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Quantum Bayesian implementation and
revelation principle

Haoyang Wu ∗

Abstract

Bayesian implementation concerns decision making problems when agents have incom-
plete information. This paper proposes that the traditional sufficient conditions for Bayesian
implementation shall be amended by virtue of a quantum Bayesian mechanism. In addition,
by using an algorithmic Bayesian mechanism, this amendment holds in the macro world.
More importantly, we find that the revelation principle is not always right by using the
quantum and algorithmic Bayesian mechanisms.

Key words: Quantum game theory; Mechanism design; Bayesian implementation;
Revelation principle.

1 Introduction

Mechanism design is an important branch of economics. Compared with game the-
ory, it concerns a reverse question: given some desirable outcomes, can we design
a game that produces them? Nash implementation and Bayesian implementation
are two key topics of the mechanism design theory. The former assumes complete
information among the agents, whereas the latter concerns incomplete information.
Maskin [1] provided an almost complete characterization of social choice rules that
are Nash implementable when the number of agents is at least three. Postlewaite
and Schmeidler [2], Palfrey and Srivastava [3], and Jackson [4] together constructed
a framework for Bayesian implementation.

In 2011, Wu [5] claimed that the sufficient conditions for Nash implementation
shall be amended by virtue of a quantum mechanism. Furthermore, this amendment
holds in the macro world by virtue of an algorithmic mechanism [6]. Given these
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accomplishments in the field of Nash implementation, this paper aims to investigate
what will happen if the quantum mechanism is applied to Bayesian implementation.

The rest of this paper is organized as follows: Section 2 recalls preliminaries of
Bayesian implementation given by Serrano [7]. In Section 3, a novel condition,
multi-Bayesian monotonicity, is defined. Section 4 and 5 are the main parts of this
paper, in which we will propose quantum and algorithmic Bayesian mechanisms
respectively, and claim that the revelation principle for Bayesian Nash equilibrium
is not always right. Section 6 draws the conclusions.

2 Preliminaries

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak} be a finite
set of social outcomes. Let Ti be the finite set of agent i’s types, and the private
information possessed by agent i is denoted as ti ∈ Ti. We refer to a profile of types
t = (t1, · · · , tn) as a state. Consider environments in which the state t = (t1, · · · , tn)
is not common knowledge among the n agents. We denote by T the set of states
compatible with an environment, i.e., a set of states that is common knowledge
among the agents. Let T =

∏
i∈N Ti. Each agent i ∈ N knows his type ti ∈ Ti, but

not necessarily the types of the others. We will use the notation t−i to denote (t j) j,i.
Similarly, T−i =

∏
j,i T j.

Each agent has a prior belief, probability distribution, qi defined on T . We make
an assumption of nonredundant types: for every i ∈ N and ti ∈ Ti, there exists
t−i ∈ T−i such that qi(t) > 0. For each i ∈ N and ti ∈ Ti, the conditional probability
of t−i ∈ T−i, given ti, is the posterior belief of type ti and it is denoted qi(t−i|ti).
Given agent i’s state ti and utility function ui(·, t) : ∆ × T 7→ R, the conditional
expected utility of agent i of type ti corresponding to a social choice function (SCF)
f : T 7→ ∆ is defined as:

Ui( f |ti) ≡
∑

t′−i∈T−i

qi(t′−i|ti)ui( f (t′−i, ti), (t′−i, ti)).

An environment with incomplete information is a list E =< N, A, (ui,Ti, qi)i∈N >.
An environment is economic if, as part of the social outcomes, there exists a private
good (e.g., money) over which all agents have a strictly positive preference. For
simplicity, we shall consider only single-valued rules, i.e., an SCF f is a mapping
f : T 7→ A. Let F denote the set of SCFs. Two SCFs f and h are equivalent ( f ≈ h)
if f (t) = h(t) for every t ∈ T .

Consider a mechanism Γ = ((Mi)i∈N , g) imposed on an incomplete information envi-
ronment E, g : M 7→ F . A Bayesian Nash equilibrium of Γ is a profile of strategies
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σ∗ = (σ∗i )i∈N where σ∗i : Ti 7→ Mi such that for all i ∈ N and for all ti ∈ Ti,

Ui(g(σ∗)|ti) ≥ Ui(g(σ∗−i, σ
′
i)|ti), ∀σ′i : Ti 7→ Mi.

Denote by B(Γ) the set of Bayesian equilibria of the mechanism Γ. Let g(B(Γ))
be the corresponding set of equilibrium outcomes. An SCF f is Bayesian imple-
mentable if there exists a mechanism Γ = ((Mi)i∈N , g) such that g(B(Γ)) ≈ f . An
SCF f is incentive compatible if truth-telling is a Bayesian equilibrium of the direct
mechanism associated with f , i.e., if for every i ∈ N and for every ti ∈ Ti,

∑

t′−i∈T−i

qi(t′−i|ti)ui( f (t′−i, ti), (t′−i, ti)) ≥
∑

t′−i∈T−i

qi(t′−i|ti)ui( f (t′−i, t
′
i ), (t

′
−i, ti)),

∀t′i ∈ Ti. The revelation principle for Bayesian Nash equilibrium (P884, [8]): Sup-
pose that there exists a mechanism that implements an SCF f in Bayesian Nash
equilibrium, then f is truthfully implementable in Bayesian Nash equilibrium.

Consider a strategy in a direct mechanism for agent i, i.e., a mapping αi = (αi(ti))ti∈Ti :
Ti 7→ Ti. A deception α = (αi)i∈N is a collection of such mappings where at least
one differs from the identity mapping. Given an SCF f and a deception α, let [ f ◦α]
denote the following SCF: [ f ◦ α](t) = f (α(t)) for every t ∈ T . For a type ti ∈ Ti,
an SCF f , and a deception α, let fαi(ti)(t

′) = f (t′−i, αi(ti)) for all t′ ∈ T . An SCF f is
Bayesian monotonic if for any deception α, whenever f ◦ α 0 f , there exist i ∈ N,
ti ∈ Ti, and an SCF y such that

Ui(y ◦ α|ti) > Ui( f ◦ α|ti), while Ui( f |t′i ) ≥ Ui(yαi(ti)|t′i ), ∀t′i ∈ Ti. (*).

In economic environments, the sufficient and necessary conditions for full Bayesian
implementation are incentive compatibility and Bayesian monotonicity. To facili-
tate the following discussion, here we cite the Bayesian mechanism (page 404, line
4, [7]) as follows: Consider a mechanism Γ = ((Mi)i∈N , g), where Mi = Ti×F ×Z+,
and Z+ is the set of nonnegative integers. Each agent is asked to report his type ti,
an SCF fi and a nonnegative integer zi, i.e., mi = (ti, fi, zi). The outcome function g
is as follows:
(i) If for all i ∈ N, mi = (ti, f , 0), then g(m) = f (t), where t = (t1, · · · , tn).
(ii) If for all j , i, m j = (t j, f , 0) and mi = (t′i , y, zi) , (t′i , f , 0), we can have two
cases:
(a) If for all ti, Ui(yt′i |ti) ≤ Ui( f |ti), then g(m) = y(t′i , t−i);
(b) Otherwise, g(m) = f (t′i , t−i).
(iii) In all other cases, the total endowment of the economy is awarded to the agent
of smallest index among those who announce the largest integer.
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3 Multi-Bayesian monotonicity

Definition 1: An SCF f is multi-Bayesian monotonic if there exist a deception α,
f ◦ α 0 f , and a set of agents Nα = {i1, i2, · · · } ⊆ N, 2 ≤ |Nα| ≤ n, such that for
every i ∈ Nα, there exist ti ∈ Ti and an SCF yi ∈ F that satisfy:

Ui(yi ◦ α|ti) > Ui( f ◦ α|ti), while Ui( f |t′i ) ≥ Ui(yi
αi(ti)|t′i ), ∀t′i ∈ Ti. (**).

Let l = |Nα|. Without loss of generality, let these l agents be the last l agents among
n agents.

In 1993, Matsushima [9] claimed that Bayesian monotonicity is a very weak condi-
tion when utility functions are quasi-linear and lotteries are available. Consider an
SCF f that satisfies Bayesian monononicity, if there is a deception α such that its
corresponding agent i has another symmetric agent j (i.e., i , j, ui = u j, Ti = T j,
the prior belief and posterior belief hold by them are the same), then f is multi-
Bayesian monotonic.

Proposition 1: In economic environments, consider an SCF f that is incentive com-
patible and Bayesian monotonic, if f is multi-Bayesian monotonic, then f ◦ α is
not Bayesian implementable by using the traditional Bayesian mechanism, where
α is specified in the definition of multi-Bayesian monotonicity.
Proof: According to Serrano’s proof (page 404, line 33, [7]), all equilibrium strate-
gies fall under rule (i), i.e., f is unanimously announced and all agents announce
the integer 0. Consider the deception α specified in the definition of multi-Bayesian
monotonicity. At first sight, if every agent i ∈ N submits (αi(ti), f , 0), then f ◦ α
may be generated as the equilibrium outcome by rule (i). However, For each agent
i ∈ Nα, he has incentives to unilaterally deviate from (αi(ti), f , 0) to (αi(ti), yi, 0)
in order to obtain yi ◦ α by rule (ii.a). This is a profitable deviation for each agent
i ∈ Nα. Therefore, f ◦ α is not Bayesian implementable.
Note: Since all agents are self-interested and act non-cooperatively, every agent
i ∈ Nα will submit (αi(ti), yi, 0). Actually, rule (iii) instead of rule (ii.a) will be trig-
gered. The final outcome will be uncertain according to the integer game specified
in rule (iii). �

4 A quantum Bayesian mechanism

Following Ref. [5], here we will propose a quantum Bayesian mechanism to modify
the sufficient conditions for Bayesian implementation. According to Eq (4) in Ref.
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[10], two-parameter quantum strategies are drawn from the set:

ω̂(θ, φ) ≡

eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)

 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n, where

γ ∈ [0, π/2] is an entanglement measure, and Î ≡ ω̂(0, 0), D̂n ≡ ω̂(π, π/n), Ĉn ≡
ω̂(0, π/n).

Without loss of generality, we assume that:
1) Each agent i has a quantum coin i (qubit) and a classical card i. The basis vectors
|C〉 = (1, 0)T , |D〉 = (0, 1)T of a quantum coin denote head up and tail up respec-
tively.
2) Each agent i independently performs a local unitary operation on his/her own
quantum coin. The set of agent i’s operation is Ω̂i = Ω̂. A strategic operation cho-
sen by agent i is denoted as ω̂i ∈ Ω̂i. If ω̂i = Î, then ω̂i(|C〉) = |C〉, ω̂i(|D〉) = |D〉; If
ω̂i = D̂n, then ω̂i(|C〉) = |D〉, ω̂i(|D〉) = |C〉. Î denotes “Not flip”, D̂n denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The message written on
the Side 0 (or Side 1) of card i is denoted as card(i, 0) (or card(i, 1)). A typical card
written by agent i is described as ci = (card(i, 0), card(i, 1)). card(i, 0), card(i, 1) ∈
Ti × F × Z+. The set of ci is denoted as Ci.
4) There is a device that can measure the state of n coins and send messages to the
designer.

A quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ) describes a strategy set Σ̂i = {σ̂i :

Ti 7→ Ω̂i ×Ci} for each agent i and an outcome function ĝ : ⊗i∈NΩ̂i ×∏
i∈N Ci 7→ F .

A strategy profile is σ̂ = (σ̂i, σ̂−i), where σ̂−i : T−i 7→ ⊗ j,iΩ̂ j×∏
j,i C j. A Bayesian

Nash equilibrium of Γ
Q
B is a strategy profile σ̂∗ = (σ̂∗1, · · · , σ̂∗n) such that for every

i ∈ N and for every ti ∈ Ti,

Ui(ĝ(σ̂∗)|ti) ≥ Ui(ĝ(σ̂∗−i, σ̂
′
i)|ti), ∀σ̂′i : Ti 7→ Ω̂i ×Ci.

The setup of the quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ) is depicted in Fig.

1. The working steps of Γ
Q
B are given as follows:

Step 1: Nature selects a state t ∈ T and assigns t to the agents. Each agent i knows
ti and qi(t−i|ti). The state of each quantum coin is set as |C〉. The initial state of the
n quantum coins is |ψ0〉 = |C · · ·CC〉︸      ︷︷      ︸

n

.

Step 2: If f is multi-Bayesian monotonic, then go to Step 4.
Step 3: Each agent i sets ci = ((ti, fi, zi), (ti, fi, zi)), ω̂i = Î. Go to Step 7.
Step 4: Each agent i sets ci = ((αi(ti), f , 0), (ti, fi, zi)) (where α is specified in the
definition of multi-Bayesian monotonicity). Let n quantum coins be entangled by
Ĵ. |ψ1〉 = Ĵ|ψ0〉.
Step 5: Each agent i independently performs a local unitary operation ω̂i on his/her
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Fig. 1. The setup of a quantum Bayesian mechanism. Each agent 

has a quantum coin and a card.  Each agent independently 
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own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ|ψ0〉.
Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ|ψ0〉.
Step 7: The device measures the state of n quantum coins and sends card(i, 0) (or
card(i, 1)) as mi to the designer if the state of quantum coin i is |C〉 (or |D〉).
Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let the
final outcome ĝ(σ̂) = g(m) using rules (i)-(iii) specified in the traditional Bayesian
mechanism. END.

Given n ≥ 3 agents, consider the payoff to the nth agent, we denote by $C···CC

the expected payoff when all agents choose Î (the corresponding collapsed state is
|C · · ·CC〉︸      ︷︷      ︸

n

), and denote by $C···CD the expected payoff when the nth agent chooses

D̂n and the first n−1 agents choose Î (the corresponding collapsed state is |C · · ·C︸ ︷︷ ︸
n−1

D〉).

$D···DD and $D···DC are defined similarly.

Definition 2: Given an SCF f satisfying multi-Bayesian monotonicity, define con-
dition λB as follows:
1) λB

1 : Consider the payoff to the nth agent, $C···CC > $D···DD, i.e., he/she prefers the
expected payoff of a certain outcome (generated by rule (i)) to the expected payoff

of an uncertain outcome (generated by rule (iii)).
2) λB

2 : Consider the payoff to the nth agent, $C···CC > $C···CD[1 − sin2 γ sin2(π/l)] +

$D···DC sin2 γ sin2(π/l).

Proposition 2: In economic environments, consider an SCF f that is incentive com-
patible and Bayesian monotonic, if f is multi-Bayesian monotonic and condition λB

is satisfied, then f is not Bayesian implementable by using the quantum Bayesian
mechanism, and the revelation principle for Bayesian Nash equilibrium does not
hold.
Proof: Since f is multi-Bayesian monotonic, then there exist a deception α, f ◦α 0
f , and 2 ≤ l ≤ n agents that satisfy Eq (**), i.e., for each agent i ∈ Nα, there exist
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ti ∈ Ti and an SCF yi ∈ F such that:

Ui(yi ◦ α|ti) > Ui( f ◦ α|ti), while Ui( f |t′i ) ≥ Ui(yi
αi(ti)|t′i ), ∀t′i ∈ Ti.

Hence, the quantum Bayesian mechanism will enter Step 4. Each agent i ∈ N
sets ci = ((αi(ti), f , 0), (ti, fi, zi)). Let c = (c1, · · · , cn). Since condition λB is satis-
fied, then similar to the proof of Proposition 2 in Ref. [5], if the n agents choose
σ̂∗ = (ω̂∗, c), where ω̂∗ = (Î, · · · , Î︸  ︷︷  ︸

n−l

, Ĉl, · · · , Ĉl︸      ︷︷      ︸
l

), then σ̂∗ ∈ B(ΓQ
B ). In Step 7, the cor-

responding collapsed state of n quantum coins is |C · · ·CC〉︸      ︷︷      ︸
n

. Hence, for each agent

i ∈ N, mi = (αi(ti), f , 0). In Step 8, ĝ(σ̂∗) = f ◦ α 0 f .
Therefore, f is not Bayesian implementable and f ◦ α is implemented by Γ

Q
B in

Bayesian Nash equilibrium. Note that f ◦ α is not incentive compatible (since f is
incentive compatible), the revelation principle for Bayesian Nash equilibrium does
not hold. �

5 An algorithmic Bayesian mechanism

Following Ref. [6], in this section we will propose an algorithmic Bayesian mech-
anism to help agents benefit from the quantum Bayesian mechanism in the macro
world. In the beginning, we cite matrix representations of quantum states from Ref.
[6].

5.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a two-
level system, there are two basis vectors: (1, 0)T and (0, 1)T . In the beginning, we
define:

|C〉 =


1

0

 , Î =


1 0

0 1

 , σ̂x =


0 1

1 0

 , |ψ0〉 = |C · · ·CC〉︸      ︷︷      ︸
n

=



1

0

· · ·
0


2n×1

(2)
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Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (3)

=



cos(γ/2) i sin(γ/2)

· · · · · ·
cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·
i sin(γ/2) cos(γ/2)


2n×2n

(4)

For γ = π/2,

Ĵπ/2 =
1√
2



1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1


2n×2n

, Ĵ+
π/2 =

1√
2



1 −i

· · · · · ·
1 −i

−i 1

· · · · · ·
−i 1


2n×2n

(5)

5.2 An algorithm that simulates the quantum operations and measurements

Similar to Ref. [6], in the following we will propose an algorithm that simulates
the quantum operations and measurements in Steps 4-7 of the quantum Bayesian
mechanism given in Section 4. The inputs and outputs are adjusted to the case of
Bayesian implementation. The factor γ is also set as its maximum π/2. For n agents,
the inputs and outputs of the algorithm are illustrated in Fig. 2. The Matlab program
is given in Fig. 3, which is cited from Ref. [6].

Inputs:
1) θi, φi, i = 1, · · · , n: the parameters of agent i’s local operation ω̂i, θi ∈ [0, π], φi ∈
[0, π/2].
2) card(i, 0), card(i, 1), i = 1, · · · , n: the information written on the two sides of
agent i’s card, where card(i, 0), card(i, 1) ∈ Ti × F × Z+.

Outputs:
mi, i = 1, · · · , n: the agent i’s message that is sent to the designer, mi ∈ Ti ×F ×Z+.

Procedures of the algorithm:
Step 1: Reading parameters θi and φi from each agent i ∈ N (See Fig. 3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ · · · ⊗ ω̂n (See Fig.
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Fig. 2. The inputs and outputs of the algorithm. 

3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵπ/2|ψ0〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2|ψ2〉.
Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a “collapsed” state from the set of all 2n possible states
{|C · · ·CC〉︸      ︷︷      ︸

n

, · · · , |D · · ·DD〉︸      ︷︷      ︸
n

} according to the probability distribution 〈ψ3|ψ3〉.

Step 7: For each i ∈ N, the algorithm sends card(i, 0) (or card(i, 1)) as a message
mi to the designer if the i-th basis vector of the “collapsed” state is |C〉 (or |D〉) (See
Fig. 3(d)).

5.3 An algorithmic version of the quantum Bayesian mechanism

In the quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ), the key parts are quantum

operations and measurements, which are restricted by current experimental tech-
nologies. In Section 5.2, these parts are replaced by an algorithm which can be
easily run in a computer. Consequently, the quantum Bayesian mechanism Γ

Q
B =

((Σ̂i)i∈N , ĝ) shall be updated to an algorithmic Bayesian mechanism Γ̃
Q
B = ((Σ̃i)i∈N , g̃),

which describes a strategy set Σ̃i = {σ̃i : Ti 7→ [0, π]× [0, π/2]×Ci} for each agent i
and an outcome function g̃ : [0, π]n × [0, π/2]n ×∏

i∈N Ci → F . A strategy profile is
σ̃ = (σ̃i, σ̃−i), where σ̃−i : T−i 7→ [0, π]n−1 × [0, π/2]n−1 ×∏

j,i C j. A Bayesian Nash
equilibrium of Γ̃

Q
B is a strategy profile σ̃∗ = (σ̃∗1, · · · , σ̃∗n) such that for any agent

i ∈ N and for all ti ∈ Ti,

Ui(̃g(σ̃∗)|ti) ≥ Ui(̃g(σ̃∗−i, σ̃
′
i)|ti), ∀σ̃′i : Ti 7→ [0, π] × [0, π/2] ×Ci.

Since the factor γ is set as its maximum π/2 in the algorithmic Bayesian mech-
anism, the condition λB shall be updated as λBπ/2. λBπ/2

1 is the same as λB
1 ; λBπ/2

2
is revised as: Consider the payoff to the nth agent, $C···CC > $C···CD cos2(π/l) +
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$D···DC sin2(π/l).

Working steps of the algorithmic Bayesian mechanism Γ̃
Q
B :

Step 1: Given an SCF f , if f is multi-Bayesian monotonic, go to Step 3.
Step 2: Each agent i sends (ti, fi, zi) as the message mi to the designer. Go to Step 5.
Step 3: Each agent i sets card(i, 0) = (αi(ti), f , 0) and card(i, 1) = (ti, fi, zi) (where
α is specified in the definition of multi-Bayesian monotonicity), then submits θi, φi,
card(i, 0) and card(i, 1) to the algorithm.
Step 4: The algorithm runs in a computer and outputs messages m1, · · · ,mn to the
designer.
Step 5: The designer receives the overall message m = (m1, · · · ,mn) and let the
final outcome be g(m) using rules (i)-(iii) of the traditional Bayesian mechanism.
END.

5.4 New results for Bayesian implementation and revelation principle

Proposition 3: In economic environments, given an SCF f that is incentive com-
patible and Bayesian monotonic:
1) If f is multi-Bayesian monotonic and condition λBπ/2 is satisfied, then f is not
Bayesian implementable by using the algorithmic Bayesian mechanism, and the
revelation principle for Bayesian Nash equilibrium does not hold.
2) If f is not multi-Bayesian monotonic, then f is Bayesian implementable.
Proof: 1) Since f is multi-Bayesian monotonic, then Γ̃

Q
B enters Step 3.

Each agent i sets ci = (card(i, 0), card(i, 1)) = ((αi(ti), f , 0), (ti, fi, zi)), and sub-
mits θi, φi, card(i, 0) and card(i, 1) to the algorithm. Since condition λBπ/2 is satis-
fied, then similar to the proof of Proposition 1 in Ref. [6], if the n agents choose
σ̃∗ = (σ̃∗i )i∈N , where for 1 ≤ i ≤ (n−l), σ̃∗i : Ti 7→ {0}×{0}×Ci; for (n−l+1) ≤ i ≤ n,
σ̃∗i : Ti 7→ {0} × {π/l} × Ci, then σ̃∗ ∈ B(̃ΓQ

B )). In Step 6 of the algorithm, the
corresponding “collapsed” state is |C · · ·CC〉︸      ︷︷      ︸

n

. Hence, in Step 7 of the algorithm,

mi = card(i, 0) = (αi(ti), f , 0) for each agent i ∈ N. Finally, in Step 5 of Γ̃
Q
B ,

g̃(σ̃∗) = g(m) = f ◦ α 0 f .
Therefore, f is not Bayesian implementable and f ◦ α is implemented by Γ̃

Q
B in

Bayesian Nash equilibrium. Note that f ◦ α is not incentive compatible (since f is
incentive compatible), the revelation principle for Bayesian Nash equilibrium does
not hold.
2) If f is not multi-Bayesian monotonic, then Γ̃

Q
B is reduced to the traditional

Bayesian mechanism. Since the SCF f is incentive compatible and Bayesian mono-
tonic, then it is Bayesian implementable. �
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6 Conclusions

This paper follows the series of papers on quantum mechanism [5,6], and gen-
eralizes the quantum and algorithmic mechanisms in Refs. [5,6] to Bayesian im-
plementation. It can be seen that for n agents, the time complexity of quantum
and algorithmic Bayesian mechanisms are O(n) and O(2n) respectively. Although
current experimental technologies restrict the quantum Bayesian mechanism to be
commercially available, for small-scale cases (e.g., less than 20 agents [6]), the
algorithmic Bayesian mechanism can help agents benefit from quantum Bayesian
mechanism just in the macro world. More importantly, the revelation principle may
not hold by using the quantum and algorithmic Bayesian mechanisms. Since the
revelation principle has been widely applied to many fields such as auction, con-
tract, the theory of incentives and so on, there are many works to do in the future to
generalize the quantum and algorithmic mechanisms.
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start_time = cputime

% n: the number of agents. For example, suppose there are 3 agents. N={1, 2, 3}.
% Suppose the SCF is incentive compatible, Bayesian monotonic and
%      multi-Bayesian monotonic.     ={1, 2}. 
n=3;

% gamma: the coefficient of entanglement. Here we simply set gamma to its maximum        .
gamma=pi/2;

% Defining the array of     and                      .
theta=zeros(n,1);
phi=zeros(n,1);

% Reading agent 1’s parameters. For example,
theta(1)=0;
phi(1)=pi/2;

% Reading agent 2's parameters. For example, 
theta(2)=0;
phi(2)=pi/2;

% Reading agent 3’s parameters. For example, 
theta(3)=0;
phi(3)=0;

)2/,0(ˆˆˆ
21 πωω == C

)2/,0(ˆˆˆ
22 πωω == C

)0,0(ˆˆˆ
3 ωω == I

i
θ ni

i
,,1, L=φ

Fig. 3 (a). Reading each agent i s parameters     and                     .
i

θ ni
i

,,1, L=φ

α
N

2/π

2=l

Fig. 3 (b). Computing the leftmost and rightmost columns of

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq (1))
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing 
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

1ω̂

n
ωω ˆˆ

1 ⊗⊗L

n
ωω ˆˆ

1 ⊗⊗L

n
ωω ˆˆ

1 ⊗⊗L

2ω̂
n

ω̂
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Fig. 3 (c). Computing       ,      ,           .

% Computing 
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing 
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

23
ˆ ψψ += J

012
ˆ]ˆˆ[ ψωωψ J

n
⊗⊗= L

33 ψψ

2ψ 3ψ 33 ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
%   ‘0’ stands for      , ‘1’ stands for  
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent          , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)

if indexstr(index)=='0' % Note: ‘0’ stands for  
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');

else
message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');

end
end

% The algorithm sends messages                  to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

33 ψψ

i
mNi∈

n
mm ,,1 L

C D

C

Fig. 3 (d). Computing all messages                   . nmm ,,1 L
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