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Abstract 
 

Current CVA modeling framework has ignored the impact of stochastic recovery rate. 
Due to the possible negative correlation between default and recovery rate, stochastic 
recovery rate could have a doubling effect on wrong-way risk. In the case of a payer 

CDS, when counterparty defaults, the CDS value could be higher due to default 
contagion while the recovery rate may also be lower if the economy is in a downturn. 

Using our recently proposed model of correlated stochastic recovery in the default time 
Gaussian copula framework, we demonstrate this double impact on wrong-way risk in the 

CVA calculation for a payer CDS. We also present a new form of Gaussian copula that 
correlates both default time and recovery rate. 

 
 
1. Introduction 
 
Counterparty credit risk has been a hot topic. In the recent document of Basel 
Committee’s reform proposal [3], counterparty credit risk is identified as a key area 
where capital requirement needs to be strengthened. How to value counterparty credit 
risk in the form of credit valuation adjustment (CVA) is an active research field as of late, 
see for example [2, 5, 6, 7, 8, 14]. All these papers have tried to capture the wrong-way 
risk that counterparty defaults when the market value of a credit default swap (CDS) 
contract is high, through assumptions of correlation or contagion between defaults. 
However, one aspect that is missing is that recovery rate is usually not deterministic, but 
instead is stochastic and could be negatively correlated with default rate, see Altman [1] 
and references therein. In an economic downturn, default rates are higher than usual and 
recovery rates are also lower at the same time. This could lead to a doubling effect on 
CVA in case of wrong-way risk, where counterparty credit quality is negatively 
correlated with total exposure to the same counterparty. A CVA calculation without the 
consideration of stochastic recovery could easily underestimate the counterparty credit 
risk. An obvious example would be the default of Lehman Brothers in the credit crisis. 
The recovery rate after the Lehman CDS auction was set at 8.625 cents on the dollar for 
senior unsecured debt. The recovery rate on OTC contracts might be different due to 
netting and collateral posting, and also depending on the bankruptcy workout process. It 
is the purpose of this paper to start quantifying this double impact of wrong-way risk. 
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One reason that recovery effect was not seriously considered in the previous work is 
because a consistent stochastic recovery modeling framework was lacking until the recent 
work of Bennani-Maetz [4] and Li [13]. Although their work has been focused on 
modeling of CDO senior tranche risk, there is no reason why the framework can not be 
used in other credit areas to capture the recovery risk. In this paper, we will focus on how 
stochastic recovery deepens the wrong-way risk on a payer CDS contract. The other area 
that the recovery modeling might help is downturn LGD in the Basel capital calculation, 
which will be discussed in a separate paper. 
 
In a previous paper, we discussed a simple way to calculate CVA for CDS on super 
senior ABS CDO [11]. It turns out that the method was too simplistic in that it totally 
ignored wrong-way risk and stochastic recovery effect. Armed with our stochastic 
recovery model, it seems to be the right time to revisit it. We will illustrate the wrong-
way risk and recovery effect through an example of a payer CDS deeply-in-the-money 
with a stressed counterparty. 
 
The paper is organized as follows. In section 2, we will detail our model [13] of 
stochastic recovery in a default time copula framework and derive the copula function 
correlating both default time and recovery in the Gaussian case. In section 3, we will 
setup our model for the bilateral CVA calculation on an OTC payer CDS contract. In 
section 4, we first give a numeric example of a break-even CDS. Then we compare the 
new method with the simple method discussed in our previous paper [11] to show the 
double impact from wrong-way risk and stochastic recovery in the case of a deeply-in-
the-money CDS with a stressed counterparty. Section 5 concludes the paper. 
 
 
2. Stochastic Recovery in the Default Time Copula Framework 
  
In the default time copula framework of D. Li [10], the joint distribution of default times 
is determined by the marginal default time distributions (given by default probability 
curve) and the default time copula. In the following, we will build a correlated stochastic 
recovery model in a one factor Gaussian copula setup, following our recent work [13]. It 
is straight forward to extend the model to multi-factor or non-Gaussian copula cases. 
 
In the Gaussian copula setup, a latent variable i

i
d

i
di ZV ερρ −+= 1  drives the default 

of obligor  of a credit portfolio, where i Z  and iε  are independent normal random 
variables and )1,0(~ N Z  is the systematic factor. The default event can be 

characterized by , where 
ti ≤τ1

))((1 tpvV iii
−Φ=≤ iτ  is the default time random variable, 

 is the cumulative default probability of the obligor i  and )(tpi )(xΦ is the standard 
cumulative normal distribution function. In other words, we can define the default time 
random variable as 
 
         (1)  ))((1

iii Vp Φ= −τ
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We can assume that stochastic recovery is driven by another latent variable 

i
i
r

i
ri ZW ξρρ −+= 1  through a time-independent cumulative distribution function 

, where )(rFR iξ  is another independent normal random variable. In a previous paper 
[12], we specify that stochastic recovery is defined by  conditional on ))((1

iRi WFR Φ= −

ti ≤τ  or . The recovery defined this way is not the spot recovery at 
default and may lead to arbitrage conditions. To build a consistent stochastic recovery 
model, we have to start with the spot recovery (or recovery upon default) at an arbitrary 
time t . 

))((1 tpV ii
−Φ≤

 
We have 
 

))((1 tpVt iii
−Φ=↔=τ     (2) 

 
Conditional on default at time t  or ,   follows a normal distribution 

with mean 

))((1 tpV ii
−Φ= iW

))((1 tpi
i
r

i
d

−Φρρ  and standard deviation i
r

i
d ρρ−1 . To ensure that  is 

indeed the marginal cumulative distribution for the spot recovery at time t , we define  
)(rFR
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Conditional on ti =τ  or , ))((1 tpV ii

−Φ= Z  follows a normal distribution with mean 

))((1 tpi
i
d

−Φρ  and standard deviation i
dρ−1 , while iξ  still follows the standard 

normal distribution. If we fix zZ = , then the conditional spot recovery distribution will 
be 
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Conditional on the systematic factor Z , obligor defaults are independent and the 
conditional default probability for obligor  is given by i
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Now we can derive the distribution for conditional period recovery rate defined as 
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We also have 
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The unconditional period recovery distribution can be calculated as follows 
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where )(xφ  is the normal distribution function. So the marginal distribution of period 
recovery rate is the same as the marginal distribution of spot recovery rate and is time-
independent. If  has the same expected recovery of )(rFR

MKTR  as that assumed by the 
single name CDS market, then the model is automatically consistent with the single name 
CDS market. Note that, in a dynamic model, the spot recovery distribution  could 
be time dependent, then the integration in equation (7) would be more complicated. 

)(rFR

 
Consider two obligors with correlated default and recovery rate, here we derive the 
copula of default time and recovery rate. Conditional on Z , the default and recovery 
processes are independent for the two obligors, and we have 
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Integrating over , we will have the copula as  z
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where  is the 4-variable cumulative normal distribution and the correlation matrix is 
defined as 
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This can be proven through the following result 
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where ε , 1ε , 2ε , ξ , 1ξ , 2ξ , Z  are independent standard normal random variables, then 
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which leads to the equation (12). 
 
Equation (11) can be compared with the standard Gaussian copula of default times with 
fixed recovery 
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Note that, in equation (11), default time and recovery of the same obligor are not 
correlated, this is because recovery is always conditional on default. The copula for 
default time and recovery is still Gaussian. However, the correlation matrix can not be 
generated by a simple one-factor model. Equation (11) can be easily extended to more 
than two obligors, multi-factors and other types of copulas. 
 
For CVA calculation, we need the conditional expected loss for obligor i  before time t   
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For numeric purpose, we consider the recovery distribution discussed in [13], which is 
similar to the beta distribution as shown in the Figure below.  
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It has the following form 
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where  and 0≥a 10 0 ≤≤ r . This distribution will simplify calculation for Gaussian 
copula model. The expected recovery rate is  and the variance of recovery rate is 0r
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Assume . When  goes to zero, the variance goes to the maximum value 

, which corresponds to the case where 

MKTRr =0 a
)1( MKTMKT RR − R  takes the extreme value of 0 or 

1. When  goes to infinity, the variance goes to zero and the distribution reduces to a 
constant recovery 
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The original spot recovery equation (3) can be written as  
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The expected conditional spot recovery is 
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The expected conditional loss up to time  is t
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Conditional on Z , the expected recovery rate will be time-dependent through . )(tpi

 
 
3. Bilateral Counterparty Risk with Stochastic Recovery 
 
The general bilateral counterparty risk pricing formula without netting or collateralization 
has been derived in Brigo and Capponi [7] (see equations (2.6) and (2.7) in their paper). 
We write down the formula for the bilateral CVA for the investor at valuation time , t
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where the subscripts 0, 1, 2 are for investor, reference credit (in the case of a CDS 
contract) and counterparty, τ  is the default time variable, ),( τtD  is the deterministic 
discount factor, )(τNPV  is the net present value of future (after τ ) cashflows of the 
OTC contract valued at τ  not subjected to counterparty risk, the loss given default  
is one minus the recovery upon default, 

LGD
T  is the maturity of the OTC contract. The 

contract value with counterparty risk will be the contract value without counterparty risk 
minus . CVABR−
 
Brigo and Capponi [7] combine Gaussian copula of default times with a stochastic 
intensity model to study the impact of default correlation and credit spread volatility on 
the bilateral CVA of a CDS. They assume constant LGDs, thus ignore the double impact 
from negatively correlated recovery rates. The present paper will use a simple model to 
demonstrate the double impact from recovery. We will use the one-factor Gaussian 
copula model with stochastic recovery described in the previous section where the 
uncertainty in the systematic factor contains all the randomness in the default probability 
curve and defaults are independent conditional on the systematic factor. The problem 
with this model as a dynamic model has been discussed in the literature, see for example 
the recent paper of Hitier and Huber [9]. In this simple model, we will be able to 
demonstrate the double impact from correlated defaults and recovery rates. However, we 
will not be able to study the impact of credit spread volatility, since this is not a true 
dynamic model. We notice that it is possible to apply our Gaussian copula model of 
default time and recovery to the Brigo-Capponi framework to add stochastic recovery 
effect in addition to default correlation and spread volatility. 
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We assume, conditional on the systematic factor Z , the default probability curve is 
deterministic and takes the form in equation (6). The bilateral CVA can be written as 
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Let  and assume the premium cashflows and payments of default losses all happen 
on discrete time steps 

0=t
TTTtT N == ,,, 10 K . We also assume that, if counterparty and the 

reference credit default in the same time period, CVA loss will be . We 
arrive at the following approximation 
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where, in the last equation, for a payer CDS contract,  
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where  is the fixed premium rate of the CDS contract and 1S jα  is day count fraction. For 
simplicity, we have ignored the accrued premium. We also ignore the situation that 
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investor and counterparty default in the same period. Greater accuracy can be achieved 
through Monte Carlo simulation instead of bucketing time into payment periods. 
 
In the numeric calculation, all we need are the conditional survival probability 

 and conditional expected loss  up to each time point  conditional on ),(1 zTp i− )(zL
iT iT

zZ = , which have explicit formula in section 2, see equations (6) and (21). The final 
BR-CVA will be calculated as integration over the Gaussian variable Z . 
 
 
4. Numerical Results 
 
We consider a five-year payer CDS on a reference name. Since we are more interested in 
wrong-way risk with stochastic recovery effect, we will assume the protection buyer is 
almost default-free. Interest rate is assumed to be constant at 4%. We experiment with 
two spread levels 120 bps and 250 bps applied to either counterparty or reference name. 
The effects of correlation between defaults and recovery rates and the volatility of 
recovery rates are considered. We expect recovery correlation to closely follow default 
correlation and assume they are equal in the numerical calculation. The results are 
presented in Table 1 and Table 2. 
 
In general, when default correlation increases, CVA also increases. Adding correlated 
stochastic recovery, CVA will increase with the volatility of recovery rate. But the 
stochastic recovery effect is not as strong as default correlation for wrong-way risk. Keep 
in mind that volatility of recovery is capped at 49% if mean of recovery is fixed at 40%. 
We notice that the same phenomenon appears here as first discussed in Brigo and 
Chourdakis [6]. In table 1, when the default correlation is extremely high, CVA drops 
significantly. This is because reference name almost always default before the 
counterparty so that the counterparty risk is much smaller. 
 
Next we consider a 5 year CDS contract that is deeply-in-the-money with a stressed 
counterparty. The deal premium is 5 bps while the current market spread is either 15% or 
25% for the reference name or the counterparty. The results are presented in Table 3 and 
Table 4. Note that CVA is a loss for investor, but is a gain for counterparty. 
 
In a previous paper [11], we discussed two simple methods to calculate CVA for a 
deeply-in-the-money CDS contract on a super senior ABS CDO tranche with a distressed 
counterparty. The first method is to add the counterparty CDS spread to Libor curve to 
discount the cashflows, which lacks modeling justification. The second method uses an 
approximation when the exposure is almost always positive and there is no correlation 
between counterparty and the underlying credit. We compare the results from these two 
methods (called method 1 and method 2) with the new method discussed in this paper. 
The first method always gives a higher CVA than the second method, while the second 
method matches closely with the new method when there is no correlation. However, 
with correlation and recovery volatility getting higher, CVA based on the new method 
could be much higher than both method 1 and method 2. This reflects how wrong-way 
risk and stochastic recovery affects CVA value. However, when correlation is extremely 
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high and the reference name has worse credit quality than that of counterparty, CVA 
would drop much lower since default time of the reference name is usually earlier than 
that of counterparty. 
 
To complete the discussion, we also consider the risk of investor default in this stressed 
situation. We assume investor 5 year CDS spread to be 500 bps. The results are listed in 
table 5 and table 6. The total CVA is less due to bilateral effect, but it could still be at 
elevated level in case of higher default correlation and higher volatilities for correlated 
recovery rates. 
 
 
5. Conclusion 
 
In this paper, we apply our model [13] of stochastic recovery in a default time Gaussian 
copula framework to quantify the wrong-way risk due to negatively correlated default 
and recovery rate in bilateral CVA calculation, using payer CDS as an example. We 
follow the general framework for calculating bilateral CVA discussed in Brigo and 
Capponi [7], but use our one-factor default time Gaussian copula model with stochastic 
recovery to describe the future uncertainty in default probabilities and recovery rates. We 
find that, for a payer CDS contract, CVA normally increases in magnitude with default 
correlation and volatility of correlated recovery rates. However, in the special case when 
the reference name has worse credit quality than the counterparty and default correlation 
is extremely high at the same time, CVA could be much smaller even with high recovery 
volatility, which confirms the results discussed in Brigo and Chourdakis [6]. The effect of 
the negative correlation between default and recovery rate does increase the CVA 
noticeably but is not as strong as the default correlation between counterparty and the 
reference name. We also revisit a simple method for CVA calculation on a deeply-in-the-
money CDS with a stressed counterparty proposed in a previous paper [11]. We find that 
the simple method does not capture the wrong-way risk due to correlated defaults and 
lower recovery rates in economic downturn. 
 
Further research is needed to build a true dynamic model with stochastic recovery to 
quantify and hedge counterparty credit risk.
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Tables 
 
 

Default 
correlation dρ  

no correlation 
with recovery 

0=rρ  

same 
correlation for 
recovery 

dr ρρ =  with 
a=200 or 
vol=0.07% 

same 
correlation for 
recovery 

drρ ρ=  with 
a=1 or vol=2% 

same 
correlation for 
recovery 

dr ρρ =  with 
a=0.01 or 
vol=48.77% 

20% 23.17 23.19 34.42 39.75
60% 68.88 69.06 99.32 113.31
90% 92.27 92.34 108.13 111.45
99% 28.23 28.24 28.38 27.31

 
Table 1. The counterparty CVA in basis points for the case when counterparty break-
even 5 year CDS spread is 120 bps and reference name break-even 5 year CDS spread is 
250 bps, which is also the contract spread. Both have the same recovery distribution with 
mean at 40%. The parameter a determines the volatility of the recovery distribution. 
Compare with the base case CVA = 3 bps where there is no default correlation. 
 
 
 
 

default correlation 

dρ  

no 
correlation 
with 
recovery 

0=rρ  

same 
correlation for 
recovery 

dr ρρ =  with 
a=200 or 
vol=0.07% 

same correlation 
for recovery 

drρ ρ=  with 
a=1 or vol=2% 

same 
correlation for 
recovery 

dr ρρ =  with 
a=0.01 or 
vol=48.77% 

20% 26.13 26.12 38.35 44.21
60% 88.93 89.18 130.69 152.23
90% 200.27 200.55 251.43 280.41
99% 296.33 296.47 316.03 324.68

 
Table 2. The counterparty CVA in basis points for the case when counterparty break-
even 5 year CDS spread is 250 bps and reference name break-even 5 year CDS spread is 
120 bps, which is also the contract spread. Both have the same recovery distribution with 
mean at 40%. The parameter a determines the volatility of the recovery distribution. 
Compare with the base case CVA = 3 bps where there is no default correlation. 
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default 
correlation dρ  

no correlation 
with recovery 

0=rρ  

same correlation 
for recovery 

dr ρρ =  with 
a=200 or 
vol=0.07% 

same 
correlation 
for recovery 

dr ρρ =  
with a=1 or 
vol=2% 

same correlation 
for recovery 

dr ρρ =  with 
a=0.01 or 
vol=48.77% 

0% 925.36       
20% 936.32 936.70 1015.12 1062.69
60% 933.60 934.27 1050.34 1109.64
90% 755.35 755.80 796.70 793.59
99% 346.88 347.01 353.09 348.90

 
Table 3. The counterparty CVA in basis points for the case when counterparty break-
even 5 year CDS spread is 1500 bps, reference name break-even 5 year CDS spread is 
2500 bps but contract spread is set at 5 bps. Both have the same recovery distribution 
with mean at 40%. The parameter a determines the volatility of the recovery distribution. 
The contract value without counterparty default risk is 4800.89 bps for the investor. CVA 
from method 1 is 1060.69 bps, while CVA from method 2 is 925.12 bps. 
 
 
 

default 
correlation dρ  

no correlation 
with recovery 

0=rρ  

same correlation 
for recovery 

dr ρρ =  with 
a=200 or 
vol=0.07% 

same 
correlation 
for recovery 

dr ρρ =  
with a=1 or 
vol=2% 

same correlation 
for recovery 

dr ρρ =  with 
a=0.01 or 
vol=48.77% 

0% 1146.86       
20% 1226.23 1226.74 1336.07 1403.53
60% 1468.02 1468.98 1675.22 1807.90
90% 1940.89 1941.62 2107.35 2220.89
99% 2320.54 2320.82 2364.15 2384.13

 
Table 4. The counterparty CVA in basis points for the case when counterparty break-
even 5 year CDS spread is 2500 bps, reference name break-even 5 year CDS spread is 
1500 bps but contract spread is set at 5 bps. Both have the same recovery distribution 
with mean at 40%. The parameter a determines the volatility of the recovery distribution. 
The contract value without counterparty default risk is 3863.56 bps for the investor. CVA 
from method 1 is 1421.91 bps, while CVA from method 2 is 1146.45 bps. 

 14



 
 

default 
correlation dρ  

no correlation 
with recovery 

0=rρ  

same correlation 
for recovery 

drρ ρ=  with 
a=200 or 
vol=0.07% 

same 
correlation 
for recovery 

dr ρρ =  
with a=1 or 
vol=2% 

same correlation 
for recovery 

drρ ρ=  with 
a=0.01 or 
vol=48.77% 

0% 802.03       
20% 802.29 802.49 850.11 882.66
60% 798.23 798.53 856.88 890.13
90% 666.11 666.33 674.23 657.33
99% 274.09 274.14 268.81 259.72

 
Table 5. The counterparty bilateral CVA in basis points for the case when investor break-
even 5 year CDS spread is 500 bps, counterparty break-even 5 year CDS spread is 1500 
bps, reference name break-even 5 year CDS spread is 2500 bps but contract spread is set 
at 5 bps. All three have the same correlation and recovery distribution with mean at 40%. 
The parameter a determines the volatility of the recovery distribution. The contract value 
without counterparty default risk is 4800.89 bps for the investor. 
 
 
 
 

default 
correlation dρ  

no correlation 
with recovery 

0=rρ  

same correlation 
for recovery 

dr ρρ =  with 
a=200 or 
vol=0.07% 

same 
correlation 
for recovery 

drρ ρ=  
with a=1 or 
vol=2% 

same correlation 
for recovery 

drρ ρ=  with 
a=0.01 or 
vol=48.77% 

0% 1020.65       
20% 1084.00 1084.29 1156.99 1206.63
60% 1318.31 1318.79 1447.14 1542.88
90% 1850.07 1850.51 1971.70 2065.54
99% 2247.75 2247.95 2279.86 2294.94

 
Table 6. The counterparty bilateral CVA in basis points for the case when investor break-
even 5 year CDS spread is 500 bps, counterparty break-even 5 year CDS spread is 2500 
bps, reference name break-even 5 year CDS spread is 1500 bps but contract spread is set 
at 5 bps. All three have the same correlation and recovery distribution with mean at 40%. 
The parameter a determines the volatility of the recovery distribution. The contract value 
without counterparty default risk is 3863.56 bps for the investor. 
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