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Abstract

We model a game similar to the interaction between an academic advisor and advisee.
Like the classic cheap talk setup, an informed player sends information to an uninformed
receiver who is to take an action which a¤ects the payo¤s of both sender and receiver. How-
ever, unlike the classic cheap talk setup, the preferences regarding the receiver�s actions
are identical for both sender and receiver. Additionally, the sender incurs a communi-
cation cost which is increasing in the complexity of the message sent. We characterize
the resulting equilibria. Under an additional out-of-equilibrium condition (Condition L),
if preferences for sender and receiver are identical then the only equilibria are the most
informative, feasible ones. A similar result appears in Chen, Kartik and Sobel (2008)
when their No Incentive to Separate (NITS) condition is applied to the case where com-
munication is costless but preferences diverge. Additionally, we model the competency of
the advisee by the probability that the action is selected by mistake. We show that the
informativeness of the sender is decreasing in the likelihood of the mistake. When the
preferences between players diverge and when there are communication costs, we are not
guaranteed uniqueness and we provide an example where an increase in communication
costs can improve communication.
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1 Introduction

Consider the interaction between advisor and advisee in the preparation of a job market paper.
The advisor takes a look at the current state of the paper and has a signi�cantly better idea
of its shortcomings than does the advisee. Further, the advisor prefers that the advisee
correct these shortcomings so that the paper is successful on the job market. The advisor
prefers success because either this will re�ect well on the advisor or perhaps the advisor might
have an intrinsic preference for the success of the advisee. The advisee obviously prefers to
correct those shortcomings in order to secure employment, however the nature of the necessary
corrections are not known to the advisee. Although there are material incentives for both
advisee and advisor to correct the shortcomings, accomplishing this requires the advisor to
take time to communicate the nature of these shortcomings. Such communication is costly
for the advisor as it would take time out of her busy schedule. Therefore, the advisor decides
on the optimal level of detail to communicate to the advisee: more detail increases the quality
of the paper but also implies greater communication costs borne by the advisor.

In this paper we analyze the strategic interaction between an informed sender and an
uninformed receiver. In our model, the sender learns the state of the world and transmits a
message to the receiver. Based on the message, the receiver is to take an action which a¤ects
the payo¤s of both sender and receiver. We deviate from the classic cheap talk setup in that
the sender faces communication costs which are increasing in the complexity of the message.

The sender can send the empty message (?) or can compose a nonempty message from a
set of message elements fe1; :::eg. We assume that the cost of transmitting message mi is a
function of the number of elements in the message. For instance, the cost of transmitting the
empty message is c(0) and the cost of transmitting message (e3; e5; e2) is c(3). We view this
as the simplest way to model complex communication.

Analogous to the cheap talk literature, equilibrium is partitional: a unique action is induced
on connected intervals of the state space. We show that the equilibrium is e¢ cient in that
no signal is used in equilibrium when there is a cheaper, unused message. We show that
under an out-of-equilibrium condition (Condition L), if preferences for sender and receiver are
identical then only the most informative class of equilibria survives. This result is analogous
to No Incentive to Seperate (NITS) condition when applied to the original cheap talk model.
Additionally, we model the competency of the advisee by the probability that the advisee
makes a mistake in selecting an action. We show that the informativeness of the sender
is decreasing in the probability of a mistake. We interpret this result as suggesting that,
in an advising relationship the quality of the advice is increasing in the competency of the
advisee. Finally we show that when preferences for sender and receiver are not identical, the
Condition L does not guarantee a unique equilibrium and an example where an increase in
communication costs improves communication.

2 Related Literature

Despite that every economist has negotiated a relationship with their advisor in graduate
school and that many continue to perform the complementary role of advisor, this relationship
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has garnered relatively little attention in the literature. There are however three related
strands of literature, each of which focuses on di¤erent issues than we do here. For instance
the cheap talk literature examines settings in which communication is costless and the players
have di¤erent preferences over the action taken. However, we focus on a communication
is costly and we allow for the case of identical preferences. Some of the existing costly
communication literature focuses on cases where information is either understood or not.
However, in our model there can be shades of understanding. The remaining strand of the
costly communication literature can exhibit shades of understanding however below we specify
their di¤erences with the present paper. Finally, we discuss the empirical literature on the
academic advising relationship.

2.1 Cheap Talk and Related Models

The large strand of cheap talk literature was initiated by Crawford and Sobel (1982), hereafter
referred to as CS. In the CS model, an informed sender learns the state of the world and
decides to communicate some information to an uninformed receiver where the receiver is to
take an action which a¤ects the payo¤s of both sender and receiver. However, given any
state of the world, the sender and receiver have di¤erent preferences over the action of the
receiver. The authors show that for mild di¤erences in the preferences of receiver and sender,
meaningful, albeit incomplete, communication can occur.1 CS shows that equilibrium always
takes the form that the state space is partitioned and the messages are sent such that a unique
action is induced within each element of the partition. Our equilibrium is analogous in that
a unique message is sent on an interval. We also �nd that for any nonzero communication
costs, the communication is not complete.

A number of papers have extended the original CS model. For instance, Morgan and
Stocken (2003) extend the CS model to the case where there is uncertainty regarding the
degree of divergence between the preferences of the sender and receiver. Fischer and Stocken
(2001) model a situation where the receiver has imperfect information about the state. Blume,
Board and Kawamura (2007) modify the CS setup where communication errors (or noise)
can occur. In our view, the present paper shares the goal of the above papers: to learn the
signi�cance of a particular assumption in the CS model. Here we seek to learn the importance
of the assumption that all messages are equally costly (costless) to send irrespective of their
complexity.

The original CS model exhibits a large number of possible equilibria. Speci�cally, CS
shows that for a given di¤erence in the preferences of the sender and receiver, if there is an
equilibrium where the state space is partitioned into a �nite number of partitions (say n) then
there are equilibria which partition the state space into 1, 2,.. and n�1 elements. Our out-of-
equilibrium Condition M leads to a similar result, in that, for a given set of parameter values
there exists a maximum number of messages (again say n) which could constitute an equilibria.
Additionally under Condition M , there are equilibria where the number of messages equals 1,
2,... and n� 1.

1Spector (2000) shows that in the CS model, as the di¤erence between the preferences of sender and receiver
converge, the equilibrium converges towards full information transmition.
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As is often the case for multiple equilibria, researchers have sought to reduce the number
of cheap talk equilibria through re�nements.2 A recent innovation in this regard is the
Condition No Incentive to Seperate (NITS) as discussed in Chen, Kartik and Sobel (2008).
This condition restricts attention to equilibria in which it is not the case that the sender type
who receives the lowest possible state (s = 0 with a state space of [0; 1]) does not prefer to
perfectly reveal the state. In their Proposition 3, the authors show that if the monotonicity
condition holds in the CS model (as it does in the commonly used "uniform-quadratic" case)
then NITS selects a unique equilibrium which is the most informative, i.e. contains the largest
possible number of partitions. In our paper, the equilibria under Condition L is similar to
NITS in that if an out of equilibrium message is observed then the receiver believes that the
state s = 0. And similar to NITS, Condition L in the case of identical preferences between
players, rules out each equilibria except the most informative class of equilibria. Howerver,
we also provide an example that when preferences are not identical, Condition L does not
guarantee uniqueness. Note that the formal statement of NITS relates to the payo¤s of
the receiver however implicit in its statement is that, after observing an out-of-equilibrium
message, the receiver believes with certainty that s = 0. We focus on the beliefs associated
with the out-of-equilibrium message, therefore the statement of Condition L speci�es beliefs.

Also note that we are not the �rst to model communication between a sender and re-
ceiver who have identical preferences. Morris (2001) presents such a model in which, due to
reputation e¤ects, the sender might not truthfully reveal the state of the world.

2.2 Costly Communication

Dewatripont and Tirole (2005) present a communication model where the sender incurs costs
of e¤ectively communicating the information and the receiver incurs costs in better absorbing
the information. In Dewatripont and Tirole, information is either understood or not. By
contrast the states in our model are better characterized by the degree to which they are
learned. In Austin-Smith (1994), information acquisition comes at a cost to the sender.
Although the receiver cannot verify that the sender is uninformed, the receiver can verify that
sender is informed. Austin-Smith shows that the ex-ante uncertainty about the receiver being
informed enlarges the set of parameters in which there is an informative equilibrium in the CS
model. However, by contrast to our model the sender is completely informed or completely
uninformed. In both of the above papers, the sender and receiver have di¤erent preferences
over the action of the receiver. By contrast, in our paper we consider the case where they are
identical.

To our knowledge, there are only two examples of costly communication papers in which
there are shades of understanding. In Calvo-Armengol et. al. (2009) the sender transmits a
necessarily noisy signal but can a¤ect the precision of the communication by a incurring larger
communication cost. In our view this assumption is less appropriate when modeling complex
communication as the signal actually sent is not necessarily less complex than the sender�s most
preferred signal. In Cremer et. al. (2007) a �xed number of partition elements are optimally
arranged in order to minimize communication problems between an informed sender and an
uninformed receiver who have identical preferences over the action of the receiver.

2For instance, see Banks and Sobel (1987), Cho and Kreps (1986), Farrell (1993), Kohlberg and Mertens
(1987), Matthews, Okuno-Fujiwara and Postlewaite (1991).
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2.3 Empirical Literature

Relevant aspects of our model appear in the academic advising literature. For instance, Knox
et. al. (2006) discuss the costs and bene�ts of being an academic advisor.3 The bene�ts
of advising include the personal satisfaction involved in guiding a student. Hence, we �nd
support for our assumption that advisor and advisee have identical preferences over the action
of the advisee. The costs of advising are primarily composed of the time and energy required
by the relationship. Therefore, we regard these as supporting our speci�cation of the payo¤s
of the advisor.

Schlosser and Kahn (2007) �nd that advisor and advisee often share the same impression
of quality of relationship and of the advisee�s competency. We interpret this as con�rming
the appropriateness of our information assumptions. Additionally, Green and Bauer (1995)
�nd that more capable students receive more supervisory attention than less capable students.
Corcoran and Clark (1984) �nd that more successful researchers received better sponsorship
from graduate school advisors than less successful researchers.4 These �ndings are in line
with Proposition 2, which shows that the informativeness of the sender is decreasing in the
probability that the receiver makes a mistake in selecting an action.

3 Model

A sender S and receiver R play a communication game in a single period. Payo¤s for both
players depend on the receiver�s action a, as well as the state of the world s. A state is an
element of the closed interval [0; 1]. The receiver�s action space A = [0; 1] is equal to the state
space. The receiver�s utility from action a when the state is s is:

uR(a; s) = �(a� s)2:

The receiver has ex-ante beliefs that the state is uniformly distributed on [0; 1]. The
sender, observes the state and can communicate some information about the state to S, by
sending a message m where m 2M = ?[fe1; :::eg1 where  � 1. We interpret message m
as more complex, and therefore more costly send, than m0 if m has more elements than m0.
Speci�cally, communication costs (c : N)R) are such that c(i) is never less than zero and is
an increasing function of the elements in message. We also assume that the empty message
is costless, c(?) = 0. Further if message mi contains i elements and message mi+1 contains
i+ 1 elements then we require that c(i+ 1)� c(i) � � > 0. The sender�s utility is:

uS(a;mi; s) = �(a� s� b)2 � c(i)

where b � 0.

The sender�s strategy is � : S ! M and the receiver�s strategy is � :M! A. We seek
an equilibrium where S chooses the optimal action, given beliefs R chooses the optimal action

3See Schlosser et. al. (2003) and Schlosser and Gelso (2001) for more on the measurement of the advisee�s
preferences.

4Also see Hollingsworth and Fassinger (2002).
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and R�s beliefs are derived from Bayes�Rule wherever possible. We denote R�s beliefs as
�(sjm). Speci�cally, our equilibrium requires that

� such that for each s 2 [0; 1], m solves max
m
uS(a;m; s) (1)

� such that for each m 2M , a(m) solves max
a

Z
uR(a; s)�(sjm)ds (2)

and that R�s beliefs are derived from S�s strategy.

As stated earlier, R uses Bayes�Rule whenever possible, however we have yet to specify
the out-of-equilibrium beliefs. We will use one of the following two speci�cations of out-of-
equilibrium beliefs. The �rst, Condition L, speci�es that if an out-of-equilibrium message is
observed then R believes that the state is certain to be s = 0.

Condition L: Given (�; �; c), if there does not exist an bs such that �(bs) = bm and R
observes bm then R believes that S is certain to be s = 0.

Although Condition L speci�es precise beliefs after observing an out-of-equilibrium mes-
sage, in the case that b = 0, another way to view the condition is that the receiver believes
that that state is a particular one among the states with the lowest equilibrium payo¤s. In
other words, when b = 0 there are several states which obtain the lowest equilibrium payo¤s
and s = 0 happens to be a particularly focal one. For a given equilibrium with n messages
there will be n+ 1 states5 which will satisfy argmaxs(a(m0)� s0)2 + c(m0), so as a matter of
convention, R has beliefs that the state is the smallest of these. It is worth pointing out that
under Condition L, only a sender with s = 0 would send an out-of-equilibrium message if such
a sender would prefer to perfectly reveal his state via a costly message.

Condition L is similar to NITS in the sense that the former speci�es beliefs in the event of
an out-of-equilibrium message which are implicit in the statement of the former. Additionally,
for the case that b > 0, s = 0 is typically not the state with the lowest equilibrium payo¤s.
So in this sense, we view the reasonableness of Condition L in the case of b = 0 to be at least
that of NITS in the case that b > 0.

The second condition which we consider, ConditionM , speci�es that if an out-of-equilibrium
message is observed then R believes that the state is, among those which induce their optimal
action, the one with the largest communication cost.

Condition M : Given (�; �; c), if there does not exist an bs such that �(bs) = bm and R
observes bm then R believes with certainty that the state s0 with the largest c(m0) among those
states where a(m0) = s0.

ConditionM supports "more" equilibria and Condition L supports "less." This is because
under Condition M an out-of-equilibrium message does not induce an a which is not used in
equilibrium and it is therefore relatively di¢ cult to �nd a deviation from an equilibrium.
However, under Condition L an out-of-equilibrium message does induce an a which is not
used in equilibrium and so it is relatively easy to �nd a deviation.

5See Lemma 7 in the appendix.
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Before we proceed to the results, we brie�y discuss some of our modeling choices. First,
we designed the model in order to avoid the issue of misrepresentation therefore we can
accommodate the case where the message space and state space as distinct (M 6= S). There
exists evidence that in experimental settings, meaningful communication can occur even when
there is no a priori meaningful language.6 Second, the state space is designed to be more
rich than the message space.7 Our state space is uncountably in�nite and our message space
is countably in�nite. In fact, when communication is costly the only equilibria which exist
involve a �nite number of messages. We believe that this captures an important aspect of
reality: it is impossible to completely communicate the complexity of the real world, one may
only increase the precision of communication by expending more costly e¤ort.

Modeling communication as we do here has several bene�ts. First, since we explicitly
model the communication we feel that yields a certain realism. In our view, modeling com-
plexity is best done with a minimal abstraction of the nature of the complexity otherwise it
is tempting to remain in a world where messages are equally costly. Second, we do not have
to assume unsophistication on the part of the receiver. For instance, it is possible to imagine
communication where the sender incurs a cost which is increasing in the length of the possible
interval. However if the sender and receiver are sophisticated, precise communication be be
accomplished in a manner in which we view as unsatisfactory. Suppose that the sender wished
to communicate the state, s = 0:315789215. The sender could send the message leading to
the possible interval [0:317789; 1] and the receiver would know that the state is certain to be
0:315789215. To avoid these types of problems, we would either have to model the receiver
as unsophisticated or to restrict communication in the way in which we do here. Third, be
argue that it should be viewed as more costly to send a message indicating that the state is
in the interval, [0:2; 0:4] than in the interval [0:215789215; 0:415789215]. Finally, our model
make the novel prediction that there is communication through silence for some states of the
world.

One potential set of message elements are the set of single digit integers: f0; 1; 2; 3; 4; 5; 6;
7; 8; 9g. Therefore, the sender has the means to truthfully disclose the exact state. However,
we will see that, not only will this will not happen in equilibrium, but there are many states
for which the sender transmits the empty message.

Although our equilibria share some of the familiar characteristics of the cheap talk litera-
ture, the additional results which emerge require the �exibility provided by the notation which
we now de�ne. Like the CS equilibria, messages are sent on disjoint intervals. Therefore,
we may characterize an equilibrium by a set of cuto¤ states where we denote the number of
messages used in equilibrium as n + 1 by listing the order of the messages messages m0; :::;
mn. The messages induce a set of cuto¤ states which we denote:

0 = s0 � s1 � s2 � ::: � si � ::: � sn � 1 = sn+1: (3)

We denote the complexity of the message by a superscript. Therefore message mi has com-
plexity i and a cost of c(i).

6See Blume et. al. (1998) and Blume et. al. (2001).
7This assumption also appears in Lipman (2006).
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Equilibrium is such that S�s messages are sent as intervals on the state space:8

�(s) = mi for s 2 [si; si+1) (4)

and R best responds in a straightforward manner:

�(mi) = a(si; si+1) = argmax
a

Z si+1

si

uR(a; s)�(sjm)ds

where a(s; s) is the best response of R if the state is known to be between s and s.

The arbitrage equation, also standard in the cheap talk literature, characterizes the equi-
librium set of cuto¤ states:

uS(a(si; si+1);mi; s) = u
S(a(si+1; si+2);mi+1; s) for i 2 f0; :::; n� 1g (A)

We de�ne �i to be the mass of states such that �(s) = mi. Since the messages are sent
on an interval of the state space and the states are distributed uniformly, �i = si+1� si when
�(s) = mi for s 2 [si; si+1] and �(s) 6= mi for s =2 [si; si+1].

4 Perfect Alignment of Preferences (b = 0)

Here we focus on the case where the preferences of sender and receiver are perfectly aligned; in
other words, (b = 0). In the sequel we analyze the case where there is imperfect alignment of
preferences (b > 0). Our ultimate goal is to show that only the most informative equilibrium
survives under Condition L. We provide the following lemmas to facilitate understanding of
the proposition.

Lemma 1 Consider mi such that c(i) = bc. Under Condition L, if b = 0 and mi is used in
equilibrium then every mj where c(j) � bc is also used in equilibrium.

Proof: Suppose that there is a equilibrium (�; �; c) such that �(s) = mi, c(i) = bc but no
such s0 such that �(s0) = mj and c(j) � bc. When the signal mj is observed, R believes that
the state is certain to be state 0. A pro�table deviation for s = 0 is then to send mj as the
communication costs are not greater than that for (�; �; c) and the action induced is optimal.
Therefore, (�; �; c) cannot constitute an equilibrium.

�

The above lemma suggests that each of our equilibria will have no holes: if message m is
used in equilibrium then so is every m0 which is less than or as costly to send. An implication
of Lemma 1 is that there exists states where the sender will be silent by sending the costless,
empty message. Another implication of the lemma is that, we can denote an equilibrium by

8See the appendix for proof of the results that only one message gets sent for any particular state and
the proof of the result that the equilibrium strategy for S entails sending a message m0 for states which are
conntected intervals.
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the most complex message used. Therefore, if the most complex equilibrium messages have
k elements then the number of costly equilibrium messages (n) is:

n =
kX
j=1

j

If the most costly messages used in equilibrium is k then we say that we have a k-equilibrium.

De�nition 1 A k-equilibrium is one in which all messages which cost less than or equal to
c(k) are used.

We will use � to rewrite expression (A). Consider an k-equilibrium. Message mi is
associated with a mass of �i = si+1 � si for i 2 f0; :::; ng. Additionally, we require that

�i � 0 for every i 2 f0; :::; ng

and
�0 + �1 + �2 + :::+ �n = 1 (5)

Lemma 2 If b = 0, the necessary conditions for an n-equilibrium are:

(�j)2 � (�i)2 = 4 [c(i)� c(j)]

where n � i > j � 0.

Proof: As there are n + 1 messages used in equilibrium (m0, m1, ...,mn), it must be
that there are n equations in expression (A). A typical such expression would be the cuto¤
state between message mi

h and m
j
h+1 where �(s

0) = mi
h for s

0 2 [sh; sh+1), �(s00) = mj
h+1 for

s00 2 [sh+1; sh+2).

�
�
sh + sh+1

2
� sh+1

�2
� c(i) = �

�
sh+1 + sh+2

2
� sh+1

�2
� c(j):

Without loss of generality, we can write

�
�
sh � sh+1

2

�2
� c(i) = �

�
sh+2 � sh+1

2

�2
� c(j)

�
�
��i

2

�2
= �

�
�j

2

�2
+ c(i)� c(j)

(�j)2 � (�i)2 = 4 [c(i)� c(j)]

�

The lemma above establishes the relationship between the mass of states for any two signals
for the case of b = 0. Only the interval size, not its placement in the state space is related to
its communication cost. In other words, the order of the messages does not matter.

We now show that we are guaranteed a maximal k-equilibrium. If a k-equilibrium is to
exist then it must be that expression (A) is satis�ed for each of the n cuto¤ states. Given
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costs c(0), c(1),...,c(k� 1), c(k) we can determine whether it is possible, to satisfy expressions
(A) and (5). If so, we say that the k-equilibrium is feasible.

Lemma 3 There is always a maximal, feasible k-equilibrium.

Proof: To check whether a k-equilibrium is feasible we rewrite expressions (A) and (5).
In this candidate k-equilibrium there will be

n =

kX
�=1

�

costly messages. There are k most costly messages which cost c(k). There are k�1 messages
which cost c(k � 1). There are  messages which cost c(1). And there is one message which
is costless. The k most costly messages, representing intervals �n�k+1 through �n, which
we denote as �n. By Lemma 2, k�1 messages which cost c(k � 1), representing intervals
�n�k�k�1+1 through �n�k are sent on an interval of

p
4c(1) + (�n)2. The k�2 messages

which cost c(k � 2), representing intervals �n�k�k�1�k�2+1 through �n�k�k�1 are sent on
an interval of

p
4c(2) + (�n)2. The 2 messages which costs c(2), representing intervals �+1

through �+2 , are sent on a interval of
p
4c(k � 2) + (�n)2. The  messages which cost c(1),

representing intervals �1 through � ,
p
4c(k � 1) + (�n)2. Finally for the costless message,

we write �0 =
p
4c(k) + (�n)2. Therefore, we may write expression (5) asp

4c(k) + (�n)2 + 
p
4 [c(k)� c(1)] + (�n)2 + 2

p
4 [c(k)� c(2)] + (�n)2+ (6)

:::+ k�2
p
4 [c(k)� c(k � 2)] + (�n)2 + k�1

p
4 [c(k)� c(k � 1)] + (�n)2 + k�n = 1:

Recall that we required that c(k + 1) � c(k) � � > 0. Therefore, we can write the lower
bound of form each term in the left hand side of expression (6):p

4k�+ 
p
4(k � 1)�+ 2

p
4(k � 2)�+ :::+ k�2

p
4(2)�+ k�1

p
4� > 1. (7)

For every  and �, there is a k large enough so that expression (7) is satis�ed. Therefore, we
are guaranteed a maximal k-equilibrium.

�
If given c, a k-equilibrium is feasible in a way that �n = 0, we say that k is exactly feasible.

If given c, a k-equilibrium is feasible in a way that �n > 0, we say that k is strictly feasible.
Obviously if, given c, expression (6) cannot be satis�ed then we will describe a k-equilibrium
as not feasible.

Now we are ready for the main result of the section, that the only equilibria under Condition
L are the ones in which the most information is transmitted.

Proposition 1 If b = 0 then under Condition L an equilibrium always exists and it is
exclusively the most informative, feasible equilibrium.

Propositioon 1 shows that under Condition L there is only one class of equilibria, only the
most complex, feasible equilibria does not have a pro�table deviation. Although monotonicity
of the equilibrium as found in CS does not hold in our setting, the equilibrium is unique in the

10



sense that in each equilibrium, signals of a given complexity are sent on identical mass. This
Proposition is reminiscent of Proposition 3 in Chen, Kartik and Sobel (2008), as they show
that in the CS model where monotonicity holds, NITS admits only the most informative
equilibrium. In the notation of our model, Chen, Kartik and Sobel show that for b > 0 and
c = 0 in the uniform-quadratic case, NITS uniquely selects the most informative equilibrium.
Proposition 1 becomes more surprising when we consider that a subsequent result shows that
we are not guaranteed uniqueness when b > 0 and c > 0.

4.1 Simple Characterization

Here we focus on the case where preferences are perfectly aligned (b = 0) and communication
costs are linear in the complexity of the message.

For the case of general costs, it is di¢ cult to characterize the threshold level of costs which
render a k-equilibrium feasible. However in the linear case, the characterization is rather
simple and lends itself to a natural interpretation. If c(k) � c�(k) then a k-equilibrium is
feasible and if c(k) > c�(k) then a k-equilibrium is not feasible. The calculation of c�(k) is
relatively straightforward

Lemma 4 The cuto¤ cost for a k-equilibrium is:

c�(k) =

 
1

2
Pk
j=1 

k�jpj

!2
:

Proof: At the largest c such that signal k is feasible, it must be that �n2 = 0.
By Lemma 2 it must be that, �2n�1 = 4c, �

2
n�2 = 8c, ..., �

2
1 = 4(k � 1)c, �20 = 4kc.

Therefore, we may write expression (6) in the case of linear costs as

2
p
ck + 2

p
c(k � 1) + 22

p
c(k � 2) + :::+ 2k�2

p
c(2) + 2k�1

p
c(1) = 1:

and so the lemma is proved.
�

Example 1 Consider the case where c(i) = 0:01i and  = 1. Note that:

c�(4) = 0:00662 < 0:01 < c�(3) = 0:0145.

Under Condition M , there are four classes of equilibria, n 2 f0; 1; 2; 3g. For the n = 0
equilibrium, m0 gets sent for all states. For the n = 1 case, there are two equilibria. There
is an equilibrium where m0 is sent for states [0; 0:52) and m1 for states [0:52; 1]. There is
another equilibrium where m1 is sent for states [0; 0:48) and m0 for states [0:48; 1]. Note
that in each of the n = 1 equilibria �0 = 0:52 and �1 = 0:48. For the n = 2 case, there
are six equilibria. There is a monotonic equilibria where m0 is sent for states [0; 0:392),
m1 for states [0:392; 0:729) and m2 for [0:729; 1]. The remaining 5 equilibria require that
�0 = 0:392, �1 = 0:337, and �2 = 0:271. For the n = 3 case, there are 24 equilibria. There is
a monotonic equilibria where m0 is sent for states [0; 0:363), m1 for states [0:363; 0:665), m2
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for [0:665; 0:892) and m3 for [0:892; 1]. The remaining 23 equilibria require that �0 = 0:363,
�1 = 0:302, �2 = 0:227 and �3 = 0:108. For Condition L, only the 24, n = 3 equilibria are
possible.

Note that we have identi�ed equilibria which the values of �i are neither increasing nor
decreasing. In other words, Monotonicity (Condition M in CS) does not hold in our setting
(unlike the quadratic preferences, uniform state case in CS.) Also since monotonicity fails in
this model we should not be surprised that Condition L does not lead to a unique equilibrium
as Proposition 1 in Chen, Kartik and Sobel demonstrates that when monotonicity fails in their
model, NITS fails to lead to a unique equilibrium.

We are now better equipped to discuss the outcomes if we expand the message space is
? [ f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g1 where the cost of communication is linear in the number of the
elements transmitted, c (m) = ck. One might be tempted to conclude that an equilibrium of
the following form might exist, �(s) = d for d 2 f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g if s 2 [0:1d; 0:1(d+1)).
However, by Proposition 1 this cannot be an equilibrium because the empty message is not
used. Further suppose that c = 0:1 then equilibrium in the expanded message space is
such that �0 = 0:633 and each single digit is sent on a mass of states �i = 0:0366 for i 2
f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.

4.2 Competency of the Advisee

In any advising relationship, the advisor has beliefs regarding the ability of the advisee to
execute the advice. It would seem that this competency would in�uence e¤ort supplied by
the advisor. To analyze these issues, we supplement the model to allow for the possibility that
the sender might make a mistake in the execution of the action. Speci�cally, with probability
p the receiver perfectly executes the most preferred action:

�(mi) = a(si; si+1) = argmax
a

Z sg(i)+1

s
g(i)
i

uR(a; s)�(sjm)ds:

With probability 1�p, the action a is distributed uniformly on the action space (U [0; 1]).9 We
interpret p as the competency of the advisee. We now state our result, which demonstrates
that the informativeness of the relationship is increasing in the competency of the advisee.

Proposition 2 Under Condition L the informativeness of the sender is increasing in p

Proof: In the presence of the possibility of mistakes, the new arbitrage expression can
be written:

�p
�
�j

2

�2
� (1� p)

Z 1

0
(�(x� s)2)dx� c(i)

= �p
�
�i

2

�2
� (1� p)

Z 1

0
(�(y � s)2)dy � c(j)

9Note that we assume that p is unrelated to the message. We could have allowed p to be decreasing in the
comlexity of the message, however this would only strenghten our result below.
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Therefore, the necessary conditions for equilibrium can be written:

(�j)2 � (�i)2 = 4c

p
[c(i)� c(j)] :

So for any n-equilibrium, a decrease in p will lead to a decrease in E[(a� s)2].
�
Proposition 2 suggests that in equilibrium S will expend less e¤ort on communication when

R exhibits a larger probability of making a mistake in executing the action. We interpret
this result as indicating that in equilibrium, advisors will provide more attention to capable
advisees. We perform the analysis for b = 0 because (as the reader will see) Condition L does
not uniquely identify a class of equilibria and therefore comparative statics are problematic

5 Imperfect Alignement of Preferences (b > 0)

Recal Proposition 1, that if b = 0 and c > 0 then under Condition L only the most informative,
feasible equilibria exists. This is reminiscent of Proposition 3 of Chen, Kartik and Sobel
(2008) which shows that in the quadratic-uniform case, NITS uniquely selects the most
informative, feasible equilibria. In the formalism of our paper, the Chen, Kartik and Sobel
result corresponds to the case of b > 0 and c = 0.

We now provide an example that Condition L does not select a unique class of equilibrium
when b > 0 and c > 0. For b > 0 and c > 0, the lack of uniqueness can manifest itself in
two distinct ways. First, there could exist several equilibria with set of equilibrium messages,
however these equilibria di¤er in their informativeness. Second, there can exist equilibria
which satisfy Condition L yet di¤er in the set of equilibrium messages. The following example
demonstrates this second aspect and the subsequent example demonstrates the �rst.

Example 2 Suppose that b = 0:245,  = 1 and communication costs are c(m) = 0:01n.
First, there exists an equilibrium where two messages are used. The costless message is
sent on s 2 [0; 0:03) and the costly message is sent on s 2 [0:03; 1]. The sender�s s = 0
equilibrium payo¤s are �(0:015 � 0:245)2 = �0:0529, which is greater than deviation payo¤s
of �(0:245)2 � 0:02 = �0:080. There also exists an equilibrium with a single equilibrium
message. The sender�s s = 0 equilibrium payo¤s are �(0:5 � 0:245)2 = �0:065, which is
greater than deviation payo¤s of �(0:245)2 � 0:01 = �0:070.

This example stands in contrast to the �ndings of Chan, Kartik and Sobel (2008) who �nd
that NITS uniquely selects only the most informative equilibrium when b > 0 and c = 0:
This also stands in contrast to Proposition 1 in that Condition L uniquely selects only the
most informative equilibria when b = 0 and c > 0.

Note for the case of b = 0 and c > 0 the order of the messages did not matter as long
as their size was governed by Lemma 2. Also for the case of b > 0 and c = 0 the order of
the signals themselves did matter. What did matter in this case was that the order of the
intervals were increasing. However when b > 0 and c > 0 there is an interaction which might
cause one of the two forms of the nonuniqueness. It is perhaps not di¢ cult to see that there
will exist several equilibria with set of equilibrium messages, however these equilibria di¤er in

13



their informativeness because the messages have a di¤erence in cost. It is somewhat more
di¢ cult to see, (Although Example 2hopefully demonstrates its existence) that there can exist
equilibria which satisfy Condition L yet di¤er in the set of equilibrium messages.

Characterizing the equilibria for the case of b > 0 and c > 0 is rather di¢ cult. However,
we can say something about the orientation of the intervals. It must be that�

�jh+1

�2
�
�
�ih
�2
= 4b

h
�jh+1 + �

i
h

i
+ 4 [c(i)� c(j)]

Finally, we show that when b > 0, there exist equilibria where an increase in communication
costs will improve communication. Speci�cally we show that it is not the case that for all b,
an increase in communication costs degrades communication in every equilibria.

Example 3 When b = 0:2,  = 1 and c(m) = 0, there is only one outcome equivalent
equilibria of the following form. A single action is induced on s 2 [0; 0:1) and a single action
is induced on s 2 [0:1; 1]. The �rst message induces a = 0:05 and the second induces a = 0:55.
In this case, E[�(a� s)2] = �0:0608. However when b = 0:2,  = 1 and c(mi) = 0:01i, there
are two non-outcome equivalent equilibria. In the �rst equilibria, m0 is sent on s 2 [0; 0:12)
and m1 on s 2 [0:12; 1]. In the second equilibria, m1 is sent on s 2 [0; 0:08) and m1 on
s 2 [0:08; 1]. In the �rst equilibria, E[�(a�s)2] = �0:0569 and in the second, E[�(a�s)2] =
�0:0649. If the cost of communication is increased, c(mi) = 0:02i in the �rst equilibria, m0

is sent on s 2 [0; 0:14) and m1 on s 2 [0:14; 1], implying E[�(a� s)2] = �0:0532.

The above provides an example where an increase in communication costs can lead to an
improvement in communication. Also note that Example 3 contained an instance of two dis-
tinct equilibria, which share the set of equilibrium messages yet di¤er in their informativeness.

6 Conclusions

We have modeled an interaction between an informed sender and uninformed receiver, as in
the relationship between academic advisor and advisee. We assume that the advisor faces a
cost of communication which is increasing in the complexity of the message sent. We have
characterized the equilibria where a unique message is sent on an interval of the state space.
When sender and receiver have identical preferences over the action of the receiver, we have
demonstrated that under Condition L only the most informative class of equilibria exists.
This result is analogous to the application of the No Incentive to Seperate (NITS) to the
uniform-quadric version of the model in Crawford and Sobel (1982). We have also provided
a result which demonstrates that the more competent advisee will enjoy a more informative
advising relationship. Finally, for the case that preferences are not identical, we have provided
an example where Condition L does not identify a unique equilibrium and that an increase in
communication costs might improve communication.

There however remain important questions which are unanswered. For instance, it is not
known what happens when sender and receiver have di¤erent preferences over action of the
receiver. For instance, it is possible to imagine a case where the advisor and advisee have
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di¤erent preferences over the content of the paper. Also, we have modeled the interaction
as a single repetition. However, we are interested to learn the equilibrium behavior where
the interaction is repeated. There are three possibilities as the relationship is potentially
�nitely repeated, in�nitely repeated or is repeated until the project attains some threshold.
An additional issue which arises only in the repeated version of the game relates to learning on
the part of the advisee. Presumably there is a relationship between some publicly observable
signal and the optimal action for the advisee and also that the advisor wishes to teach the
advisee this relationship. Additionally, we are eager to learn the signi�cance of our assumption
of quadratic preferences and a uniform probability distribution.

We are currently working on the case where the sender imperfectly observes the state.
Our preliminary results suggest that a small amount of noise in this observation improves the
quality of communication. This preliminary result is consistent with the �ndings of Blume
et. al. (2007).

Finally, we are eager to learn the validity of the results in an experimental setting. Perhaps
the two easiest questions to adress are the following: is communication e¤ort on the part of
the sender is not constant over the state space, and do less competent advisees receive less
attention. Like most communication games, the equilibria here is quite complicated and
this fact makes experimental investigation di¢ cult. On the other hand, experimental papers
(for instance Cai and Wang (2006) and Kawagoe and Takizawa (2008)) have found suitable
simpli�cations of the theoretical communication papers which they test. We are con�dent
that a similar such a simpli�cation can be found in our setting.
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7 Appendix

Together the below two propositions demonstrate that equilibrium messages are sent only on
connected disjoint intervals.

Lemma 5 For any state bs, there can only be one message bm sent in equilibrium.

Proof: Suppose that �((s1; s2)) = m0 and �((s3; s4)) = m00 where (s1; s2) 6= (s3; s4) and
(s1; s2) \ (s3; s4) 6= ;. The sender S can transmit the same information by sending only
the least costly of the two, argmin(c(m0); c(m00)) and so �((s4; s2)) = fm0;m00g cannot be
equilibrium.

�

Lemma 6 The equilibria must be connected intervals.

Proof : Now suppose there exists m such that ��1(m) = [s1; s2) [ [s3; s4) with [s1; s2) 6=
[s3; s4); [s1; s2) \ [s3; s4) = ; where s2 < s3:

Case 1: Suppose a(m) 2 (s2; s3): De�ne �(a(m)) = m0, where m 6= m0. If a(m) = a(m0);
either c(m) 6= c(m0) and there exists a pro�table deviation for S in choosing the cheaper
message, or c(m) = c(m0); and there exists a payo¤-equivalent equilibrium in which we send
the same message at ��1(m); ��1(m0): Therefore, suppose a(m) 6= a(m0): If c(m) � c(m0);
the sender strictly prefers to send m on (a(m) � "; a(m) + ") 2 ��1(m0). If c(m) > c(m0)
and a(m) < a(m0); the sender strictly prefers to send m0 on [s3; s4). If c(m) > c(m0) and
a(m) > a(m0); the sender strictly prefers to send m0 on [s1; s2).

Case 2: Suppose a(m) 2 [s1; s2). If there exists m0 2 �((s2; s3)) with c(m0) � c(m); such
that a(m0) 2 (s2; s3) then the sender strictly prefers to send m0 on [s3; s4). If c(m0) > c(m)
for m0 2 �((s2; s3)) then the sender strictly prefers to send m on [s2; s3).

Case 3: a(m) 2 [s3; s4). The proof is analogous to Case 2 and the lemma is proved.
�
Hence, the inverse of � is a collection of disjoint intervals with the property that if s; s0 2

��1(m) for some m; so is s00 2 (s; s; ). Unless S indi¤erent between sending two signals at
state s, then the same message is sent for some (s� "; s+ ") for some " > 0.

Lemma 7 If b = 0 then there are n+ 1 solutions to maxs(a(m0)� s0)2 + c(m0).

Proof: Suppose that US(a; bm; s) > US(a; bm; s) where �([s; s)) = bm. As the distribution
is uniform, a = s+s

2 . This implies that
�
s+s
2 � s

�2
>
�
s+s
2 � s

�2
, which cannot be the case.

Combined with expression (A), we have n+ 1 such solutions.
�

Proposition 1: If b = 0 then under Condition L an equilibrium always exists and it is
exclusively the most informative, feasible equilibrium.

Proof: Suppose that expression (6) is satis�ed for k. We need to check that it is not
pro�table for the s = 0 sender to transmit message a message of complexity k + 1. Because
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k satis�ed expression (6) it must be that

�2i � �2j = 4 [c(z)� c(z � 1)] for every k 2 f1; :::; kg

where j 2 f
z�1X
�=1

��1,...,
zX
�=1

��1 � 1g and j � n =
kX
�=1

�

i 2 f
z�2X
�=1

��1,...,
z�1X
�=1

��1 � 1g and i � 0

�0 + �1 + :::+ �n = 1

�n > 0:

Therefore, �0 =
q
4c(k) + �2n. And so the equilibrium payo¤s for the S who received signal

s = 0 is:

�
�
�0
2
� 0
�2
� c(0) = �

�
�1
2
� 0
�2
� c(1) = ::: = �

�
�n
2
� 0
�2
� c(k)

All of the messages used in equilibrium will not provide a pro�table deviation, therefore we
must use an out-of-equilibrium message to �nd a deviation. Any deviation accomplished by
message of complexity k+x where x > 1 can be accomplished with a lower communication cost
by sending message of complexity k+1. Therefore, the cheapest (and therefore best candidate)
out-of-equilibruim message is then the message with complexity k + 1. If such a message is
sent, R would have beliefs that the message was sent by state s = 0. Sending this signal yields
a payo¤ of �c(k + 1). Therefore, the signal will be pro�table when �2n > 4 [c(k + 1)� c(k)].

For the case that k + 1 is exactly feasible, it must be that �n+1 = 0 and so �n =
4 [c(k + 1)� c(k)]. However, when k + 1 is not feasible it must be that �2n < 4c(k) and
there is no pro�table deviation. Therefore, when k is feasible and k + 1 is not feasible,
there is no pro�table deviation to an equilibrium with a signal more complex than k and so a
k-equilibrium always exists.

Now we will show that if k is feasible than there does not exist an equilibrium in which
the most complex signal is less than k. Suppose that k is feasible and k+1 is not. Consider
a candidate k � 1-equilibrium. This candidate equilibrium is characterized by:

e�2j � e�2i = 4(c(i)� c(j) for n0 = k�1X
 � i > j � 0

where i 2 f
k�1X
�=1

��1,...,
kX
�=1

��1 � 1g

j 2 f
k�2X
�=1

��1,...,
k�1X
�=1

��1 � 1g

e�2n0 > 0e�0 + e�1 + :::+ e�n0 = 1
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When k is exactly feasible, a k-equilibrium would require:

�0 + �1 + :::+ �n = 1:

where �n = 0 and �n�1 = 4 [c(k)� c(k � 1)]. When k is strictly feasible, it must be that
�n > 0 and

�n�1 = 4 [c(k)� c(k � 1)] + �2n > 4 [c(k)� c(k � 1)] .

Therefore, it must be that e�2n0 > 4 [c(k)� c(k � 1)] and that e�20 > 4c(k). So we can write
the equilibrium payo¤s as:

US = �
 e�20
2
� 0
!2

< �c(k)

Deviation payo¤s are �c(k), therefore equilibrium payo¤s are less than deviation payo¤s and
so a k� 1-equilibrium cannot exist. Identical reasoning also rules out equilibria less complex
than k � 1.

To see that each k-equilibria uniquely determines the values of �, we can rewrite

�0 + �1 + :::+ �n�1 + �n = 1

as

2

q
c(z) + �2n + 2

q
c(z)� c(1) + �2n + 22

q
c(z)� c(2) + �2n + ::: (8)

+2z�1
q
c(z)� c(z � 2) + �2n + 2z

q
c(z)� c(z � 1) + �2n + �n = 1

The left hand side of expression (8) is strictly increasing in �n and therefore must only hold
for a single value of �n. And so the proposition is proved.

�
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