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Abstract: In this paper we discuss the calibration issues of models built on
mean-reverting processes combined with Markov switching. Due to the unob-
servable switching mechanism, estimation of Markov regime-switching (MRS)
models requires inferring not only the model parameters but also the state pro-
cess values at the same time. The situation becomes more complicated when the
individual regimes are independent from each other and at least one of them
exhibits temporal dependence (like mean reversion in electricity spot prices).
Then the temporal latency of the dynamics in the regimes has to be taken into
account. In this paper we propose a method that greatly reduces the compu-
tational burden induced by the introduction of independent regimes in MRS
models. We perform a simulation study to test the efficiency of the proposed
method and apply it to a sample series of wholesale electricity spot prices from
the German EEX market. The proposed 3-regime MRS model fits this data well
and also contains unique features that allow for useful interpretations of the price
dynamics.

AMS 2000 subject classifications: Primary 62M05; secondary 60J60.
Keywords and phrases: Markov regime-switching, heteroskedasticity, EM al-
gorithm, independent regimes, electricity spot price.

1. Introduction

During the last two decades the structure of the power industry has changed dra-
matically worldwide. The vertically integrated, monopolistic organizations have been
replaced by deregulated, competitive markets. The wholesale spot electricity prices –
now driven by demand (from utilities serving the households and firms) and supply
(from generators) and set on an hourly or half-hourly basis – have recorded unseen
earlier levels and extreme volatility. In several cases, severe weather conditions, often
in combination with exercise of market power by some players, led to unprecedented
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price fluctuations – ranging even two orders of magnitude within a matter of hours
or days. Just recall the California crisis of 2000/2001, the early and harsh winter
of 2002/2003 following a dry autumn in Scandinavia or the extreme price spikes in
January-March 2008 in South Australia in the midst of Australian summer.

Apparently, the deregulation process has created a situation where generators,
marketeers and utilities alike are exposed to substantial financial risks. This in turn
has propelled research in quantitative modeling for the power markets (for reviews
see e.g. Benth et al., 2008; Huisman, 2009; Weron, 2006). Parsimonious, yet realistic
electricity price models have become the focus of the trading and risk management
departments in many companies and financial institutions.

However, when building realistic models we cannot forget about the uniqueness
of electricity as a commodity. It cannot be stored economically and requires imme-
diate delivery. At the same time end-user demand shows high variability and strong
weather and business cycle dependence. Effects like power plant outages, transmis-
sion grid (un)reliability and strategic bidding add complexity and randomness. The
resulting spot prices exhibit strong seasonality on the annual, weekly and daily level,
as well as, mean reversion, very high volatility and abrupt, short-lived and generally
unanticipated extreme price spikes or drops (De Jong, 2006; Janczura and Weron,
2010; Karakatsani and Bunn, 2008). What classes of models should we then use to
efficiently describe electricity spot price dynamics?

Mean-reverting diffusion-type processes, like the Vasiček (1977) model and the CIR
(or square root) process of Cox et al. (1985), were at the heart of interest rate mod-
eling for years. Their parsimony – often referred to as ‘reduced-form’ – together with
their ability to represent mean reversion made them models of first choice also in elec-
tricity spot price modeling (Barz and Johnson, 1998; Kaminski, 1997). By including
a Poisson jump component the mean-reverting jump-diffusion (MRJD) models were
able to address the two main characteristics of electricity prices – mean reversion and
jumps. However, not adequately. A serious flaw of MRJD models is the slow speed of
mean reversion after a jump. When electricity prices spike, they tend to return to their
mean reversion levels much faster than when they suffer smaller shocks. However, a
high rate of mean reversion, required to force the price back to its normal level after a
jump, would lead to a highly overestimated mean reversion rate for prices outside the
‘spike regime’. A number of authors have tried to address this flaw (introducing signed
jumps, two rates of mean reversion, etc.), but with moderate success (Weron, 2006).
Another weakness of MRJD models is their inability to yield consecutive spikes with
the frequency observed in market data, see Figure 1 where two sample spot price tra-
jectories are plotted (for more evidence and discussions see Christensen et al., 2009;
Janczura and Weron, 2010).

A different line of models originated with the papers of Deng (1998) and Ethier and Mount
(1998), who suggested to use the Markov regime-switching (MRS; or Markov-switching,
MS) mechanism in the context of electricity prices. Unlike jump-diffusions, MRS mod-
els allow for consecutive spikes in a very natural way. Also the return of prices after
a spike to the ‘normal’ regime is straightforward, as the MRS mechanism admits
temporal changes of model dynamics. While it is clear that MRS models have an
edge over jump-diffusions, it may not be obvious why favor them over threshold type
regime-switching models or hidden Markov models. Let us elaborate on this briefly.
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Fig 1. Deseasonalized mean daily spot electricity prices in two markets: the New England Power
Pool in the U.S. (left panel) and the German EEX market (right panel). The changes of dynamics
(regime switches) are clearly visible in both cases. The prices classified as spikes or drops are denoted
by dots or ’x’ (see Section 5 for model details).

In threshold type regime-switching models (like TAR, STAR and SETAR; see e.g.
Franses and van Dijk, 2000) the regimes and the switching mechanism are explicitly
defined through the threshold variable and the threshold level. However, an upfront
specification of this variable and level is not a trivial task as the ‘regime switches’
in electricity spot prices usually result from a combination of different fundamental
drivers (fuel prices, weather, outages, etc.) and strategic bidding practices. On the
other hand, in MRS models the switching mechanism between the states is assumed
to be governed by an unobserved (latent) random variable. MRS models do not require
an upfront specification of the threshold variable and level and, hence, are less prone
to modeling risk. This gives them an advantage in terms of parsimony.

Now, in contrast to the popular class of hidden Markov models (HMM; in the strict
sense, see Cappe et al., 2005; Fink, 2008), MRS models allow for temporary depen-
dence within the regimes, in particular, for mean reversion. As the latter is a charac-
teristic feature of electricity prices it is important to have a model that captures this
phenomenon. Indeed the base regime is typically modeled by a mean-reverting diffu-
sion, sometimes heteroskedastic (Janczura and Weron, 2010). For the spike regime(s),
on the other hand, a number of specifications have been suggested in the literature,
ranging from mean-reverting diffusions to heavy tailed random variables.

Having selected the model class (i.e. MRS), the type of dependence between the
regimes has to be defined. Dependent regimes with the same random noise process
in all regimes (but different parameters; an approach dating back to the seminal
work of Hamilton, 1989) lead to computationally simpler models. On the other hand,
independent regimes allow for a greater flexibility and admit qualitatively different
dynamics in each regime. They seem to be a more natural choice for electricity spot
price processes, which can exhibit a moderately volatile behavior in the base regime
and a very volatile one in the spike regime, see Figure 1.

Once the electricity spot price model is fully specified we are left with the problem
of calibrating it to market data. This challenging process is the focus of this paper.
Due to the unobservable switching mechanism, estimation of MRS models requires
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inferring not only the model parameters but also the state process values at the same
time. The situation becomes even more complicated when the individual regimes are
independent from each other but at least one of them is mean-reverting. Then the
temporal latency of the dynamics in the regimes has to be taken into account. In this
paper we propose a method that greatly reduces the computational burden induced
by the introduction of independent regimes in MRS models. Since the latter can be
considered as generalizations of HMMs (Cappe et al., 2005), this result can have far-
reaching implications for many problems where HMMs have been applied (see e.g.
Mamon and Elliott, 2007; Scharpf et al., 2008; Shirley et al., 2010).

The paper is structured as follows. In Section 2 we define the MRS models used
in this paper. Next, in Section 3 we describe the estimation procedure for parameter-
switching models and introduce an approximation to avoid the computational burden
in case of independent regimes. In Section 4 a simulation study to test the performance
of the proposed method is summarized. Then, in Section 5 an application of the
proposed approach to models of wholesale electricity prices is discussed. Finally, in
Section 6 we conclude.

2. The models

The underlying idea behind Markov regime-switching (MRS; or hidden Markov mod-
els – HMM) is to represent the observed stochastic behavior of a specific time series
by two (or more) separate states or regimes with different underlying stochastic pro-
cesses. The switching mechanism between the states is assumed to be an unobserved
(latent) Markov chain Rt. It is described by the transition matrix P containing the
probabilities pij = P (Rt+1 = j | Rt = i) of switching from regime i at time t to
regime j at time t + 1. For instance, for i, j = {1, 2} we have:

P = (pij) =

(

p11 p12

p21 p22

)

=

(

1 − p12 p12

p21 1 − p21

)

. (2.1)

Because of the Markov property the current state Rt at time t depends on the past
only through the most recent value Rt−1.

In this paper we focus on two specifications of MRS models popular in the energy
economics literature (see e.g. De Jong, 2006; Janczura and Weron, 2010; Mount et al.,
2006). Both are based on a discretized version of the mean-reverting, heteroskedastic
process given by the following SDE:

dXt = (α − βXt)dt + σ|Xt|γdWt. (2.2)

Note, that the absolute value is needed if negative data is analyzed.
In the first specification only the model parameters change depending on the state

process values, while in the second the individual regimes are driven by independent
processes. More precisely, in the first case the observed process Xt is described by a
parameter-switching times series of the form:

Xt = αRt
+ (1 − βRt

)Xt−1 + σRt
|Xt−1|γRt ǫt, (2.3)
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sharing the same set of random innovations in both regimes (ǫt’s are assumed to be
N(0, 1)-distributed). In the second one, Xt is defined as:

Xt =

{

Xt,1 if Rt = 1,
Xt,2 if Rt = 2,

(2.4)

where at least one regime is given by:

Xt,i = αi + (1 − βi)Xt−1,i + σi|Xt−1,i|γiǫt,i, i = 1 ∨ i = 2. (2.5)

Note, that here we focus on a 2-regime model, but it is straightforward to generalize
all the results of this paper to a model with 3 or more regimes.

3. Model calibration

Calibration of MRS models is not straightforward since the regimes are only la-
tent and hence not directly observable. Hamilton (1990) introduced an application
of the Expectation-Maximization (EM) algorithm of Dempster et al. (1977), where
the whole set of parameters θ is estimated by an iterative two-step procedure. The
algorithm was later refined by Kim (1994). In Section 3.1 we briefly describe the
general estimation procedure and provide explicit formulas for the model defined by
eqn. (2.3). Next, in Section 3.2 we discuss the computational problems induced by
the introduction of independent regimes, see eqns. (2.4) and (2.5), and propose an
efficient remedy.

3.1. Parameter-switching variant

The algorithm starts with an arbitrarily chosen vector of initial parameters θ(0) =

(α
(0)
i , β

(0)
i , σ

(0)
i , γ

(0)
i , P(0)), for i = 1, 2, see equations (2.1), (2.3) and (2.5). In the

first step of the iterative procedure (the E-step) inferences about the state process
are derived. Since Rt is latent and not directly observable, only the expected val-
ues of the state process, given the observation vector E(IRt=i|x1, x2..., xT ; θ), can be
calculated. These expectations result in the so called ‘smoothed inferences’, i.e. the
conditional probabilities P (Rt = j|x1, ..., xT ; θ) for the process being in regime j at
time t. Next, in the second step (the M-step) new maximum likelihood (ML) estimates
of the parameter vector θ, based on the smoothed inferences obtained in the E-step,
are calculated. Both steps are repeated until the (local) maximum of the likelihood
function is reached. A detailed description of the algorithm is given bellow.

3.1.1. The E-step

Assume that θ(n) is the parameter vector calculated in the M-step during the previous
iteration. Let xt = (x1, x2, ...xt). The E-part consists of the following steps (Kim,
1994):
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i) Filtering: based on the Bayes rule for t = 1, 2, ..., T iterate on equations:

P (Rt = i|xt; θ
(n)) =

P (Rt = i|xt−1; θ
(n))f(xt|Rt = i; xt−1; θ

(n))
2
∑

i=1

P (Rt = i|xt−1; θ(n))f(xt|Rt = i; xt−1; θ(n))

,

where f(xt|Rt = i; xt−1; θ
(n)) is the density of the underlying process at time t

conditional that the process was in regime i (i ∈ 1, 2),

and

P (Rt+1 = i|xt; θ
(n)) =

2
∑

j=1

p
(n)
ji P (Rt = j|xt; θ

(n)),

until P (RT = i|xT ; θ(n)) is calculated.

ii) Smoothing: for t = T − 1, T − 2, ..., 1 iterate on

P (Rt = i|xT ; θ(n)) =

2
∑

j=1

P (Rt = i|xt; θ
(n))P (Rt+1 = j|xT ; θ(n))p

(n)
ij

P (Rt+1 = i|xt; θ(n))
.

The above procedure requires derivation of f(xt|Rt = i; xt−1; θ
(n)) used in the

filtering part i). Observe, that the model definition (2.3) implies that Xt given Xt−1

has a conditional Gaussian distribution with mean αi + (1 − βi)Xt−1 and standard
deviation σi|Xt−1|γi given by the following probability distribution function (pdf):

f
(

xt|Rt = i; xt−1; θ
(n)

)

=
1

√
2πσ

(n)
i |xt−1|γ

(n)
i

·

· exp











−

(

xt −
(

1 − β
(n)
i

)

xt−1 − α
(n)
i

)2

2
(

σ
(n)
i

)2

|xt−1|2γi
(n)











. (3.1)

3.1.2. The M-step

In the second step of the EM algorithm, new and more exact maximum likelihood
(ML) estimates θ(n+1) for all model parameters are calculated. Compared to standard

ML estimation, where for a given pdf f the log-likelihood function
∑T

t=1 log f(xt, θ
(n))

is maximized, here each component of this sum has to be weighted with the corre-
sponding smoothed inference, since each observation xt belongs to the ith regime
with probability P (Rt = i|xT ; θ(n)). In particular, for the model defined by eqn. (2.3)
explicit formulas for the estimates are provided in the following lemma.

Lemma 3.1. The ML estimates for the parameters of the model defined by (2.3) are
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given by the following formulas:

α̂i =

T
∑

t=2

[

P (Rt = i|xT ; θ(n))|xt−1|−2γi(xt − (1 − β̂i)xt−1)
]

T
∑

t=2

[

P (Rt = i|xT ; θ(n))|xt−1|−2γi

]

,

β̂i =

T
∑

t=2

{

P (Rt = i|xT ; θ(n))xt−1|xt−1|−2γiB1

}

T
∑

t=2

[

P (Rt = i|xT ; θ(n))xt−1|xt−1|−2γiB2

]

,

B1 = xt − xt−1 −
∑T

t=2 P (Rt = i|xT ; θ(n))|xt−1|−2γi (xt − xt−1)
∑T

t=2 P (Rt = i|xT ; θ(n))|xt−1|−2γi

,

B2 =

∑T
t=2 P (Rt = i|xT ; θ(n))xt−1|xt−1|−2γi

∑T
t=2 P (Rt = i|xT ; θ(n))|xt−1|−2γi

− xt−1,

σ̂2
i =

T
∑

t=2

{

P (Rt = i|xT ; θ(n))|xt−1|−2γi(xt − α̂i − (1 − β̂i)xt−1)
}2

T
∑

t=2
P (Rt = i|xT ; θ(n))

.

The fourth parameter, γi, requires numerical maximization of the likelihood function.

Finally, in the last part of the M-step the transition probabilities are estimated
according to the following formula (Kim, 1994):

p
(n+1)
ij =

T
∑

t=2
P (Rt = j, Rt−1 = i|xT ; θ(n))

T
∑

t=2
P (Rt−1 = i|xT ; θ(n))

= (3.2)

=

T
∑

t=2
P (Rt = j|xT ; θ(n))

p
(n)
ij

P (Rt−1=i|xt−1;θ
(n))

P (Rt=j|xt−1);θ(n)

T
∑

t=2
P (Rt−1 = i|xT ; θ(n))

,

where p
(n)
ij is the transition probability from the previous iteration. All values obtained

in the M-step are then used as a new parameter vector θ(n+1) = (α̂i, β̂i, σ̂i, γ̂i, P
(n+1)),

i = 1, 2, in the next iteration of the E-step.

3.2. Independent regimes variant

In the parameter-switching model (2.3) the current value of the process depends on
the last observation only, no matter which regime it originated from. This implies
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Fig 2. A sample trajectory of the MRS model with independent regimes (black solid line) super-
imposed on the observable and latent values of the processes in both regimes. The simulation was
performed for a model with the following parameters: p11 = 0.9, p22 = 0.8, α1 = 1, β1 = 0.7, σ2

1
= 1,

γ1 = 0, α2 = 2, β2 = 0.3, σ2

2
= 0.01, γ2 = 1.

that for the calculation of the conditional pdf (3.1), used in the i) part of the E-step
recursions, the information from only one preceding time step is needed. Consequently,
the EM algorithm requires storing conditional probabilities P (Rt = i|xT ) of one time
step only, i.e. 2T values in total.

However, the estimation procedure complicates significantly, if the regimes are
independent from each other. Observe, that the values of the mean-reverting regime
become latent when the process is in the other state (see Figure 2 for an illustration).
This makes the distribution of Xt dependent on the whole history (x1, x2, ..., xt−1) of
the process. As a consequence all possible paths of the state process (R1, R2, ..., Rt)
should be considered in the estimation procedure, implying that f(xt|Rt = i, Rt−1 6=
i, ..., Rt−j 6= i, Rt−j−1 = i; xt−1; θ

(n)) and the whole set of probabilities P (Rt =
it, Rt−1 = it−1, ..., Rt−j = it−j |xt−1; θ

(n)) should be used in the E-step. Obviously,
this leads to a high computational complexity, as the number of possible state process
realizations is equal to 2T and increases rapidly with the sample size.

As a feasible solution to this problem Huisman and de Jong (2002) suggested to
use probabilities of the last 10 observations. Apart from the fact that such an ap-
proximation still is computationally intensive, it can be used only if the probability
of more than 10 consecutive observations from the second regime is negligible.

Instead, we suggest to replace the latent variables xt−1 in formula (3.1) with their
expectations x̃t−1 = E(Xt−1|xt−1; θ

(n)) based on the whole information available
at time t − 1. A similar approach was proposed by Gray (1996) in the context of
regime-switching GARCH models to avoid the problem of the conditional standard
deviation path dependence. Now, the estimation procedure described in Section 3.1
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can be applied with the following approximation of the pdf:

f
(

xt|Rt = i; xt−1; θ
(n)

)

=
1

√
2πσ

(n)
i |x̃t−1,i|γ

(n)
i

·

· exp











−

(

xt −
(

1 − β
(n)
i

)

x̃t−1,i − α
(n)
i

)2

2
(

σ
(n)
i

)2

|x̃t−1,i|2γi
(n)











,(3.3)

where x̃t,i denotes the expected value of the ith regime at time t, i.e. E
(

Xt,i|xt; θ
(n)

)

.
Note, that compared to formula (3.1) for the parameter-switching variant, the ob-
served value of the process xt−1 is now replaced by the expected value x̃t−1,i of the
ith regime at time t − 1. The following lemma describes how to derive these values.

Lemma 3.2. Expected values E
(

Xt,i|xt; θ
(n)

)

are given by the following recursive
formula:

E
(

Xt,i|xt; θ
(n)

)

= P
(

Rt = i|xt; θ
(n)

)

xt + P
(

Rt 6= i|xt; θ
(n)

)

·

·
{

α
(n)
i +

(

1 − β
(n)
i

)

E
(

Xt−1,i|xt−1; θ
(n)

)}

.

It is interesting to note, that

E
(

Xt,i|xt; θ
(n)

)

=
t−1
∑

k=0

xt−k

(

1 − β
(n)
i

)k

P
(

Rt−k = i|xt−k; θ(n)
)

·

·
k

∏

j=1

P
(

Rt−j+1 6= i|xt−j+1; θ
(n)

)

+α
(n)
i

t−1
∑

k=0

(

1 − β
(n)
i

)k
k

∏

j=0

P
(

Rt−j+1 6= i|xt−j+1; θ
(n)

)

.

Hence, the expected value E(Xt,i|xt; θ
(n)) is a linear combination of the observed

vector xt and the probabilities P (Rj = i|xj ; θ
(n)) calculated during the estimation

procedure (see the filtering part of the E-step). This observation shows that using
x̃t−1,i = E(Xt−1,i|xt−1; θ

(n)) in formula (3.3) instead of xt−1, as in formula (3.1)
for the parameter-switching variant, the computational complexity of the E-step is
greatly reduced.

The estimation procedure described in this section can be applied to models in
which at least one regime is described by the mean-reverting process given by (2.5).
The independent regimes specification is commonly used in the electricity price mod-
eling literature (for a recent review see Janczura and Weron, 2010). It is often as-
sumed that one regime follows a mean-reverting process, while the values in the other
regime(s) are independent random variables from a specified distribution. The esti-
mation steps are then as described above, with the exception that the M-step is now
dependent on the choice of the distribution in the other regime(s). Finally, note that
in MRS models the likelihood function should be weighted with the corresponding
probability (analogously as in the proof of Lemma 3.1, see the Appendix, eqn. (6.2)).
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Table 1

Means, 95% confidence intervals (CIl,CIu) and standard deviations (Std) of parameter estimates
obtained from 1000 simulated trajectories of 10000 observations each, for the three studied MRS

model types: MR, IMR, and IMR-G.

α1 β1 σ2
1

γ1 α2 β2 σ2
2

γ2 p11 p22
MR

True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.5000 0.5000

Mean 1.0006 0.7001 1.0004 -0.0002 2.0000 0.3000 0.0100 1.0010 0.4998 0.4993
CIl 0.9493 0.6842 0.9504 -0.0223 1.9997 0.2974 0.0094 0.9752 0.4854 0.4856
CIu 1.0587 0.7157 1.0543 0.0223 2.0003 0.3026 0.0106 1.0251 0.5134 0.5128
Std 0.0332 0.0095 0.0316 0.0137 0.0002 0.0016 0.0004 0.0152 0.0083 0.0081

IMR

True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.9000 0.8000

Mean 0.9974 0.6973 1.0135 0.0029 1.9702 0.2957 0.0128 1.0010 0.9004 0.8003
CIl 0.9633 0.6778 0.9836 -0.0126 1.8347 0.2753 0.0026 0.8219 0.8941 0.7892
CIu 1.0339 0.7189 1.0435 0.0176 2.1145 0.3181 0.0496 1.1716 0.9066 0.8113
Std 0.0216 0.0126 0.0184 0.0094 0.0857 0.0131 0.0055 0.1051 0.0038 0.0068

IMR-G

True 1.0000 0.7000 0.5000 0.5000 7.0000 0.5000 0.8000 0.000

Mean 0.9999 0.7009 0.5074 0.5036 6.9959 0.5063 0.7999 0.2018
CIl 0.9893 0.6888 0.4924 0.4865 6.9689 0.4801 0.7928 0.1876
CIu 1.0113 0.7136 0.5220 0.5209 7.0218 0.5348 0.8071 0.2163
Std 0.0067 0.0075 0.0087 0.0105 0.0160 0.0165 0.0044 0.0089

4. Simulation study

In order to test the performance of the estimation method proposed in Section 3.2,
we provide a simulation study. For each of the following three MRS model types we
generate 1000 sample trajectories:

• MR: with parameter-switching mean-reverting regimes, see (2.3),
• IMR: with independent mean-reverting processes in both regimes, see (2.5),
• IMR-G: with a mean-reverting process in the first regime and independent

N(α2, σ
2
2)-distributed random variables in the second regime.

The IMR model is simulated with probabilities of staying in the same regime equal to
p11 = 0.9 and p22 = 0.8 for the first and the second regime, respectively. With such
a choice of the transition matrix we can expect to see many consecutive observations
in each regime. Indeed, the probability of 10 consecutive observations from the first
regime is equal to 0.35 and even for 40 consecutive observations that probability is
still higher than 0.01. Obviously, such a model cannot be estimated based on the
information about only a few prevailing observations.

For each sample trajectory we apply one of the estimation procedures described
in Section 3. Then, we calculate the means, standard deviations and 95% confidence
intervals of the parameter estimates. The values obtained for trajectories consisting
of 10000 observations are given in Table 1. All sample means are close to the true
parameters with a deviation of no more than 0.03 (in absolute terms). In fact, in most
cases the deviation is significantly lower. Moreover, all parameter values are within
the obtained 95% confidence intervals. Also the standard deviation of the estimates
is quite low and, except for γ2 and α2 in the IMR model, does not exceed 0.04.

Next, we check how the proposed method works for different sample sizes. We gen-
erate MRS model trajectories with 100, 500, 1000, 2000, 5000, and 10000 observations.
The obtained means and standard deviations are given in Tables 2 (MR model), 3
(IMR model) and 4 (IMR-G model). The respective confidence intervals are plotted in
Figures 3, 4 and 5. As expected, the standard deviations, as well as, the width of the
confidence intervals decrease with increasing sample size. Looking at the means, in
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Table 2

Means and standard deviations (Std), over 1000 simulated trajectories, of parameter estimates in
the MR model calculated for different sample sizes.

α1 β1 σ2
1

γ1 α2 β2 σ2
2

γ2 p11 p22
True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.5000 0.5000

Size Mean

100 0.9904 0.7040 0.8863 0.0455 1.9990 0.3011 0.0088 1.1214 0.4895 0.4962
500 1.0027 0.7000 0.9818 0.0069 2.0000 0.2999 0.0096 1.0201 0.4986 0.4986

1000 1.0034 0.7014 0.9915 0.0021 2.0002 0.3002 0.0097 1.0151 0.4990 0.4989
2000 1.0021 0.7009 0.9966 0.0026 2.0000 0.3000 0.0099 1.0045 0.5002 0.4990
5000 1.0003 0.7003 0.9958 0.0005 2.0000 0.3000 0.0099 1.0035 0.4998 0.5000

10000 1.0006 0.7001 1.0004 -0.0002 2.0000 0.3000 0.0100 1.0010 0.4998 0.4993

Size Std

100 0.3746 0.1111 0.3903 0.2280 0.0279 0.0219 0.0056 0.2797 0.0864 0.0865
500 0.1563 0.0461 0.1535 0.0703 0.0042 0.0077 0.0018 0.0766 0.0350 0.0362

1000 0.1094 0.0311 0.1035 0.0453 0.0020 0.0051 0.0013 0.0518 0.0263 0.0256
2000 0.0719 0.0214 0.0719 0.0298 0.0010 0.0035 0.0008 0.0335 0.0179 0.0180
5000 0.0474 0.0139 0.0455 0.0196 0.0004 0.0023 0.0005 0.0213 0.0115 0.0115

10000 0.0332 0.0095 0.0316 0.0137 0.0002 0.0016 0.0004 0.0152 0.0083 0.0081

Table 3

Means and standard deviations (Std), over 1000 simulated trajectories, of parameter estimates in
the IMR model calculated for different sample sizes.

α1 β1 σ2
1

γ1 α2 β2 σ2
2

γ2 p11 p22
True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.9000 0.8000

Size Mean

100 1.0221 0.7280 0.9765 0.0298 2.6473 0.3982 22647 1.0580 0.8951 0.7798
500 1.0002 0.7026 1.0109 0.0061 2.0368 0.3057 0.5569 0.9822 0.8997 0.7956

1000 1.0037 0.7025 1.0070 0.0075 2.0319 0.3052 0.0391 0.9995 0.9004 0.7981
2000 0.9992 0.6987 1.0130 0.0024 1.9781 0.2969 0.0200 1.0046 0.9006 0.7993
5000 1.0001 0.6988 1.0128 0.0044 1.9615 0.2944 0.0139 1.0059 0.9004 0.8001

10000 0.9974 0.6973 1.0135 0.0029 1.9702 0.2957 0.0128 1.0010 0.9004 0.8003

Size Std

100 0.2254 0.1358 0.1975 0.1341 1.3062 0.1986 71587 2.1783 0.0385 0.0779
500 0.0954 0.0558 0.0869 0.0487 0.4207 0.0641 9.0870 0.5930 0.0166 0.0318

1000 0.0668 0.0403 0.0601 0.0312 0.2917 0.0444 0.1958 0.3687 0.0116 0.0218
2000 0.0473 0.0275 0.0408 0.0211 0.2006 0.0306 0.0620 0.2397 0.0083 0.0156
5000 0.0296 0.0176 0.0263 0.0135 0.1213 0.0184 0.0093 0.1606 0.0052 0.0098

10000 0.0216 0.0126 0.0184 0.0094 0.0857 0.0131 0.0055 0.1051 0.0038 0.0068

most cases a sample of 1000 (or even 500 for the MR and IMR-G models) observations
yields satisfactory results, as the deviation does not exceed 0.03 (in absolute terms).
Especially for the IMR-G model the results are very satisfactory. This is important
in view of the fact that a variant of this model is used in Section 5 for modeling
electricity spot prices.

5. Application to electricity spot prices

In this study we present how the techniques introduced in Section 3 can be used to effi-
ciently calibrate MRS models to electricity spot prices. We use mean daily (baseload)
day-ahead spot prices from the European Energy Exchange (EEX; Germany). The
sample totals 1827 daily observations (or 267 full weeks) and covers the 5-year period
January 3, 2005 – January 3, 2010.

When modeling electricity spot prices we have to bear in mind that electricity is
a very specific commodity. Both electricity demand and (to some extent) supply ex-
hibit seasonal fluctuations. They mostly arise due to changing climate conditions, like
temperature and the number of daylight hours. These seasonal fluctuations translate
into seasonal behavior of electricity prices, and spot prices in particular. In the mid-
and long-term also the fuel price levels (of natural gas, oil, coal) influence electric-
ity prices. However, not wanting to focus the paper on modeling the fuel stack/bid
stack/electricity spot price relationships, following Janczura and Weron (2010) we will
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Table 4

Means and standard deviations (Std), over 1000 simulated trajectories, of parameter estimates in
the IMR-G model calculated for different sample sizes.

α1 β1 σ2
1

γ1 α2 σ2
2

p11 p22
True 1.0000 0.7000 0.5000 0.5000 7.0000 0.5000 0.8000 0.2000

Size Mean

100 1.0017 0.7002 0.5064 0.5876 7.0084 0.4732 0.7977 0.1889
500 1.0045 0.7048 0.5058 0.5221 7.0007 0.5068 0.8011 0.2008

1000 0.9997 0.7004 0.5066 0.5137 6.9941 0.5066 0.7995 0.2012
2000 1.0007 0.7012 0.5086 0.5071 6.9971 0.5038 0.8001 0.2020
5000 1.0000 0.7000 0.5072 0.5055 6.9955 0.5068 0.8001 0.2019

10000 0.9999 0.7009 0.5074 0.5036 6.9959 0.5063 0.7999 0.2018

Size Std

100 0.1021 0.0927 0.1062 0.1622 0.1617 0.1730 0.0442 0.0910
500 0.0380 0.0370 0.0403 0.0563 0.0755 0.0786 0.0194 0.0395

1000 0.0252 0.0257 0.0273 0.0374 0.0510 0.0545 0.0147 0.0277
2000 0.0165 0.0174 0.0189 0.0251 0.0362 0.0377 0.0100 0.0192
5000 0.0098 0.0113 0.0121 0.0153 0.0232 0.0235 0.0065 0.0127

10000 0.0067 0.0075 0.0087 0.0105 0.0160 0.0165 0.0044 0.0089

use a single non-parametric long-term seasonal component (LTSC) to represent the
long-term non-periodic fuel price levels, the changing climate/consumption conditions
throughout the years and strategic bidding practices.

We assume that the electricity spot price, Pt, can be represented by a sum of two
independent parts: a predictable (seasonal) component ft and a stochastic compo-
nent Xt , i.e. Pt = ft + Xt. Further, we let ft be composed of a weekly periodic
part, st, and a LTSC, Tt. The deseasonalization is then conducted in three steps.
First, the long term trend Tt is estimated from daily spot prices Pt using a wavelet
filtering-smoothing technique (for details see Trück et al., 2007; Weron, 2006). This
procedure, also known as low pass filtering, yields a traditional linear smoother. Here
we use the S6 approximation, which roughly corresponds to bi-monthly (26 = 64 days)
smoothing.

The price series without the LTSC is obtained by subtracting the S6 approximation
from Pt. Next, the weekly periodicity st is removed by subtracting the ‘average week’
calculated as the arithmetic mean of prices corresponding to each day of the week
(German national holidays are treated as the eight day of the week). Finally, the
deseasonalized prices, i.e. Pt−Tt−st, are shifted so that the mean of the new process
is the same as the mean of Pt. The resulting deseasonalized time series Xt = Pt−Tt−st

can be seen in Figure 6.
The second well known feature of electricity prices are the sudden, unexpected

price changes, known as spikes or jumps. The ‘spiky’ nature of spot prices is the effect
of non-storability of electricity. Electricity to be delivered at a specific hour cannot be
substituted for electricity available shortly after or before. Extreme load fluctuations
– caused by severe weather conditions often in combination with generation outages
or transmission failures – can lead to price spikes. On the other hand, an oversupply
– due to a sudden drop in demand and technical limitations of an instant shut-
down of a generator – can cause price drops. Further, electricity spot prices are in
general regarded to be mean-reverting and exhibit the so called ‘inverse leverage
effect’, meaning that the positive shocks increase volatility more than the negative
shocks (Knittel and Roberts, 2005).

Motivated by these facts and the recent findings of Janczura and Weron (2010) we
let the stochastic component Xt be driven by a Markov regime-switching model with
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Fig 3. 95% confidence intervals of parameter estimates in the MRS model with parameter-switching
mean-reverting regimes (MR; see Table 1 for parameter details). The true parameter values are
given by the solid red lines.

three independent states:

Xt =







Xt,1 if Rt = 1,
Xt,2 if Rt = 2,
Xt,3 if Rt = 3.

(5.1)

The first (base) regime describes the ‘normal’ price behavior and is given by the
mean-reverting, heteroskedastic process of the form:

Xt,1 = α1 + (1 − β1)Xt−1,1 + σ1|Xt−1,1|γ1ǫt, (5.2)

where ǫt is the standard Gaussian noise. The second regime represents the sudden
price jumps (spikes) caused by unexpected supply shortages and is given by i.i.d.
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Fig 4. 95% confidence intervals of parameter estimates in the MRS model with independent mean-
reverting regimes (IMR; see Table 1 for parameter details). The true parameter values are given by
the solid red lines.

random variables from the shifted log-normal distribution:

log(Xt,2 − X(q2)) ∼ N(α2, σ
2
2), Xt,2 > X(q2). (5.3)

Finally, the third regime (responsible for the sudden price drops) is governed by the
shifted ‘inverse log-normal’ law:

log(−Xt,3 + X(q3)) ∼ N(α3, σ
2
3), Xt,3 < X(q3). (5.4)

In the above formulas X(qi) denotes the qi-quantile, qi ∈ (0, 1), of the dataset. Gener-
ally the choice of qi is arbitrary, however, in this paper we let q2 = 0.75 and q3 = 0.25,
i.e. the third and the first quartile, respectively. This is motivated by the statistical
properties of the model in which small fluctuations are driven by the base regime
dynamics. Only the large deviations should be driven by the spike or drop regime
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Fig 5. 95% confidence intervals of parameter estimates in the MRS model with a mean-reverting
regime combined with independent Gaussian random variables (IMR-G; see Table 1 for parameter
details). The true parameter values are given by the solid red lines.

dynamics, which implies that the spike (drop) regime distribution should have mass
concentrated well above (below) the median.

The deseasonalized prices Xt and the conditional probabilities of being in the
spike P (Rt = 2|x1, x2, ..., xT ) or drop P (Rt = 3|x1, x2, ..., xT ) regime for the analyzed
dataset are displayed in Figure 6. The prices classified as spikes or drops, i.e. with
P (Rt = 2|x1, x2, ..., xT ) > 0.5 or P (Rt = 3|x1, x2, ..., xT ) > 0.5, are additionally
denoted by dots or ’x’. The estimated model parameters are given in Table 5.

The obtained base regime parameters are consistent with the well known properties
of electricity prices. Positive γ is responsible for the ‘inverse leverage effect’, while
β = 0.42 indicates a high speed of mean-reversion. Considering probabilities of staying
in the same regime pii we obtain quite high values for each of the regimes, ranging
from 0.65 for the spike regime up to 0.96 for the base regime. As a consequence, on
average there are many consecutive observations from the same regime.

In order to check the statistical adequacy of the chosen MRS model we calcu-
late percentage differences between the data and the model implied moments and
quantiles. The model implied values are obtained as the mean value of the statistics
calculated over 1000 simulated trajectories. A negative sign indicates that the value
obtained from the dataset is lower than the model-implied. Moreover, we report the p-
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Fig 6. Calibration results of the MRS model with three independent regimes fitted to the desea-
sonalized EEX prices. The lower panels display the conditional probabilities P (S) = P (Rt =
2|x1, x2, ..., xT ) and P (D) = P (Rt = 3|x1, x2, ..., xT ) of being in the spike or drop regime, re-
spectively. The prices classified as spikes or drops, i.e. with P (S) > 0.5 or P (D) > 0.5, are denoted
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values of a Kolmogorov-Smirnov (K-S) goodness-of-fit type test for each of the individ-
ual regimes, as well as, for the whole model (for test details see Janczura and Weron,
2010). The goodness-of-fit results are summarized in Table 6. Observe that almost all
differences between the data and the model-implied statistics are less than 1%, the
only exception is the variance, but still the value of 2.38% indicates quite a good fit.
Moreover, all K-S test p-values are higher than the commonly used 5% significance
level, so we cannot reject the hypothesis that the dataset follows the 3-regime MRS
model.

6. Conclusions

In this paper we have proposed a method that greatly reduces the computational
burden induced by the introduction of independent regimes in MRS models. Instead
of storing conditional probabilities for each of the possible state process paths, i.e. 2T

values in total, our method requires conditional probabilities for only one time-step,



/ 17

Table 5

Calibration results of the MRS model with three independent regimes fitted to the deseasonalized
EEX prices

Parameters Probabilities

α1 β1 σ2
1

γ1 α2 σ2
2

α3 σ2
3

p11 p22 p33
19.98 0.42 0.15 0.70 2.65 1.03 2.41 0.35 0.9587 0.6500 0.7778

Table 6

Goodness-of-fit statistics for the 3-regime MRS model fitted to the deseasonalized EEX prices. For
moments and quantiles the relative differences between the sample and the model implied statistics

are given (the latter are obtained from 1000 simulations).

Moments Quantiles K-S test p-values

E(X) Var(X) 0.1 0.25 0.5 0.75 0.9 Base Spike Drop Model

-0.05% -2.38% 0.36% 0.05% -0.01% -0.18% -0.40% 0.82 0.08 0.40 0.35

i.e. 2T values. We have performed a limited simulation study to test the efficiency of
the new method and applied it to a sample series of electricity spot prices.

The simulation study has shown that all sample means are close to the true pa-
rameter values (and all true parameter values are within the obtained 95% confidence
intervals). Moreover, the standard deviations, as well as, the width of the confidence
intervals decrease with increasing sample size. Looking at the means, in most cases
a sample of 1000 (or even 500 for the MR and IMR-G models; for model acronyms
and definitions see Section 4) observations yields satisfactory results, as the devia-
tion does not exceed 0.03 (in absolute terms). Especially for the IMR-G model the
results are very satisfactory. This is important in view of the fact that variants of
this model are popular in the energy finance literature. In particular, a model of this
type (with shifted log-normal spike and price drop regimes independent from the base
mean-reverting regime) is calibrated in Section 5 to a sample series of deseasonalized
wholesale electricity spot prices from the German EEX market.

The proposed MRS model fits market data well and also contains unique features
that allow for useful interpretations of the price dynamics. In particular, the parameter
γ can be treated as a parameter representing the ‘degree of inverse leverage’. A positive
value (e.g. γ1 = 0.70 as in Table 5) indicates ‘inverse leverage’. Recall, that the
‘inverse leverage effect’ reflects the observation that positive electricity price shocks
increase volatility more than negative shocks. Knittel and Roberts (2005) attributed
this phenomenon to the fact that a positive shock to electricity prices can be treated as
an unexpected positive demand shock. Therefore, as a result of convex marginal costs,
positive demand shocks have a larger impact on price changes relative to negative
shocks.

Finally, since MRS models can be considered as generalizations of HMMs, the
results of this paper can have far-reaching implications for many problems where
HMMs have been applied (see e.g. Mamon and Elliott, 2007; Scharpf et al., 2008;
Shirley et al., 2010). In some cases, perhaps, a MRS model with independent regimes
would constitute a more realistic model of the observed phenomenon than a HMM.
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Appendix

Proof of Lemma 3.1. Observe that the joint density f(x1, x2, ..., xT ) can be written
as a product of appropriate conditional densities

f(xT |xT−1, xT−2, ..., x1)f(xT−1|xT−2, xT−3, ..., x1) . . . f(x2|x1)f(x1). (6.1)

Moreover, Xt conditional on xt−1, xt−2, ..., x1 has a Gaussian distribution with mean
(1 − βi)xt−1 + αi and standard deviation σ2

i |xt−1|γi . Thus, the ith regime weighted
log-likelihood function is given by the following formula:

ln[L(αi, βi, σi, γi)] = −
T

∑

t=2

P (Rt = i|xT ; θ(n)) ·

·
[

ln
(√

2πσi|xt−1|γi

)

+
(xt − (1 − βi) xt−1 − αi)

2

2σ2
i |xt−1|2γi

]

.(6.2)

Note, that the parameter vector θ(n) is omitted in what follows to simplify the nota-
tion. In order to find the maximum likelihood (ML) estimates, the partial derivatives
of ln(L) are set to zero. This leads to the following system of equations:

T
∑

t=2

P (Rt = i|xT )|xt−1|−2γi (xt − (1 − βi)xt−1 − αi) = 0,

T
∑

t=2

P (Rt = i|xT )xt−1|xt−1|2γi (xt − (1 − βi)xt−1 − αi) = 0,

T
∑

t=2

P (Rt = i|xT )|xt−1|−2γi (xt − (1 − βi)xt−1 − αi)
2

=

= σ2
i

T
∑

t=2

P (Rt = i|xT ),

T
∑

t=2

P (Rt = i|xT )|xt−1|−2γi ln |xt−1| (xt − (1 − βi)xt−1 − αi)
2

=

= σ2
i

T
∑

t=2

P (Rt = i|xT ) ln |xt−1|.
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Now, the ML estimates for αi, βi, and σ2
i can be explicitly derived:

α̂i =

T
∑

t=2
P (Rt = i|xT )|xt−1|−2γi(xt − (1 − β̂i)xt−1)

T
∑

t=2
P (Rt = i|xT )|xt−1|−2γi

,

β̂i =

T
∑

t=2
P (Rt = i|xT )xt−1|xt−1|−2γiB1

T
∑

t=2
P (Rt = i|xT )xt−1|xt−1|−2γiB2

,

B1 = xt − xt−1 −
∑T

t=2 P (Rt = i|xT )|xt−1|−2γi (xt − xt−1)
∑T

t=2 P (Rt = i|xT )|xt−1|−2γi

,

B2 =

∑T
t=2 P (Rt = i|xT ; θ(n))xt−1|xt−1|−2γi

∑T
t=2 P (Rt = i|xT )|xt−1|−2γi

− xt−1,

σ̂2
i =

T
∑

t=2
P (Rt = i|xT )|xt−1|−2γi(xt − α̂i − (1 − β̂i)xt−1)

2

T
∑

t=2
P (Rt = i|xT )

,

while the estimate for γi has to be approximated numerically (due to the entangled
form of the derivatives of the log-likelihood function (6.2)).

Proof of Lemma 3.2. Let Xt = (X1,X2, ...,Xt). Observe that

Xt,i = IRt=iXt + IRt 6=i [αi + (1 − βi)Xt−1,i + σi|Xt−1,i|γiǫt] , (6.3)

where Ix is the indicator function. Taking the expected value conditional on Xt yields:

E
(

Xt,i|Xt; θ
(n)

)

= P
(

Rt = i|Xt; θ
(n)

)

Xt + P
(

Rt 6= i|Xt; θ
(n)

) [

α
(n)
i +

+
(

1 − β
(n)
i

)

E
(

Xt−1,i|Xt, Rt 6= i; θ(n)
)

+

+σ
(n)
i E

(

|Xt−1,i|γ
(n)
i ǫt|Xt, Rt 6= i; θ(n)

)]

.

Since Xt−1,i and ǫt are independent of the σ-algebra generated by {Xt, Rt 6= i} we
have

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt, Rt 6= i; θ(n)

)

= E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1; θ

(n)
)

,

and
E

(

Xt−1,i|Xt, Rt 6= i; θ(n)
)

= E
(

Xt−1,i|Xt−1; θ
(n)

)

.

Moreover, from the law of iterated expectation and basic properties of conditional
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expected values:

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1; θ

(n)
)

=

= E
[

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1,Xt−1,i; θ

(n)
)

|Xt−1; θ
(n)

]

=

= E
[

|Xt−1,i|γ
(n)
i E

(

ǫt|Xt−1,Xt−1,i; θ
(n)

)

|Xt−1; θ
(n)

]

=

= E
[

|Xt−1,i|γ
(n)
i E(ǫt)|Xt−1; θ

(n)
]

= 0,

which implies

E
(

Xt,i|Xt; θ
(n)

)

= P (Rt = i|Xt; θ
(n))Xt + P (Rt 6= i|Xt; θ

(n)) ·

·
[

α
(n)
i + (1 − β

(n)
i )E

(

Xt−1,j |Xt−1; θ
(n)

)]

.

Finally, substituting the variables Xt with their observations xt completes the proof.
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