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Abstract
This paper aspires to fill a conspicuous gap in the existing literature on learning

in games, namely the absence of any empirical verification of learning rules involving
pattern recognition. An extension of weighted fictitious play is proposed both obeying
cognitive laws of subjective perception, and allowing for two-period pattern detection
of opponents’ behavior. The unconditional prior probability of a subject employing
a pattern detecting belief model is 0.34, as estimated by a mixture (latent-class)
model of the elicited belief and action data series from Nyarko and Schotter (2002),
or 0.551 using only action data. The conditional prior probability of using pattern
recognition was found to depend positively on a measure of the exploitable two-period
patterns in an opponent’s action choices, in stark contrast to the minimax hypothesis.
Also, standard weighted fictitious play models are found to significantly bias memory
parameter estimates upwards, compared to the proposed subjective fictitious play
models. Finally, simulations of learning models reveal that the simple win-stay/lose-
shift heuristic may be effective even against more complex pattern detecting models.

Keywords: Behavioral game theory; Learning; Fictitious play; Pattern detection;
Simulations; Beliefs; Repeated games; Mixed Strategy Nash equilibria; Economics
and psychology; Agent based computational economics.

1. INTRODUCTION

Repeated mixed strategy games have been one of the foci of both the experimental game theory
literature and its theoretical counterpart - Camerer (2003) and Kagel and Roth (1995) are excellent
introductions to the field of behavioral and experimental game theory. The literature is rife with
experimental studies investigating whether human play is well described by theoretical solutions such
as the mixed strategy Nash equilibrium (MSNE), the Quantal Response Equilibrium (McKelvey and
Palfrey, 1995), or other equilibrium concepts and refinements4.

These theoretical solutions implicitly assume instantaneous equilibration, and therefore remain
silent on the learning dynamics of the off-equilibrium path. In response to this, researchers resorted
to postulating theories of learning originally inspired by the psychology and artificial intelligence
literature which already had a strong history of grappling with such issues. Most learning rules
employed in the literature are derivatives of two basic models, belief learning (Cheung and Friedman,
1997) and reinforcement learning (Roth and Erev, 1995), or a mixture of both as in the EWA model
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(Camerer and Ho, 1999). Weighted fictitious play belief learning, henceforth abbreviated to wfp, is
the basis of the approach that will be employed in this paper and assumes that players form beliefs
about their opponent’s future play by observing the historical frequency of their opponent’s actions.
These beliefs are then translated into final actions through the use of a stochastic decision rule.

This study will re-interpret the data from the innovative experiment by Nyarko and Schotter
(2002), which directly elicited players’ beliefs about their opponents’ actions. The main contributions
of this paper to the existing literature are:

1. The specification of a pattern-detecting weighted fictitious play model and empirical validation
of its use by human subjects.

2. The specification of an extension to wfp that incorporates common psychophysical laws of
subjective perception, and its validation as a more accurate model of belief formation.

3. An alternative explanation for the existence of negative individually estimated responsive-
ness/sensitivity parameters in decision rules, a result which is normally ascribed either to
anticipatory learning (Selten, 1991) or simply irrational behavior. It will be contended that
this could occur due to model misspecification if a non-pattern detecting learning model is
used to fit the behavior of a pattern detecting player. The same argument will be put forth
to explain the occurrence of negative individually estimated memory parameters in weighted
fictitious play belief models.

4. The presentation of a taxonomy of heterogeneity which makes important distinctions between
the causes of observed heterogeneity in subjects’ behavior. Between-subjects heterogeneity
that is due to innate differences in behavior or ability, and within-subjects heterogeneity that
is a consequence of subjects conditioning their behavior on characteristics of their opponent’s
action choices.

5. Empirical validation of the existence of significant within-subjects heterogeneity as subjects
are more likely to using a pattern-detecting belief model the more their opponents deviate from
independently distributed (or serially uncorrelated) actions, as prescribed by a mixed strategy
Nash equilibrium.

6. Investigation through agent based simulations of the evolutionary fitness of various types of
belief learning rules, with and without pattern recognition. The win-stay/lose-shift heuris-
tic, despite its simplicity, will be shown to perform very well against more complex pattern
detecting models of behavior.

The layout of this paper is as follows. Section 2 is a literature review drawing both from the behavioral
game theory literature as well as from the psychology literature with regards to human ability at
randomizing and detecting sequential patterns. Section 3 proposes modifying the parametric form
of standard wfp models to allow for pattern detection, and to obey principles of psychophysics and
subjective perception. Section 4 presents a taxonomy of heterogeneity and is followed by Section
5 that introduces the original experiment by Nyarko and Schotter (2002). Section 6 presents the
results of the estimation of stated belief models using only the elicited beliefs, whereas Section 7
estimates models of action choice using a two-stage procedure that makes use of action data and the
fitted stated beliefs from the previous section. Section 8 employs a joint estimation procedure that
indirectly estimates the underlying beliefs only from the action data. Section 9 represents a change
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in methodology as agent based computational models are used to evaluate the evolutionary fitness
of various belief learning models. Finally, Section 10 summarizes the main conclusions of this paper.

2. LITERATURE REVIEW

The majority of experimental game theory studies collect data on the observable actions of players
and then attempt to fit a model of off-equilibrium behavior. This entails the simultaneous estimation
of both the belief generating mechanism, which is not directly observable, as well as the decision
rule. Salmon (2001) finds that simultaneous estimation, and therefore indirect estimation of the
belief model, often performs poorly in recovering true underlying parameter values. Nyarko and
Schotter (2002) made an important contribution to the literature by implementing an experimental
setup that made beliefs observable, thereby effectively avoiding the econometric problems of joint
estimation. In their paper, they not only collect data on the actions of players in a repeated game
with a unique mixed strategy Nash equilibrium (MSNE), but also elicit beliefs by asking players
to state the probability with which they thought their opponents would play their pure strategies
before each round.

There exist very few theoretical studies of learning models incorporating pattern recognition in the
game theory literature, and to the best of our knowledge, no relevant empirical studies. Fudenberg
and Levine (1998) in their authoritative book on learning in games discuss some of the theoretical
implications of what they refer to as conditional fictitious play. This is defined as a broad class
of fictitious play learning algorithms where fictitious play frequencies are calculated for each of a
number of predefined disjoint subsets of the history of play, instead of the standard case where these
frequencies are calculated over a single set of the history. Beliefs are then calculated by conditioning
on the last realized subset of play i.e. using the associated fictitious play frequencies corresponding
to that particular subset. A special case of this broad range of learning rules will be employed in this
paper, with the subsets of the history defined as the strategies consisting of all two-period temporally
consecutive combinations of an opponent’s actions.

Aoyagi (1996) proves that in zero-sum games with a unique Nash equilibrium, if both players
follow conditional fictitious play rules that asymptotically recognize patterns of the same length,
then players’ beliefs converge to the Nash equilibrium action profile with probability one. Sonsino
(1997) examines the convergence properties of game play when players can recognize cyclical strategic
patterns in opponents’ behavior, proving that convergence to fixed patterns of pure strategy Nash
equilibria occurs with probability one for a large class of games. Finally, it was proven that a necessary
condition for convergence to a mixed strategy Nash equilibrium is the use of arbitrarily long histories
of play.

2.1. Literature review of humans’ (in)ability to randomize

Studies in the psychology literature, such as Bar-Hillel and Wagenaar (1991) and Rapoport and
Budescu (1997), find that people have difficulty in creating truly random sequences of variables.
They tend to produce over-alternating sequences (with too many runs) and regress towards the
prescribed frequencies as they find such sequences more representative of the distributions they are
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emulating.
Game theorists have been interested in these documented inefficiencies of human randomization

as they imply that one should expect deviations from the MSNE prescription of independently
distributed actions. Palacios-Huerta (2003) and Chiappori et al. (2002) investigate penalty kicks
in professional soccer, concluding that the minimax hypothesis cannot be rejected. Palacios-Huerta
and Volij (2008) find that professional soccer players exhibited transfer of learning as they continued
to play according to minimax even in laboratory settings. On the other hand, Levitt et al. (2008)
compare college students and professional soccer, bridge, poker players in laboratory settings, finding
significant deviations from MSNE behavior for all groups indicating that the professional players
have not transferred their learning from the field. Walker and Wooders (2001) examine tennis serves
and find that there is evidence of professional players conditioning on past actions, but behavior is
closer to the MSNE for professional players or experts than for inexperienced subjects.

In conclusion, the verdict is still out with regards professionals playing the MSNE when outside of
their field of expertise. However, the literature is more consistent in its findings that non-professionals
that do not have a long history of playing a specific game with large enough monetary incentives to
fine-tune their strategies will not conform closely to the MSNE prescription of serially uncorrelated
action choices.

2.2. Literature review of pattern detection or sequence learning in humans

The question of whether humans have the ability to detect patterns is a well established research
topic in the psychology literature referred to as sequence learning, Clegg et al. (1998) provides a
concise introduction. Explicit learning is the result of conscious and intentional cognitive processes
that subjects are able to report, whereas implicit learning occurs subconsciously rendering the subject
unaware and therefore unable to directly acknowledge this type of learning (Cleeremans et al., 1998).
The seminal paper by Nissen and Bullemer (1987) advanced the view that sequence learning is
primarily an implicit, rather than explicit, form of learning. The current state of the literature has
accepted that humans engage in sequence learning and the latest research is primarily directed at
using different experimental methodologies to indirectly reveal implicit learning, with the purpose
of determining the relative importance of explicit versus implicit learning.

Before proceeding further it is necessary to define sequence learning and a measure of the depth
of such learning. The definition of nth order probability information is the use of information at
time t − n + 1 to infer behavior at time t. If information from all periods between t − n + 1 and
t−1 are used then this is referred to as nth order adjacent dependency, alternatively if not all of the
periods are relevant then it is referred to as non-adjacent dependency5. Sequence learning involves
pattern detection because adjacent nth order probability information essentially involves recognizing
n consecutive time period strategies or patterns. For example, second-order probability information
involves calculating the probability of an action conditional on the action played in the previous

5The numbering of order probabilities in this paper differs from that in the psychology literature for ease of
exposition later in the paper. In the psychology literature an nth order probability refers to the use of information at
the t−nth period instead of the definition given in the main text which refers to the t−n+1st period. All references
to order probabilities will henceforth refer to the definition adopted in this paper.
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period.
The existence of sequence learning is well documented by studies such as Remillard (2007) and

Remillard and Clark (2001), who find evidence of implicit sequence learning of second- through to
fifth-order adjacent and non-adjacent probabilities. Other studies in the experimental psychology
field, such as Gomez (1997), have found evidence of explicit knowledge of second-order probabilities
in which the subjects were consciously aware of their learning. Whether sequence learning is pre-
dominantly implicit or explicit has important implications for experimental game theoretic models
of pattern recognition. If such learning is explicit then it should be detectable in the elicited belief
series, whereas if it is implicit then its effect would only be indirectly apparent when using action
data to estimate the learning models.

In conclusion, the aforementioned research justifies investigating pattern recognition models of
learning in game theory as they have documented that pattern detection of sufficient depth is
possible in the human brain, both explicitly and implicitly.

3. PROPOSED EXTENSIONS TO STANDARD WEIGHTED FICTITIOUS PLAY

This section will propose two significant extensions of the standard weighted fictitious play model
used in the literature. The first extension will directly model pattern recognition in the belief for-
mation process. The second extension, referred to as subjective fictitious play, sfp henceforth, will
incorporate common principles of subjective perception, whilst also nesting the standard wfp model
for specific parameter values. Finally, the consequences of allowing negative estimates of key param-
eters will be discussed, in particular how this may allow non-pattern detecting learning models to
indirectly capture two-period patterns.

3.1. Modification of learning rules to include cases of pattern recognition

In standard weighted fictitious play (Cheung and Friedman, 1997), or equivalently single-period
fictitious play fp1, the beliefs, fp1i,t(aj), of player i regarding the probability of his opponent playing
action aj are equal to the count Ci,t(aj), presented in equation 1. Let ai represent the action taken
by player i and for any action aj , define player i’s count of aj at time t ≥ 2 as:

(1) Ci,t(aj) =
It−1(aj) +

∑t−2
u=1 γu

i · It−u−1(aj)
1 +

∑t−2
u=1 γu

i

The indicator function It(aj), takes the value of one if player j chose action aj in time period t or
the value of zero otherwise. The memory decay parameter for each player is γi and memory loss
(or weighting of past observations) is assumed to be exponential in discrete time. Let the nth-order
probabilities of play refer to the probability of playing an action conditional on the actions chosen
in the previous n − 1 periods, with the special case n = 1 referring to the probability of playing
an action irregardless of prior history. It is clear that the fp1 learning algorithm keeps track of an
opponent’s first-order probabilities of action choices and will therefore be able to detect deviations
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from the MSNE predictions of observed frequencies of single period actions6.
The fp1 algorithm however is not designed to detect second- and higher-order deviations from

the MSNE because it does not keep track of consecutive temporal sequences of actions. Fictitious
play can be generalized to what shall be referred to as n-period (weighted) fictitious play (fpn)
where n is an integer greater than or equal to one and refers to the complexity and depth of pattern
detection7. Fp2 is more sophisticated than fp1 because it tracks how many times two temporally
consecutive sequences of actions have been observed and then conditions the probability of an action
being played on the previous action chosen by the opponent. In this case it is assumed that a player
is making use of second-order probability information8. For example, suppose our opponent’s play
is r-r-g-g-r-r-r9, fp2 will evaluate how often the following sequences have turned up in past play: r
followed by r, g followed by g, r followed by g and g followed by r.

Let the subscripts i and j denote two different players, then given actions aj and a′j , It(aj |a′j) is
an indicator function that takes a value of one if aj was the action played at time t and a′j was the
action played at time t−1 and a value of zero otherwise. Define for player i at time t ≥ 3 , the count
of aj given action a′j with memory parameter γi as:

(2) Ci,t(aj |a′j) =
It−1(aj |a′j) +

∑t−2
u=1 γu

i · It−u−1(aj |a′j)
1 +

∑t−2
u=1 γu

i

The fp2 beliefs of player i regarding action aj given action a′j from the discrete strategy set Sj of
player j is10:

(3) fp2i,t(aj |a′j) =
Ci,t(aj |a′j)∑

aj∈Sj
Ci,t(aj |a′j)

Subjects’ decisions as to what depth of pattern recognition to employ will depend not only on the
likely depth of an opponent’s behavioral patterns but also on the cost of detecting these patterns.
The number of frequency variables or counts an fpn belief model must keep track of is the number of
actions available raised to the power of n. Also, further cognitive resources are needed to remember
the last n − 1 periods of play in order to be able to condition, so that the cognitive requirements
increase with n at a faster than exponential rate. Increasing the size of the action space or the depth
of pattern recognition leads to drastically higher computational cost and therefore pattern detection

6Shachat and Swarthout (2004) empirically verify that humans better respond to deviations in first-order proba-
bilities of play as long as they are relatively far away from the MSNE.

7This proposed learning rule is a special case of the class of learning rules that Fudenberg and Levine (1998) refer
to as conditional fictitious play.

8In general any fpn model uses nth order adjacent probability information.
9Counts are created by allowing for overlapping sequences so that each action is counted twice, once as the last

action in one 2-period sequence and one as the first action in another 2-period sequence. This is because there is an
inherent problem in that two very different sequences can be obtained by changing when the counting starts. Also if
overlapping sequences are not used then conditioning on the previous action will be problematic.

10This definition assumes that the denominator is not zero i.e. that the action a′
j has been played at least once

in the past. In cases where a′
j has not been observed beliefs are assumed to be given by a uniform distribution over

aj ∈ Sj .
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will likely be restricted to relatively low depth.

3.2. On a subjective variant of weighted fictitious play incorporating psychophysical principles of
perception

Aside from introducing a pattern detecting variant of weighted fictitious play, this paper ad-
vances the existing literature by allowing players’ perceptions to follow commonly ascribed rules of
psychophysics pertaining to the translation of physical, or objective, stimuli to their subjective corre-
lates in the human mind. Specifically, equation 4 presents the class of belief learning rules henceforth
referred to as subjective fictitious play, denoted by sfpni,j ,t (of order n, at time t, for individual i

and action j - the latter subscript will henceforth be dropped for simplicity). The encapsulating
non-linear function in equation 4 transforms the objective fpn variables presented above to player
i’s final subjective beliefs.

(4) sfpni,t =
δi(fpni,t)λi

δi(fpni,t)λi + (1− fpni,t)λi

This specific functional form has been used in the choice under uncertainty literature (Goldstein
and Einhorn, 1987; Kilka and Weber, 2001; Lattimore et al., 1995) as a behavioral model of proba-
bility weighting functions, transforming objective probabilities to subjective probabilities. It exhibits
the following two desirable properties and advantages over standard wfp.

Firstly, it incorporates principles of subjective perception since the curvature of the function is
controlled by the discriminability parameter λi, allowing the subjective sensitivity to fpni,t to vary
over its domain. Conveniently, if λi = 1 a simple linear relationship ensues implying that subjective
beliefs are equivalent to objective beliefs. For values of 0 < λi < 1 the function is concave over
domain values from zero to some critical value less than one, and convex thereafter till a value
of one. Alternatively, if λi > 1 this is reversed as the function changes from convex to concave.
The attractiveness parameter, δi controls the elevation of the function thereby allowing for a prior
inclination in beliefs that an opponent is more likely to play certain actions than others. For example,
a player may exhibit such an inclination based on the payoff structure of the game.

Secondly, this parametric form nests many other important models, in particular the constraints
λi = δi = 1 reduce the model to the standard weighted fictitious play models fp1 and fp2. Another
important baseline model is constant beliefs with random fluctuations, which is captured by this
model when λi = 0, with the mean of the stated beliefs controlled by parameter δi.

3.3. Stochastic decision rules

Players are assumed to stochastically best respond to the expected payoffs of actions given their
beliefs. The decision rule in equation 5 defines the probability of subject i playing action ai, Pri,t(ai),
as a logit function where Si is the discrete strategy set of player i, and E(π(ai)) is equal to the
expected payoffs of playing action ai given beliefs over all the opponent’s actions aj ∈ Sj . The
degree of responsiveness to expected payoffs is controlled by the parameter βi of the decision rule
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and is assumed to be the same for all actions. As βi → 0 the probability distribution over actions
tends to the uniform distribution where all actions are played with equal probability. However, as
βi →∞ the decision rule approaches deterministic best response, where the action with the highest
expected payoff will be played with certainty. Finally, players’ action choices may be affected by
a judgment that is independent of the evolution of play, captured by the constant αai , which is
different for each action ai.

(5) Pri,t(ai) =
eαai+βi·E(π(ai))

∑
ai∈Si

eαai+βi·E(π(ai))

3.4. Indirect detection of patterns by unrestricted non-pattern detecting belief models

Despite the expectation that the memory parameter in a belief model should be positive, previous
studies have not imposed this on the econometric models, and in many cases individual estimates
are found to be less than zero (Cheung and Friedman, 1997; Nyarko and Schotter, 2002). However,
as will be elaborated below, negative γi values in conjunction with a non-pattern detecting fictitious
play belief model may be capable of indirectly capturing patterns.

Assume that there exists negative serial correlation in an opponent’s action data so that actions
alternate more often than would be expected with independent draws. This will necessarily lead to
negatively correlated fictitious play beliefs regardless of the sign of γi, however whether these beliefs
are in phase with the patterns will depend on the sign. If γi > 0 the fictitious play beliefs at time
t for the action played at time t − 1 will be higher than the beliefs at t − 1. This result is clearly
inconsistent with the negative correlation in the action sequence, and therefore pattern recognition
is impossible as the belief model will on average be predicting the wrong action. However, if γi < 0,
the opposite will hold so that the fictitious play beliefs are moving in the correct direction as if they
were anticipating the negative correlation in actions.

Given γi < 0 then a decision rule will best respond to the patterns if the expected payoff difference
between the two actions alternates on either side of zero. One way of accomplishing this is to ensure
that for consecutive rounds beliefs alternate in different regions of the best response probability
space i.e. if the MSNE is to play an action with probability 0.6, the beliefs will have to alternate on
either side of 0.6. This can always be accomplished by an fp1 model by setting γi to be negative and
arbitrarily close to zero, as a reduction in memory depth increases the variability of fitted beliefs
ultimately leading them to be arbitrarily close to 0 and 1. Econometric estimation of sfp1 can also
accomplish this another way as there necessarily exists a value of δ that will guarantee this behavior.
Similarly, this requirement could be achieved directly by the decision rule through the manipulation
of α. Hence, misspecification due to the modeling of a pattern detecting subject with a non-pattern
detecting belief model could lead to identification problems for these three parameters as they are
all associated with indirectly capturing patterns. Given that previous studies employed standard
non-pattern detecting fictitious play models, it is possible that the negative estimates of individual
memory parameters are a result of this misspecification.

Likewise, the existing literature has not restricted βi estimates to non-negative values in the
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Figure 1.— A taxonomy of heterogeneity

heterogeneity

within-subjects 

(conditional)

between-subjects 

(unconditional)

extrinsic intrinsic within-rule between-rule

econometric models, even though in the absence of anticipatory learning (Selten, 1991) this is a
reasonable conjecture. Although anticipatory learning is certainly a possibility, it requires extreme
sophistication on behalf of experimental subjects, whereas there exists a much simpler explanation.
A non-pattern detecting model, whether it be fp1 or sfp1, is still capable of best responding to two-
period patterns in an opponents’ action sequence when γi > 0 if βi < 0. The argument is identical
to that just made above, replacing γi with βi. Therefore it is likely that the negative estimates
of individual sensitivity/responsiveness parameters of prior studies are indirectly capturing pattern
detection on behalf of subjects.

In order to avoid these issues which would blur the distinction between pattern detecting and non-
pattern detecting models, all estimated models in this paper will restrict γ̂i and β̂i to be necessarily
non-negative.

4. ON A TAXONOMY OF HETEROGENEITY

Despite the empirical confirmation of subject heterogeneity in experimental games, analysis is
pursued without regards to the different possible sources of heterogeneity in subjects’ behavior. This
paper will proceed in defining a taxonomy of heterogeneity and providing empirical evidence of the
relative importance of the various taxa. It will become clear in the ensuing discussion that identifying
the sources and types of heterogeneity exhibited by subjects is of paramount importance in truly
understanding strategic decision making.

Following Figure 1, at the first level of classification we propose a distinction of heterogeneity into
two taxa, within-subjects (conditional) heterogeneity and between-subjects (unconditional) hetero-
geneity. Let each player have a set of learning rules at their disposal. Within-subjects heterogeneity
is defined as the heterogeneity that arises if the learning rules employed by players were elements
of all the players’ sets, from which it can be inferred that any observed heterogeneity arose because
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each player chose to employ a different learning rule by conditioning on some information. Between-
subjects (unconditional) heterogeneity is defined as the heterogeneity that arises if the observed
learning rules were not elements in the sets of all the players so that the observed heterogeneity
occurred not due to choice but due to an inherent inability i.e. cognitive bounds that differ amongst
subjects. With regards to this study between-subjects heterogeneity assumes that not all subjects
are privy to the pattern detecting model sfp2, perhaps due to different cognitive bounds. Within-
subjects heterogeneity, on the other hand, implies that each player has the ability to use the sfp1
and sfp2 learning models but chooses which learning rule to employ by observing whether their
opponent exhibits serially correlated behavior. If not, then a player may employ the sfp1 rule which
has lower computational costs, otherwise the player may switch to the sfp2 rule instead.

Spiliopoulos (2008) specifically designed an experiment to discriminate within- and between-
subjects heterogeneity by observing how each subject behaved against three different predetermined
computer algorithm opponents. Within-subjects heterogeneity was found to be a significantly more
important source of behavioral heterogeneity than between-subjects, demonstrating the necessity of
acknowledging this in behavioral modeling.

Having defined the first hierarchical level of taxa, within-subjects heterogeneity can be further
subdivided into two further taxa, coined as extrinsic and intrinsic within-subjects heterogeneity. The
latter refers to heterogeneity that is conditioned on variables pertaining to game play, essentially
referring to whether subjects adapt their strategy to the opportunities for exploitation presented
by their opponent. Extrinsic within-subjects heterogeneity is essentially heterogeneity that cannot
be attributed to the game play variables that a researcher would include in an econometric model,
and therefore would be captured in the error term. Note, that this taxa includes both the cases
where subjects may be conditioning on extrinsic but theoretically observable random variables i.e.
sunspots, and the effects of extrinsic but non-observable variables such as the levels of various
neurotransmitters in the brain and how they affect behavior.

Finally, for the purposes of this study we will distinguish between two other taxa of between-
subjects heterogeneity: between subjects, within-rules and between-subjects, between-rules hetero-
geneity. The latter refers to the availability of different learning rule models, in this case sfp1 and
sfp2. The former refers to heterogeneity in the parameter estimates of rules that are available to
players, as is the case if two subjects both use the sfp2 rule, but the estimated sfp2 model for both
of them exhibits significantly different parameter values.

5. DATASET AND METHODOLOGY

The N&S game is given in Table I, and the experimental data used was the treatment where each
subject repeatedly playing the same game 60 times against the same opponent. The mixed strategy
Nash equilibrium for both players was to play red 60% of the time and green 40%. Subjects would
receive monetary compensation both according to their payoffs from playing the game and from the
accuracy of their stated beliefs compared to opponents’ realized actions11.

Three different approaches will be employed to obtain the necessary empirical results. Section 6 will
directly estimate models of subjects’ elicited beliefs without resorting to their action choices. Section

11A quadratic scoring rule was used as an incentive mechanism for truthful revelation of beliefs.
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TABLE I
N&S Payoff matrix

Column player

Green Red

Row player Green 6,2 3,5
Red 3,5 5,3

7 will model subjects’ action choices using a two-stage procedure where the fitted belief estimates
from the previous section are used as regressors and the decision rule parameters are estimated using a
concomitant, mixed effects, latent class logit regression. Section 8 will simultaneously estimate both
the underlying belief formation model and the decision rule using subjects’ action data, without
utilizing the elicited belief series. Finally, Section 9 will simulate play based on the interactions of
different types of learning rules and parameter values in order to ascertain their evolutionary fitness.

6. ESTIMATION OF STATED BELIEF MODELS

Four different equations will be estimated using the competing belief models fp1, fp2, sfp1 and
sfp2. The estimation problem at time t is represented by equation 6, where sbi,t is equal to player i’s
stated belief regarding action j and sfpni,t (or alternatively fpni,t) is the fitted belief. To allow for
beliefs to settle, in particular for the fp2 and sfp2 models which require a longer initial history to form
beliefs regarding all possible two-period combinations, the first ten rounds are not included in the
measure of fit, however these values are used in the formation of beliefs. Optimization is performed
in two steps, first a randomly generated population of parameter estimates is subjected to a genetic
algorithm, and the best candidate is used as a starting point for a quasi-Newton Sequential Quadratic
Programming algorithm, implemented in Matlab as the fmincon function.

(6) min
γi,δi,λi

60∑

t=11

[sbi,t − sfpni,t ]2 0 ≤ γi ≤ 1, δi ≥ 0, λi ≥ 0

Comparisons between different belief models and their performance will be exacted by 10-fold cross-
validation. The dataset is divided into ten non-overlapping folds of five rounds, and the models
are estimated each time by training on nine of the folds and measuring the out of sample error
performance on the remaining fold. The cross-validation MSE allows comparisons amongst models
with different degrees of freedom, as it bypasses the problem of overfitting to the training data. Tables
II and III present the results of the optimization of the class of models represented by equation 6.

6.1. Do the subjective belief models, sfp1 and sfp2, predict stated beliefs more accurately than the
standard or objective fictitious play models?

The cross-validation MSE falls from 0.090 to 0.076 comparing fp1 to sfp1, and from 0.082 to
0.070 for fp2 and sfp2 respectively. The models are compared according to Wilcoxon signed-rank
tests performed using the ten paired cross-validation observations of the average (or equivalently,
total) CV-MSE of all players. The null hypothesis of zero median difference between fp1 and sfp1
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TABLE II
Mean square error (MSE) of individually estimated models

In sample 10-fold CV

Player fp1 fp2 sfp1 sfp2 fp1 fp2 sfp1 sfp2

1 0.062 0.102 0.038 0.077 0.063 0.103 0.046 0.087
2 0.020 0.026 0.011 0.011 0.020 0.026 0.011 0.011
3 0.143 0.135 0.141 0.131 0.148 0.140 0.152 0.154
4 0.061 0.107 0.051 0.049 0.061 0.111 0.054 0.054
5 0.162 0.028 0.139 0.024 0.163 0.029 0.141 0.024
6 0.125 0.135 0.106 0.105 0.133 0.136 0.118 0.117
7 0.081 0.080 0.036 0.036 0.111 0.091 0.042 0.044
8 0.063 0.065 0.051 0.052 0.063 0.064 0.058 0.064
9 0.047 0.042 0.030 0.021 0.051 0.044 0.032 0.023
10 0.087 0.116 0.069 0.069 0.091 0.118 0.073 0.087
11 0.225 0.004 0.217 0.003 0.225 0.005 0.220 0.007
12 0.102 0.104 0.078 0.080 0.102 0.104 0.084 0.090
13 0.026 0.028 0.024 0.023 0.026 0.028 0.025 0.024
14 0.029 0.034 0.027 0.026 0.029 0.034 0.033 0.029
15 0.086 0.089 0.086 0.086 0.088 0.089 0.095 0.093
16 0.130 0.162 0.099 0.099 0.129 0.163 0.105 0.103
17 0.171 0.169 0.138 0.157 0.200 0.169 0.146 0.189
18 0.059 0.055 0.057 0.055 0.059 0.055 0.059 0.063
19 0.008 0.016 0.004 0.006 0.008 0.016 0.005 0.007
20 0.020 0.031 0.019 0.020 0.020 0.031 0.021 0.021
21 0.039 0.044 0.012 0.012 0.039 0.044 0.013 0.014
22 0.077 0.090 0.065 0.085 0.079 0.090 0.067 0.096
23 0.016 0.014 0.011 0.009 0.016 0.014 0.012 0.010
24 0.051 0.061 0.033 0.045 0.055 0.063 0.035 0.056
25 0.061 0.061 0.045 0.045 0.061 0.061 0.051 0.050
26 0.071 0.077 0.069 0.072 0.080 0.077 0.081 0.080
27 0.219 0.228 0.181 0.182 0.219 0.229 0.194 0.195
28 0.158 0.164 0.120 0.148 0.174 0.166 0.161 0.179

Average 0.086 0.081 0.070 0.062 0.090 0.082 0.076 0.070

is strongly rejected (z = 2.701, p = 0.0069), likewise when comparing fp2 and sfp2 (z = 2.803, p =
0.0051). These two results provide significant evidence that beliefs are not modeled accurately by the
standard fictitious play functional form, and fitting beliefs to these models may lead to significant
misspecification bias in the estimates of parameters, especially for γ as will be argued in the next
section.

The sfp2 model exhibits lower CV-MSE than the sfp1 model, 0.070 and 0.076 respectively, and
a Wilcoxon signed-rank test (z = 1.886, p = 0.0593), indicates that the null hypothesis of zero
difference in medians can be rejected at roughly the 6% level of significance. In conclusion, the
elicited belief data series provides serious evidence in favor of pattern detection by experimental
subjects, a result that will be corroborated by the results from the estimation of action data, where
allowing some players to use sfp2 models will significantly improve fit.
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6.2. Estimates of the memory parameter, γ̂

Estimates of the memory parameters from the standard wfp models in N&S were centered on one
with little dispersion, implying that individuals weighted all past information equally. However, as
they point out this is likely the result of the restriction of a one parameter wfp model in estimating
a highly variable stated belief series. The best such a model can accomplish is to approximately fit
the mean of the elicited belief series with a relatively smooth, stable empirical data series. This can
only be accomplished by a high value of γ̂ which minimizes the variability in the empirical beliefs
series. However, the subjective belief models can be calibrated to the mean of the stated beliefs by
controlling the elevation of the subjective beliefs through the δ parameter, thereby alleviating this
possible misspecification problem. The strong evidence for the subjective belief models supports the
contention that the standard wfp model is indeed misspecified and therefore parameter estimates
may be biased.

The results presented in Table III verify this intuition as γ̂ falls from 0.950 to 0.501 for the fp1
and sfp1 models respectively, and from 0.937 to 0.814 for fp2 and sfp2 respectively. Hence, the
finding of memory parameter estimates near a value of one for fp1 belief models is most likely due
to the inherent model misspecification in standard fictitious play models which does not permit the
calibration of the elevation of stated beliefs. Finally, a two-tailed sign test strongly rejects the null
hypothesis (p = 0.002) that the median of the paired differences in estimates of γ̂ from sfp1 and sfp2
for each player is equal to zero. The significantly higher value of γ̂ for pattern detecting models is
reasonable as greater memory depth is required to effectively detect patterns in opponents’ behavior.

Another interesting observation is that γ̂ for the sfp1 models in often equal to or close to zero, in
particular γ̂ < 0.1 in 10 cases. Hence, the sfp1 model is often capturing a special case of weighted
fictitious play behavior, namely Cournot beliefs. Note that only in two cases is γ̂ < 0.1 in the
estimated sfp2 models, in concurrence with the assumption that pattern detecting models should
exhibit high memory parameters.

6.3. Estimates of the discriminability coefficient, λ̂

The mean estimates of the discriminability coefficient for sfp1 and sfp2 respectively are 0.581 and
0.42612 (or excluding zero estimates 0.74 and 0.477 respectively), so that for most players beliefs
are concave for values of the fpn variables between zero and an interior inflection point, and convex
thereafter. These results are in accord with common principles of psychophysics as small deviations
from the MSNE should be less likely to be detected than large deviations. Also, larger deviations
are more likely to be due to true deviations in the underlying data generating process rather than
noise and therefore players should be more likely to respond to larger deviations.

6.4. Estimates of the attractiveness coefficient, δ̂

The elevation of the subjective function is controlled by the estimate of δ̂, with mean estimates
for sfp1 and sfp2, 0.995 and 1.037 respectively. A null hypothesis that the median of the distribution

12These values are in the same range as median values obtained from experimental probability weighting functions
in Gonzalez and Wu (1999) and Tversky and Fox (1995), 0.44 and 0.69 respectively.
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TABLE III
Comparison of parameter estimates of individually estimated fpn and sfpn models

fp1 fp2 sfp1 sfp2

Pl. γ̂ γ̂ γ̂ δ̂ λ̂ γ̂ δ̂ λ̂

1 0.756 0.000 0.897 0.954 3.423 0.641 2.368 0.109
2 1.000 1.000 - 0.894 0.000 - 0.894 0.000
3 0.885 0.957 0.896 0.825 1.160 0.877 0.910 0.522
4 1.000 1.000 - 0.773 0.000 - 0.886 0.000
5 0.953 0.835 - 0.938 0.000 0.996 0.241 0.869
6 0.955 0.999 1.000 0.847 0.127 1.000 0.791 0.031
7 0.869 0.922 0.070 0.690 0.066 0.767 0.610 0.413
8 1.000 1.000 0.017 1.133 0.026 0.856 1.103 0.151
9 0.985 0.885 0.036 1.075 0.056 0.739 1.085 0.322
10 0.923 0.932 0.922 0.508 0.189 0.009 0.521 0.007
11 1.000 0.786 - 1.023 0.000 1.000 0.324 2.304
12 1.000 1.000 0.719 1.322 0.211 1.000 1.279 0.275
13 1.000 1.000 0.031 0.939 0.015 1.000 0.987 0.304
14 1.000 1.000 1.000 1.385 0.245 1.000 1.336 0.251
15 0.997 1.000 0.005 0.840 0.016 1.000 0.853 0.342
16 1.000 0.969 1.000 0.541 0.790 0.956 0.635 0.242
17 0.516 1.000 0.003 0.750 0.055 1.000 0.669 0.920
18 1.000 1.000 - 1.070 0.000 1.000 1.000 0.749
19 1.000 0.997 0.016 1.072 0.020 0.573 1.097 0.021
20 1.000 0.998 0.042 1.003 0.020 0.790 1.014 0.032
21 1.000 1.000 0.006 0.903 0.003 0.271 0.914 0.004
22 1.000 1.000 0.044 2.000 0.096 0.995 2.447 0.329
23 1.000 1.000 0.696 1.033 0.136 0.833 1.088 0.270
24 0.933 0.958 0.852 1.036 0.236 - 1.075 0.000
25 0.985 1.000 - 0.982 0.000 0.050 0.977 0.006
26 0.845 1.000 0.782 0.957 0.624 1.000 0.796 0.840
27 1.000 1.000 0.998 2.354 1.225 1.000 2.892 0.490
28 1.000 1.000 1.000 0.006 7.529 1.000 0.256 2.126

Average 0.950 0.937 0.501 0.995 0.581 0.814 1.037 0.426
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TABLE IV
Pooled estimation of sfp1 and sfp2 models

In sample MSE Cross-validation MSE γ̂ δ̂ λ̂

sfp1 0.0837 0.0839 1 0.999 0.428
sfp2 0.0780 0.0782 0.682 1.063 0.112

of individual estimates is equal to one can not be rejected in both cases by two-sided sign tests,
p = 0.572 and p = 0.442 respectively. Although the medians are not significantly different from
the value of δ implied by the standard fpn models, this does not exclude the possibility that there
exists considerable subject heterogeneity in the individual estimates that must be modeled using
sfpn models rather than the standard objective belief models. The large dispersion of estimates
indicates that a significant part of the variance is indeed due to heterogeneity and not just imprecise
estimates.

6.5. Does there exist significant between-subjects, within-rules heterogeneity in parameter estimates
of the sfpn models?

Pooling the estimation of sfp1 and sfp2 models leads to significantly worse cross-validation per-
formance as documented in Table IV. In particular, CV-MSE worsens from 0.076 to 0.0837 for
sfp1 (z = 2.395, p = 0.0166), and from 0.07 to 0.078 for the sfp2 model (z = 2.701, p = 0.0069),
both results highly significant according to Wilcoxon signed-rank tests performed on the ten paired
cross-validation observations. Misspecifying the models by assuming player homogeneity and pooling
subjects leads to estimated values of γ̂ and λ̂ that are very different from the majority of the indi-
vidually estimated parameters presented in the previous sections. This is in accord with Cabrales
and Garcia-Fontes (2000) who simulate the econometric properties of learning model estimation,
concluding that ignoring subject heterogeneity can seriously bias parameter estimates.

7. TWO-STAGE ESTIMATION OF BELIEFS AND DECISION RULES

This section proceeds with analyses of subjects’ behavior based on both the action data and the
elicited belief series. The first stage is the estimation of the individual belief model parameters as
executed in the previous section by fitting directly to elicited beliefs, whilst the second stage will
estimate the remaining decision rule parameters by simulated maximum likelihood.

Model 1 is a latent class, mixed effects, concomitant discrete choice model represented by equations
7-10, and nests all the other models that will be estimated as special cases.

Latent class or mixture models assign a prior probability that each subject belongs to a particular
class, in this case whether they are using an sfp1 or sfp2 model with prior probabilities denoted by
1 − p and p respectively. Concomitant latent class regression models are an extension where prior
class probabilities may be influenced by other covariates or concomitant variables. In this model the
covariate is ri, the absolute percentage difference between the expected number of runs, assuming
actions are independently distributed, and the observed number of runs. This variable quantifies the
degree to which players’ behavior has exploitable two-period patterns. The parametrization of the
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prior class probability is given by equation 9 including the necessary parameter constraints to ensure
that both the minimum and maximum lie between zero and one.

The concomitant specification captures within-subjects heterogeneity, allowing for the possibility
that players have access to both sfp1 and sfp2 belief models, but choose which one to use depending
on whether an opponent is displaying two-period patterns that could be exploited. Hence, if ψ >

0 this implies that there exists intrinsic within-subjects heterogeneity. The existence of between-
subjects heterogeneity can be confirmed if 0 < p < 1 when ri = 1. Assuming that the existence of
perfectly correlated actions is detected with certainty by all subjects, then any subject capable of
using sfp2 should also do so with certainty, with the caveat that the additional computational cost of
pattern recognition is less than the resulting gains. Similarly, if ri = 0 the lower computational cost
of sfp1 should ensure13 that it is used with certainty if there does not exist any between-subjects
heterogeneity. Finally, the unconditional prior probability of a subject employing the sfp2 belief rule
is obtained by integrating out ri from the conditional probability and is given by p̃ = 1

27

∑27
i=1 p.

A logit link function qt is employed to transform the attractions into probabilities, where the
attraction for the green action is normalized to a value of one, as shown in equation 8, and E∆πt(sfpn)
represents the difference in expected payoffs for choosing the green action over the red action at time
t according to a specific belief model.

Finally, a mixed effects specification was chosen as a solution to the necessity of modeling individual
parameter heterogeneity in the decision rule whilst keeping the degrees of freedom at reasonable
levels. The decision rule parameters θ = [α,β] are assumed to be jointly normally distributed with
full covariance matrix as given in equation 10.

All other models that will be estimated will be nested within Model 1, arising from specific
parameter restrictions. Model 2 restricts Model 1 by assuming that prior class probabilities do not
depend on the variable ri i.e. that there exists no within-subjects heterogeneity. Whereas these two
models allow for two classes within the population, models 3 and 4 assume that either all subjects
are sfp2 or sfp1 players respectively. Finally, model 1* is identical to model 1 with the exception that
fitted fpn beliefs are used in the place of sfpn beliefs to allow an analysis of the possible consequences
of this type of misspecification.

Estimation of all models is performed by simulated maximum likelihood with 500 antithetic draws
from the multivariate normal distribution for θ using the Cholesky transformation. The first step
in optimizing this function was to randomly select a population of parameter estimates and subject
them to a genetic algorithm selection process. The best fitting parameter estimates were then used
as the starting point for a quasi-Newton Sequential Quadratic Programming optimization technique
implemented as the fmincon function in Matlab. Finally, the whole process was repeated 10 times
and the resulting best fitting parameters are reported.

13An sfp2 model may even be inferior to an sfp1 model if one’s opponent is not exhibiting patterns since it will be
prone to overreacting to temporary random deviations in second-order probabilities.
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ll =
27∑

i=1

ln

[∫
(1− p)

60∏

t=11

qt (sfp1 )at [1− qt (sfp1 )]1−at(7)

+ p
60∏

t=11

qt (sfp2 )at [1− qt (sfp2 )]1−atdθ

]

(8) qt (sfpn) =
[
1 + eα+eβE∆πt(sfpn)

]−1
n = 1, 2

(9) p = 1− e−(φ+ψ·ri) φ ≥ 0, φ + ψ ≥ 0

(10) θ = [α,β] ∼ N

(
[µα, µβ ] ,

[
σα σαβ

σαβ σβ

])

Standard errors will be estimated using a jackknife procedure which involves dropping one individ-
ual at a time from the training dataset and re-estimating the model parameters. The log-likelihood
of the subject excluded from each run llicvis a cross-validation measure of fit that allows compar-
isons between models with different degrees of freedom. The sum of the individual cross-validation
log-likelihoods llcv, will be used for model comparison, as will the Akaike and Bayesian information
criteria.

The N&S dataset consists of 14 pairs of players, however this analysis will proceed by dropping
player 11 on the basis that it is a severe outlier exhibiting particularly perplexing/irrational behavior.
Player 11’s opponent exhibits severe negative serial correlation in action choices, leading to easily
detectable two-period patterns. Player 11’s elicited beliefs show that he/she has indeed detected
the patterns, but instead of playing a best response to these beliefs the action data in every single
case is consistent with the worst response. Hence, from the elicited belief series player 11 is clearly
employing a sfp2 belief model, but estimation using the observable action data concludes that this
player uses an sfp1 model. The only plausible explanation for this clearly irrational behavior is that
this player may have simply misunderstood the payoff matrix, and have erred in concluding what the
best response action is. The extremeness of this internally inconsistent behavior justifies labelling
player 11 as an outlier and excluding him/her from the following analysis.

The econometric results of these models are presented in Table V and the following subsections
examine specific hypotheses of behavior.
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TABLE V
Maximum likelihood action data models

Model 1 2 3 4 1*
Restriction ψ = 0 p = 1 p = 0

p̃ 0.337 (0.036) 0.362 (0.045) - - 0.347 (0.047)
µα 0.031 (0.016) 0.042 (0.017) 0.04 (0.015) 0.048 (0.016) 0.064 (0.012)
σα 0.609 (0.032) 0.579 (0.028) 0.505 (0.028) 0.55 (0.035) 0.441 (0.029)
µβ -0.623 (0.062) -0.499 (0.07) -0.85 (0.059) -0.7 (0.064) -1.1 (0.098)
σβ 1.033 (0.041) 0.812 (0.06) 1.09 (0.052) 1.009 (0.058) 0.987 (0.136)
φ 0 (0) 0.449 (0.069) - - 0 (0.049)
ψ 2.685 (0.383) - - - 2.778 (0.637)

ll (df) 853.901 (7) 855.625 (6) 873.519 (5) 888.737 (5) 872.48 (7)
AIC 1721.8 1723.2 1757.0 1787.5 1759
BIC 1758.3 1754.5 1783.1 1813.5 1795.4
llcv 857.89 860.682 876.524 892.486 883.584

7.1. Does the data support the hypothesis of belief model heterogeneity with respect to whether
subjects use pattern recognition?

Models 1 and 2 assume the existence of belief model heterogeneity through a mixture specification
which allows each subject to use any of the two belief models, whereas models 3 and 4 assume that
all players are using the same model. Comparisons of models with a different number of latent classes
can not be performed using standard LR tests even though the models are nested, because the null
hypothesis exists on the boundary of the parameter space and therefore the ratio of likelihoods
does not follow a χ2 distribution (Titterington, 1990). The literature instead proposes information
criteria tests or cross-validation as a means of selecting the appropriate number of latent classes.
Since the AIC, BIC and llcv for models 1 and 2 are lower than those of models 3 and 4, these criteria
conclude that there exists significant heterogeneity that must be modeled by the latent class/mixture
approach of models 1 and 2.

7.2. Does the data support the hypothesis of intrinsic within-subjects heterogeneity conditioned on
opponents’ deviations from serially uncorrelated action choices?

In the context of this experiment we define within-subjects heterogeneity as arising from condition-
ing on the behavior of a player’s opponent, namely the presence of exploitable two-period patterns.
The null hypothesis that there exists no within-subjects heterogeneity is tested by comparing models
1 and 2, the latter incorporating the restriction ψ = 0.

Given that the two models are nested, preference is given to nested tests over non-nested, as the
former should exhibit more desirable econometric properties. An asymptotic LR test provides strong
evidence of within-subjects heterogeneity with significance at p = 0.0634 (χ2 = 3.447). Also, using
the jackknife standard error, the 95% confidence interval14 for ψ is [1.99, 3.63] indicating clearly that
ψ is significantly different from zero. Turning to non-nested tests, this conclusion is confirmed as

14Since φ + ψ ≥ 0 and φ was estimated to be zero in all the jackknife samples, this requires that ψ ≥ 0. Therefore
the confidence interval is constructed on the assumption that ln(ψ) is normally distributed.
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Figure 2.— Posterior probability of sfp2 versus the degree of exploitable patterns
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the cross-validation log-likelihood for model 1 is smaller than that of model 2 indicating that the
addition of the ψ parameter increased out of sample predictive accuracy. A two-sided sign test of
the median difference between paired individual llicv rejects the null hypothesis of no difference at
p = 0.122. The AIC and BIC give conflicting evidence, as the latter penalizes degrees of freedom
more heavily, and therefore choosing between the two measures requires a subjective decision about
how strict this penalty should be. Comparison using the cross-validation log likelihood is superior
in this sense because by examining out of sample performance any model’s advantage from having
more degrees of freedom is automatically adjusted for, without resort to a researcher’s subjective
beliefs with regards the magnitude of the penalty.

Concluding, these results signify that there exists significant within-subjects heterogeneity in the
subject pool. This is intuitively confirmed in Figure 2 where there is a clear positive relationship
between the posterior probability of each subject employing the sfp2 model and their opponent’s de-
gree of deviation from independently distributed action choices, ri. The existence of within-subjects
heterogeneity is particularly damaging to the minimax hypothesis as not only do two period patterns
exist in subjects’ action choices (a null of hypothesis of randomly ordered actions was rejected by
an exact runs tests for 5 subjects at the 5% significance level), but these patterns are not eliminated
even when opponents exploit them with an sfp2 belief model.
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7.3. Does the data support the hypothesis of between-subjects, between-rules heterogeneity?

This type of heterogeneity, as mentioned earlier, can be detected by observing the value of the
conditional prior class probability at the bounds where ri = 0 and ri = 1. The estimated value
in the latter case is 0.932, a value high enough to support the contention that between-subjects,
between-rules heterogeneity in belief models is not particularly important. Corroborating this result
is the fact that all players are employing sfp1 (p = 0) when ri = 0, as would be expected given
that sfp2 has a much higher computational cost than sfp1. In conjunction with the evidence from
the previous section, intrinsic within-subjects heterogeneity is significantly more important in this
experiment than between-subjects, between-rules heterogeneity.

7.4. What are the effects of misspecification by using fpn beliefs instead of sfpn beliefs?

Model 1* is identical to Model 1, with the exception that the estimated beliefs are those based
on the fpn belief models rather than the sfpn models. All the non-nested model selection measures
AIC, BIC and llcv confirm that fpn beliefs are inferior not only at directly fitting elicited beliefs,
as was shown in Section 6, but also at indirectly fitting action choices. A two-sided sign test rejects
the null hypothesis of zero median difference between subjects’ paired llicv for the two models at
p = 0.0522.

A comparison between the two illustrates the possible biases in parameter estimates associated
with this type of misspecification. The estimates for the unconditional prior p̃ and ψ are extremely
close in both models and there does not seem to be a significant adverse effect of misspecifying the
model by using the standard fpn belief model. However, estimates of the means for α and β diverge
significantly with the estimates for Model 1* equal to roughly twice the estimates from Model 1.
This occurs because using an fpn model implicitly sets λ = 1 and δ = 1 in the sfpn belief model.
Since the mean estimate for λ < 1, the value of µβ in model 1* must be smaller to reflect the indirect
effect of fixing λ = 1. Likewise, in Model 1* α must now also implicitly include the impact of δ from
the sfpn models. Finally, the variance of the two random effects are less in Model 1* implying less
heterogeneity in the decision rule parameters.

In conclusion, misspecifying learning models with the standard fpn belief rule indicates that there
may be some effect on decision rule parameters, however no evidence was found of serious bias in
the remaining estimates. The evidence presented here is enough to warrant caution with regards to
this, however a more rigorous examination of the effects of misspecification using simulated data is
necessary before drawing final conclusions.

8. JOINT ESTIMATION OF BELIEFS AND DECISION RULES USING ACTION DATA

This section models behavior through the simultaneous estimation of the belief and decision rule
parameters using only the action data. Simultaneously estimating individual belief model parameters
is problematic as it would result in a small observation to parameter ratio, leading to significant
overfitting and more importantly convergence problems as the number of local minima is increasing
in the number of parameters. For a given sample size, a reduction in the number of parameters
in the model can be achieved either by assuming homogeneity of some of the parameters, or by
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parametrizing the heterogeneity as draws from specific distributions. The latter approach is chosen
as the two-stage procedure clearly indicated that there exists significant heterogeneity both in the
belief and decision rule. Therefore any simplifying assumption of parameter homogeneity will lead
to misspecification, with significant negative impact on the reliability of the parameter estimates
(Cabrales and Garcia-Fontes, 2000).

The model to be estimated is the fully specified model in equations 7-10 with the difference that
beliefs are estimated concurrently, and belief model parameter heterogeneity is now modeled as
draws from specific distributions instead of estimating each parameter individually:

sfpni,t =
δ[fpni,t(γn)]λn

δ[fpni,t(γn)]λn + [1− fpni,t(γn)] λn

The δ, γn, λn values15 are drawn from lognormal, beta and gamma marginal distributions respec-
tively, whilst α and β are assumed to follow normal marginal distributions as in the two-stage
estimation. The choice of marginal distributions has been partly guided by the stated belief esti-
mation results, so that the qualitative features and shape of the empirically estimated distribution
of individual parameters are supported. The joint distribution of these parameters is modeled us-
ing a Gaussian copula with a fully specified correlation matrix allowing non-zero partial correlation
between all the parameters (Sklar, 1973).

Salmon (2001) finds that concurrent estimation of the underlying belief model and decision rule
often may not be particularly efficient at recovering the true data generating models and parameter
values. In particular, two pairs of parameters that may not be properly identified in the simultaneous
estimation of this model are δ and α, and λ and β. The δ parameter controls the level of beliefs which
indirectly also affects the tendency to play a particular action, the latter being what parameter α

is directly estimating16. Likewise, λ controls the sensitivity to the fpn variables and indirectly also
affects the sensitivity to expected payoffs, which is directly influenced by the β parameter. This is
not a problem with the two-stage procedure as the belief data can be used to isolate the direct effects
of these parameters, however their relative contributions will likely be obfuscated by simultaneous
estimation. The existence of identification problems will be investigated by calculating the pairwise
correlations between jackknifed parameter estimates.

The results of the jointly estimated model and decision rule parameters are provided in Table VI,
alongside the previous results for the two-stage estimation procedure for ease of comparison. A sign
test fails to reject the null hypothesis that the median of the paired differences of each subject’s llicv

is different from zero17 (p = 0.701). As expected, the standard errors are higher for all parameters
in the joint model, reflecting greater uncertainty about parameter estimates due to the inefficiency

15The parameter δ has been assumed to be the same for both learning rules in an effort to keep the number of
parameters at a minimum. This restriction is credible as δ represents a prior tendency to believe certain actions are
more likely to be played by an opponent than others, which should be the same regardless of which belief model is
employed. Furthermore, estimating the model without this restriction did not result in any significant difference.

16This explains why N&S find significantly smaller values of γ̂ with simultaneous estimation compared to the
values from belief rule estimation, as the inclusion of α in the decision rule essentially makes up for the lack of a
mean-capturing parameter in standard weighted fictitious play.

17The large difference in llcv between the two models is mainly attributable to a single player whose llicv differs by
14.4.
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TABLE VI
Comparison of joint and two-stage estimation

Estimation method Joint Two-stage

p̃ 0.551 (0.047) 0.337 (0.036)
µα 0.131 (0.043) 0.031 (0.016)
σα 0.421 (0.037) 0.609 (0.032)
µβ -2.195 (0.351) -0.623 (0.062)
σβ 1.474 (0.257) 1.033 (0.041)
φ 0.042 (0.118) 0 (0)
ψ 5.745 (0.595) 2.685 (0.383)
ll 857.518 853.901

llcv 876.304 857.89

of joint estimation, which ignores the elicited belief data.
The highest Spearman pairwise correlation coefficients between all the pairs of parameters were

0.61 between µα and σα, 0.69 between µα and µβ , and 0.72 between σα and the first parameter
of γ1. The discovered interactions between the µα, σα and γ1 parameters lend additional support
to the argument presented in Section 6.2 that γ parameter estimates depend on whether a model
includes a parameter that can independently capture the mean of the stated beliefs, in this case the
α parameter in the decision rule18. This possible indeterminacy appears to be borne out empirically,
as the means of α and β are significantly different between the two models and their standard errors
are much greater for the joint model.

Notably, the estimates for the unconditional prior p̃, and ψ are significantly higher in the jointly es-
timated model, possibly the result of the existence of significant implicit sequence learning. Subjects’
stated beliefs, by definition, reflect only explicit learning as implicit learning will not be cognitively
accessible to them to report. Hence, the two-stage estimation procedure will not be able to adequately
reflect subjects’ implicit learning. Although implicit sequence learning is unobservable through the
elicited beliefs, it should be indirectly observable through its effect on the action data and therefore
the jointly estimated model will be able to detect both explicit and implicit learning. The difference
in the magnitude of the parameter estimates p̃ and ψ between the two models is the indirect effect of
implicit learning. Given the relative magnitudes of the estimated parameters, implicit and explicit
learning seem to be of approximately equal importance.

It is encouraging that qualitatively, the two approaches come to the same conclusions and that
pattern detecting behavior was found to be significant in both cases. However, the increase in the
imprecision of parameter estimates for the joint model along with the differences in the decision
rule parameters, echo the warnings of N&S and Salmon (2001) about solely relying on empirical
learning models estimated on action data only. Concluding in favor of one of the models is more
difficult as although the two-stage model exhibits better econometric properties, it suffers from the
inability to fit implicit sequence learning. Given that the psychology literature has already confirmed
the existence of significant implicit sequence learning it is highly likely that the differences in p̃ and

18This explains why N&S find significantly lower values of γ̂ with simultaneous estimation compared to the values
from belief rule estimation, as the inclusion of α in the decision rule essentially makes up for the lack of a mean-
capturing parameter in standard weighted fictitious play.
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TABLE VII
Relationship between payoffs and use of sfp2

constant Pi Drole

Coefficient (s.e.) 3.561 (0.14) 0.256 (0.217) 0.666 (0.137)
t− statistic (p) 4.87 (0.000) 1.18 (0.249) 4.87 (0.000)

R2 0.2876
F (2, 25) 11.9 (0.0002)

ψ are at least partially due to this19, and cannot be solely attributed to parameter bias and/or
imprecision of the joint model. However, further research needs to be directed towards resolving this
issue with greater confidence.

9. EVOLUTIONARY FITNESS OF LEARNING RULES AND AGENT BASED SIMULATIONS OF BEHAVIOR

The evolutionary fitness and value of learning models can be measured by the payoffs they attain
when in competition. A simple investigation of the value of employing the sfp2 model instead of the
sfp1 model can be performed by regressing average payoffs on the posterior probability calculated
earlier that each subject was using the sfp2 model, denoted by Pi and a dummy variable Drole,
indicating a row or column player. The results of such a linear regression are given in Table VII and
although there is a positive relationship between the posterior probability Pi, and average payoffs,
the null hypothesis of no relationship can be rejected only at the 24.9% significance level. This test
however may not have enough power to reject the null hypothesis of no differences in payoffs as the
payoff surface of this game is relatively flat around the MSNE.

Short of running a new experiment with a larger sample size or higher curvature in the payoff
function, this problem can be overcome by examining simulations of computer agents employing
different learning rules and parameter values. Such simulations are also more realistic in investigating
best response and long run equilibration, because they drop the implicit assumption in the previous
analysis that a player’s actions are independent of changes in his opponent’s behavior. A further
advantage of the agent based approach is that analyses of experimental data are necessarily restricted
only to the learning models, and the associated parameter values, observed in the subject pool,
whereas simulations are unrestricted in this sense.

Simulations were conducted of two agents programmed to play according to either fp1 or fp2 with
a memory parameter of one, henceforth denoted as fp1(1) and fp2(1) (the number in the brackets
denotes the value of the memory parameter) or fp1 with a memory parameter of zero, fp1(0), for
100 rounds in each game. In 2 × 2 games fp1(0) is equivalent to the win-stay/lose-shift heuristic
(ws/ls) because fp1(0) assumes that an opponent’s action in the current period will be the same as
the previous period action and then best responds.

The following variables were tracked during 1,000 simulations of each game: payoffs to each agent,

19The differences in parameter estimates between the two models appear to be quite robust as they persisted even
when the model was re-estimated with δ allowed to be different for the two belief models, or imposing the restriction
that λn necessarily lie between zero and one, or restricting some of the elements of the copula correlation matrix to
zero.
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TABLE VIII
Statistics from simulations of fp1(1) versus fp2(1)

fp1(1) fp2(1)

Column Row Column Row

Mean payoffs 3.492 4.12 3.88 4.5
p(r) 0.613 0.6 0.441 0.597
p(g) 0.387 0.4 0.559 0.403

p(g|g) 0.215 0.236 0.382 0.223
p(g|r) 0.168 0.161 0.162 0.166
p(r|g) 0.163 0.157 0.167 0.172
p(r|r) 0.434 0.43 0.27 0.42

first- and second-order probabilities of play20. The MSNE payoff for row players is 4.2 and for column
players it is 3.8, with both row and column players expected to play red with probability 0.6.

9.1. Simulation of fp1(1) versus fp2(1)

In simulations of these two agents, the fp2(1) agent had average payoffs higher than the MSNE
payoffs (both when the fp2(1) agent was a column player and a row player), thereby necessarily
imposing lower than MSNE payoffs upon the fp1(1) opponent, as can be seen in Table VIII. In both
cases the fp1(1) player exhibits strong serial correlation as identified by p(g|g)21 and p(r|r) which
are both greater than the MSNE prediction of 0.16 and 0.36 respectively. These deviations can then
be detected and exploited by the fp2(1) agent explaining why this player can attain superior payoffs
compared to the MSNE prediction at the expense of the fp1(1) player.

9.2. Simulation of fp1(0) versus fp2(1)

The results differ significantly when the fp1 player has a memory parameter of zero instead of
one, as shown in Table IX. The fp1(0) player now manages to attain better than MSNE payoffs both
as a column player as well as a row player to the detriment of the fp2(1) player. Both players’ first-
and second-order probabilities deviate from the MSNE prescription, in particular green is chosen
twice in a row more often than the MSNE prescribes, whilst the other two period combinations are
chosen less often.

9.3. Simulation of fp1(1) versus fp1(0)

Table X shows that an fp1(0) agent does significantly better than the MSNE payoffs, both when
playing as row and as column player. When the fp1(1) agent is a row player green is played twice
in a row with probability 0.414 which is much higher than the MSNE prediction of 0.16. Hence,
whenever the fp1(0) agent plays green and wins he will play green again which will now have a high

20Small amounts of error were injected into a best response decision rule so as to generate some variability in
actions and to avoid becoming mired in a single deterministic action profile.

21For simplicity, the convention used is that the first letter represents the action at time t and the second letter
the action at t− 1.
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TABLE IX
Statistics from simulations of fp1(0) versus fp2(1)

fp1(0) fp2(1)

Column Row Column Row

Mean payoffs 3.9 4.333 3.667 4.1
p(r) 0.563 0.563 0.564 0.436
p(g) 0.437 0.437 0.436 0.564

p(g|g) 0.211 0.211 0.211 0.337
p(g|r) 0.216 0.216 0.215 0.216
p(r|g) 0.217 0.216 0.216 0.216
p(r|r) 0.336 0.337 0.338 0.211

TABLE X
Statistics from simulations of fp1(1) versus fp1(0)

fp1(0) fp1(1)

Column Row Column Row

Mean payoffs 4.118 4.517 3.483 3.882
p(r) 0.597 0.597 0.598 0.401
p(g) 0.403 0.403 0.402 0.599

p(g|g) 0.222 0.221 0.221 0.414
p(g|r) 0.172 0.173 0.172 0.172
p(r|g) 0.173 0.174 0.173 0.171
p(r|r) 0.413 0.412 0.414 0.222

probability of being his best response. When the perfect memory agent is a column player both red
and green are repeated more often than they should be thereby again allowing the fp1(0) agent to
have a higher success rate at playing his best response. The case where the row player is fp1(0) and
the column player is fp1(1) is particularly interesting as the first-order probabilities are equal to the
MSNE prediction of playing the red action 60% of the time. However, second-order play deviates
from MSNE predictions as the probability of playing red twice in a row is 0.221 instead of 0.36,
leading to higher than MSNE payoffs for the row player.

9.4. General observations from the agent simulations

From the strategies studied above, an fp1(0) agent, equivalent to the ws/ls heuristic, outperforms
both of the other postulated models, fp1(1) and fp2(1). Another interesting result is that whether
agents play first-order probabilities less than or greater than the MSNE probabilities may depend
on whether an algorithm is playing as a row or column player. Furthermore, the payoff incentives
for adopting the best possible learning model (out of the ones considered here) are not very large as
payoffs do not really increase much i.e. the curvature of the payoff function is relatively flat around
the MSNE. The changes in payoffs are larger when the row player is fp2(1) versus fp1(1) and in the
two possible cases where an fp1(0) agent is playing an fp1(1) agent.

The performance of a simple heuristic such as ws/ls may appear surprising however there exists
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well documented evidence from the psychology literature that such heuristics can in fact perform
well compared to other complex rational models, in some cases even outperforming them. Martignon
and Laskey (1999) argue that simple heuristics may perform better than complex models because
the latter are vulnerable to overfitting on account of the large number of parameters that they have,
a problem that is especially acute in very noisy environments. Also, the reduced number of free
parameters of simple heuristics makes them more robust to variations in the environment. Another
reason that heuristics may be effective is that they are tailored by evolutionary pressure to exploit
inherent structures in the environment. For example, the ws/ls heuristic is a very simple way of
exploiting positively correlated events in the environment. For an extensive discussion of simple
heuristics and their effectiveness/robustness the reader is referred to Gigerenzer and Selten (2001)
and Gigerenzer (2000).

10. CONCLUSION

This paper proposed two extensions to standard fictitious play belief models incorporating pattern
recognition and psychophysical principles of subjective perception. These models were empirically
fitted to the data from Nyarko and Schotter (2002) as this innovative experiment collected both
action data and also elicited subjects’ beliefs, allowing for better econometric estimation.

The first extension embeds standard fictitious play beliefs in a non-linear psychophysical func-
tion that resulted in significantly better fit, demonstrating that players were more likely to adjust
beliefs in the face of larger deviations from the mixed strategy Nash equilibrium than smaller devia-
tions. Standard weighted fictitious play estimates of the memory parameter, γ, are centered on one,
whereas the mean estimate for the psychophysical/subjective models was found to be equal to 0.501,
with many individuals exhibiting zero (or near zero) memory parameter estimates corresponding to
Cournot beliefs.

The second extension permitted the detection of consecutive two-period patterns, and assuming all
players were using this model instead of a non-pattern detecting model led to significantly improved
fit to subjects’ stated beliefs. Latent class models, that allowed for subject heterogeneity in terms of
whether individual players used pattern detection or not, were used to estimate the unconditional
prior probability of a subject employing a pattern detecting fictitious play model. This probability
was estimated at 0.337 when using both elicited beliefs and action data in a two-stage estimation
procedure, whereas simultaneous estimation using only the action data led to an estimate of 0.551.
The higher estimate for the latter model is consistent with conclusions from the psychology literature
that pattern detection may be both a conscious and subconscious mechanism of the human mind.

The finding of player heterogeneity as regards the use of pattern detection prompted the question
of whether some subjects were incapable of pattern detection. This explanation is defined as between-
subjects heterogeneity, it assumes players do not have the same models of behavior at their disposal,
perhaps due to different levels of bounded rationality. Alternatively, within-subjects heterogeneity
occurs when agents have the ability to employ different models of behavior but choose which model
to apply conditional on their opponents’ behavior. Within-subjects heterogeneity was empirically
tested by allowing the prior probability of employing a pattern detecting model to depend on the
magnitude of an opponent’s observable deviation from independently distributed action choices. The
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conditional prior of using a pattern detecting belief model was found to be significantly higher the
more an opponents’ action data exhibited exploitable two-period patterns and vice versa. This result
is particularly detrimental to the minimax hypothesis as not only do two-period patterns exist in
subjects’ behavior, but they persist even when players are exploiting them.

Finally, this paper reverted to agent based simulations to examine behavior such as the evolution-
ary fitness of various belief learning models. Surprisingly, it was found that the simple win-stay/lose-
shift heuristic outperformed standard and pattern-detecting fictitious play models.

Further directions for research in this field include eliciting beliefs for other types of strategic
games with repeated interactions and allowing for larger action spaces. Pitting subjects against
computer algorithms designed to deviate from i.i.d. behavior to various degrees could allow for
a more comprehensive analysis as to the type and depth of patterns that subjects are able to
detect and exploit. A change in methodology to include neuroeconomic experiments would also
be of great interest. Examination of neuronal activity when second- and higher-order probabilities
are manipulated could provide direct evidence and details of the encoding process of this type of
information.
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