
MPRA
Munich Personal RePEc Archive

Jump-Diffusion Calibration using
Differential Evolution

David Ardia and Juan Ospina and Giraldo Giraldo

aeris CAPITAL AG Switzerland, School of Statistics, National
University of Colombia, Medellin, Colombia

16. October 2010

Online at http://mpra.ub.uni-muenchen.de/26184/
MPRA Paper No. 26184, posted 29. October 2010 11:50 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/26184/

Jump-Diffusion Calibration using Differential EvolutionI

David Ardiaa,∗, Juan David Ospina Arangob, Norman Diego Giraldo Gómezb

aaeris CAPITAL AG, Switzerland
bSchool of Statistics, National University of Colombia, Medellin, Colombia

Abstract

The estimation of a jump-diffusion model via Differential Evolution is presented. Finding the
maximum likelihood estimator for such processes is a tedious task due to the multimodality of
the likelihood function. The performance of the Differential Evolution algorithm is compared to
standard optimization techniques.

Keywords: Jump-diffusion, maximum likelihood, optimization, Differential Evolution

1. Jump Diffusion models

Jump-diffusion models are continuous-time stochastic processes introduced in quantitative fi-
nance by Merton (1973), extending the work on option pricing by Black and Scholes (1973).
These models are used to reproduce stylized facts observed in asset price dynamics, such as mean-
reversion and jumps. Various specifications have been proposed in the literature; see Cont and
Tankov (2004) for an extensive review. In what follows, we consider the standard jump-diffusion
model with time invariant coefficients, constant volatility and Gaussian distributed jumps. This
model can be expressed as

dX(t) = X(t) (µdt+ σdW (t) + J(t)dP (t)) , (1)

where X(t) is the process that describes the price of a financial asset, with P (X(0) > 0) = 1,
µ ∈ R is the process drift coefficient and σ2 > 0 is the instantaneous process variance, W (t) is a
standard Wiener process, P (t) is Poisson process with constant intensity λ > 0 and J (t) is the
process generating the jump size, that together with P (t) forms a compound Poisson process. The
solution of (1) is

X(t) = X(0) exp

(µ− σ2

2

)
t+ σW (t) +

P (t)∑
k=1

Qk

 , (2)

where Qk is implicitly defined such that J (Tk) = exp(Qk)− 1, Tk being the time at which the
kth jump of the Poisson process occurs; see Ospina Arango (2009). If P (t) = 0, the sum is zero by
convention. We assume that Qk is an independent and identically normally distributed sequence
with mean µQ and variance σ2

Q.

IThe views expressed in this paper are the sole responsibility of the authors and do not necessarily reflect those
of aeris CAPITAL AG or any of its affiliates. Any remaining errors or shortcomings are the authors’ responsibility.
The authors are grateful to Kris Boudt, Michel Dubois, Lennart F. Hoogerheide and Enrico Schumann for helpful
comments.

∗Corresponding author; tel.: +41 (55)5 111 222; fax. +41 (55)5 111 223.
Email addresses: da@aeris-capital.com (David Ardia), jdospina@gmail.com (Juan David Ospina Arango),

ndgirald@unal.edu.co (Norman Diego Giraldo Gómez)

Preprint submitted to MPRA October 26, 2010

The log-return of X(t) over a ∆t-period is defined as ∆Y (t)
.
= ∆ logX(t) = logX(t + ∆t) −

logX(t) and, from (2), its dynamic is given by

∆Y (t) =

(
µ− σ2

2

)
∆t+ σ∆W (t) +

∆P (t)∑
k=1

Qk . (3)

It can be shown that the distribution of ∆Y (t) is an infinite mixture of Gaussian distributions
which renders the estimation intractable; see Beckers (1981) and Honoré (1998). Ball and Torous
(1983) present a simplified version by assuming that if the jumps’ occurrence rate is small, then in
a sufficiently short time period only one jump can occur. In this case, ∆P (t) can be approximated
by a Bernoulli random variable for small λ∆t, and the density of ∆Y (t) is

f∆Y (y) = (1− λ∆t) f∆D(y) + λ∆t (f∆D ∗ fQ) (y) , (4)

where f∆D is the density of the diffusion part and fQ is the density assumed for the jumps.
The convolution operator ∗ is defined as (f∆D ∗ fQ)(y)

.
=
∫∞
−∞ f∆D(u)fQ(u− y)du. The diffusion

density f∆D is a normal density with mean (µ − σ2/2)∆t and variance σ2∆t. If fQ is also a
normal density, then (f∆D ∗ fQ) is normal with mean (µ−σ2/2)∆t+µQ and variance σ2∆t+σ2

Q.
For a series of observed log-returns ∆y1, . . . ,∆yT , the log-likelihood of the model parameters
θ
.
= (µ, σ, λ, µQ, σQ)′ is obtained in a straightforward manner from (4) as

logL (θ |∆y1, . . . ,∆yT) =

T∑
t=1

log f∆Y (∆yt | θ) , (5)

and the maximum likelihood estimator θ̂ is obtained by maximizing (5). Kiefer (1978) shows

that there does not exist a unique optimum θ̂ in such a mixture setting. The estimation of the
model is therefore a difficult task and a robust global optimizer such as Differential Evolution is
required.

2. Differential Evolution

Differential Evolution (DE) is a search heuristic introduced by Storn and Price (1997) and
belongs to the class of genetic algorithms. The algorithm uses biology-inspired operations of
crossover, mutation, and selection on a population in order to minimize an objective function
over the course of successive generations. Its remarkable performance as a global optimization
algorithm on continuous problems has been extensively explored; see, e.g., Price et al. (2006).

Let NP denote the number of parameter vectors (members) x ∈ Rd in the population. In
order to create the initial generation, NP guesses for the optimal value of the parameter vector
are made, either using random values between bounds or using values given by the user. Each
generation involves creation of a new population from the current population members {xi | i =
1, . . . ,NP}, where i indexes the vectors that make up the population. This is accomplished using
differential mutation of the population members. An initial mutant parameter vector vi is created
by choosing three members of the population, xr0 , xr1 and xr2 , at random. Then vi is generated as
vi

.
= xr0 +F ·(xr1−xr2), where F is a positive scale factor whose effective values are typically less

than one. After the first mutation operation, mutation is continued until d mutations have been
made, with a crossover probability CR ∈ [0, 1]. The crossover probability CR controls the fraction
of the parameter values that are copied from the mutant. If an element of the trial parameter
vector is found to violate the bounds after mutation and crossover, it is reset in such a way that
the bounds are respected. Then, the objective function values associated with the children are
determined. If a trial vector has equal or lower objective function value than the previous vector

2

80

100

120

140

160

180

Date

A
A

P
L

 s
to

c
k
 p

ri
c
e

2008 2009

−20

−15

−10

−5

0

5

10

Date

D
a

ily
 l
o

g
−

re
tu

rn
s
 (

in
 %

)

2008 2009

Figure 1: Prices of Apple Inc. stock (left) and log-returns (right) for a period ranging from January 1, 2008, to June 30,
2009, for a total of 377 observations.

it replaces the previous vector in the population; otherwise the previous vector remains. For more
details, see Price et al. (2006) and Storn and Price (1997).

Several implementations of DE are currently available. A web-based list of DE programs
for general purpose optimization is maintained by Rainer Storn at http://www.icsi.berkeley.
edu/~storn/code.html. In what follows, we will rely on the package DEoptim (Ardia and
Mullen, 2009; Mullen et al., 2009; Ardia et al., 2010) which implements DE in the R language
and environment for statistical computing (R Development Core Team, 2009). R enables rapid
prototyping of objective functions, access to a wide array of tools for statistical modeling, and
ability to generate customized plots of results with ease. DEoptim is available at http://cran.
r-project.org/web/packages/DEoptim/.

3. Illustration

We illustrate the performance of DE by fitting model (3) to financial data. We consider daily
log-returns of the stock Apple Inc. (AAPL) for a period ranging from January 1, 2008, to June
30, 2009, for a total of 377 observations. The data set is downloaded from http://www.finance.

yahoo.com. The stock prices and the corresponding log-returns (in percent) are displayed in
Figures 1.

In order to find the maximum likelihood estimator we minimize the negative value of the log-
likelihood function (NLL) given in (5). The function DEoptim of the package DEoptim is run
with the default parameters (i.e., 200 populations of size NP = 50 are generated with F = 0.8 and
CR = 0.5); see the Appendix for the R code. For comparison purposes, the objective function is
also minimized using standard optimization functions available in R. More specifically, we use the
function optim with method L-BFGS-B, and the functions nlminb and constrOptim. The method
L-BFGS-B is a box-constrained quasi-Newton method which uses function values and numerical
gradients to build up a picture of the surface to be optimized. nlminb offers unconstrained and
constrained optimization using PORT routines. constrOptim minimizes a function subject to
linear inequality constraints using an adaptive barrier algorithm. For all methods we use the default

3

values of the control parameters. Lower boundaries are set to θLB
.
= (1,−10, 0.0001,−10, 0.0001)′

and upper boundaries to θUB
.
= (100, 10, 10, 10, 10)′.

We run the estimation 100 times for all optimization routines and use random starting values
in the feasible parameter set when needed. Boxplots of the NLL values at optimum for the
four optimizers are displayed in Figure 2. We notice that L-BFGS-B, nlminb and constOptim

converge towards local optima for several runs; nlminb exhibits the best performance among them
with 50% of the runs converging towards the global optimum at NLL = -754.66 (indicated by a
horizontal dashed line). On the other hand, DEoptim is more stable over the runs and always
converges towards to global optimum. Note that the global optimum is obtained by DEoptim after
a longer run of 500 populations of size NP = 100. The global maximum likelihood estimator is
θ̂ = (16.72, 0.0862, 0.4607,−0.0115, 0.0681), indicating around 17 jumps on average per year, with
an average size of exp(−0.0115 + 0.06812/2)− 1 ≈ −0.91%.

1 2 3 4

−760

−750

−740

−730

−720

−710

NLL values

Figure 2: Boxplots of the 100 negative values of the log-likelihood function (NLL) at optimum θ̂ obtained by the
various optimizers. (1) function optim with method L-BFGS-B, (2) function nlminb, (3) function constrOptim, (4) function
DEoptim. Starting values are generated randomly in the feasible parameter set. Lower boundaries are set to θLB

.
=

(1,−10, 0.0001,−10, 0.0001)′ and upper boundaries to θUB
.
= (100, 10, 10, 10, 10)′. Jittered black dots report the NLL

values obtained for each run. Note that the graph is vertically scaled to the [-760,-710] interval (i.e., some outliers are not
reported).

4. Conclusions

This note introduced Differential Evolution, a heuristic evolutionary method for global opti-
mization that is effective on many problems of interest in science and technology. We illustrated
the power of DE optimization through the use of the R package DEoptim by fitting a jump-
diffusion model to financial data. Finally, we refer the reader to Ospina Arango (2009) for a more
extensive study of jump-diffusion calibration using Differential Evolution.

4

References

Ardia, D., Boudt, K., Carl, P., Mullen, K., Peterson, B., 2010. Differential Evolution (DEoptim) for non-convex
portfolio optimization.

Ardia, D., Mullen, K., 2009. DEoptim: Differential Evolution Optimization in R. R package version 2.00-06.
URL http://CRAN.R-project.org/package=DEoptim

Ball, C. A., Torous, W. N., 1983. A simplified jump process for common stock returns. Journal of Financial and
Quantitative Analysis 18 (1), 53–65.

Beckers, S., 1981. A note on estimating the parameters of the jump-diffusion model of stock returns. Journal of
Financial and Quantitative Analysis 16, 127–140.

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. The Journal of Political Economy
81 (3), 637–654.

Cont, R., Tankov, P., 2004. Financial Modelling with Jumps. Chapman & Hall / CRC Press, ISBN 1584884134.
Honoré, P., 1998. Pitfalls in estimating jump-diffusion models.
Kiefer, N., 1978. Discrete parameter variation: Efficient estimation in diffusion process. Econometrica 46 (2), 427–

434.
Merton, R. C., 1973. Theory of rational option pricing. The Bell Journal of Economics and Management Science

4 (1), 141–183.
Mullen, K. M., Ardia, D., Gil, D. L., Windover, D., Cline, J., 2009. DEoptim: An R package for global optimization

by Differential Evolution.
Ospina Arango, J. D., 2009. Estimación de un modelo de difusión con saltos con distribución de error generalizada

asimétrica usando algoritmos evolutivos. Master’s thesis, Universidad Nacional de Colombia.
Price, K. V., Storn, R. M., Lampinen, J. A., 2006. Differential Evolution: A Practical Approach to Global Opti-

mization. Springer-Verlag, Berlin, Germany, ISBN 3540209506.
R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.
URL http://www.R-project.org

Storn, R., Price, K., 1997. Differential Evolution – A simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization 11 (4), 341–359.

Estimation of a jump-diffusion process in R with the package DEoptim

==== LOAD PACKAGES ====

library("tseries")

library("DEoptim")

==== MIXTURE DENSITY AND LIKELIHOOD ====

mixture density

fdy <- function(dy, dt, lambda, mu, sigma, muq, sigmaq) {

mu1 <- (mu - sigma^2 / 2) * dt

mu2 <- (mu - sigma^2 / 2) * dt + muq

sig1 <- sigma * sqrt(dt)

sig2 <- sqrt(sigma^2 * dt + sigmaq^2)

pdf1 <- dnorm(dy, mean = mu1, sd = sig1)

pdf2 <- dnorm(dy, mean = mu2, sd = sig2)

pdf <- (1 - lambda * dt) * pdf1 + (lambda * dt) * pdf2

return(pdf)

}

negloglikeliood function

negloglik <- function(theta, dy, dt) {

L <- fdy(dy = dy, dt = dt, lambda = theta[1],

mu = theta[2], sigma = theta[3],

muq = theta[4], sigmaq = theta[5])

nll <- -sum(log(L))

if (is.nan(nll) | is.na(nll) | is.infinite(nll)) {

nll <- 1e10

}

return(nll)

5

}

==== DATA ====

load data set (need a web connection)

x <- get.hist.quote(instrument = "AAPL",

start = "2008-01-01", end = "2009-06-30",

retclass = "zoo", quote = "AdjClose", compression = "d")

log-returns

dy <- diff(log(as.vector(x)))

assume 255 days in a year (trading days)

dt <- 1 / 255

==== DEOPTIM ESTIMATION ====

set.seed(1234)

outDE <- DEoptim(negloglik,

lower = c(1, -10, 1e-4, -10, 1e-4),

upper = c(100, 10, 10, 10, 10),

control = list(itermax = 500, NP = 100), dt = dt, dy = dy)

summary(outDE)

plot(outDE, type = 'l')

plot(outDE, plot.type = 'bestvalit', type = 'l')

6

