} be a stochastic process with DGP expressed as:

Yi,t = µi + γi t+X ′i,tβi + ui,t (1)

t = 1, . . . , T , i = 1, . . . , N , where Xi,t is a p× 1 vector of I(1) regressors such that

(I − L)Xi,t = Gi (L) vi,t (2)

3Related approaches can be found in Pesaran (2006) and Kapetanios, Pesaran and Yamagata (2006), who
approximate the common factors using cross-section means of the variables in the model.
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and the disturbances ui,t have a factor structure such that

ui,t = F ′tλi + ei,t, (3)
(I − L)Ft = C (L)wt (4)

(1− ρiL) ei,t = di (L) εi,t; (5)

with Ft a vector of (r × 1) unobservable dynamic factors and λi the vector of loadings. We
assume C (L) =

∑∞
j=0CjL

j . Despite the operator (1 − L) in equation (4), Ft does not have
to be I(1). In fact, Ft can be I(0), I(1), or a combination of both, depending on the rank
of C(1). If C(1) = 0, then Ft is I(0). If C(1) is of full rank, then each component of Ft is
I(1). If C(1) 6= 0, but not of full rank, then some components of Ft are I(1) and some are
I(0). Regarding the deterministic component µi + γi t, we consider two specifications: (1) the
intercept only model (γi = 0 for all i) and (2) the general linear trend model (without imposing
γi = 0). These two cases are separately considered as the resulting test statistics have different
limiting distributions. Our analysis is based on similar assumptions introduced in Bai and Ng
(2004). Let S <∞ be a generic positive number, not depending on T and N :

Assumption A: (i) E ‖λi‖4 ≤ S, (ii) 1
N

∑N
i=1 λiλ

′
i
p→ ΣΛ, a (r × r) positive definite matrix.

Assumption B: (i) wt ∼ iid (0,Σw), E ‖wt‖4 ≤ S, and (ii) V ar (∆Ft) =
∑∞

j=0CjΣwC
′
j > 0,

(iii)
∑∞

j=0 j ‖Cj‖ < S; and (iv) C (1) has rank r1, 0 ≤ r1 ≤ r.

Assumption C: (i) for each i, εi,t ∼ iid
(
0, σ2

i

)
, E |εi,t|8 ≤ S,

∑∞
j=0 j |di,j | < S, ω2

i =
di (1)2 σ2

i > 0; (ii) εit are independent across i.

Assumption D: (i) For each i, vi,t ∼ iid (0,Σv), E ‖vi,t‖4 ≤ S, and (ii) V ar (∆Xi,t) =∑∞
j=0Gi,jΣvG

′
i,j > 0, (iii)

∑∞
j=0 j ‖Gi,j‖ < S; and (iv) Gi (1) has full rank.

Assumption E: The errors {εi,t}, {wt}, and the loadings {λi} are mutually independent.

Assumption F: E ‖F0‖ ≤ S, and for every i = 1, . . . , N , E |ei,0| ≤ S.

Assumptions A and B imply r factors, they are necessary for consistent estimation of factor
loadings and the factors (up to a rotation). Assumption B specifies the short-run and long-
run variances of ∆Ft. The short-run variance is positive definite (implying r factors), but the
long-run variance can be of reduced rank in order to accommodate linear combinations of I (1)
factors to be stationary. Assumption C(i) allows for some weak serial correlation in (1− ρiL) ei,t,
whereas C(ii) assumes cross-section independence, a useful assumption when pooling individual
test statistics. Assumption D gives conditions on the first order difference of the stochastic
regressors. Assumption E assumes the unobservable common factors are independent of the re-
gression errors, and of the factor loadings, a standard assumption for factor models. Assumption
F is for initial conditions.

In the next two subsections, we consider two situations depending on whether stochastic
regressors are strictly exogenous regressors or non-strictly exogenous regressors. The first case
is quite simple, it is shown that the limiting distribution of statistics does not depend on the
stochastic regressors Xi,t nor on Ft. With non-strictly exogenous regressors, the procedure
needs to be modified in order to achieve the same result.

2.1 Strictly exogenous regressors

In this section, we assume that Xi,t is independent of ui,t = F ′tλi + ei,t. This assumption will
be relaxed in the next section. Under this assumption, a simpler estimation procedure (without
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iteration) is sufficient. The proof requires, for the case of intercept model (γi = 0 for all i),

1
T

T∑
t=1

∆Xi,t∆ei,t = Op(T−1/2),
1
T

T∑
t=1

∆Xi,t∆F ′t = Op(T−1/2). (6)

For the case of linear trends, the requirements become

1
T

T∑
t=1

(∆Xi,t −∆Xi)(∆Ft −∆F )′ = Op(T−1/2), (7)

and a similar expression with ei,t in place of Ft. These requirements are met for strictly exoge-
nous regressors Xi,t, as explained below. We make this assumption explicit:

Assumption G: Xi,t is independent of (ei,s, Fs) for all t and s.

The intercept only case and the linear trend case will be studied separately. The former
requires that the I(1) regressors Xi,t and the common trends Ft have no drifts. The latter allows
drift in Xi,t and in Ft. The reason is that for the intercept case, we need T−1/2Xi,t = Op(1)
and T−1/2Ft = Op(1). This cannot be true if drifts exist. When linear trend is included in
the estimation, the model is invariant to whether the I(1) regressors have drifts. In this case,
the proof of our results needs T−1/2(Xi,t − t

TXi,T ) = Op(1) and T−1/2(Ft − t
T FT ) = Op(1), but

these are true even if drifts exist in Xi,t and Ft.

2.1.1 Intercept only case

This case assumes no linear trend in the model so that γi = 0 for all i

Yi,t = µi +X ′i,tβi + F ′tλi + ei,t. (8)

We also assume Xi,t and Ft have no drifts. If these series do exhibit drifts, test statistics in the
next subsection should be used as they are invariant to drifts. Differencing the above model,
we have

∆Yi,t = ∆X ′i,tβi + ∆Ftλi + ∆ei,t.

By the driftless assumption for Xit and Ft, E(∆Xit) = 0 and E(∆Ft) = 0. Since they are also
independent, it follows that (6) holds. The above equation can be written as, in vector notation,

∆Yi = ∆Xiβi + ∆Fλi + ∆ei,

where

∆Yi =


∆Yi,2
∆Yi,3

...
∆Yi,T

 , ∆Xi =


∆X ′i,2
∆X ′i,3

...
∆X ′i,T

 , ∆F =


∆F ′2
∆F ′3

...
∆F ′T

 ,
and ∆ei is defined similarly as ∆Yi. We further introduce

yit = ∆Yi,t, xit = ∆Xi,t, ft = ∆Ft.

The differenced model can be rewritten as

yi = xiβi + fλi + ∆ei. (9)

Define (T − 1)× (T − 1) projection matrix as

Mi = IT−1 − xi(x′ixi)−1x′i = IT−1 − Pi.

4



Left multiplying Mi on each side of (9)

Miyi = Mifλi +Mi∆ei
= fλi − Pifλi +Mi∆ei,

which can be rewritten as
y∗i = fλi + zi, (10)

where
y∗i = Miyi, zi = Mi∆ei − Pifλi. (11)

Therefore, (10) is a factor model with new observable variables y∗i . In the appendix, we show
that

zi,t = ∆ei,t + ∆Xi,tOp(T−1/2),

and furthermore,

T−1/2
t∑

s=1

zi,s = T−1/2ei,t +Op(T−1/2).

Thus under the null hypothesis of no cointegration, we have

T−1/2
t∑

s=1

zi,s → σiWi(r),

where Wi(r) denotes a standard Brownian motion.
In order to use zi,t to form test statistics, we must have an estimate for zi,t. This requires an

estimate for f and Λ = (λ1, ..., λN )′. The estimation of the common factors and factor loadings
can be done as in Bai and Ng (2004) using principal components. Let

y∗ = (y∗1, y
∗
2, ..., y

∗
N )

be the (T − 1) × N data matrix. The estimated principal component of f = (f2, f3, . . . , fT ),
denoted as f̃ , is

√
T − 1 times the r eigenvectors corresponding to the first r largest eigenvalues

of the (T − 1)×(T − 1) matrix y∗y∗′, under the normalization f̃ f̃ ′/ (T − 1) = Ir. The estimated
loading matrix is Λ̃ = y∗′f̃/ (T − 1). Therefore, the estimated residuals are defined as

z̃i,t = y∗i,t − f̃ ′tλ̃i. (12)

We can estimate the idiosyncratic disturbance terms through cumulation, i.e.

ẽi,t =
t∑

s=2

z̃i,s.

The null hypothesis of no cointegration is based on ẽi,t in place of unobservable ei,t.
We use the modified Sargan-Bhargava (MSB) statistic proposed in Stock (1999) to test

the null hypothesis. As mentioned in the introduction, this statistic possesses some optimality
properties within the class of tests that are invariant to heterogeneous trends as shown by
Ploberger and Phillips (2004). The MSB statistic on the idiosyncratic disturbance terms is
given by

MSBẽ (i) =
T−2

∑T
t=1 ẽ

2
i,t−1

σ̃2
i

, (13)

where σ̃2
i is an estimation of the long-run variance of {∆ei,t}. Here we suggest estimating the

long-run variance as in Ng and Perron (2001)

σ̃2
i =

σ̃2
k,i(

1− φ̃ (1)
)2 , (14)
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with φ̃ (1) =
∑k

j=1 φ̃j and σ̃2
k,i = (T − k)−1∑T

t=k+1 υ̃
2
i,t, where φ̃j and {υ̃i,t} are obtained from

the OLS estimation of

∆ẽi,t = φ0ẽi,t−1 +
k∑
j=1

φj∆ẽi,t−j + υi,t (15)

where the lag order k is specified in the theorem below. An alternative estimator for σ2
i is that

of Newey-West based on the residuals ẽit − ρ̂iẽi,t−1, where ρ̂i is obtained from regressing ẽit on
ẽi,t−1.

We can also test whether the common factor Ft is I(1). Define

F̃t =
t∑

s=2

f̃s.

When there is one common factor, i.e. r = 1, we construct the unit root test statistic as in
(13), using F̃t instead of ẽi,t, that is,

MSBF̃ =
T−2

∑T
t=1 F̃

2

t−1

σ̃2
f

, (16)

where the long run variance
(
σ̃2
f

)
can be estimated as described above.

When the number of common factors is r > 1 we suggest to use the modified Q statistic –
hereafter MQ statistic – in Bai and Ng (2004). Let F̃ ct = F̃t− F̃ denote the demeaned common
factors. Start with q = r and proceed in three stages:

1. Let α̃⊥ be the q eigenvectors associated with the q largest eigenvalues of T−2
∑T

t=2 F̃
c
t F̃

c′
t .

2. Let Ỹ c
t = α̃⊥F̃

c
t , from which we can define two statistics – the first one (MQcc (q)) ac-

counts for autocorrelation in a non-parametric way, while the second one
(
MQcf (q)

)
in

a parametric way:

(a) Let K (j) = 1− j/ (J + 1), j = 0, 1, 2, . . . , J :

i. Let ξ̃ct be the residuals from estimating a first-order VAR in Ỹ c
t , and let

Σ̃c
1 =

J∑
j=1

K (j)

(
T−1

T∑
t=2

ξ̃ct ξ̃
c′
t

)
.

ii. Let ṽcc (q) = 1
2

[∑T
t=2

(
Ỹ c
t Ỹ

c′
t−1 + Ỹ c

t−1Ỹ
c′
t

)
− T

(
Σ̃c

1 + Σ̃c′
1

)](
T−1

∑T
t=2 Ỹ

c
t−1Ỹ

c′
t−1

)−1
.

iii. Define MQcc (q) = T [ṽcc (q)− 1].

(b) For p fixed that does not depend on N and T :

i. Estimate a VAR of order p in ∆Ỹ c
t to obtain Π̃ (L) = Iq − Π̃1L − . . . − Π̃pL

p.
Filter Ỹ c

t by Π̃ (L) to get ỹct = Π̃ (L) Ỹ c
t .

ii. Let ṽcf (q) be the smallest eigenvalue of

Φc
f =

1
2

[
T∑
t=2

(
Ỹ c
t Ỹ

c′
t−1 + Ỹ c

t−1Ỹ
c′
t

)](
T−1

T∑
t=2

Ỹ c
t−1Ỹ

c′
t−1

)−1

.

iii. Define the statistic MQcf (q) = T
[
ṽcf (q)− 1

]
.
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3. If H0 : r1 = q is rejected, set q = q− 1 and return to the first step. Otherwise, r̃1 = q and
stop.

The limiting distribution of these statistics are given in the following Theorem.

Theorem 1 Let {Yi,t} be the stochastic process with DGP given by (1) to (5), with γi = 0 in
(1). Under Assumptions A-G, the following results hold as N,T → ∞. Let k be the order of
autoregression in (15) chosen such that k →∞ and k3/min [N,T ]→ 0.

(i) Under the null hypothesis that ρi = 1 in (5),

MSBẽ (i)⇒
∫ 1

0
Wi (r)2 dr,

where Wi (r) denotes a standard Brownian motion.

(ii) When r = 1, under the null hypothesis that Ft has a unit root:

MSBF̃ ⇒
∫ 1

0
Ww (r)2 dr,

where Ww (r) denotes a standard Brownian motion.

(iii) When r > 1, let W c
q be a vector of demeaned Brownian motions. Let vc∗ (q) be the smallest

eigenvalues of the statistic

Φc
∗ =

1
2
[
W c
q (1)W c

q (1)′ − Ip
] [∫ 1

0
W c
q (r)W c

q (r)′ dr
]−1

,

For the non-parametric statistic, let J be the truncation lag of the Bartlett kernel, chosen
such that J →∞ and J/min

[√
N,
√
T
]
→ 0. For the parametric statistic, let us assume

that Ft has q stochastic trends with a finite VAR(p̄) representation and a VAR(p) is
estimated with p ≥ p̄. Then, under the null hypothesis that Ft has q stochastic trends,
T [ṽcc (q)− 1] d→ vc∗ (q) and T

[
ṽcf (q)− 1

]
d→ vc∗ (q).

It is interesting to note that the limiting distribution in part (i) does not depend on the
stochastic regressors Xi,t, nor on the unobservable common stochastic trend Ft. This is a very
useful property as it does not require many tables for critical values. Furthermore, since the
limit is free from the common shocks, the individual test statistics can be pooled if ei,t are cross-
sectionally uncorrelated. As is shown in the next section, the limiting distribution is different,
however, when linear trends are entertained in the model.

To sum up, the statistics that have been proposed in this section can be constructed following
these steps:

1. Take the first order difference for the dependent and the explanatory variables, and label
them as yi, which is (T − 1)× 1, and xi, which is (T − 1)× p, for i = 1, 2, ..., N .

2. Construct the projection matrix Mi, and define y∗i = Miyi i = 1, 2, ..., N , and let y∗ =
(y∗1, y

∗
2, ..., y

∗
N ).

3. Estimate f and Λ from the (T−1)×(T−1) matrix y∗y∗′ via singular value decomposition.
Define

z̃i,t = y∗i,t − f̃ ′tλ̃i.
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4. For each i, construct the cumulative sum ẽi,t =
∑t

s=1 z̃i,s, estimate the long-run variance
σ̃2
i using (14) and (15), and construct the MSB test given in (13) based on ẽi,t. Response

surfaces to approximate finite sample p-values are provided in Bai and Carrion-i-Silvestre
(2009).

5. If there is only one common factor (r = 1), construct the cummulative sum F̃t =
∑t

s=2 f̃s.
Estimate the long-run variance σ̃2 using (14) and (15), but with F̃t instead of ẽi,t, and
construct the MSB test given in (16) based on F̃t. Response surfaces to approximate
finite sample p-values are provided in Bai and Carrion-i-Silvestre (2009).

6. If there are more than one common factor (r > 1), define the cummulative sum F̃t =∑t
s=2 f̃s, and compute the demeaned F̃ ct = F̃t − F̃ series. Start with q = r and proceed

to test the number of stochastic trends following the three stages described earlier. This
requires the computation of either the MQcc (q) or the MQcf (q) statistics. Asymptotic
critical values are provided in Bai and Ng (2004), Table I.

2.1.2 Linear trend case

In the previous section we assume γi = 0 for all i. We now relax this assumption to allow
heterogeneous linear trends as in (1)

Yi,t = µi + γit+X ′i,tβi + F ′tλi + ei,t. (17)

The estimation starts with model transformation that purges the deterministic component µi+
γi t. By doing so, the analysis also allows drifts in Xi,t and in Ft. In fact, the analysis is
invariant to drifts, as explained in details in the appendix. Purging the deterministic part
requires differencing and then demeaning. Differencing (17) yields,

∆Yi,t = γi + ∆X ′i,tβi + ∆F ′tλi + ∆ei,t.

The first difference does not remove the deterministic elements as the trend becomes an intercept
for the differenced data. This is a relevant feature, leading to a different limiting distribution
of the MSB statistic. Further demeaning yields

∆Yi,t −∆Yi = (∆Xi,t −∆Xi)βi + (∆Ft −∆F )λi + ∆ei,t −∆ei,

where ∆Y i = 1
T−1

∑T
t=2 ∆Yi,t with ∆Xi and ∆F defined similarly. Rewrite the above as

yi = xiβi + fλi + ∆ei − ι∆ei, (18)

where
yi = ∆Yi − ι∆Y i, xi = ∆Xi − ι∆Xi, f = ∆F − ι∆F ,

these are, respectively, (T−1)×1, (T−1)×p, and (T−1)×r matrices. Introduce the projection
matrix,

Mi = IT−1 − xi(x′ixi)−1x′i,

which has the same form as in the previous section, but xi is defined differently. Left multiply
Mi on each side of (18), we have

Miyi = Mifλi +Mi(∆ei − ι∆ei)
= fλi + ∆ei − ι∆ei − Pifλi − Pi(∆ei − ι∆ei),

or
y∗i = fλi + zi, (19)
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where
y∗i = Miyi, zi = ∆ei − ι∆ei − Pifλi − Pi∆ei, (20)

note Pi ι∆ei = 0 as Pi ι = 0.
To estimate f and Λ = (λ1, ..., λN )′, we introduce,

y∗ = (y∗1, y
∗
2, ..., y

∗
N ),

a (T − 1) ×N matrix. Let f̃ and λ̃ be computed the same way as in the previous subsection.
Define

z̃i,t = y∗i,t − f̃ ′tλ̃i.

Finally,

ẽi,t =
t∑

s=2

z̃i,s

F̃t =
t∑

s=2

f̃s.

Let MSBẽ and MSBF̃ be constructed exactly the same way as before. When r > 1 we can
compute the MQ statistics defined in the previous subsection where now F̃ ct is replaced by F̃ τt ,
F̃ τt being the residuals from a regression of F̃t on a constant and a time trend. Then, testing
the number of common stochastic trends proceeds exactly in the same way using either the
MQτc (q) or the MQτf (q) statistics, with ṽτc (q) and ṽτf (q) computed as ṽcc (q) and ṽcf (q) in the
previous subsection, respectively, but using detrended common factors.

Theorem 2 Let {Yi,t} be the stochastic process with DGP given by (1) to (5), with linear trends
allowed in (1). Under Assumptions A-G, the following results hold as N,T →∞. Let k be the
order of autoregression chosen such that k →∞ and k3/min [N,T ]→ 0.

(i) Under the null hypothesis that ρi = 1 in (5)

MSBẽ (i)⇒
∫ 1

0
Vi (r)2 dr,

where Vi (r) = Wi (r)− rWi (1), i = 1, . . . , N , denotes a standard Brownian bridge.

(ii) When r = 1, under the null hypothesis that Ft has a unit root:

MSBF̃ ⇒
∫ 1

0
Vw (r)2 dr,

where Vw (r) = Ww (r)− rWw (1) denotes a standard Brownian bridge.

(iii) When r > 1, let W τ
q a vector of detrended Brownian motions. Let vτ∗ (q) be the smallest

eigenvalues of the statistic

Φτ
∗ =

1
2
[
W τ
q (1)W τ

q (1)′ − Ip
] [∫ 1

0
W τ
q (r)W τ

q (r)′ dr
]−1

,

For the non-parametric statistic, let J be the truncation lag of the Bartlett kernel, cho-
sen such that J → ∞ and J/min

[√
N,
√
T
]
→ 0. For the parametric statistic, let us

assume that Ft has q stochastic trends with a finite VAR(p̄) representation and a VAR(p)
is estimated with p ≥ p̄. Then, under the null hypothesis that Ft has q stochastic trends,
T [ṽτc (q)− 1] d→ vτ∗ (q) and T

[
ṽτf (q)− 1

]
d→ vτ∗ (q).
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The proof is provided in the appendix. As expected, the limiting distribution of these
statistics depend on the deterministic specification, but it does not depend on the stochastic
regressors in the cointegrating relationship. This is quite convenient since it reduces the amount
of tables needed to carry out the statistical inference.

To sum up, the statistics that have been proposed in this section for the linear trend case
can be constructed as follows:

1. Differencing and demeaning both the dependent and the explanatory variables, and label
them as yi, which is (T − 1)× 1, and xi, which is (T − 1)× p, for i = 1, 2, ..., N .

2. Construct the projection matrix Mi, and define y∗i = Miyi i = 1, 2, ..., N , and let y∗ =
(y∗1, y

∗
2, ..., y

∗
N ).

3. The computation of the MSBẽ and MSBF̃ statistics is identical to the previous section.
Response surfaces to approximate finite sample p-values are provided in Bai and Carrion-
i-Silvestre (2009).

4. If r > 1, define the cummulative sum F̃t =
∑t

s=2 f̃s, and compute the detrended F̃ τt
factors, where F̃ τt denotes the residuals from a regression of F̃t on a constant and a linear
time trend. Start with q = r and proceed to test the number of stochastic trends follow-
ing the three stages described earlier, computing the MQτc (q) or the MQτf (q) statistics.
Asymptotic critical values are provided in Bai and Ng (2004), Table I.

2.2 Non-strictly exogenous regressors

In this section we allow Xi,t to be correlated with the disturbances ei,t but maintain the as-
sumption that Xi,t and the factors Ft are independent. The case of dependence between Xi,t

and Ft is considered in the next section. Using idea from dynamic least squares method, by
adding leads and lags of ∆Xi,t to control for endogeneity, we assume the model can be written
as

Yi,t = µi + γit+X ′i,tβi + ∆X ′i,tAi (L) + Ftλi + ξi,t, (21)

where Ai (L) is a vector of polynomials of lead and lag operators with m1 lags and m2 leads.
Let m = m1 + m2. For simplicity, we assume m1 and m2 are finite. The regressors Xi,t and
∆Xi,s are strictly exogenous relative to ξi,t. In addition, the error term ξi,t is I(0) when ei,t is
I(0), and ξi,t is I(1) when ei,t is I(1).

Equation (21) follows from the projection argument. If ei,t is I(0), we can directly project
ei,t on leads and lags of ∆Xi,t such that ei,t = ∆X ′i,tAi(L) + ξi,t with ξi,t being I(0), and (21)
follows immediately. When ei,t is I(1), we can project ∆ei,t onto ∆Xi,t such that ∆ei,t =
∆X ′i,tBi(L) + ηi,t. This implies that ei,t = X ′i,tBi(L) + ξi,t with ξi,t =

∑t
s=0 ηi,s ∼ I(1). But

by the Beveridge-Nelson decomposition, we can write X ′i,tβi +X ′i,tBi(L) as X ′i,tτi + ∆X ′i,tAi(L)
for some τi and Ai(L). Then (21) follows upon renaming τi as βi. The idea is that ξi,t has the
same order of integration as ei,t.

The intercept only specification imposes γi = 0 in (21), while for the time trend specification
γi 6= 0. Differencing (21) gives

∆Yi,t = γi + ∆X ′i,tβi + ∆2X ′i,tAi (L) + ∆F ′tλi + ∆ξi,t. (22)

As in section 2.1, introduce the following notation for the intercept only case. Let yi be the
(T −m− 1)× 1 vector consisting of ∆Yi,t (t = m1 + 2, ...T −m2), and let xi be the (T −m−
1) × (m + 2)p matrix with each row of the form (∆X ′i,t,∆

2X ′i,t−m1
, ...,∆2X ′i,t+m2

). Similarly,
let f be (T −m− 1)× r matrix with row elements ∆F ′t and let ∆ξi be (T −m− 1)× 1 vector
with elements ∆ξi,t (t = m1 + 2, ..., T −m2). We can rewrite (22) with γi = 0 as

yi = xiδi + fλi + ∆ξi, (23)

10



where δi is a vector of parameters consisting of βi and the coefficients in Ai(L). Let us define
the (T −m− 1)× (T −m− 1) projection matrix

Mi = IT−m−1 − xi(x′ixi)−1x′i = IT−m−1 − Pi.

Left multiplying Mi each side of (23), we obtain (10) with y∗i = Miyi and zi = Mi∆ξi−Pifλi as
in (11). The whole analysis in Section 2.1.1 goes through. The requirement 1

T

∑T
t=1 ∆Xi,t∆ei,t =

Op(T−1/2) is now replaced by 1
T

∑T−m2
t=m1+2 xi,t∆ξi,t = Op(T−1/2), which holds since ∆ξi,t is

uncorrelated with xi,t.
In the presence of linear trends, we define yi and xi as the above but with their time series

sample means (columnwise means) removed. Similarly, f and ∆ξi are defined with their sample
means removed as well. The analysis is the same as that of section 2.1.2. We summarize the
result in the following theorem.

Theorem 3 Let {Yi,t} be the stochastic process with DGP given by (1) to (5). Suppose that
Assumptions A-F hold. Let MSBẽ(i) and MSBF̃ be the test statistics based on newly defined
yi and xi, then Theorem 1 and Theorem 2 still hold.

3 Regressors correlated with common factors

Previous derivations rely on the assumption that stochastic regressors are not correlated with
the common factors. In this section, we relax this assumption by allowing correlations between
Xi,t and Ft. In fact, Xi,t can be correlated with Ft, or with λi or both. The idea is that, similar
to the left hand side variable Yi,t, the regressors Xi,t are likely to be impacted by the common
shocks Ft. For example, Xi,t may take on the form

Xi,t = Atλi +BiFt +
r∑

k=1

Ci,k(Fk,tλk,t) + ΠiGt + ηi,t,

where At, Bi, Ci,k are matrices or vectors, and Gt is vector of another common factors not
influencing Yi,t, and ηi,t are iid, say. As a result, the following condition used earlier

1
T

T∑
t=1

∆Xi,t∆Ft = Op(T−1/2),

(for the intercept only case), or

1
T

T∑
t=1

(∆Xi,t −∆Xi)(∆Ft −∆F ) = Op(T−1/2),

(for the linear trend case) may not hold. The above limit is nonzero in general when Xi,t and Ft
are correlated. To tackle the problem, we estimate βi and F jointly. This will permit consistent
estimation of both the regression parameters and factors, and thus the residuals.

We reproduce model (17) here

Yi,t = µi + γi t+X ′i,tβi + F ′tλi + ei,t. (24)

In the context of stationary regressors and stationary disturbances, Bai (2009) considers the
estimation of the above model, allowing for correlation between Xi,t and Ft. Bai, Kao and Ng
(2009) estimate the model with I(1) regressors and I(1) factors, taking cointegration as given.
Our purpose here is to test for cointegration.

In the present setting, the null hypothesis implies ei,t to be I(1). We therefore need to
difference the data to achieve stationarity. As in the previous sections, an added advantage of
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differencing is that the limit of the test statistic, MSBẽ(i), does not depend on Xi,t and Ft.
Without differencing, the resulting test statistic would have a limit involving residual Brownian
motion, which is obtained as a projection residual by projecting the Brownian motion associated
with ei,t onto those associated with Xi,t and Ft. The resulting test statistics cannot be pooled
due to cross correlations induced by the common trend Ft.

Differencing gives
∆Yi,t = γi + ∆X ′i,tβi + ∆F ′tλi + ∆ei,t.

In vector notation,
∆Yi = γi ι+ ∆Xi βi + ∆F λi + ∆ei

where ι is a vector of ones. The discussion in this section assumes Xi,t is strictly exogenous
with respect to the idiosyncratic errors, otherwise, we need to add leads and lags of ∆Xi,t in
equation (24), as in Section 2.2.

If no linear trend is assumed (γi = 0 for all i), we define the projection matrix to be an
identical matrix, i.e.,

M = IT−1.

If linear trend is allowed, we define

M = IT−1 − T−1ι ι′,

(a demean operator). Multiply M on each side of the model equation we have

M∆Yi = M∆Xi βi +M∆F λi +M∆ei,

or
yi = xiβi + fλi + zi, (25)

where
yi = M∆Yi, xi = M∆Xi, f = M∆F, zi = M∆ei.

Note that M does not depend on i.
We use the least squares method to estimate (βi, f,Λ). They are estimated jointly. The

least squares objective function is defined as:

SSR (βi, f,Λ) =
N∑
i=1

(yi − xiβi − fλi)′ (yi − xiβi − fλi) , (26)

subject to the constraint f ′f/ (T − 1) = Ir and Λ′Λ being diagonal. Concentrating out Λ,
the least squares estimator (β̃1, ...β̃N , f̃) must satisfy, see Bai (2009), the following system of
nonlinear equations:4

β̃i =
(
x′ixi

)−1
x′i

(
yi − f̃ λ̃i

)
, (i = 1, 2, ..., N) (27)[

1
NT

N∑
i=1

(
yi − xiβ̃i

)′ (
yi − xiβ̃i

)]
f̃ = f̃VNT , (28)

where VNT is the diagonal matrix containing the r largest eigenvalues of the matrix in the
squared brackets. Note that β̃i and f̃ can be obtained iteratively. Given βi, we can estimate

4If common slope coefficient βi = β is assumed, equation (27) becomes

β̃ =

(
N∑

i=1

x′ixi

)−1 N∑
i=1

x′i

(
yi − f̃ λ̃i

)
and equation (28) remains the same with β̃i replaced by β̃.
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f , and given f we can estimate βi. This process is iterated until convergence. Once
(
β̃i, f̃

)
is

available we can obtain the loading matrix as λ̃i = (T − 1)−1 f̃ ′
(
yi − xiβ̃

)
. Finally, define

z̃i = yi − xiβ̃i − f̃ λ̃i.

Bai (2009) shows that this iterated approach gives consistent estimation of βi, f and λi (for
each i). Because the differenced data are I(0), the rate of convergence for βi is

√
T . But this

rate is sufficient for our purpose. In addition, the estimated f̃ and Λ̃ possess properties similar
to a pure factor model, despite correlations between ∆Xi,t and ∆Ft. In particular, we have

T−1/2
t∑

s=2

vs = T−1/2
t∑

s=2

(f̃s −Hfs) = Op(C−1
NT ),

and
di = λ̃i −H−1′λi = Op(C−1

NT ).

Exactly as before, estimate ei,t again by

ẽi,t =
t∑

s=2

z̃i,s,

and estimate Ft by

F̃t =
t∑

s=2

f̃s.

Let MSBẽ, MSBF̃ and MQ test statistics be defined as in Section 2. The limiting distributions
of these statistics are given in the following Theorem.

Theorem 4 Let the DGP for the stochastic process {Yi,t} be given by (24) together with (2) to
(5). Suppose that Assumptions A-F hold and the slope coefficients and the factors are estimated
jointly. Then the limiting distributions in Theorem 1 and Theorem 2 still hold.

In summary, in spite of correlations between Xi,t with Ft or with λi, the results in previous
sections continue to hold. Simulations show this approach indeed works quite well in terms of
size and power properties.

4 Pooled test statistics

Using results of previous sections, we can define panel cointegration statistics that combine
individual statistics for each cross-section. Pooling individual statistics can yield more pow-
erful tests. We consider several approaches to combining. Each of those approaches assumes
asymptotic independence of individual statistics. Assuming idiosyncratic errors eit are cross-
sectionally independent, then all cross-section correlations are captured by the common factors
Ft. In view that the individual test statistics MSBẽ(i) do not depend on the common factors
in the limit, they are asymptotically independent. Thus pooling is permitted.

The first approach of combining standardizes the sample average of individual statistics so
that

MSBẽ =
√
N
MSBẽ (i)− ξ̄

ς̄
→ N (0, 1) ,

where MSBẽ (i) = N−1
∑N

i=1MSBẽ (i), ξ̄ = N−1
∑N

i=1 ξi and ς̄2 = N−1
∑N

i=1 ς
2
i , where ξi and

ς2
i denotes the mean and variance of MSBẽ (i) respectively. The following Lemma provides

these moments.
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Lemma 1 Let MSBẽ (i) = σ̃−2
i T−2

∑T
t=1 ẽ

2
i,t−1 be the test statistic with limit distribution given

in Theorems 1 to 4. Let ξi and ς2
i denote the mean and variance, respectively, of the limiting

random variable of MSBẽ (i), then

(1) The only constant case: ξi = 1
2 and ς2

i = 1
3

(2) The time trend case: ξi = 1
6 and ς2

i = 1
45 .

It is possible to define panel statistics through the combination of individual p-values. Thus,
under the assumption of cross-section independence of ei,t, −2 ln pi ∼ χ2

2, a result that was used
in Maddala and Wu (1999) to define the Fisher-type test statistic:

P = −2
N∑
i=1

ln pi ∼ χ2
2N ,

where pi denotes the p-value of the MSBẽ (i) statistic for the i-th unit. Choi (2001) proposes
the following test when N →∞:

Pm =
−2
∑N

i=1 ln pi − 2N√
4N

→ N (0, 1) ,

as N →∞.
The computation of these statistics requires the corresponding p-values. Bai and Carrion-i-

Silvestre (2009) provide response surfaces that can be used to approximate these p-values for the
MSB statistic. In summary, we have three different ways to combine the individual statistics.
Monte Carlo simulations are conducted in the next section to evaluate the performance of those
aggregated statistics.

5 Monte Carlo simulation

5.1 Regressors independent of the common factors

Finite sample properties of our procedure are investigated through the specification of the
following bivariate DGP:

Yi,t = µi + γi t+Xi,tβi + ui,t

ui,t = F ′tλi + ei,t

Ft = αFt−1 + σFwt

ei,t = ρiei,t−1 + εi,t

∆Xi,t = vi,t,

where (wt, εi,t, vi,t)
′ consists of iid standard normal random variables for all i and t. We consider

various combinations for the number of factors r and the value of AR parameters (α, ρi). More
specifically, r = {1, 3}, α = {0.9, 0.95, 1} and ρi = {0.95, 0.99, 1} for all i. These values allow
analyzing both the empirical size and power of the statistics. The relative importance of the
common factors is controlled through the value of σ2

F = {0.5, 1, 10}. Note that the test statistics
are invariant to the values of µi and γi, therefore they are set to zero. The test statistics only
depend on whether trends are allowed or not in the estimation procedure. In addition, we
set βi = 1 for all i. The heterogenous slope coefficients will be considered later. Throughout
the simulation experiments the number of common factors is estimated using the panel BIC
information criterion in Bai and Ng (2002) with rmax = 6 as the maximum number of factors.
We consider N = 40 individuals and T = {50, 100, 250} time observations. The number of
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replications in all cases is set at 5,000 and the nominal size is set at the 5% level. In order to
save space, we only report the results for the time trend deterministic specification – the results
for the intercept-only case are similar in all cases.

Table 1 reports the empirical size and power for the time trend case. As can be seen, the
MSBẽ statistic is undersized since the empirical size is mildly below the nominal size. The
panel statistics that are based on the combination of individual p-values, P and Pm statistics,
show good size. All three panel data statistics present high power, even for ρi = 0.99. In most
cases the empirical power is almost one for ρi = 0.95. The MSBF̃ statistic has the correct size
and, as expected, the power increases as the autoregressive coefficient moves away from unity. It
is worth noticing that these features are also found for the constant deterministic specification.

Similar conclusions are obtained for the case of three common factors. As above, Table 2
suggests that statistics using individual p-values have better empirical size and power. One
reason for the mild oversize shown by MSBẽ could be the fact that the limiting distribution of
this statistic is not symmetric. Regarding the MQ tests, we observe that when α = 1 and large
T the parametric MQ statistic has the correct empirical size, while the non-parametric one
shows some size distortion. Note that, in Table 2, MQ(3) denotes the frequency that the MQ
statistics have detected three common stochastic trends, MQ(2) the frequency of two stochastic
trends, MQ(1) the frequency of one stochastic trend, and finally, MQ(0) denotes the frequency
that the statistics detect no stochastic trend. Regarding the empirical power, we see that the
MQ tests do not show high power unless T is large and α moves away from unity, which is
expected even if Ft is observable, and is due to the non-panel nature of Ft. This is in contrast
with evidence for the panel statistics, which show good power.

5.2 Regressors correlated with common factors

The DGP that is used to assess the performance of the statistics when stochastic regressors are
correlated with either the common factors or the loadings is given by

Yi,t = X1i,tβi1 +X2i,tβi2 + F ′tλi + ei,t, (29)

i = 1, . . . , N , t = 1, . . . , T , where the stochastic regressors are generated according to

X1i,t = µ1 + c1F
′
tλi + ι′λi + ι′Ft + η1i,t

X2i,t = µ2 + c2F
′
tλi + ι′λi + ι′Ft + η2i,t

η1i,t = η1i,t−1 + v1i,t; η2i,t = η2i,t−1 + v2i,t

(v1i,t, v2i,t) ∼ iid N (0, I2) .

Common factors and idiosyncratic disturbance terms are given by

ei,t = ρiei,t−1 + εi,t

Ft = αFt−1 + σFwt, (30)

with (wt, εi,t)
′ consists of iid standard normal random variables for all i and t. We set µ1 =

µ2 = c1 = c2 = 1. Empirical size and power are investigated for all possible pairs of ρi =
{0.95, 0.99, 1} and α = {0.9, 0.95, 1}. As above, r = {1, 3}, and the importance of the common
factors is controlled through the value of σ2

F = {0.5, 1, 10}. Simulations are performed for
T = {50, 100, 250} observations and N = 40 individuals. Computational cost due to the
iterative estimation procedure has led us to base the results on 1,000 replications. For the slope
parameters, we consider two cases. The first case is for common slope parameters, so that βi1
and βi2 do not depend on i. The second case considers heterogenous slope parameters.

Common slope parameters. The true parameter values are (β1, β2) = (1, 3). Table 3
offers results when r = 1, which shows similar conclusions as the case in Section 5.1. Regarding
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the statistics for the idiosyncratic disturbance terms, we see that the statistics based on pooling
the p-values show better performance in terms of the empirical size. In all cases the tests present
non-trivial power, even for ρi = 0.99. The MSB statistic computed for the common factor shows
good empirical size and power as well. Note that these results are obtained irrespective of the
deterministic specifications.

Results under three common factors are reported in Tables 4 to 6. As before, the panel
data statistics using the p-values have empirical size close to the nominal one. Their empirical
power is quite good even for large autoregressive coefficient. Note that these results are obtained
regardless of the deterministic specification. Regarding the MQ statistics, we are able to detect
the existence of three common factors. The MQ tests show the correct empirical size. However,
we require large T and large σ2

F for the statistics to have good empirical power. As mentioned
above, this feature is due to the fixed dimension of Ft.

Heterogeneous parameters. The set-up of the simulation experiment in this case is the
same as for the homogeneous case, except that the slope parameters β1 and β2 in (29) are
randomly distributed as β1 ∼ N (1, 1) and β2 ∼ N (3, 1). The results in Tables 7 to 9 are
similar to those in the previous analysis. In general, panel data unit root tests based on p-value
combination have an empirical size that is closer to the nominal one, while the panel test that
combines the statistics is mildly under-sized. As for the empirical power, the statistics show
higher power for the constant only case than for the time trend case. This is in accordance with
the findings in Moon, Perron and Phillips (2004) and in our another paper, where it was shown
that the more complicated the deterministic component the lower power of the statistics around
the null hypothesis. Finally, the performance of the MQ tests is not altered when considering
the heterogeneous parameters case; the non-parametric version of the MQ test IS more powerful
than the parametric one.

6 Conclusions

This paper contributes to the literature on panel data cointegration analysis by considering
cross-section dependence. The framework used is the approximate factor models. We dis-
tinguish two important aspects of the model. First, stochastic regressors are assumed to be
independent of the unobservable common factors and factor loadings. Second and more impor-
tant is the allowance of correlation amongst regressors and common factors and factor loadings.
In both cases, the paper proposes statistics to test the presence of cointegration, whether or
not the stochastic regressors are strictly or non-strictly exogenous. It is shown that the limiting
distribution of these statistics depend on the deterministic specification but not on the number
of stochastic regressors.
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A Mathematical Appendix

A.1 Common factors with strictly exogenous regressors

Proof of Theorem 1. From y∗i = fλi + zi and y∗i = f̃ λ̃i + z̃i, we have

z̃i = zi + fλi − f̃ λ̃i.

That is,

z̃i,t = zi,t + f ′tλi − f̃ ′tλ̃i (31)
= zi,t − vtH−1′λi − f̃ ′tdi,

where vt = f̃t − Hft and di = λ̃i − H−1′λi. The computation of the partial sum processes of
(31) gives:

T−1/2
t∑

s=2

z̃i,s = T−1/2
t∑

s=2

zi,s − T−1/2
t∑

s=2

vsH
−1′λi − T−1/2

t∑
s=2

f̃ ′sdi. (32)

We next analyze each term on the right hand side of (32). For the first term, recall

zi = ∆ei − Pi[∆ei + fλi],

or

zi,t = ∆ei,t −∆X ′i,t(x
′
ixi)

−1
[
x′i∆ei + x′ifλi

]
= ∆ei,t −∆X ′i,t

(
T−1x′ixi

)−1[
T−1x′i∆ei + T−1x′ifλi

]
.

Note that

T−1x′i∆ei = T−1
T∑
t=2

∆X ′i,t∆ei,t = Op(T−1/2), T−1x′if = T−1
T∑
t=2

∆X ′i,t∆Ft = Op(T−1/2).

Thus
zi,t = ∆ei,t + ∆X ′i,tOp(T

−1/2).

The cumulative sum of zi,t after dividing by
√
T is,

T−1/2
t∑

s=1

zi,s = T−1/2ei,t − (T−1/2X ′i,t)Op(T
−1/2)

= T−1/2ei,t +Op(T−1/2),

we have assumed ei,1 = 0 and Xi,1 = 0 for notational simplicity, without loss of generality.
Regarding the term involving {vt} we see from Eq. (A.3) in Bai and Ng (2004) that

T−1/2
t∑

s=2

vs = Op
(
C−1
NT

)
,

where CNT = min
[√

N,
√
T
]
. Moreover and as shown in Bai and Ng (2004), the term di =

Op
(
C−1
NT

)
and T−1/2

∑t
s=2 f̃s = Op (1), so that

T−1/2
t∑

s=2

z̃i,s = T−1/2
t∑

s=2

zi,s +Op
(
C−1
NT

)
= T−1/2ei,t +Op

(
C−1
NT

)
.
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Since T−1/2ei,t ⇒ σiWi(r), it follows that

MSBẽ (i)⇒
∫ 1

0
Wi (r)2 dr,

that is, the limiting distribution is the same as derived in Stock (1999) for the constant case.
This implies that the presence of stochastic regressors does not affect the limiting distribution
of the statistic.

Next consider unit root test for Ft, the case of r = 1. From

T−1/2
t∑

s=2

vs = T−1/2
t∑

s=2

(f̃s −Hfs) = Op(C−1
NT ),

from fs = ∆Fs and the definition of F̃t, we have

T−1/2[F̃t −H(Ft − F1)] = Op(C−1
NT ),

and from T−1/2Ft ⇒ σFWw(r), where Ww(r) is standard Brownian motion, we have

T−1/2H−1F̃t ⇒ σFWw(r),

note that H−1 is scalar for r = 1. The MSB test is scale invariant, the scalar H−1 is cancelled
out from the numerator and the denominator. This implies that MSBF̃

d→
∫ 1

0 Ww(r)2dr. The
case of r > 1 is similar to Bai and Ng (2004), and is thus omitted.

To prove Theorem 2, we need the following lemma. Recall in the linear trend case, xi,t =
∆Xi,t −∆Xi and ft = ∆Ft −∆F .

Lemma 2 For drifted or driftless Xi,t and Ft, we have

(i) T−1/2
∑t

s=2 xi,s = Op(1)

(ii) T−1x′if = Op(T−1/2)

(iii) T−1x′i∆ei = Op(T−1/2)

(iv) Let zi,t = ∆ei,t −∆ei − x′i,t(x′ixi)−1
[
x′ifλi + x′i(∆ei − ι∆ei)

]
. Then

T−1/2
∑t

s=2 zi,s = T−1/2[ei,t − ( tT )ei,T ] + op(1)⇒ σi[Wi(r)− rWi(1)] = σiVi(r)

Proof of (i). Note xi,t = ∆Xi,t − ∆Xi is invariant to drift of Xi,t (i.e., does not depend
on the drift of Xi,t, if any). Without loss of generality, one may assume Xi,t has no drift. In
addition, xi,t = ∆Xi,t − t

T (Xi,T −Xi,1). Thus

T−1/2
t∑

s=2

xi,s = T−1/2
[
Xi,t −

t

T
Xi,T ]− T−1/2Xi,1(1− t

T
) = Op(1).

Proof of (ii). We have

T−1x′if = T−1
T∑
t=2

(∆Xi,t −∆Xi)′(∆Ft −∆F ),

but (∆Xi,t −∆Xi) and (∆Ft −∆F ) are invariant to drift, so without loss of generality, we can
assume they are driftless. Then the above is Op(T−1/2) due to the independence of Xi,t and Ft.

Proof of (iii). Same as (ii).
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Proof of (iv). Combining (i),(ii), and (iii), we have

T−1/2
t∑

s=2

x′i,s

[
(T−1x′ixi)

−1[T−1x′if + T−1x′i(∆ei − ι∆ei)
]

= Op(T−1/2),

it follows that

T−1/2
t∑

s=2

zi,s = T−1/2
t∑

s=2

(∆ei,t −∆ei) +Op(T−1/2)

= T−1/2
(
ei,t −

t

T
ei,T

)
+Op(T−1/2)⇒ σiVi(r).

Q.E.D.
Proof of Theorem 2. As in the proof of Theorem 1,

z̃i = zi + fλi − f̃ λ̃i

z̃i,t = zi,t − vtH−1′λi − f̃ ′tdi,

where vt = f̃t −Hft and di = λ̃i −H−1′λi. Again, as before, cumulative sum leads to

T−1/2
t∑

s=2

z̃i,s = T−1/2
t∑

s=2

zi,s − T−1/2
t∑

s=2

vsH
−1′λi − T−1/2

t∑
s=2

f̃ ′sdi

where, from (20),

zi,t = ∆ei,t −∆ei − x′i,t(x′ixi)−1
[
x′ifλi + x′i∆ei − ι∆ei)

]
.

By Lemma 2(iv),

T−1/2
t∑

s=2

zi,s ⇒ σiVi(r).

From Bai and Ng (2004),

T−1/2
t∑

s=2

vs = Op(C−1
NT ) = op(1),

and
di = λ̃i −H−1′λi = Op(C−1

NT ),

we have

T−1/2
t∑

s=2

z̃i,s = T−1/2
t∑

s=2

zi,s + op(1)⇒ σiVi(r).

It follows that

MSBẽ (i)⇒
∫ 1

0
Vi(r)2dr.

Consider testing the stationarity of Ft with r = 1. From Bai and Ng (2004),

T−1/2
t∑

s=2

(f̃s −Hfs) = Op(C−1
NT )

where ft = ∆Ft −∆F with ∆F = 1
T−1(FT − F1). Cumulative sum of the true ft

T−1/2
t∑

s=2

fs = T−1/2
(
Ft − F1 −

t− 1
T − 1

(FT − F1)
)
⇒ σwVw(r),
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where Vw(r) is a Brownian bridge. Next,

T−1/2F̃t = T−1/2
t∑

s=2

f̃s = H T−1/2

(
Ft − F1 −

t− 1
T − 1

(FT − F1)
)

+Op
(
C−1
NT

)
.

It follows that
T−1/2H−1F̃t ⇒ σwVw(r).

By the definition of MSB test,

MSBf̃
d→
∫ 1

0
Vw(r)2dr.

The proof of r > 1 is the same as in Bai and Ng (2004), thus omitted.

A.2 Stochastic regressors correlated with common factors

Proof of Theorem 4. From yi = xiβi + fλi + zi and yi = xiβ̂i + f̂ λ̂i + ẑi, we have

ẑi = zi − xi(β̂i − βi) + fλi − f̃ λ̃i
= zi − xi(β̃i − βi)− (f̂ − fH)H−1′λi − f̃(λ̂i −H−1′λi),

or
z̃i,t = zi,t − x′i,t(β̃i − βi)− vtH−1′λi − f̃tdi,

where vt = f̃t −Hft and di = λ̃i −H−1′λi. Thus,

1√
T

t∑
s=2

z̃i,s =
1√
T

t∑
s=2

zi,s− (
1√
T

t∑
s=2

x′i,s)(β̃i− βi)− (
1√
T

t∑
s=2

vs)H−1′λi− (
1√
T

t∑
s=2

f̃s)di. (33)

The remaining proof focuses on the linear trend model, as the intercept only model is simpler.
In this case, xi = M∆Xi = ∆Xi − ι∆Xi and f = M∆F = ∆F − ι∆F and zi = M∆ei =
∆ei − ι∆ei. Consider the first term on the right hand side of (33),

T−1/2
t∑

s=2

zi,s = T−1/2
(
ei,t − ei,1 −

t− 1
T − 1

[ei,T − ei,1]
)

= T−1/2
(
ei,t −

t− 1
T − 1

ei,T

)
+Op(T−1/2)⇒ σiVi(r)

where Vi is a Brownian bridge, and σ2
i is the long run variance of ∆eit. Next,

T−1/2
t∑

s=2

xi,t = T−1/2
(
Xi,t −Xi,1 −

t− 1
T − 1

(Xi,T −Xi,1)
)

= Op(1).

The above being Op(1) holds even if Xit is a drifted random walk (containing a linear trend
component). Thus the second term on the right hand side of (33) is Op(1)(β̃i−βi) = Op(T−1/2).
As in Bai and Ng (2004), we have

T−1/2
t∑

s=2

vs = T−1/2
t∑

s=2

(f̃s −Hfs) = Op(C−1
NT ),

and
di = λ̃i −H−1′λi = Op(C−1

NT ).
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Combining these results, we have

T−1/2ẽi,t = T−1/2
t∑

s=2

z̃i,s ⇒ σiVi(r),

it follows that

MSBẽ
d→
∫ 1

0
Vi(r)2dr.

Next consider testing unit root in Ft for the case of r = 1. By definition, F̃t =
∑t

s=2 f̃s.
Adding and subtracting,

T−1/2F̃t = T−1/2H

t∑
s=2

fs + T−1/2
t∑

s=2

(f̃s −Hfs) = T−1/2H

t∑
s=2

fs +Op(C−1
NT ).

But

T−1/2
t∑

s=2

fs = T−1/2
[
Ft − F1 −

t− 1
T − 1

(FT − F1)
]
⇒ σwVw(r).

It follows that
H−1T−1/2F̃t ⇒ σwVw(r),

and

MSBF̃
d→
∫ 1

0
Vw(r)2dr.

The proof of r > 1 is the similar to that of Bai and Ng (2004), thus omitted.
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ẽ

P
m

P
M
S
B
F̃

M
S
B
ẽ
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ẽ

P
m

P
M
S
B
F̃

M
S
B
ẽ
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