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Abstract

Experimental evidence suggests that people tend to be overcon�dent in the sense

that they overestimate the accuracy of their private information, judgment and

intuition. In this paper we present a novel evolutionary foundation for overcon�-

dence: diversi�cation of risk. In addition, the model explains various stylized facts

that characterize overcon�dence. Finally, an equivalent formulation of the model

illustrates why principals may prefer overcon�dent agents in various strategic (non-

evolutionary) interactions.
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1 Introduction

In many experimental studies participants are asked to answer trivia questions, and to

report the level of con�dence (subjective probability) that they answered each of these

questions correctly. The typical result in such experiments is that people are overcon�dent:

their con�dence systematically exceeds the true accuracy (see Section 2). That is, people

tend to overestimate the accuracy of their private information, personal judgment and

intuition. Various evidence suggest that overcon�dence substantially in�uences economic

behavior of analysts (Friesen and Weller, 2006), investors (e.g., Berber and Odean, 2001),

entrepreneurs (e.g., Cooper, Woo and Dunkelberg, 1988; Koellinger, Minniti and Schade,
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2007), managers (e.g., Rabin and Schrag, 1999; Goel and Thakor, 2008; Gervais, Heaton

and Odean, 2010), and consumers (Grubb, 2009).

In this paper, we present a theoretical model that studies the relation between overcon�-

dence and risk diversi�cation. The main application of the model is a novel evolutionary

foundation for overcon�dence. We show that overcon�dence is a unique evolutionary sta-

ble behavior, and we characterize its optimal level. Our model has two key properties that

distinguish it from existing evolutionary models for overcon�dence : (1) the evolutionary

dynamics is based only on individual selection (and not on group selection as in Bernardo

and Welch, 2001), and (2) overcon�dence achieves the optimal solution to the evolution-

ary problem (and not a �second-best� adaptation that compensates for another bias as in

Blume and Easley, 1992; Waldman, 1994; and Wang, 2001).

An equivalent representation of the model describes the strategic interaction between

a risk-averse principal and privately informed agents, and illustrates why the principal

prefers overcon�dent agents over rational agents. This may help understanding why it

seems that successful analysts, entrepreneurs and managers tend to have high levels of

overcon�dence.

1.1 Model and Results

The equivalent strategic representation allows us to illustrate our model and to intuitively

explain our results in a simpler manner than the evolutionary representation. Therefore,

we �rst describe the strategic representation, and postpone the presentation of the evolu-

tionary framework to the next subsection. Our model describes the strategic interaction

between a risk-averse principal and privately informed agents. 2 As an illustrating exam-

ple, consider the following strategic interaction in a venture capital fund.

Example 1 A risk-averse CEO of a venture capital fund hires several analysts. When the

CEO chooses which analysts to hire, he observes the con�dence level of each candidate.

Each analyst manages the investments of the fund in his area. For simplicity, assume that

each analyst investigates several startup companies, and chooses one of these companies.

The analyst may base his choice on two methods: (1) follow the accepted guidelines and

make the choice a typical analyst would in such a situation, or (2) be original and follow

his own personal judgment and intuition. The fund invests money in the chosen startup

company. This investment may either succeed or fail. Successes of di�erent agents are pos-

itively correlated if both analysts follow the accepted guidelines, and they are independent

otherwise. The analyst is interested in maximizing the success probability of his invest-

ment. The CEO wishes to maximize the total number of successful investments, and each

additional success has a smaller marginal payo�.

2 In the evolutionary framework (as discussed in the next subsection) the agents are the indi-
viduals in the population, and the evolutionary dynamics �behaves� as if it were a risk-averse
principal.
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Our model (Section 3) includes a principal and many agents. Each agent i is characterized

by bias function gi that determines how he evaluates the accuracy of personal judgment

and intuition: if his judgment is correct with probability 0 < pi < 1, the agent believes

the accuracy to be gi (pi). The strategic interaction includes two stages. At stage 1 the

principal observes the bias functions of potential agents, and chooses which agents to hire.

At stage 2, all agents publicly receive signal 0 < q < 1 - the success probability of following

the accepted guidelines. 3 4 In addition, each agent i privately receives signal 0 < pi < 1

(evaluated as gi (pi)) - the success probability of following his own judgment (each pi is

independently drawn from the same distribution.). Then each agent chooses whether to

follow the accepted guidelines or to follow his own judgment. Each agent who follows the

accepted guidelines succeeds with probability q; success of di�erent agents who follow the

accepted guidelines are positively correlated with correlation coe�cient 0 < ρ ≤ 1. Each

agent i who follows his own judgment succeeds with probability pi independent of other

agents, An agent receives high payo� if he succeeds and low payo� if he fails. The payo�

of the principal is a concave increasing function of the total number of successful agents. 5

Following the accepted guidelines bears a larger aggregate risk due to the positive correla-

tion between the successes of di�erent agents. This creates a con�ict of interests between

calibrated agents (gi (pi) = pi) who maximize their probability of success, and the risk-

averse principal. The principal has a tradeo� between two objectives: (1) maximizing the

expected number of successes, and (2) reducing the variance in the number of successes.

The �rst goal is fully consistent with the interests of calibrated agents. However, due

to the second goal, the principal would like agents with pi a little bit smaller than q to

follow their somewhat less accurate personal judgment, in order to reduce the variance

and achieve a better diversi�cation of risk among the agents.

Our �rst result (Theorem 3) shows that if the number of agents is su�ciently large,

then this con�ict is optimally resolved by hiring overcon�dent agents. 6 That is, there is

a continuous and increasing bias function g∗, which always overestimates the perceived

accuracy of agent's personal judgment (g∗ (p) > p for every 0 < p < 1, see Figure 1 in

Section 3), such that if all agents have this bias function, it approximately induces the

��rst-best� outcome for the principal - the outcome he would achieve if he could receive

all the private signals and directly control the actions of all agents. We further show

(Theorem 4) that g∗ is unique in the following sense: all other bias pro�les, including

heterogeneous pro�les in which agents have di�erent bias functions, induce strictly worse

3 We assume that all agent who follow the accepted guidelines have the same success probability
q in order to simplify the presentation of the results and make the model more tractable. The
results would remain qualitatively similar if each agent who follows the accepted guidelines has
an independent success probability qi.
4 The assumption that the public signal is evaluated without a bias is without loss of generality
as discussed in Subsection 6.2.
5 In addition, we make the technical assumption that this utility has decreasing absolute risk
aversion - see Subsection 3.1.
6 The con�ict can also be resolved by using monetary incentives. In Section 5 we demonstrate
why in some situations the �overcon�dence� mechanism may be easier to implement than a
mechanism that is based on monetary incentives.
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outcomes. Our third result (Theorem 6) presents interesting comparative statics. It shows

that the principal prefers more overcon�dent agents if: (1) he becomes more risk-averse,

or (2) the correlation coe�cient ρ becomes larger. The intuition of both results is that

both changes deepen the con�ict of interests between the principal and calibrated agents,

and more overcon�dence is required to compensate it. As demonstrated in Example 5,

when the number of agents is small, our results do not hold.

1.2 Evolutionary Application

We now present the main application of our model. Consider a large population of agents

with several genetic types. Each type i induces a (possibly random) bias function gi for

its members. In each generation, each agent faces an important decision that in�uences

his �tness. When taking this decision the agent may either follow the accepted guidelines

(do what most people think to be best in this situation) or follow his own judgment and

take an original action. At the beginning of each generation each agent i receives two

signals 0 < pi < 1 and 0 < q < 1 with the same interpretation as in the basic model: pi is

the independent success probability of following agent's judgment, and q is the positively

correlated success probability of all agents that follow the accepted guidelines.

In each generation, each agent chooses whether to follow his own judgment or the accepted

guidelines, and this leads either to a success or to a failure in terms of �tness (expected

number of o�spring). The size of each type in the next generation is determined by

replicator dynamics (the new size of each type in the next generation is their size in the

previous generation multiplied by their average �tness) with a small mutation rate (each

individual in the new generation has a small probability to be randomly assigned into a

new type.).

We are interested in the following question: which type will survive in the long run? A

simple adaptation of existing results in the evolutionary literature shows that with high

probability in the long run a unique type prevails over the entire population: the type that

maximizes the logarithm of the average �tness in each generation. 7 That is, the limiting

behavior that is induced by the evolutionary dynamics is the bias pro�le that is directly

chosen by a risk-averse principal with a logarithmic utility function.

The fact that the �principal's� utility is logarithmic, 8 allows us to characterize additional

comparative statics on the optimal level of overcon�dence. First, we show (Theorem 7)

that the optimal level of overcon�dence is higher if there is a larger di�erence between the

�tness in case of a success and the �tness in case of a failure. This result is in accordance

with the experimental �nding of Sieber (1974) which suggests that people tend to be

more overcon�dent with respect to more important decisions (experimental �ndings and

stylized facts are discussed in Subsection 2.2).

7 In Section 4 we formally adapt Robson (1996)'s result to our setup. See also related results in
Lewontin and Cohen (1969), McNamara (1995), and the �nancial paper of Samuelson (1971).
8 It is enough to assume that the principal has a constant relative risk aversion utility.
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Theorem 7 also shows that the optimal level of overcon�dence is higher if the success prob-

abilities tend to be lower (�rst-order stochastic dominance). This result is in accordance

with a stylized fact about overcon�dence - the hard-easy e�ect (Lichtenstein, Fischho�,

and Phillips, 1982). According to this e�ect, the more di�cult the task, the greater the

observed overcon�dence.

Finally, Theorem 7 shows that when the potential gain is large enough and ρ and pi are

close enough to 1, then the perceived error probability of personal judgment (1− g∗ (pi))

is much smaller then the true error probability (1−pi). This �ts the experimental stylized

fact of the false certainty e�ect (Fischho�, Slovic, and Lichtenstein, 1977): people are

often wrong when they are certain about their private information.

Our model implies that all evolutionary histories induce overcon�dence, but that there

is a large variety in the level of induced overcon�dence given di�erent histories. This

implication is in accordance with the experimental �ndings about levels of overcon�dence

in di�erent cultures, as surveyed in Yates et al. (2002).

1.3 Related Literature

Most related work is the literature studying evolutionary foundations for overcon�dence.

We discuss this literature in the following paragraphs. In Section 2 we discuss other related

papers.

Waldman (1994) showed that �second-best� adaptations can be evolutionarily stable with

sexual inheritance, even though they need not be the optimal solution to the evolutionary

problem. In particular, He demonstrated that the combination of overcon�dence (over-

estimating self-ability) with excess disutility from e�ort is a �second-best� adaptation.

Similarly, Blume and Easley (1992) and Wang (2001) presented models in which the

combination of overcon�dence and excess risk aversion (or too high discount factor) are

�second-best� adaptations. Contrary to that, in our model overcon�dence induces the

optimal outcome, and does not compensate for other errors.

In Bernardo and Welch (2001)'s model a small proportion of individuals are overcon�dent,

while the rest of the population are calibrated. Being overcon�dent reduces the �tness of

the individual, but it substantially improves the �tness of his group, by inducing positive

information externality in a cascade interaction. Under the assumption that the evolu-

tionary dynamics combines both group and individual selection, the evolutionarily stable

pro�le includes a minority of overcon�dent individuals. Contrary to that, our model only

relies on individual selection, and it does does not include information externalities.

Recently, Louge (2010) independently presented a closely-related evolutionary model, and

he showed that the evolutionary stable behavior has two overcon�dence-related properties:

(1) a bias towards actions that defy �common wisdom�, and (2) more extreme public

information is required before disregarding private information. Louge applied this rule
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to cascade interactions and demonstrated that herds eventually arise, but the probability

of herding on the wrong action is lower than with a rational rule. Our model di�ers

from Louge (2010) in a few aspects: (1) we also deal with strategic (non-evolutionary)

interactions of economic interest; (2) our model explains various stylized facts about

overcon�dence; and (3) we allow for partial correlation between agents who follow the

public signal, and we allow the private signals to be costly (see Subsection 6.3).

1.4 Structure

Section 3 presents the model and the results (all proofs are given in the appendix). The

main evolutionary application of our model is presented in Section 4. Section 5 presents

a few more applications of our model, including: (1) the interaction between investors

and entrepreneurs, and (2) an example that shows how overcon�dence can increase social

welfare. Section 6 presents a few variants and extensions of the basic model, and discusses

its key assumptions: (1) we relax the assumption that the number of agents is exogenously

given, and we show that the principal always prefers to multiply the number of agents;

(2) we allow agents to have bias also with respect to the success probability of following

the accepted guidelines, and we show that our results essentially remain the same; (3) we

extend our results to a setup where private information is costly, and each agent has to

privately invest e�ort in improving the accuracy of his personal judgment; (4) we show

that our results also hold when agents are informed experts who recommend the principal

which action to choose; and (5) we show that our results hold also when the agents are

more risk averse than the principal; and (6) we show that our model can be reformulated

to capture overcon�dence as underestimating the variance of a continuous noisy signal (as

often modeled in �nance papers).

2 Related Literature

The term �overcon�dence� has been widely used in psychology since the 1960s, and in the

economics and �nance literature since the 1990s. Google Scholar reports on 876 papers

that include this term in their titles and about 40,000 papers that include it anywhere

in the text (September 2010). In this section we brie�y discuss a small portion of this

literature. We �rst describe the di�erent de�nitions of overcon�dence and the main ex-

perimental and empirical �ndings about it (Subsection 2.1). Next, we describe a few

experimentally observed stylized facts about overcon�dence (Subsection 2.2). Finally, we

describe related economic and �nancial models which deal with overcon�dence (Subsec-

tion 2.3).

The interested reader is referred to the following surveys on overcon�dence: the classical

survey of Lichtenstein, Fischho� and Phillips (1982), which summarizes overcon�dence

literature in the 1960s and 1970s; the survey of Gri�n and Brenner (2004) that summarizes

the theoretical controversies about overcon�dence, and the recent survey of Skala (2008).
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2.1 De�nitions of Overcon�dence and Experimental Literature

The term overcon�dence has three di�erent de�nitions in the literature. The most pop-

ular de�nition (and the one used in this paper) describes overcon�dence as a systematic

calibration bias, for which the assigned probability that the answers given are correct

exceeds the true accuracy (see e.g., Oskamp, 1965; Lichtenstein, Fischho� and Phillips,

1982; Brenner et al., 1996; Dawes and Mulford, 1996). Overcon�dence usually emerges

when the uncertainty regarding the true answer is generated by the state of knowledge

of the agent - internal uncertainty (Howell and Burnett, 1978; Kahneman and Tversky,

1982). For example, the question: �Is Mont Blanc the tallest mountain in Europe?�. In

such cases, the agent has partial cues and private noisy signals about the correct answer,

and using his personal judgment and intuition, he tries to evaluates the accuracy of his

preferred answer. As implied by the experimental evidence, in such cases agents tend to

overestimate their accuracy. When the source of uncertainty is external to the agent (e.g.,

tossing a coin or the outcome of a future football game) the tendency for overcon�dence

is substantially weaker (see, e.g., Budescu, and Du, 2007).

The second de�nition of overcon�dence deals with excessive certainty regarding the ac-

curacy of one's beliefs about an uncertain continuous quantity. Researchers examining

this e�ect typically ask their participants questions with numerical answers (e.g., �How

long is the Nile River?�), and then have participants estimate (usually 90%) con�dence

intervals. Overcon�dence is measured by the rate of surprises, i.e., the percentage of true

values falling outside the con�dence intervals. The typical �nding (see Lichtenstein, Fis-

chho� and Phillips, 1982; Russo and Schoemaker, 1992) is that people tend to present

substantial overcon�dence: 90% con�dence intervals contain on average only 50% of the

true values. 9

The third de�nition of overcon�dence describes the phenomenon in which people believe

themselves to be better than average. A review of this literature can be found in Alicke and

Govorun (2005). A typical �nding in this literature is the oft-quoted �nding of Svenson

(1981) that 77% of Swedish subjects felt they were safer drivers than the median. This

bias is closely related to overly positive self-evaluations and to over-optimism about the

future. Taylor and Brown (1988) report such phenomena to be positively correlated with

di�erent criteria of mental health. Recently, Moore (2007) and Benoit and Dubra (2011)

suggest that most of the experimental �ndings of the better than average phenomenon

can also be explained by a fully-rational Bayesian model.

Training improves overcon�dence but usually only to a limited extent. Russo and Schoe-

maker (1992) show that asking people job relevant questions reduced overcon�dence from

50% to 30% (for 90% con�dence interval). Weather forecasters, who typically have several

years of experience in assessing probabilities and receiving an immediate feedback, are

9 People also present overcon�dence for 50% con�dence intervals and for free-choice intervals,
but this overcon�dence is substantially smaller (Soll and Klayman, 2004; Teigen and Jorgensen,
2005).
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quite well calibrated (Lichtenstein, Fischho� and Phillips, 1982; and also expert bridge

players - see Keren, 1987). Other experts such as physicians and professional traders,

present substantial con�dence biases (see, e.g., Koehler, Brenner and Gri�n, 2002; Glaser,

Langer, and Weber, 2010).

Empirical data suggests that people present overcon�dence not only in the lab but also

in real-life situations. Russo and Schoemaker (1992) report the following example: �newly

hired geologists were wrong much more than their levels of con�dence implied. For in-

stance, they would estimate a 40% chance of �nding oil, but when ten such wells were

actually drilled, only one or two would produce.� Berber and Odean (2001) show that

men, which are generally believed to be more overcon�dent than women in areas such as

�nance, trade more excessively than women, and this excess trade substantially reduces

net returns. Henrion and Fischho� (2002) show that scientists systematically underes-

timate uncertainty in their own measurements of physical constants. Chuang and Lee

(2006) empirically evaluate data on prices of �rms in NYSE and AMEX during 1963-2001

and �nd evidence that investors overestimate accuracy of private information. Similarly,

Friesen and Weller (2006) present empirical �ndings that analysts tend to be overcon-

�dent. Recently, Grubb (2009) analyzes consumer tari� choices and usage decisions of

cellular services, and show that the consumers seem to be overcon�dent in their ability

to estimate their future demand for cellular services. Finally, Ben-David, Graham and

Harvey (2010) demonstrated that �nancial managers overestimate their ability to predict

stock market returns.

2.2 Stylized Facts about Overcon�dence

The observed overcon�dence in experiments usually satis�es a few recurrent properties

(or e�ects). In this subsection we describe the main observed properties.

One of the main �ndings in the experimental literature is that the degree of overcon�-

dence depends on the di�culty of the task - the hard-easy e�ect. The more di�cult the

task, the greater the observed overcon�dence (Lichtenstein, Fischho�, and Phillips, 1982;

Moore and Healy, 2008). A few papers suggest that the hard-easy e�ect, and apparent

overcon�dence in general may be the result of choosing unrepresentative hard questions

in experiments (Gigerenzer, Ho�rage, and Kleinbolting, 1991; Juslin, 1994), or regression

toward the mean and boundary e�ects in the presence of unbiased judgmental random

errors (Erev, Wallsten and Budescu, 1994; Soll, 1996; Juslin, Winman and Olsson, 2000).

Recent experiments demonstrate that people still present overcon�dence (and the hard-

easy e�ect), though to a less extent, when representative questions are used (which are

randomly sampled from a natural set) and when unbiased judgmental random errors are

taken into account in the analysis (see, e.g., Budescu, Wallsten, and Au, 1997; Klayman

et al., 1999; Glaser, Langer and Weber, 2010).

Another �nding is the false certainty e�ect : people are often wrong when they are cer-

tain in their private information. In the experiment of Fischho�, Slovic, and Lichtenstein
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(1977) participants severely underestimated the probability they erred in seemingly easy

questions. Speci�cally, the error probability of 10% of the questions was estimated by the

subjects to be extremely low (less than 1:1,000), while the true error probability in these

questions was approximately 10%. The participants had su�cient faith in their con�dence

judgments to be willing to stake money on their validity.

Gri�n and Tversky (1992) suggest that many observed patterns of overcon�dence can be

explained by the strength-weight e�ect : �people focus on the strength or extremeness of the

available evidence with insu�cient regard for its weight or credence. This mode of judg-

ment yields overcon�dence when strength is high and weight is low, and undercon�dence

when strength is low and weight is high.� (Gri�n and Tversky, 1992, p. 411).

Some experiments (e.g., Gigerenzer, Ho�rage and Kleinbolting, 1991; Gri�n and Tver-

sky, 1992) compare people's con�dence in giving correct answers by two methods: (1)

each answer is evaluated separately (case-by-case evaluations), and (2) after answering

several questions, participants are asked to evaluate the frequency of correct answers (set-

based evaluations). These papers show that people exhibit less overcon�dence (or even

undercon�dence) when evaluating set-based frequencies.

Finally, Sieber (1974) suggests that when the decision is more important, people tend to be

more overcon�dent. In her experiment, two groups of students were compared. Originally,

both groups were told that they were taking their mid-term examination. However, when

they began the test, one of the groups (�group A�) was told that it is not mid-term, but

would be used to coach them to mid-term. The two groups had a similar number of correct

answers, but group A presented less overcon�dence.

2.3 Financial and Economic Models

In this subsection we brie�y survey some related �nancial and economic models that

deal with overcon�dence. Some papers study motivational reasons for overcon�dence.

Bénabou and Tirole (2002) present a multiple-self model, in which a rational agent tries

to deceive his future self to be overcon�dent (overestimate his ability), in order to motivate

him to undertake more ambitious goals and persist in the face of adversity. Compte and

Postlewaite (2004) present a model in which positive emotions can improve performance,

and individuals use biases in information processing that enhance their welfare. Köszegi

(2006) and Weinberg (2009) model a decision maker who, in addition to having preferences

over material outcomes, also derives �ego� utility from positive self-image. In such a setup,

moderate overcon�dence raises the expected wealth.

Other papers study the evolutionary process that is generated by wealth that �ows be-

tween investors in an asset market, and investigate the conditions in which overcon�dence

can survive or even dominate the market. Blume and Easley (1992) and Wang (2001)

present models in which investors have a high level of risk aversion (or high discount

factor), and overcon�dent investors can dominate the market due to trading more aggres-
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sively in the right way. Gervais and Odean (2001) show how the tendency for a trader

to take too much credit for successes leads relatively-inexperienced successful traders to

become overcon�dent. In markets where inexperienced traders continuously enter and

old traders die, there will always be overcon�dent traders, and these traders will tend

to control more wealth than their less con�dent peers. Rabin and Schrag (1999) show

how con�rmatory bias (the tendency to interpret ambiguous evidence as con�rming the

current hypothesis) induces overcon�dence.

Van den Steen (2004) models �rational overcon�dence�. Agents have an unbiased random

error when evaluating their success probability for each possible action. When such agents

face a choice from a set of alternatives, they are more likely to select actions for which they

overestimate the probability of success. Thus they will tend to be overcon�dent about the

likelihood of success of the actions they undertake.

A few papers study the in�uence of overcon�dent agents on di�erent markets. Odean

(1998) shows that overcon�dence among investors in �nancial markets increases expected

trading volume, increases market depth, and decreases the expected utility of overcon�-

dent trader. Sandroni and Squintani (2007) show the the presence of some overcon�dent

agents qualitatively change the equilibrium behavior and the policy implications in insur-

ance markets with asymmetric information.

3 Model and Results

3.1 Model

3.1.1 Parameters of the Model

Our model includes seven parameters: (I, ρ, fq, fp, L,H, h) where:

• I = {1, ..., n} is a set of agents. A typical agent is denoted by i or j.

Each agent faces a choice between two actions: (1) aguidelines, which is interpreted as

following the accepted guidelines, or doing what a typical agent would do in such a

situation; and (2) aoriginal, which is interpreted as following the personal judgment and

intuition of the agent, and making an original choice. Each agent may either succeed or

fail, depending on his chosen action and on the state of nature.

• The number 0 < ρ < 1 is the correlation coe�cient between the success of two agents

who follow the accepted guidelines. If at least one of the agents followed his own judg-

ment, then their successes are independent and uncorrelated.

• Distribution fq is a continuous pdf (probability density function) with full support:

∀0 < q < 1, fq (q) > 0. 10 The success probability of all agents who follow the accepted

10 The full support assumption is given to simplify the presentation of the results. The results
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guidelines is the random variable q, which is distributed according to fq.

• Distribution fp is a continuous pdf with full support. The success probability of each

agent i who follows his own judgment is the random variable pi, which is distributed

according to fp.

• L,H ∈ R (H > L) are the payo�s an agent may obtain: success yields high payo� (H)

and failure yields low payo� (L). In the strategic (non-evolutionary) interactions (such

as, Example 1) one can assume that H = 1 and L = 0. In the evolutionary application

described in the next section, H (L) is the �tness of a successful (unsuccessful) agent.

• h : [L,H]→ R is a strictly concave increasing function that satis�es decreasing absolute

risk aversion (DARA). That is: (1) h′ > 0, (2) h′′ < 0, and (3) Arrow-Pratt coe�cient of

absolute risk aversion rA (x) = −h′′(x)
h′(x)

is decreasing in x. 11 The function h is interpreted

as the utility of the risk-averse principal (described below).

3.1.2 State of Nature

The unknown state of nature determines the value of the tuple of random variables(
q, (pi)i∈I , ξq, (ξi,p, ξi,q)i∈I

)
∈
(
[0, 1]× [0, 1]I × {0, 1} × ({0, 1} , {0, 1}) I

)
:

• As described earlier, q ∼ fq and each pi ∼ fp. The variables
(
q, (pi)i∈N

)
are indepen-

dent.

• Variable ξq is equal to 1 with probability q (and 0 otherwise). Whenξq = 1 (ξq = 0) the

accepted guidelines are relevant and updated (irreverent or obsolete).

• If ξq = 1 (ξq = 0 ) then each ξi,q is equal to 1 with high probability:
√
ρ+

(
1−√ρ

)
· q

(with low probability:
(
1−√ρ

)
· q) and equal to 0 otherwise. Following the accepted

guidelines would yield agent i high (low) payo� whenξi ,q = 1 (ξi ,q = 0).

Observe that without conditioning on the value of ξq the success probability of following

the accepted guidelines is q. That is, for each q ∈ [0, 1]: m

P (ξi,q = 1|q = q) = (1− q) · (1−√ρ) · q + q · (√ρ+ (1−√ρ) · q) = q.

Also observe that conditionally on q, the correlation coe�cient between the successes of

each two agents i, j who follow the public signal is ρ. That is, for each q ∈ [0, 1]:

are qualitatively una�ected by relaxing this assumption.
11 The DARA assumption is not required for Theorem 3 (parts 1,2 and 4) and for Theorem 4. It
is required for part 3 of Theorem 3 and for the comparative statics (Theorem 6).
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ρ (ξi,q, ξj,q|q = q) =
E (ξi,q · ξj,q|q = q)− E (ξi,q|q = q) · E (ξj,q|q = q)√

var (ξq,i|q = q) · var (ξq,i|q = q)

=
q
(√

ρ+
(
1−√ρ

)
· q
)2

+ (1− q)
((

1−√ρ
)
· q
)2
− q2√

q (1− q) q (1− q)

=
qρ+

((
1−√ρ

)
· q
)2

+ 2q2
√
ρ
(
1−√ρ

)
− q2

q (1− q)

= =

(
1−√ρ

)
q2
(
1 +
√
ρ
)

+ qρ− q2

q (1− q)
=
−ρq2 + qρ

q (1− q)
= ρ.

• For each i ∈ I, ξi,p is equal to 1 with probability pi (and 0 otherwise). When ξi ,p = 1

(ξi,p = 0) the personal judgment of agent i is correct (incorrect), and following it would

yield agent i high (low) payo�.

Variables (ξi,q, ξi,p)i∈N are independent conditionally on (q, ξq), and variables
(
ξq, (ξi,p)i∈N

)
are independent.

3.1.3 Strategic Interaction

The strategic interaction between the principal and the agents includes two stages. At

stage 1 the principal (who has no information on the state of nature) chooses a pro�le

of bias functions (gi)i∈I . Each function gi : [0, 1] → [0, 1] determines the bias of agent i

when estimating the accuracy of his own judgment. That is, if the true success probability

of following personal judgment is pi, then agent i mistakenly believes it to be gi (pi).
12

The choice of the bias pro�le (gi)i∈I is interpreted as follows: there is an in�nite pool of

potential agents with all possible bias functions. The principal can observe these biases,

and choose |I| agents with any given pro�le of bias functions. 13 The principal is fully

rational and knows all aspects of the model. Each agent has bounded rationality, and he

is not aware that he has a con�dence bias. 14

Remark 2 The assumption that the principal can choose the bias pro�le �ts well the

evolutionary application (described in the next section). The assumption is very simplistic

when considering strategic interactions (such as, Example 1). However, the intuition and

main implications of our model can also be applied in a more complicated setup where the

principal cannot choose the optimal bias pro�le, but can only approximate it by choosing

a bias pro�le from a �nite set of feasible pro�les (e.g., the principal meets several potential

agents, and observes a noisy signal about their con�dence biases).

12 See Subsection 6.2 for discussing and relaxing the assumption that agents are biased only with
respect to personal judgment.
13 The number of agents the principal hires is exogenously given in the basic model. In Subsection
6.1 we extend the model to allow the principal to choose the number of hired agents.
14 Such an assumption is in accordance with the �ndings of Friesen and Weller (2006) which
suggest that: (1) analysts are overcon�dent; (2) an analyst is not aware of his own bias; and (3)
an analyst is aware that other analysts tend to be overcon�dent.
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After stage 1, all agents are publicly informed about the value of q (the success probability

of following the accepted guidelines), and each agent i with bias function gi, is privately

misinformed that the value of pi is gi (pi).

At stage 2 each agent i chooses an action ai ∈ {aguidelines, aoriginal}, where aguidelines
(aoriignal) is interpreted as following the accepted guidelines (personal judgment). The

payo� of agent i is as follows:

ui (aguidelines) =

H if ξi,q = 1

L if ξi,q = 0
, and ui (aoriginal) =

H if ξi,p = 1

L if ξi,p = 0
,

Our assumption that fp and fq are continuous guarantee that the inequality q 6= g (pi)

holds with probability 1. Thus, each bias pro�le (gi)i∈I induces a strictly dominating

strategy pro�le for each agent i: following the accepted guidelines if q > gi (pi), and

following the personal judgment if q < gi (pi).
15 Let ui (gi) = ui (gi,pi,q,ξq , ξi,p, ξi,q) be

the random payo� of agent i who uses this strictly dominating strategy.

The payo� of the principal, u
(
(gi)i∈I

)
, is a strictly concave increasing vN-M (von-Neumann

and Morgenstern, 1944) function of the average payo� of the agents (or, equivalently, of

the number of successful agents):

u
(
(gi)i∈I

)
= E(pi )i∈I ,q,(ξi,p,ξi,q)

i∈I

(
h

(
1

n

∑
i∈I

ui (gi)

))
.

That is, the principal wishes to maximize the total number of successes, and each addi-

tional success has a smaller marginal payo�.

3.1.4 Auxiliary De�nitions

Bias pro�le (g∗i )i∈I is ε-optimal (for ε > 0) if it yields the best payo� up to ε: u
(
(g∗i )i∈I

)
>

u
(
(gi)i∈I

)
− ε for every pro�le (gi)i∈I . Let the �rst-best payo� of the game, be the payo�

that can be achieved by the principal when he obtains all the private signals (pi) and has

full control over the actions of the agents. A bias pro�le ε-induces the �rst-best payo� if

its payo� is as good as the �rst-best payo� up to ε.

Bias pro�le (gi)i∈I is homogeneous (or symmetric) if all agents have the same bias function:

∀i, j ∈ I, gi = gj. With some abuse of notations, we identify a function g : [0, 1]→ [0, 1]

with the homogeneous pro�le (g)i∈I . We say that g is an optimal bias function (for a

large number of agents) if, for every ε > 0, there is large enough n0 such that, for any

game with at least n0 agents, g is an ε-optimal pro�le. Similarly, we say that g induces

the �rst-best payo� (for a large number of agents) if for every ε > 0, there is large enough

n0 such that, for any game with at least n0 agents, g ε-induces the �rst-best payo�.

15 Playing arbitrary if q = g (pi) (a 0-probability event).
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Bias pro�le (gi)i∈I is heterogeneous if there is a set Q ⊆ [0, 1] with a positive Lebesgue

measure such that, for each q ∈ Q, mini (gi)
−1 (q) < maxi (gi)

−1 (q). With some abuse

of notation, we identify the bias pro�le (gi)i∈I with the following bias pro�le in a game

with k · |I| agents: agents {1, ..., k} have bias function g1, agents {k + 1, ..., 2k} have bias
function g2, ..., and agents {k · (|I| − 1) + 1, ..., k |I|} have bias function g|I|.

3.2 Main Results

The following theorem characterizes the optimal bias function (all proofs are given in

the appendix). It shows that there exists a unique optimal bias function g∗ that reveals

overcon�dence: g∗ (p) > p for every 0 < p < 1. Moreover, this overcon�dence bias induces

the principal's �rst-best payo�.

Theorem 3 There exists a unique optimal bias function g∗, which induces the �rst-best

payo�, with the following properties:

(1) Overcon�dence: g∗ (p) > p for every 0 < p < 1.

(a) g∗ is continuous.

(b) g∗ is increasing: dg
∗(p)
dp

> 0 for every 0 < p < 1, g∗ (0) = 0, and g∗ (1) = 1.

(c) g∗ does not depend on the distribution fq.

The intuition for Theorem 3 is as follows. There is a con�ict of interest between calibrated

agents (gi (pi) = pi) who maximize their probability of success, and the principal who

wishes some agents with pi < q to follow personal judgment in order to achieve better risk

diversi�cation and to reduce the variance of the fraction of successes. The optimal action of

agent i in the principal's �rst-best pro�le generally depends on the entire realized pro�le

of signals: (p1, ..,pn,q). However, when there are many agents, the realized empirical

distribution of (p1, ..,pn) is very close to its prior distribution fp. Thus, approximately,

the �rst-best choice of agent i only depends on the realizations of pi and q. Speci�cally, for

every q, there is some threshold level g−1 (q) < q such that it is approximately optimal for

the principal if each agent i follows his personal judgment if and only if pi > g−1 (q). These

thresholds construct the optimal bias function g (p) . This optimal level of overcon�dence

aligns the preferences of the principal and the agents. That is, the agents behave as if

they have the payo� function of the principal.

Part 4 of Theorem 3 holds due to our simplifying assumption that all agents have the

same success probability when following the accepted guidelines. If agents were facing

di�erent values of q when following the accepted guidelines, then the optimal level of

overcon�dence would also depend on fq.

Figure 1 demonstrates what a typical optimal bias function g∗ looks like. The values

of the parameters are as follows: ρ = 1 (perfect correlation between di�erent agents who

follow the accepted guidelines), uniform distribution for the accuracy of the private signal,

payo�s are H = 3 and L = 1, and the principal's utility is logarithmic (h (x) = ln (x)).
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Figure 1. An Example for an Optimal Con�dence-Bias Function
Parameters: ρ = 1, H = 3, L = 1, h (x) = ln (x), fp ∼ uniform ((0, 1))

Theorem 3 shows uniqueness in the set of homogeneous bias pro�les. That is, it shows

that any other homogeneous bias pro�le induces a worse outcome than g∗, given that the

number of agents is su�ciently large. Theorem 4 extends the uniqueness also to the set

of heterogeneous pro�les. It shows that every heterogeneous pro�le can be replaced with

an homogeneous pro�le that induces a strictly better outcome, given that the number of

agents is su�ciently large.

Theorem 4 Let (gi)i∈I be an heterogeneous pro�le. Then there is k0 ∈ N such that there

is an homogeneous pro�le that induces a strictly better payo� than (gi)i∈I in the game

with k · |I| agents for every k ≥ k0.

The intuition for Theorem 4 is as follows. Let g be a bias function (an homogeneous

pro�le) that induces the same expected number of agents who follow the public signal as

the pro�le (gi)i∈I (for every 0 < q < 1). One can show that on average g induces a strictly

higher success probability for agents who follow their personal judgment. If the number of

agents is su�ciently large, then the law of large numbers implies that g induces a strictly

better payo�.

Example 5 shows that Theorems 3-4 are not valid when the number of agents is small. It

demonstrates: (1) an asymmetric bias pro�le that induces higher payo� than the best bias

function; and (2) a �rst-best outcome which is strictly better than what can be induced

by bias pro�les.

Example 5 There are two agents. The low payo� is zero (L = 0), the high payo� is one

(H = 1). There is perfect correlation between agents who follow the accepted guidelines

(ρ = 1). The distribution of each pi is uniform in (0, 0.5). The principal's utility h (x) is
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2x if x < 0.5 and 1 if x ≥ 0.5. 16 That is, the principal wishes that at least one agent

succeed, and he does not care whether the other agent also succeeds. Consider the case in

which q = 0.7. One can see that the best bias function is one such that (approximately)

g∗ (0.34) = 0.7, 17 and that it induces payo� 0.75. The principal can achieve a higher

payo� of 0.775 by using the following optimal heterogeneous bias pro�le: one agent always

follows the accepted guidelines while the other agent always follows his personal judgment.

The principal's �rst best payo� is even higher - 0.8, and it is achieved by observing both

p1 and p2, and choosing that the agent with the higher (lower) pi follows his personal

judgment (the accepted guidelines).

3.3 Characterization and Comparative Statics

Our third result (Theorem 6) presents interesting comparative statics. It shows that the

principal hires more overcon�dent agents if: (1) he becomes more risk-averse, or (2) the

correlation coe�cient ρ becomes larger.

Theorem 6 Let (I1, ρ1, fq,1, fp,1, L1, H1, h1) and (I2, ρ2, fq,2, fp,2, L2, H2, h2) be two sets

of parameters of our model, and let g∗1 (g∗2) be the unique optimal bias function given the

�rst (second) set of parameters. Then g∗1 presents more overcon�dence (g∗1 (p) > g∗2 (p) for

every 0 < p < 1) in each of the following cases:

(1) Utility h1 is more risk-averse than h2 and all other parameters are the same. That

is, h1 = ψ ◦ h2 where ψ is concave and increasing.

(2) The �rst correlation coe�cient is larger and all other parameters are the same: ρ1 >

ρ2.

The intuition of Theorem 6 is as follows. If the principal becomes more risk-averse, then he

gives more importance to reducing the variance of the number of successes. This deepens

the con�ict of interest with calibrated agents, and more induced overcon�dence is re-

quired to align the preferences of the agents and the principal. Similarly, if the correlation

coe�cient becomes larger, this enlarges the aggregate risk that is induced by following

the accepted guidelines, and it deepens the con�ict of interest between the principal and

calibrated agents.

Figure 2 demonstrates part 1 of Theorem 6. It assumes that the principal's utility has

constant relative risk aversion (CRRA, see next subsection) with parameter θ, and it shows

the optimal overcon�dence bias (g∗ (p) − p) for di�erent levels of relative risk aversion:

θ = 2, θ = 1 (i.e., h (x) = ln (x)), and θ = 0.5. The values of the other parameters in the

�gure are: H = 2, and L = 1, and fp is uniform).

16 To simplify the example, we use a weakly concave and increasing function h and a distribution
fp without full support. The example can be adapted such that h would be strictly concave and
increasing and fp would have full support.
17 (g∗)−1 (0.7) = 0.34 maximizes the expression: F 2 (p0) · 0.7 + 2 · (1− F (p0)) · F (p0) ·
(0.7 + 0.3 ·E (p|p > p0)) + (1− F (p0))

2
(

1− (1−E (p|p > p0))
2
)
.
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Figure 2. Overcon�dence (g∗ (p) − p) for di�erent risk aversion levels
(H = 2, L = 1, fp ∼ Uni (0, 1))

4 Evolutionary Application

In this section we present the main application of our model, and explain why overcon�-

dence is a unique evolutionary stable behavior.

4.1 Model

Consider a large population of agents with several genetic types: (T1, ..., TK). Each type

k induces a (possibly random) bias function gk for its members. In each generation, each

agent faces an important decision that in�uences his �tness. For example, choice of oc-

cupation or living area, how to provide food for the family, or how to raise and educate

his children. When making a decision the agent may either follow accepted guidelines (do

what most people think would be best in his situation) or follow his own judgment and

take an original action. At the beginning of each generation each agent i receives two sig-

nals 0 < pi < 1 and 0 < q < 1. These signals have the same interpretation as in the basic

model: pi is the independent success probability of following personal judgment, and q is

the positively correlated success probability of agents who follow the accepted guidelines.

In each generation, each agent chooses whether to follow his own judgment or follow

the accepted guidelines, and this leads either to success or to failure in terms of �tness

(number of o�spring): success yields high �tness - H and failure yields low �tness - L.

The size of each type (the number of its members) in the next generation is determined

by replicator dynamics with a small positive mutation rate. That is, basically (without

regarding the mutation rate) the new size of each type in the next generation is their size

in the previous generation multiplied by their average �tness, and their new proportion
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in the population is their new size divided by the new total population size. In addition,

each individual in the next generation has a small chance to be randomly assigned into a

new type.

A well known argument in evolutionary literature (see, Lewontin and Cohen, 1969; McNa-

mara, 1995; Robson, 1996; and the �nance-related paper of Samuelson, 1971) shows that

with high probability in the long run a unique type prevails over the entire population:

the type that maximizes the expectation of the logarithm of the average �tness in each

generation. 18

Formally (adapting the notations of Robson, 1996 to our setup), let ξt = 1 (ξt = 0) be

the event that the accepted guidelines are correct (incorrect) in generation t (denoted by

ξq in the previous section). Recall that P (ξt = 1) = q, and assume that ξt-s in di�erent

generations are independent. Let ui,k,t be the �tness of agent i of type k in generation t,

and let mk (ξt) = E (ui,k,t|ξt) be the expected number of o�spring produced by an agent

of type k conditional on ξt. Robson (1996, Theorem 2-iii) shows that if mutation rates are

small, a long time elapsed, and the population is found to have avoided extinction, then

the entire population is prevailed by the type that maximizes:

E (ln (mk)) = q · ln (mk (ξt = 1)) + (1− q) · ln (mk (ξt = 0)) .

Observe that due to the law of large numbers, if the population of type k is large enough,

then conditional on the value of ξt, the realized average �tness of the members of type k

in generation t is very close to mk (ξt): mk (ξt) ≈ 1
|Tk|

∑
i∈Tk ui,k,t. Thus, Robson (1996)'s

result implies that in the long run nature selects the type that maximizes the expectation

of the logarithm of the average �tness in each generation. Because of this, the long run

limiting behavior that is the result of the evolutionary dynamics can be described as

the bias pro�le that is directly chosen by a risk-averse principal with a logarithmic utility

function. 19 Thus, in the long run the homogeneous bias pro�le g∗ is a unique evolutionary

stable behavior, and all of the results of Section 3 hold in this setup as well.

In what follows we sketch out the intuition behind this result. Let nk be the initial number

of members of type k, and let Xt,k = 1
|Tk|

∑
i∈Tk ui,k,t be the average �tness of type k in

generation t. The size of each type Tk after M generations is nk ·X1,k · ... ·XM,k, which is

equal to:

nk ·X1,k · ... · ·XM,k = nk · elog(X1,k·...··XM,k) = nk · elog(X1,k)+...+log(XM,k).

Assume that nk is large enough and that E (log (Xt,k)) > 0, then each Xt,k is approxi-

18 See also Curry (2001) who show that this is equivalent to maximizing the expected relative
number of o�spring.
19 See Rayo and Becker (2007) for a discussion why in cases where local and global maxima
coincide (as in our setup), one can replace the study of the evolutionary trial-and-error dynamics
with an optimization problem of a principal with an appropriate utility function.
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mately identically distributed. Assuming that M is large enough then the size of type Tk
afterM generations is approximately (using the law of large numbers): nk ·eM ·E(log(Xt,k)).

This depends only on the expectation of the logarithm of the average �tness in each

generation, and the type that maximizes this expression will expand exponentially faster

than any other type.

At �rst glance, it might be puzzling that our dynamics is entirely based on individual

selection, and yet natural selection does not choose agents who maximize their expected

number of children. This is because natural selection �cares� for the number of o�spring

in the long run. This is not the same as maximizing the �short-run� expected number of

children. A calibrated agent has an higher expected number of children than an agent with

bias g∗ but he also has a higher variance. Generations in which the realized average number

of children of calibrated agents is small, substantially reduce the number of o�spring in

the long run. Due to this, calibrated agents have less o�spring in the long run.

4.2 Characterization and Comparative Statics

In the evolutionary application of our model the utility of the �principal� is determined

endogenously to be a logarithmic utility function. The speci�c characteristics of this utility,

or more generally of the family of constant relative risk aversion (CRRA) utilities, allows

us to further characterize the optimal level of overcon�dence. Throughout this subsection

we assume that the utility of the principal satis�es CRRA. That is

h (x) =


x1−φ

1−φ if φ > 0, φ 6= 1,

ln (x) if φ = 1,

where the parameter φ > 0 speci�es the level of (relative) risk aversion.

Let D = H−L
L

be the (normalized) potential gain: the ratio between the extra payo� that

can be gained when succeeding (H−L) and the minimal guaranteed payo� (L). Theorem

7 shows that CRRA utility yields the following:

(1) The optimal level of overcon�dence depends on the payo�s L and H only through

its dependency on the potential gain.

(2) Larger potential gain induces more overcon�dence. This �ts the experimental �nding

of Sieber (1974), which was discussed in Subsection 2.2.

(3) If the success probability of following personal judgment become smaller (�rst-order

stochastic dominance), then it induces more overcon�dence. This �ts the experimen-

tally observed hard-easy e�ect (Lichtenstein, Fischho�, and Phillips, 1982): the more

di�cult the task, the greater the observed overcon�dence (as discussed in Subsection

2.2).

(4) When D is large enough and ρ and p are close enough to 1, then the perceived

error probability of personal judgment (1 − g∗ (p)) is much smaller then the true

error probability (1− p). This �ts the experimentally observed false certainty e�ect
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(Fischho�, Slovic, and Lichtenstein, 1977): people are often wrong when they are

certain in their private information (as discussed in Subsection 2.2).

Theorem 7 Assume that the principal has a CRRA utility function. Then:

(1) g∗ depends on the payo�s only through its dependency on the potential gain D.

(2) If D1 > D2 (and all other parameters are the same) then g∗1 presents more overcon-

�dence (g∗1 (p) > g∗2 (p) for every 0 < p < 1).

(3) If distribution fp,2 has �rst order stochastic dominance over fp,1 (and all other pa-

rameters are the same) then g∗1 presents more overcon�dence.

The intuition of the �rst result is that evaluations of alternatives by a principal with CRRA

utility are una�ected by scale, and due to this the optimal bias pro�le depends only on

the normalized potential gain. The intuition of the second result is that larger potential

gain, enlarges the aggregate risk of following the accepted guidelines. This deepens the

con�ict of interest between the principal and calibrated agents, and more overcon�dence is

required to compensate for it. The intuition of the third result is that the principal wishes

that agents with the highest success probabilities would follow their personal judgments.

When there is higher probability of receiving lower success probabilities, each accuracy

level pi is more likely to be one of the higher levels.

(1) The ratio between the perceived error probability and the true error probability of

personal judgment (1−g(p)
1−p ) converges to (1/ (D + 1))φ =

(
L
H

)φ
when both p and ρ

converge to 1.

The last result (false certainty e�ect) is illustrated in Figure 3. The �gure shows the

perceived error probability and the true error probability of personal judgment for perfect

correlation (ρ = 1) and large potential gain D = 30, and for three prior beta distributions

for the accuracy of the private signals: (1) uniform distribution (α = 1, β = 1, expectation

- 50%), (2) single-peaked distribution around 20% (α = 2, β = 5, expectation - 30%), and

(3) single-peaked symmetric distribution (α = 3, β = 3, expectation - 50%). The �gure

demonstrates the false certainty e�ect, especially for the two single-peaked distributions:

when the true error probability is 10% the perceived probability is less than 0.5% (1% for

the uniform distribution).

The assumptions that the potential gain is high and the correlation coe�cient is close to 1

may seem too extreme. However, one can extend our results into a setup where potential

gain D and correlation coe�cient ρ are random variables, and that their joint distribution

has some positive small weight on high values. Each type is assumed to induce a single

bias function g∗ (p) for all values of D and ρ because either: (1) it is too complicated to

induce numerous bias functions g∗ (p|D, ρ), or (2) individuals do not know the realization

of the potential gain and correlation coe�cient when they choose their actions. Observe

that for relatively low levels of potential gain D, values of ρ substantially smaller than

1 and low error probabilities (high p-s), the di�erence in the type's payo� from either

choosing personal judgment or accepted guidelines is small (both yield a high payo�).

However, when the potential gain D is high and the correlation coe�cient is near 1, the
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Figure 3. Perceived vs. True Error Probability (ρ = 1, D = 30)

chosen action has greater in�uence on the type's payo�. Thus, for low error probabilities,

the single optimal con�dence bias function g∗ (p) would be close to the value of g∗ (p|D,ρ)

of high realizations of D and ρ.

Yates et al. (2002) summarize results from several studies and report that di�erent cul-

tures (in particular, Asian and Western) present overcon�dence, but there is a substantial

di�erence in the average level of observed overcon�dence. This result can be explained by

our model, which predicts that all evolutionary histories would induce overcon�dence, but

that the optimal level of overcon�dence will substantially di�er among di�erent societies

with di�erent evolutionary histories. In particular, the optimal level of overcon�dence

depends on: (1) the typical success probability of following personal judgment, (2) the

correlation between two agents who follow the accepted guidelines, and (3) the typical

potential gain.

5 Applications and Examples

5.1 Strategic Interactions

In this subsection we elaborate and discuss a few examples for the applicability of our

model in strategic interactions of economic interest.

5.1.1 CEO and Analysts (Example 1 Revisited)

Recall that Example 1 demonstrates why a risk-averse CEO prefers to hire overcon�dent

analysts, who induce better risk diversi�cation. The CEO could also solve the con�ict of

interests with calibrated agents by using monetary incentives. However, implementation of

such incentives would require the agreement of the �rm's shareholders. If the shareholders

are risk-natural (for example, due to having a diversi�ed portfolio), they would not approve
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such a policy, as they only care for the expected number of successes. On the other hand,

the selection of overcon�dent analysts can be done by the CEO without formally informing

the shareholders. It is interesting to compare this result with the model of Gervais, Heaton

and Odean (2010), in which, given that the CEO is risk-averse, it is optimal for the risk-

neutral shareholders, if the CEO is overcon�dent, and overestimates his ability to reduce

risks. 20

With minor changes, Example 1 can also describe the following related strategic interac-

tions: (1) each agent is a local distributor and the principal is a global manufacturer, (2)

each agent is an editor (or a producer) of a publishing company (or a �lm studio), and (3)

each agent is a researcher in a research and development department of a �rm or a non-

pro�t organization. Observe that in the �rst case (manufacturer and local distributors),

competition with other manufacturers may restrict the plausible contracts between the

manufacturer and the distributors, and limit the ability of the principal to use monetary

incentives to align preferences with the agents.

5.1.2 Investor and Entrepreneurs

Our model can also describe an interesting aspect of the interaction between a risk-

averse angel investor (principal) and several entrepreneurs (agents). The entrepreneurs are

founders of startup companies who work in a similar area. When the investor interviews

the entrepreneurs (before choosing them), he obtains a signal on their con�dence-bias.

During the development process, each such entrepreneur may either choose a �common�

design or an �original� design for his developed product. The successes of di�erent en-

trepreneurs who chose �common� designs for their products are positively correlated. The

con�ict of interests between the risk-averse investor and the entrepreneurs can be resolved

either by choosing overcon�dent entrepreneurs or by using monetary incentives. However,

the latter method may be too expensive: if each entrepreneur holds a large share of his

company, then large monetary incentives are necessary to encourage the choice of �origi-

nal� designs with smaller success probability.

Our model presents a new explanation why entrepreneurs tend to have high levels of

overcon�dence (see experimental evidence for this in: Cooper, Woo, and Dunkelberg,

1988; and Busenitz and Barney, 1997). In addition, it has a unique prediction, which can

be tested in future empirical research: entrepreneurs in areas in which typical investors

are individuals and area-speci�c funds would be more overcon�dent, than entrepreneurs

in areas in which the typical investors are large multi-area funds or a government.

20Goel and Thakor (2008) also study how a risk-averse CEO's overcon�dence enhances �rm's
value.
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5.2 Overcon�dence and Social Welfare

Our model can also explain how overcon�dence can increase social welfare. Consider a

society, where each agent i may either follow accepted guidelines or personal judgment

when deciding how to work. This decision in�uences agent i's productivity xi, which may

be either high or low. The payo� of each agent is a function of his output xi and the

total output
∑
j xj: ui = h

(
xi,
∑
j xj

)
. Function h is assumed to be strictly increasing

and concave in both parameters. For example, this is the case if a �xed amount of each

agent's output is taxed and is being used to produce a public good. Alternatively, it might

be that the output of each agent has a direct positive externality on other agents.

Calibrated agents (without con�dence-bias) would follow the public signal too often, and

obtain an ine�cient outcome, in which the variance of the total productivity
∑
j xj is too

high. A utilitarian social planner would act as if it were a risk-averse principal in our model.

Such a planner would like to induce social norms in favor of moderate overcon�dence.

This may explain why casual observation suggests that there are social norms in favor

of moderate overcon�dence (e.g., �self trust is the �rst secret of success�, Ralph Waldo

Emerson, 1803-1882).

6 Variants and Extensions

6.1 Choosing the Number of Agents

In the basic model we assumed that the number of agents is large. In this subsection we

relax this assumption. Speci�cally, we allow the principal to choose the number of agents

he employs, and we show that it is optimal for the principal to hire a large number of

agents.

Proposition 8 shows that the principal strictly prefers to hire k · n agents than n agents.

Proposition 8 For each n ≥ 1 and k ≥ 2 the principal can induce a strictly better

outcome when the number of agents is k · n than when it is n.

The intuition of Proposition 8 is that having more agents enables the principal to achieve

better diversi�cation. Each bias pro�le (gi)i∈I with n agents can be replaced by a similar

pro�le with k · n agents, in which each bias function gi is induced by k agents. It can be

shown that the random number of successes in the game with k · n agents second-order

stochastically dominates the number of successes in the game with n agents, and thus it

is preferred by the principal.

The following example shows that increasing the number of agents (but not multiplying

it) may be bad for the principal.
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Example 9 (Example 5 revisited) Let L = 0, H = 1, ρ = 1, fp ∼ uniform (0, 0.5),

q = 0.7 and let the principal's utility h (x) be 2x if x < 0.5 and 1 if x ≥ 0.5. Recall that

when there are two agents the principal can achieve payo� 0.775 by using an asymmetric

bias pro�le: one agent always follows the accepted guidelines while the other agent always

follows his personal judgment. When there are three agents, the principal's best payo� is

only 0.75, and it is achieved by having two agents always follow the accepted guidelines,

and one agent always follows his personal judgment. The intuition why 3 agents are worse

than 2 agents is that, the de�nition of utility h implies that the principal mainly cares that

at least half of his agents succeed. It is easier to achieve this objective when there are only

2 agents (1 of them should succeed) rather then when there are 3 agents (and 2 of them

should succeed).

We can use Proposition 8 to demonstrate that our results do not depend on the assump-

tion that there is a single principal. Consider a setup where there are several risk-averse

principals and many agents, and that there is a small marginal cost for each additional

hired agent. Due to the risk aversion of the principals and Proposition 8, each principal

would choose to hire many agents, and all principals would prefer to hire overcon�dent

agents.

6.2 Bias With Respect to Following the Accepted Guidelines

In the basic model we assume that agents can only have con�dence bias with respect to

their personal judgment, but not with respect to the accepted guidelines. In this subsec-

tion, we observe that this assumption is without loss of generality.

Consider a more general model, where the bias of each agent i is described by two functions

(gi,1, gi,2) from [0, 1] to [0, 1], where gi,1 is the bias with respect to the personal judgment

(accuracy pi is perceived as gi,1 (pi)) and gi,2 is the bias with respect to following the

accepted guidelines (accuracy q is perceived by agent i as gi,2 (q)). Observe that the choice

of agent i between the two actions only depends on the composite function (gi,2)
−1 ◦ gi,1.

This is because agent i chooses to follow the accepted guidelines if gi,1 (pi) < gi,2 (q) ⇔
(gi,2)

−1 ◦ gi,1 (pi) < q. This implies that our results remain the same in this extension. In

particular, the optimal pro�le is such that each agent i has bias functions (gi,1, gi,2) that

satisfy (gi,2)
−1 ◦ gi,1 = g∗, where g∗ satis�es all the properties that were characterized in

Theorems 3-6.

Thus one can interpret g∗ as the excess bias in estimating the success probability of

personal judgment relative to the bias in evaluating the success probability of accepted

guidelines. Such an excess con�dence bias is related to experimental stylized facts on

overcon�dence (discussed in Section 2): (1) when following personal judgment most of the

uncertainty is internal, and this induces more overcon�dence; and (2) it seems plausible

to assume that the evaluation of the success probability of the accepted guidelines is

based on many �weak� pieces of information: successes and failures of these guidelines

in related decisions of di�erent agents in the past; experimental evidence (such as the
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strength-weight e�ect and set-based evaluations) suggests that such evaluations induce

less overcon�dence.

6.3 Costly Private Signals

The basic model assumes that private signals are costless. In this subsection we relax this

assumption and extend our results to a more general framework that allows private signals

to have cost. In the extended model, an independent random variable 0 ≤ ti ∼ ft ≤ 1 is

assigned to each agent i ∈ N . Variable ti is interpreted as the e�ectiveness of agent i in

improving the accuracy of his personal judgment.

After agents are publicly informed about the value of q (the accuracy of following the

accepted guidelines), each agent is privately informed of ti. Then, each agent privately

chooses an e�ort level 0 ≤ ei ≤ 1, and receives private signal pi = p (ei, ti) - the success

probability of following his own personal judgment, where p is a strictly increasing function

(in both parameters), and it is strictly concave in the e�ort level ei. The payo� of each

agent is either H (success) or L (failure) minus a cost of (H − L) · ei for investing e�ort

ei. The rest of the model is the same as the basic model.

Let pti ∈ [0, 1] be the unique number that maximizes p (ei, ti)− ei (uniqueness holds due
to concavity). The distribution of e�ectiveness levels ft induces a unique distribution of

maximizing accuracy levels fpt . The following proposition asserts that our results also

hold in this extended model, where fpt replaces fp.

Proposition 10 The extended model with costly signals admits a unique optimal bias

function g∗, which is the same as the optimal bias function g∗ of the basic model with

fp = fpt.

6.4 Agents as Experts

Consider a variant of the basic model in which at stage 2 each agent recommends an action

(follow accepted guidelines or personal judgment), and the principal chooses the pro�le

of actions (ai)i∈N based on these recommendations. That is, each agent i is an informed

expert, who advises the principal what to do in his area of expertise. Each expert's payo�

remains the same: high payo� if the recommended action is successful, and low payo�

otherwise.

If all agents are calibrated (g (p) = p), then too many of them would recommend the

principal to follow the accepted guidelines (all experts i with pi < q). The principal can

gain higher payo� relative to the basic model, by violating some of these recommendations.

However, his inability to separate agents with inaccurate private signals (pi is substantially

smaller than q) from agents with relative accurate private signals limits his payo�.
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Observe that this variant yields the same optimal bias function g∗ as the basic model. This

is because agents that follow g∗ induce the principal's �rst-best payo�. Such agents behave

as if they have the same utility as the principal including his interest in diversi�cation.

Thus, the principal will always choose to follow the recommendations of such g∗-biased

experts.

6.5 Risk-Averse Agents

In the basic model the utility of each agent is equal to

ui (aguidelines) =

H if ξi,q = 1,

L if ξi,q = 0,
and ui (aoriginal) =

H if ξi,p = 1,

L if ξi,p = 0,

and the utility of the principal is a concave function of the average utility of the agents.

Thus, in the basic model the principal is more risk-averse than the agents (for example,

when there is a single agent, the principal's utility is a concave function of the agent's

utility). This may seem implausible in some applications.

However, this assumption can be relaxed without changing the results as follows (using the

fact that each agent faces only two possible outcomes). We reinterpret ui as a monetary

payo�, and we allow the utility of agent i to be any monotone function of this monetary

payo�: hi (ui). Speci�cally, our results (Theorem 3-7) also hold if each agent has utility

function hi (x) that is more concave then the principal's utility h (x).

6.6 Modeling Overcon�dence as Underestimating Variance

We modeled overcon�dence as overestimating the accuracy of discrete private signals.

Another common way to model overcon�dence, especially in �nance models (e.g., Odean,

1998), is underestimating the variance of continuous private signals. In this subsection,

we brie�y demonstrate how our model can be reformulated to represent overcon�dence in

this way. For brevity, we only sketch the main details of a simple case that is analogous

to the perfect correlation case (ρ = 1).

Let the random variable 0 < σq ∼ fq be the variance of the public signal, and for each

i ∈ I let the random variable 0 < σpi ∼ fp be the variance of the private signal of

agent i (where fq and fp are continuous distributions, and the variables
(
σq, (σpi)i∈I

)
are

independent). All agents publicly receive σq. Let Rq ∼ norm (0, σq) and for each i ∈ I

let Rpi ∼ norm (0, σpi). At the �rst stage of the interaction the principal chooses a bias

pro�le for the agents: (gi)i∈I . Each function gi : R+ → R+ describes the bias function of

agent i relative to the private signal. That is, agent i is privately misinformed that the

value of σpi is gi (σpi). At the second stage of the interaction, each agent chooses one of

two actions: {aguidelines, aoriginal}. If agent i chooses aguidelines (aoriginal) then his payo� is
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−R2
q

(
−R2

pi

)
. The payo� of the principal is a concave increasing function of the average

payo� of the agents. Similar to Theorem 3, one can show that there is a unique �rst-best

homogeneous optimal bias pro�le which represents overcon�dence: g∗ (σpi) < σpi .

A Proofs

A.1 Preliminaries

The following lemma presents an equivalent formulation for the decreasing absolute risk

aversion property, which will be used in the proofs of Theorem 3 (part 3) and Theorem 6.

Lemma 11 Let h (y) be a strictly concave increasing function. Then h (y) satis�es

(strictly) decreasing absolute risk aversion (DARA) if and only if fa (y) = h′(y)
h′(y+a)

is a

strictly decreasing function of y for each a > 0.

PROOF. The lemma is proven as follows:

h (y) satis�es DARA ⇔ for every y, a > 0:

rA (y) > rA (y + a)⇔ −h
′′ (y)

h′ (y)
> −h

′′ (y + a)

h′ (y + a)

⇔ h′′ (y)

h′ (y)
<
h′′ (y + a)

h′ (y + a)
⇔ h′′ (y) · h′ (y + a)− h′′ (y + a) · h′ (y) < 0

⇔ f ′a (y) =
h′′ (y) · h′ (y + a)− h′′ (y + a) · h′ (y)

(h′ (y + a))2
< 0

⇔ fa (y) is strictly decreasing. �

A.2 Proof of Theorem 3

Theorem 3 There exists a unique optimal bias function g∗, which induces the �rst-best

payo�, with the following properties:

(1) g∗ (p) > p for every 0 < p < 1 (overcon�dence).

(2) g∗ is continuous.

(3) g∗ is increasing: dg
∗(p)
dp

> 0 for every 0 < p < 1, g∗ (0) = 0, and g∗ (1) = 1.

(4) g∗ does not depend on the distribution fq.
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PROOF. The proof includes two parts. The �rst part shows that the �rst-best out-

come of the principal can be approximately induced by a bias function. The second part

characterizes this optimal bias function g∗, and shows its uniqueness.

Approximating the �rst-best payo� by a bias function

We begin by dealing with the ��rst-best� case in which the principal receives all the

private signals (pi)i∈I and the public signal q and chooses the actions of all the agents.

Without loss of generality the �rst-best strategy is a function φ that chooses a threshold

p = φ (q, p1, ..., pn), such that each agent i with higher (lower) accuracy level pi ≥ p

(pi < p) follows his personal judgment (accepted guidelines). The expected payo� (u) of

this threshold is:

E
(
h
(
L+ (H − L)

(
1

n
(# {i|pi < p and ξi,q = 1}+ # {i|pi ≥ p and ξi,p = 1})

))
|q, (pi)i∈I

)
.

Variables (ξi,q, ξi,p)i∈I are conditionally independent given ξq. Assuming that the number

of agents is large enough, the expected payo� is well approximated by

u = P (ξq = 1) · h

L+
H − L
n

·

∑
pi<p

P (ξi,q = 1|ξq = 1) +
∑
pi≥p

P (ξi,p = 1)

+

P (ξq = 0) · h

L+
H − L
n

·

∑
pi<p

P (ξi,q = 1|ξq = 0) +
∑
pi≥p

P (ξi,p = 1)

+ o (ε) .

Substituting the di�erent probabilities yields the following:

u = q · h

L+
H − L
n

·

(
√
ρ+ (1−√ρ) · q) ·# {i|pi < p}+

∑
pi≥p

pi

+

(1− q) · h

L+
H − L
n

·

((1−√ρ) · q) ·# {i|pi < p}+
∑
pi≥p

pi

+ o (ε) .

To simplify notation let f = fp and F = Fp. Assuming again that the number of agents

is large enough, one can approximate the empirical distribution of the private signals

(p1, ..., pn) by their prior distribution f . This gives the following approximation:
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u = q · h
(
L+ (H − L) ·

(
(
√
ρ+ (1−√ρ) · q) · F (p) +

ˆ 1

p

x · f (x) dx

))
+ (A.1)

(1− q) · h
(
L+ (H − L) ·

(
((1−√ρ) · q) · F (p) +

ˆ 1

p

x · f (x) dx

))
+ o (ε) .

Consider the bias function g∗ (p) that is de�ned as follows: p = (g∗)−1 (q) is the threshold

that maximizes Eq. A.1 (neglecting the error term o (ε)). By the above arguments, such

a bias function ε-induces the �rst-best payo�.

Characterizing the unique optimal bias function g∗ (p)

We now calculate the value of p = (g∗)−1 (q) that maximizes Eq. A.1 (neglecting the error

term o (ε)). One can verify that g∗ (0) = 0 and g∗ (1) = 1. We focus on the case 0 < q < 1.

Observe �rst that the optimal p must be in the interval
((

1−√ρ
)
· q, q

)
because: (1)

following aguidelines strictly dominates following aoriginal when pi ≤
(
1−√ρ

)
· q, as the

former is better than the latter even in the �bad� state of nature (in which ξq = 0); and

(2) following aoriginal strictly dominates aguidelines when pi > q as it yields a 2nd-order

stochastic dominant payo�.

To simplify notation let:

Ap,q,ρ = ((1−√ρ) · q) · F (p) +

ˆ 1

p

x · f (x) dx.

Observe the following properties of Ap,q,ρ:

(1) Ap,q,ρ is strictly decreasing in p in the interval
((

1−√ρ
)
· q, q

)
(because dAp,q,ρ

dp
=((

1−√ρ
)
· q − p

)
· f (p) is negative for every p >

(
1−√ρ

)
· q).

(2) Ap,q,ρ +
√
ρ ·F (p) is strictly increasing in p in the interval

((
1−√ρ

)
· q, q

)
(because

d
(
Ap,q,ρ +

√
ρ · F (p)

)
dp

= ((1−√ρ) · q +
√
ρ− p)·f (p) > ((1−√ρ) · q +

√
ρ · q − p)·f (p)

is positive for every p < q .

(3) Ap,q,ρ is weakly increasing in q (strictly increasing when ρ < 1).

(4) Ap,q,ρ is strictly decreasing in ρ.

(5) Ap,q,ρ +
√
ρ · F (p) is strictly increasing in ρ.

For every 0 < q < 1 we �nd p = (g∗)−1 (q) by derivation:

du

dp
= q · h′ (L+ (H − L) · (√ρ · F (p) + Ap,q,ρ)) (((1−√ρ) · q +

√
ρ− p) f (p)) (H − L)

+ (1− q) · h′ (L+ (H − L) · Ap,q,ρ) (((1−√ρ) · q − p) f (p)) (H − L) .
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Assuming an internal solution (du
dp

= 0) yields:

h′ (L+ (H − L) · Ap,q,ρ)
h′
(
L+ (H − L) ·

(
Ap,q,ρ +

√
ρ · F (p)

)) =
q ·
(√

ρ+
(
1−√ρ

)
· q − p

)
(1− q) ·

(
p−

(
1−√ρ

)
· q
) . (A.2)

Using the strict concavity of h, the fact that Ap,q,ρ is strictly decreasing in p and Ap,q,ρ +√
ρ · F (p) is strictly increasing in p in the interval

((
1−√ρ

)
· q, q

)
implies that the

left-hand side (l.h.s.) of Eq. A.2 is a strictly increasing function of p. Observe that the

right-hand side (r.h.s.) is a strictly decreasing function of p, and that for p close enough

to
(
1−√ρ

)
· q the r.h.s. is larger than the l.h.s. (as the r.h.s. converges to ∞ when p

converges to
(
1−√ρ

)
· q), while for p close enough to q the l.h.s. is larger than the r.h.s.

(as the r.h.s. converges to 1 when p converges to q while the l.h.s. is always larger than

1). Thus for each 0 < q < 1 there is a unique solution p = (g∗)−1 (q) to Eq. A.2 in the

interval
((

1−√ρ
)
· q, q

)
, which is a continuous function of q. In particular, this implies

that (g∗)−1 (q) < q for every 0 < q < 1 (the overcon�dence property).

By Lemma 11, the l.h.s. of Eq. A.2 is weakly decreasing in q (as Ap,q,ρ is weakly increasing

in q). One can verify that the r.h.s. is strictly increasing in q. Thus increasing q by δ > 0

while holding p constant, would make the r.h.s. larger than the l.h.s., and p must be

increased in order to retain the equality in Eq. A.2. This implies that (g∗)−1 (q + δ) >

(g∗)−1 (q) for every 0 < q < 1 and 1 − q > δ > 0, and because of this, (g∗)−1 (q) is a

strictly increasing function of q.

One can verify that du
dp
> 0 for every p < (g∗)−1 (q), and du

dp
< 0 for every p > (g∗)−1 (q).

Thus, any other bias threshold p 6= (g∗)−1 (q) would yield a strictly lower expected payo�.

The above arguments show that the pro�le in which all agents have bias g∗ induces

(up to ε) the �rst-best outcome for the principal (and thus it is ε-optimal), that g∗ has

all the required properties (overcon�dence, continuous, and increasing), and that g∗ is

unique in the following sense: any other bias function g̃ such that g̃ 6= g∗ on a set with a

positive Lebesgue measure yields a strictly lower payo�, assuming the number of agents

is su�ciently large. Observe (Eq. A.2), that g∗ (p) does not depend on the distribution

fq. �

A.3 Proof of Theorem 4

Theorem 4 Let (gi)i∈I be an heterogeneous pro�le. Then there is k0 ∈ N such that

for every k ≥ k0, there is an homogeneous pro�le that induces a strictly better outcome

than (gi)i∈I in the game with k · |I| agents.

PROOF. Let g̃ be the following bias function (homogeneous bias pro�le): for each q ∈
[0, 1], (g̃) (q)−1 is the unique solution to the following equation:
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F
(
(g̃)−1 (q)

)
=
∑
i∈I

1

|I|
(
F
(
g−1i (q)

))

That is, g̃ is a bias function that averages the heterogeneous pro�le (gi)i∈I . Fix any

0 < q < 1 satisfying mini (gi)
−1 (q) < maxi (gi)

−1 (q). To simplify notation let pi = g−1i (q)

and p̃ = g̃−1 (q). By the arguments given in the previous subsection, for each q, the

expected payo� of the heterogeneous pro�le (gi)i∈N in the game with k · |I| agents (for
large enough k) is approximately given by

q · h
(
L+ (H − L) ·

(
1

|I|
∑
i∈I

(
(
√
ρ+ (1−√ρ) · q) · F (pi) +

ˆ 1

pi

x · f (x) dx

)))
+

(1− q) · h
(
L+ (H − L) ·

(
1

|I|
∑
i∈I

(
((1−√ρ) · q) · F (pi) +

ˆ 1

pi

x · f (x) dx

)))
,

and the expected payo� of the homogeneous pro�le g̃ is approximately given by

q · h
(
L+ (H − L) ·

(
(
√
ρ+ (1−√ρ) · q) · F (p̃) +

ˆ 1

p̃

x · f (x) dx

))
+

(1− q) · h
(
L+ (H − L) ·

(
((1−√ρ) · q) · F (p̃) +

ˆ 1

p̃

x · f (x) dx

))
.

As F (p̃) =
∑
i∈I

1
|I| (F (p̃i)), the homogeneous pro�le yields a higher expected payo� if

and only if
1

|I|
∑
i∈I

ˆ 1

pi

xf (x) dx <

ˆ 1

p̃

xf (x) dx.

This is equivalent to

1

|I|
∑
i∈I

(ˆ 1

pi

xf (x) dx−
ˆ 1

p̃

xf (x) dx

)
< 0,

or equivalently (using the notation that
´ b
a
f (x) dx = −

´ a
b
f (x) dx when b < a):

1

|I|
∑
i∈I

ˆ p̃

pi

xf (x) dx < 0,

which holds if and only if
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1

n

∑
i∈I

(F (p̃)− F (pi)) · E (p|min (pi, p̃) ≤ p ≤ max (pi, p̃)) < 0. (A.3)

Observe that
1

n

∑
i∈I

(F (p̃)− F (pi)) = 0,

and that E (p|min (pi, p̃) ≤ p ≤ max (pi, p̃)) is strictly increasing in pi and strictly de-

creasing in (F (p̃)− F (pi)). This implies that Inequality A.3 holds.

The above arguments show that for each q such that mini (gi)
−1 (q) < maxi (gi)

−1 (q),

g̃ has higher expected value than (gi)i∈I , conditional on q = q. The fact that (gi)i∈I
is a heterogeneous bias pro�le (i.e., that mini (gi)

−1 (q) < maxi (gi)
−1 (q) in a set with

positive Lebesgue measure), implies that g̃ has higher expected value than (gi)i∈I (without

conditioning on the value of q). By the law of large numbers, if the number of agents is

su�ciently large then it implies that with high probability g̃ induces a strictly larger

payo� than (gi)i∈I . �

A.4 Proof of Theorem 6

Theorem 6 Let (I1, ρ1, fq,1, fp,1, L1, H1, h1) and (I2, ρ2, fq,2, fp,2, L2, H2, h2) be two sets

of parameters of our model, and let g∗1 (g
∗
2) be the unique optimal bias function given the

�rst (second) set of parameters. Then g∗1 presents more overcon�dence (g∗1 (p) > g∗2 (p)

for every 0 < p < 1) in each of the following cases:

(1) Utility h1 is more risk-averse than h2 and all other parameters are the same. That

is, h1 = ψ ◦ h2 where ψ is concave and increasing.

(2) The �rst correlation coe�cient is larger (ρ1 > ρ2), and all other parameters are the

same.

PROOF.

(1) Let h2 = h and let h1 = ψ ◦ h where ψ is concave and increasing. Substituting ψ ◦ h
as the principal's utility in Eq. (A.2) yields the following equation:

Ψ′ (h (L+ (H − L) · Ap,q,ρ)) · h′ (L+ (H − L) · Ap,q,ρ)
Ψ′
(
h
(
L+ (H − L) ·

(
Ap,q,ρ +

√
ρ · F (p)

)))
h′
(
L+ (H − L) ·

(
Ap,q,ρ +

√
ρ · F (p)

))
=
q ·
(√

ρ+
(
1−√ρ

)
· q − p

)
(1− q) ·

(
p−

(
1−√ρ

)
· q
) . (A.4)

Let (p, q2) be any solution to Eq. (A.2): q2 = g∗2 (p). We now substitute (p, q2) in Eq.

A.4. Observe that the l.h.s. of Eq. (A.4) is larger than the l.h.s. of Eq. (A.2) due to

the concavity of ψ, while the r.h.s. of both equations are the same. This implies that
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with the values of (p, q2), the l.h.s. is larger then the the r.h.s. of Eq. (A.4). Recall

that the l.h.s is weakly decreasing in q (due to Lemma 11) while the r.h.s. is strictly

increasing in q. This implies that q1 = g∗1 (p) > q2.

(2) Let (p, q2) be any solution to Eq. (A.2) given ρ2: q2 = g∗2 (p). Observe that: (1) The

r.h.s. of Eq. (A.2) is strictly decreasing in ρ, and (2) the concavity of h implies that

the l.h.s. of Eq. (A.2) is strictly increasing in ρ (recall that Ap,q,ρ is strictly decreasing

in ρ, while Ap,q,ρ +
√
ρ ·F (p) is strictly increasing in ρ). Thus, given ρ1, p and q2, the

l.h.s. is strictly larger than the r.h.s. As the l.h.s is decreasing in q and the r.h.s. is

strictly increasing in q, it implies that: q1 = g∗1 (p) > q2. �

A.5 Proof of Theorem 7

Theorem 7 Assume that the principal has a CRRA utility function. Then,

(1) g∗ depends on the payo�s only through its dependency on the potential gain D =

(H − L) /L.

(2) If D1 > D2 (and all other parameters are the same) then g∗1 presents more overcon-

�dence (g∗1 (p) > g∗2 (p) for every 0 < p < 1).

(3) If distribution fp,2 has a �rst order stochastic dominance over fp,1 (and all other

parameters are the same) then g∗1 presents more overcon�dence.

(4) The ratio between the perceived error probability and the true error probability of

personal judgment (1−g(p)
1−p ) converges to (1/ (D + 1))φ =

(
L
H

)φ
when both p and ρ

converge to 1.

PROOF.

(1) Placing h′ (x) = x−φ in Eq. (A.2) yields:

(L+ (H − L) · Ap,q,ρ)−φ(
L+ (H − L) ·

(
Ap,q,ρ +

√
ρ · F (p)

))−φ =
q ·
((√

ρ+
(
1−√ρ

)
· q
)
− p

)
(1− q) ·

(
p−

((
1−√ρ

)
· q
)) ⇒


(
L+ (H − L) ·

(
Ap,q,ρ +

√
ρ · F (p)

))
L+ (H − L) · Ap,q,ρ

φ =
q ·
((√

ρ+
(
1−√ρ

)
· q
)
− p

)
(1− q) ·

(
p−

((
1−√ρ

)
· q
)) ⇒


(
L
L

+ H−L
L
·
(
Ap,q,ρ +

√
ρ · F (p)

))
L
L

+ H−L
L
· Ap,q,ρ

φ =
q ·
((√

ρ+
(
1−√ρ

)
· q
)
− p

)
(1− q) ·

(
p−

((
1−√ρ

)
· q
)) ⇒

(
1 +

H−L
L
· √ρ · F (p)

1 + H−L
L
· Ap,q,ρ

)φ
=
q ·
((√

ρ+
(
1−√ρ

)
· q
)
− p

)
(1− q) ·

(
p−

((
1−√ρ

)
· q
)) .
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Substituting D = H−L
L

and Ap,q,ρ =
((

1−√ρ
)
· q
)
· F (p) +

´ 1
p
x · f (x) dx gives

1 +
D · √ρ · F (p)

1 +D
(((

1−√ρ
)
· q
)
· F (p) +

´ 1
p
x · f (x) dx

)
φ =

q ·
((√

ρ+
(
1−√ρ

)
· q
)
− p

)
(1− q) ·

(
p−

((
1−√ρ

)
· q
)) .

(A.5)

This proves that the g∗ depends on the payo�s only through its dependence on D.

(2) Observe that the l.h.s. of Eq. (A.5) increases in D. Similar to the arguments in the

proof of Theorem 6, this implies that larger D induces more overcon�dence.

(3) Let fp,2 be a distribution with �rst order stochastic dominance over fp,1. That is,

F2 (p) < F1 (p) for every 0 < p < 1. We have to show that g∗1 ≥ g∗2. Observe that the

l.h.s. of Eq. (A.5) is larger when fp,1 replaces fp,2. This is because1 +
D · √ρ · F2 (p)

1 +D
(((

1−√ρ
)
· q
)
· F2 (p) +

´ 1
p
x · f (x) dx

)
φ =

1 +
D · √ρ · F2 (p)

1 +D
(((

1−√ρ
)
· q
)
· F2 (p) +

´ 1
p

(1− F2 (x)) dx
)
φ =

1 +

1 +D
(((

1−√ρ
)
· q
)
· F2 (p) +

´ 1
p

(1− F2 (x)) dx
)

D · √ρ · F2 (p)

−1

φ

=

1 +

D
((

1−√ρ
)
· q
)
· F2 (p)

D · √ρ · F2 (p)
+

1 +D
´ 1
p

(1− F2 (x)) dx

D · √ρ · F2 (p)

−1

φ

≤

1 +


((

1−√ρ
)
· q
)

√
ρ

+
1 +D

´ 1
p

(1− F2 (x)) dx

D · √ρ · F1 (p)

−1

φ

≤

1 +


((

1−√ρ
)
· q
)

√
ρ

+
1 +D

´ 1
p

(1− F1 (x)) dx

D · √ρ · F1 (p)

−1

φ

.

Similar to the arguments in the proof of Theorem 6, g∗1 (p) ≥ g∗2 (p) for every p.

(4) Let both p and ρ converge to 1 (which implies that q also converges to 1). Substituting

it in Eq. (A.5) yields (approximately)

(
H

L

)φ
= (1 +D)φ ≈ (1− p)

(1− q)
,

and that completes the proof. �
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A.6 Proof of Proposition 8

Proposition 8 For each n ≥ 1 and k ≥ 2 the principal can induce a strictly better

outcome when the number of agents is k · n than when it is n.

PROOF. Let (gi)i∈I be a bias pro�le in the game with n = |I| agents. Recall that for
each agent i ∈ I, ui is the random payo� of agent i with bias function gi, and that the

principal's payo� is h
(
1
n

∑
i∈I ui

)
. Consider (gi)i∈I as a pro�le in the game with k · n

agents (where each k agents share one of the bias functions gi). This pro�le induces the

following payo�:

h

 1

n

∑
i∈I

1

k

k∑
j=1

u(i−1)·k+j

 ,
where for each i, the variables

{(
u(i−1)·k+j

)
j=1,...,k

, ui

}
are identically distributed. Observe

that 1
n

∑
i∈I

1
k

∑k
j=1 u(i−1)·k+j second-order stochastically strictly dominates 1

n

∑
i∈I ui. By

the concavity of h, it implies that the principal strictly prefers the outcome in the game

with k · n agents. Thus, any outcome in the game with n agents is strictly dominated by

an outcome in the game with k · n agents. �

A.7 Proof of Proposition 10

Proposition 10 The extended model with costly signals admits a unique optimal bias

function g∗, which is the same as the optimal bias function g∗ of the basic model with

fp = fpt .

PROOF. We begin by calculating the �rst-best pro�le in a game with many agents

n >> 1. Without loss of generality for each q ∈ [0, 1], there is some e�ectiveness value

t0 = α (q) such that the optimal payo� can be induced by all agents using the same

threshold strategy: (1) agents with low e�ectiveness (ti < t0) do not invest any e�ort and

follow the accepted guidelines, and (2) agents with high e�ectiveness (ti ≥ t0) invest some

e�ort and follow personal judgment.

Consider an agent with high e�ectiveness: t ≥ t0. His expected payo� from investing e�ort

e is L+ (H − L) · (p (e, t)− e). This is maximized in e∗t that satis�es
d(p(e,t))

de
= 1 (a unique

maximizer exists due to the strict concavity of p (e, t)). Let p∗t = p (e∗t , t). For large enough

n, if all agents with high e�ectiveness invest e�ort e∗t , it ε-maximizes the principal's payo�

(by the law of large numbers).

Let p0 = p∗t0 be the success probability of an agent with threshold e�ectiveness value t0.

The choice of an optimal threshold t0 is equivalent to the problem of �nding the optimal
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threshold p0 in Theorem 3. Thus the unique optimal bias function g∗ of the basic model

(Section 3) is also optimal and unique in the extended model (with fp = fpt). �
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