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Abstract:

In this paper we investigate a ‘global’ production function for agriculture, using FAO data for 128
countries from 1961-2002. Our review of the empirical literature in this field highlights that existing
cross-country studies largely neglect variable time-series properties, parameter heterogeneity and the
potential for heterogeneous Total Factor Productivity (TFP) processes across countries. We motivate
the case for technology heterogeneity in agricultural production and present statistical tests indicating
nonstationarity and cross-section dependence in the data. Our empirical approach deals with these
difficulties by adopting the Pesaran (2006) Common Correlated Effects estimators, which we extend
by using alternative weight-matrices to model the nature of the cross-section dependence. We fur-
thermore investigate returns to scale of production and production dynamics. Our results support the
specification of a common factor model in intercountry production analysis, highlight the rejection of
constant returns to scale in pooled models as an artefact of empirical misspecification and suggest that
agro-climatic environment, rather than neighbourhood or distance, drives similarity in TFP evolution
across countries. The latter finding provides a possible explanation for the observed failure of technol-
ogy transfer from advanced countries of the temperate ‘North’ to arid and/or equatorial developing
countries of the ‘South’.

∗We are grateful to Stephen Bond for helpful comments and suggestions. Previous versions of this paper were
presented at the Gorman Student Research Workshop (December 2008), the CSAE Workshop, Department of
Economics, University of Oxford (January 2009) and the CSAE annual conference (March 2009). All remaining
errors are our own. The first author gratefully acknowledges financial support during his doctoral studies from
the ESRC, Award PTA-031-2004-00345.
†Correspondence: St. John’s College, Oxford OX1 3JP; markus.eberhardt@economics.ox.ac.uk
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“[A]ssumptions of a common production function, and perfect and competitive factor
markets . . . get in the way of understanding international differences in productiv-
ity — particularly differences between advanced and underdeveloped economies.”
Nelson (1968, p.1229)

“Techniques developed in advanced countries were not generally directly transferable
to less developed countries with different climates and resource endowments.”
Ruttan (2002, p.162)

Ever since Hayami and Ruttan (1970) introduced the use of panel data to estimate cross-
country production functions for the agriculture sector, academic studies have emphasised the
conceptual desirability of technology heterogeneity across the diverse range of agro-climatic
environments across countries. The literature further highlighted the potential for barriers to
technology transfer between countries which are specific to the agricultural sector, in particular
the problems of transfers between the developed countries of the temperate ‘North’ and the
developing countries of the arid or equatorial ‘South’: innovations in the former did not seem
to yield the desired productivity boost in the latter context. In practice, however, empirical
investigation was typically based on models which impose technology homogeneity across the
diverse sample of countries under analysis, or only allowed for heterogeneity by splitting the
sample into crude geographical groups of countries. Further to this choice of empirical speci-
fication, many studies opted to impose constant returns to scale on their regressions, despite
concerns that the supply of one factor input, land, is essentially fixed.

In this paper we extend the insights gained from the emerging literature on multi-factor models
in nonstationary panels (Bai & Ng, 2004; Coakley, Fuertes, & Smith, 2006; Pesaran, 2006;
Kapetanios, Pesaran, & Yamagata, 2008) to cross-country empirical productivity analysis in
the agricultural sector — to the best of our knowledge this is the first empirical study to do so.
We adopt a common factor model approach and estimate production functions for a panel of
128 developing and developed countries using annual data from 1961 to 2002 (FAO, 2007). Our
focus is on the changes in the parameter estimates and diagnostic tests when we move between
pooled and heterogeneous estimators, between methods which ignore cross-section dependence
and those which accommodate it, and between approaches that put different emphasis on the
time-series properties of long T panels. This aside, the nature of the data for agriculture allows
us to investigate the cross-section dependence properties in a formal manner.
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These innovations aside we particularly focus on three issues: firstly, we do not restrict the
returns to scale of production, given that with a fixed input (land) part of the production func-
tion we do not have any priors about whether returns can assumed to be constant, decreasing
or increasing.

Secondly, in an extension to the Pesaran (2006) common correlated effects estimators, we set
out to identify what these ‘common effects’ might actually represent in the case of agriculture.
In the standard CCE approach the nature of the cross-sectional dependence across countries
is unspecified; in our extension to this approach, which we believe represents a further orig-
inal contribution to the empirical literature, we apply a number of weighting schemes in the
construction of the cross-section averages, based on neighbourhood, geographical distance and
agro-climatic distance. The application of weight matrices in essence imposes more structure
on the factor loadings across countries, which in the standard CCE estimators are left uncon-
strained. The first two of our extensions investigated essentially mimic standard spatial econo-
metric approaches using geographical distance measures, the third represents a more complex
cross-section correlation. The economic interpretation of our extension would be that the set
of unobserved factors influencing productivity in each country is the same for its neighbours,
countries in close(r) proximity or countries with similar agro-climatic environment respectively.
Thus, countries that are not neighbours, are geographically more distant or have a very dis-
similar agro-climatic conditions are argued to to be driven by different sets of factors.

Thirdly, we check the robustness of our empirical results by comparing them with those derived
from a dynamic specification of the production function. Again, the majority of studies in the
literature concentrate on static models.

Our empirical analysis thus investigates the interplay and salience of time-series properties of
the data, parameter heterogeneity, returns to scale assumptions and the presence as well as
potential structure of cross-section dependence in the estimation of cross-country production
functions in agriculture.

The remainder of the paper is organised as follows: Section 1 briefly reviews the existing
literature on cross-country production function estimation for agriculture. Section 2 presents
a number of graphs to highlight agro-climatic heterogeneity across our sample of 128 countries
and provides the motivation for the empirical approach. Section 3 introduces the empirical
model adopted, develops our extension to the Pesaran (2006) CCE estimators and introduces
the data. Section 4 presents and discusses the empirical results,1 before we conclude our findings
in Section 5.

1The analysis of data time-series and cross-section dependence properties is presented in Appendices B and
C respectively.
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1 Literature review

Following the seminal contribution by Hayami and Ruttan (1970) and a later update by the
same authors (Hayami & Ruttan, 1985), the literature on agricultural productivity analysis
across countries using panel data or ‘repeated cross-sections’ can be broadly distinguished by
two aspects. The first of these does not relate to methodological approach, but to the dataset
used, whereas the second major aspect relates to the empirical restrictions placed on pro-
duction technology: whether countries are allowed to have differential technology parameters,
TFP levels and evolvement, and whether constant returns to scale are imposed. While our short
overview of the literature claims by no means to be exhaustive, we believe that the indicative
literature presented in Table 1 and briefly discussed below does represent the breadth of the
empirical field at the present time.

Most cross-country studies on agriculture use the data provided by the Food and Agriculture
Organisation (FAO) which provides output and input variables for a large number of countries
from 1961 onwards but relies on tractors and agricultural machinery as proxy for agricultural
capital. Examples include Craig, Pardey, and Roseboom (1997); Cermeño, Maddala, and True-
blood (2003); Bravo-Ortega and Lederman (2004) and Fulginiti, Perrin, and Yu (2004). The
alternative to this is a dataset developed by a World Bank team of researchers which provides
agricultural fixed capital stock data for a maximum of 57 developing and developed countries
(although in practice only 37 or 48 countries are used) from 1967-1992 (Larson, Butzer, Mund-
lak, & Crego, 2000).2 An updated version of the dataset provides agricultural fixed capital
stock from 1972-2000 for 30 countries.3 The use of the two World Bank datasets is to our
knowledge limited to Mundlak, Larson, and Butzer (1997, 1999), as well as Martin and Mitra
(2002), Gutierrez and Gutierrez (2003) and Mundlak, Larson, and Butzer (2008).

We highlight this difference since with the noteworthy exception of Martin and Mitra (2002)
all empirical studies which use the World Bank dataset(s) obtain very high capital coefficients,
typically between .35 and .6. The Martin and Mitra (2002) paper arrives at a much lower
coefficient of .12.4 In contrast, all studies using the FAO data with tractors proxying for fixed
capital stock obtain capital coefficients in the range .05 to .2.

The second major aspect relating to technology heterogeneity has commonly been limited to
the modelling of TFP. Technology parameter heterogeneity across countries has either been ig-
nored (Hayami & Ruttan, 1970; Craig et al., 1997; Mundlak et al., 1999; Martin & Mitra, 2002;
Mundlak et al., 2008) or approached by splitting the sample into ‘homogeneous groups’, e.g.
by level of development (Hayami & Ruttan, 1985; Cermeño et al., 2003; Gutierrez & Gutier-
rez, 2003). Although many of these studies stress the importance of allowing for technology
differences across country groups, none of them investigates this in an approach which allows
for full technology heterogeneity.

2Other variables, such as sectoral value added, arable land and agricultural are taken from World Bank,
FAO and the ILO data (see Martin & Mitra, 2002).

3At present the updated data is not publicly available, although the it seems the World Bank team headed
by Don Larson is happy to provide the data if approached.

4Given that the methods applied are very similar this discrepancy may be caused by the alternative deflation
strategy applied in Martin and Mitra (2002). Similar to the practice in the FAO data, the authors advocate
the use of a single LCU-US$ exchange rate (in their case for 1990) in favour of the practice of using annual
exchange rates as implemented in the Larson et al. (2000) data.
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Closely linked to the empirical specification of production technology is the returns to scale
assumption imposed on the regression model or tested. The underlying returns to scale of agri-
cultural production affect the size-distribution of farms within an economy (Mundlak, Larson,
& Crego, 1997). However, in addition we can think of a number of constraints, for instance
insecure legal environment and variations in land tenure arrangements, that influence both of
these processes in a similar fashion. For cross-country production analyses in agriculture find-
ings of increasing, decreasing or constant returns to scale (all of which are present as can be
seen in Table 1) are typically justified with reference to micro-economic studies of production or
the structural change within countries witnessed over the sample period. Hayami and Ruttan
(1985), for instance, report increasing returns to scale for a subsample of developed countries
(DC),5 while their developing country (LDC) sample cannot reject constant returns. They
argue that increasing returns are linked to the indivisibility of fixed capital, which has played
an increasingly important role in the substitution of labour in developed countries (labour-
saving technology). The result for their LDC sample is said to be the outcome of increasing
population pressure on land over the sample period, resulting in a decline in the land-labour
ratio. Efforts to increase productivity were therefore directed toward saving land by apply-
ing more inputs that acted as land-substitutes, such as fertilizer, chemicals or improved seeds
(land-saving technology). Since these inputs are highly divisible, the authors argue, it is not
surprising to encounter constant returns in this subsample. Although some LDCs also wit-
nessed labour-saving technological change, it is argued that this must have been dominated by
the scale-neutral impact of land-saving technical change.

Mundlak, Larson, and Butzer (1997) in contrast argue that the “contribution of inputs to
growth should be judged by their contribution to output under a constant technology, attribut-
ing the rest of the growth to technical change [TFP]” (paper summary). Their specification
“succeeds in capturing the impact of cross-country differences in technology and thus eliminates
the spurious result of increasing returns to scale.” (p.13)

With regard to our own analysis it is important to point out that once the empirical imple-
mentation allows for heterogeneous technology across countries, the standard ceteris paribus
property of regression parameters alluded to by Mundlak, Larson, and Butzer (1997) breaks
down. The implications are beyond the scope of this paper.

The study by Gutierrez and Gutierrez (2003) to the best of our knowledge represents the only
analysis which accounts for time-series properties of the data (nonstationarity, cointegration),
using nonstationary panel econometric methods (Kao, Chiang, & Chen, 1999). Phillips and
Moon (1999) have shown that even panel regressions can lead consistent ‘long-run average’
estimates even if the error terms are nonstationary, such that the danger nonsense ‘spurious’
regression is mitigated in the panel (Fuertes, 2008)— a result which depends on the units of the
panel being independent of each other. As in common with the vast majority of cross-country
empirical analysis, none of the studies reviewed considers the impact of cross-section dependence
in the data on empirical estimates. The presence of such dependence can result in misleading
inference and even inconsistency in standard fixed effects panel estimators favoured in this
literature (Phillips & Sul, 2003). Furthermore, if common factors drive both the regressors and
the error terms this will lead to inconsistent panel estimators due to the correlation between
the regressors and the error components (Pesaran, 2006).

5Only if data is deflated by the number of farms. They remark that their national aggregate data however
displays constant returns for both subsamples — unfortunately results are not presented.
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2 Technology Heterogeneity and the Analysis of

Agricultural Production

2.1 Heterogeneity in the Agro-Climatic Environment

In this section we attempt to create an impression of the differential agro-climatic environment
across different countries. Our focus is here on the differences in the share of arable land6 in
climatic zones across regions of the globe. The data is taken from FAO (2007) and Gallup,
Mellinger, and Sachs (1999). The sample is made up of 128 developing and developed coun-
tries; the measures presented are essentially time-invariant. Detailed information about data
construction and sample coverage is presented in Appendix A.

In Figure 1 we present the average share of agricultural land in the four major climatic zones
(equatorial, arid, temperate & cold, highland) for a number of country groups.7 The means
are computed as weighted means within regions, where the weights are the size of arable land
for each country. The bar chart provides a strong sense of the heterogeneity in agro-climatic
environment across regions: Sub-Saharan Africa (SSA), for instance, at 52% has the highest
average share of land in the equatorial zone, higher even than the Latin America & Caribbean
group (LAC), which includes Brazil. In contrast, this agro-climatic zone is (virtually) absent
from the developed (EU & WIC) and MENA countries. Developed countries are dominated by
agricultural land in the temperate & cold zone (>80%), which in turn makes up only around
10% of land in the average Sub-Saharan African country — the lowest share across all regions.
It would thus be difficult to refer to any of these groupings as ‘similar’ to each other, as far as
agro-climatic environment is concerned.

In order to get an alternative, more refined visualisation of these geographical differences across
individual countries, rather than crude groupings, we compute a ‘Jaffe-measure’ (Jaffe, 1986)
for agro-climatic environment. This measure is computed for every possible country-pair and
can be interpreted as a multi-variate correlation coefficient which varies between zero and unity,
where a low (high) value indicates little (high) similarity in the distribution of cultivated land
across climatic zones in the two countries (Pardey et al., 2007). From the Matthews (1983) data
we obtain the share of cultivated land within each of twelve climatic zones (hi = (hi1, . . . , hi12)),
such that for each country i the values in the twelve zones sum up to unity (

∑
m him = 1). The

Jaffe measure for ‘agro-climatic distance’ between countries i and j is then

ωij =

∑
m himhjm

(
∑

m h
2
im)

1/2 (∑
m h

2
jm

)1/2
In Figure 2 we plot the Jaffe-measures for Kenya: countries with dark green shading, such as
Ethiopia, Sudan or Ghana, as well as some Central American countries have an agro-climatic
makeup (distribution of agricultural land across climate zones) very similar to that of Kenya,
whereas countries with lighter, yellow and orange shading are progressively different. At the
other end of the scale, countries in red, such as the UK, Ireland or Japan have an agro-climatic
environment which is entirely different from the Kenyan one.

6Instead of using the full definition of ‘arable land and permanent crop area’, throughout this paper we refer
to land or ‘arable land’ for simplicity.

7See Appendix A for the makeup of each grouping.
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Figure 1: Geographical regions and climate zones — weighted means
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Notes:
This figure shows the weighted group mean for the share of arable land in each climate zone, where the weights are the area of arable and
permanent crop land. The groups are East Asia (EA), Europe & other Western Industrialised Countries (EU & WIC), Latin America &
Caribbean (LAC), Middle East & North Africa (MENA), South Asia (SA) and Sub-Saharan Africa (SSA).

We may now find the tales of failed agricultural technology transfer from developed to devel-
oping countries (Ruttan, 2002; Gutierrez, 2002) rather unsurprising: many of the former have
very different agro-climatic characteristics from the latter thus making it rather intuitive that
technology between (and even within) these two groups differs and the potential for successful
technology transfer without adaptation may be limited.

2.2 The Case for Technology Heterogeneity and Cross-section
Dependence in the Data

The previous section highlighted the stark differences in the agro-climatic environment for agri-
cultural production across different countries. In our econometric implementation we translate
this into the need to allow for technology heterogeneity across countries. The assumption of a
homogeneous production function may mask or distort important insights into development,
as the comment by Nelson (1968) at the beginning of this paper suggests. Hayami and Ruttan
(1970) state that Nelson’s comment (referring to the analysis of manufacturing data) equally
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Figure 2: Agro-climatic ‘distance’ — the view from Kenya

Notes:
Kenya’s cultivated land: 40% is located in zone Aw (Equatorial savannah, dry winters), 19% in zone BS (steppe), 17% in zone BW (desert) and
25% in zone H (highland climate). Source: Matthews (1983), in Gallup et al. (1999).

applies to the analysis of agricultural production. Their approach further highlights the impli-
cations of and anecdotal evidence for technology being endogenous to the prevailing ‘economic
system’, namely the “differential diffusion of agricultural technology. . . [and] of the scientific
and technical capacity to invent and develop new mechanical, biological, and chemical technol-
ogy specifically adapted to the factor endowments and prices in a particular country or region”
(Hayami & Ruttan, 1970, p.898). In addition to technology heterogeneity, this highlights po-
tential limits to technological spillover from innovations between countries with very different
agro-climatic makeup and resource endowment: we indicated the vast differences for the for-
mer in our visualisation of agro-climatic ‘distance’ in the case of Kenya. Much of agricultural
technology has to be viewed as location-specific, with attempts at direct technology transfer
from one agro-climatic region to another largely doomed to failure (Gutierrez, 2002; Ruttan,
2002). By the early 1960s it had become increasingly clear that “[t]echniques developed in
advanced countries were not generally directly transferable to less developed countries with
different climates and resource endowments” (Ruttan, 2002, p.162). However, this insight does
not seem to have affected the specification of empirical models in any way.

We incorporate these ideas into our empirical model in three ways: firstly, we allow for parame-
ter heterogeneity in the observable variables in our empirical model. At present no intercountry
production analysis in agriculture has considered this specification.

Secondly, we adopt a common factor approach to model TFP, which we interpret in the
Abramowitz (1956) fashion as ‘measure of ignorance’: all time-variant processes, inputs, ‘factors’
and characteristics which are not captured by the observable covariates in our model are ar-
guably captured by unobserved common factors, which are allowed to possess heterogeneous
‘factor loadings’ across countries. This common factor representation enables us to account for
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cross-section dependence between countries — this dependence can be hypothesised to arise
from common shocks and/or spillover effects, the latter determined for instance by trade, policy
or technology (Costantinia & Destefanis, 2008). The importance of accounting for cross-section
dependence in estimation and inference has become a major theme in the recent nonstation-
ary panel econometric literature (Bai & Ng, 2004; Pesaran, 2004; Breitung & Pesaran, 2005;
Coakley et al., 2006; Baltagi, Bresson, & Pirotte, 2007) and this paper represents our second
empirical example of these themes.

Thirdly, we use the above arguments of potential barriers to technology spillovers to motivate
an extension to the Pesaran (2006) CCE estimators. In the standard setup these estimators
account for the impact of unobserved factors by augmenting the regression equation with a
vector of cross-section averages at time t for each of the variables, whereby the averages are
constructed from equally weighted observations across all countries. The economic interpreta-
tion of this approach would be that the set of unobserved factors which influences productivity
is common to all countries — this is not to say that their impact is the same (in fact their
heterogeneity is the major contribution of the Pesaran (2006) approach), it is just required that
across all countries the impact of each factor is on average non-zero. In our extension we chose
to impose some more structure on this framework by investigating three alternative scenarios:

(i) The ‘Neighbourhood Effect’: many empirical studies have argued that the economic
performance of contiguous neighbours to country i has a significant effect on the latter’s
total factor productivity, and attempted to measure the impact of this spillover empirically
by specifying spatially-lagged dependent variables in a production function model (e.g.
Ertur & Koch, 2007). In our empirical models we will allow for a conceptually similar
relationship in the data using the alternative CCE estimation approach.

(ii) The ‘Gravity Model Effect’: gravity models are common in empirical trade analysis
where they suggest geographical distance as a powerful determinant of the magnitude of
economic exchange between countries (e.g. Frankel & Romer, 1999; Redding & Venables,
2004). We adopt this approach to hypothesise that distance between countries (a crude
proxy for factors such as climatic, soil, cultural, ethnic and socio-economic differences)
can explain the effects of unobserved heterogeneity across countries. Existing examples in
the spatial econometric literature are reviewed in Magrini (2004), Abreu, de Groot, and
Florax (2005) and Bode and Rey (2006).

(iii) The ‘Agro-Climatic Distance Effect’: much of the existing literature on intercountry
production functions in agriculture particularly highlights the differential agro-climatic
characteristics across countries and even explicitly links the failure of technology trans-
fer between diverse countries to heterogeneity in resource endowment and climate. Our
third alternative to the standard CCE approach hypothesises that countries with similar
agro-climatic makeup are influenced by similar unobserved factors.

In the following section we show somewhat more formally how these ideas are introduced into
our econometric model.
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3 Empirical Model and Implementation

3.1 Common factor model representation

We adopt an unobserved common factor model as our empirical framework. For i = 1, . . . , N
and t = 1, . . . , T , let

yit = β′i xit + uit uit = αi + λ′i ft + εit (1)

xmit = πmi + δ′mi gmt + ρ1mi f1mt + . . .+ ρnmi fnmt + vmit (2)

where m = 1, . . . , k and f ·mt ⊂ ft

ft = %′ft−1 + et and gt = κ′gt−1 + εt (3)

We assume a production function with observed inputs xit (labour, agricultural capital stock,
livestock, fertilizer, land under cultivation) and observed net output yit (all in logarithms).
Technology parameters on the inputs can vary across countries (βi). Unobserved agricultural
TFP is represented by a combination of country-specific TFP levels αi and a set of common
factors ft with factor loadings that can differ across countries (λ′i). We also introduce an
empirical representation of the observed inputs in equation (2) in order to indicate the pos-
sibility for endogeneity: the input variables xit are driven by a set of common factors gmt as
well as an additional set of factors fnmt, whereby the latter as indicated represent a subset
of the factors driving output in equation (1). The intuition is that some unobserved factors
driving agricultural production are likely to similarly drive (at least in parts) the evolution
of the inputs. This overlap of common factors creates severe difficulties for the identification
of the technology parameters βi (see Remark 4 in Kapetanios et al., 2008) and our empirical
estimators set out to address this issue: previous simulation exercises (Coakley et al., 2006;
Kapetanios et al., 2008) as well as our own investigations (available on request) indicate that
the newly-developed CCE-type estimators are able to accommodate this type of endogeneity in
the estimation equation to arrive at consistent parameter estimates for common β coefficients
or the means of heterogeneous βi. Equation (3) indicates that the factors are persistent over
time, which allows for the setup to accommodate nonstationarity in the factors (% = 1, κ = 1)
and thus the observables. It further allows for various combinations of cointegration: between
output y and inputs x, and between output y, inputs x and (some of) the unobserved factors
ft. The latter alternative is of particular interest, since it will allow us to specify a cointegrating
relationship without even knowing its individual elements.

The above empirical framework allows for the maximum level of flexibility, with regard to
parameter heterogeneity, cross-section dependence induced by the common factors, and non-
stationarity in the observables and unobserved factors.

3.2 Empirical estimators

3.2.1 Estimators imposing homogeneous parameters

We first use the full time-series of the data to estimate pooled OLS (POLS), two-way fixed
effects (2FE), and pooled OLS for data in first differences (FD-OLS). In order to capture the
unobserved common processes the POLS and FD-OLS estimation equations contain a set of
T − 1 year dummies (in first differences in the FD-OLS equation); the 2FE estimator captures
the common processes by transforming all variables into deviations from the cross-section mean.
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Formally, the above estimators are defined as

POLS yit = a+ bxit +
T∑
s=2

csDs + eit (4)

FD-OLS ∆yit = b∆xit +
T∑
s=2

cs∆Ds + ∆eit (5)

2FE y̆it = bx̆it + ĕit (6)

where z̆it = zit− z̄i− z̄t + z̄ with z̄i = T−1
∑T

t=1 zit (country average), z̄t = N−1
∑N

i=1 zit (cross-

section average) and z̄ = (NT )−1
∑T

t=1

∑N
i=1 zit (full sample average).

None of the above estimators explicitly addresses cross-section dependence in the data. This
is addressed in the pooled version of the Pesaran (2006) Common Correlated Effects estimator
(CCEP), where the pooled fixed effects equation is augmented by cross-section averages of the
dependent and the independent variables, in a fashion such that the impact of the unobserved
common factors is allowed to vary across countries. Formally,

CCEP yit = a+ bxit +
N∑
j=2

djDj +
N∑
j=1

c1i{ȳtDj}+
N∑
j=1

c2i{x̄tDj}+ eit (7)

where the first three terms represent a standard fixed effects estimator and the last two terms
represent the augmentation with cross-section averages at time t (z̄t = N−1

∑N
i=1 zit) interacted

with a set of N country dummies Dj. This combination creates k + 1 matrices of dimensions
NT ×N where k is the number of observed variables in the model.

The intuition why this rather simple augmentation can do away with the impact of unobserved
common factors (with heterogeneous factor loadings) is as follows: take the cross-section aver-
ages of our hypothesised DGP in equation (1) for each point in time to yield

ȳt = ᾱ + β̄′x̄t + γ̄′f̄t (8)

⇔ f̄t = γ̄−1(ȳt − ᾱ− β̄′x̄t) since ε̄t = 0

This indicates that provided the average impact of each factor across all countries is non-zero
(γ̄ 6= 0), the use of cross-section averages of the dependent (ȳt) and independent variables (x̄t)
can act as a representation of the unobserved common factors ft since as the cross-section
dimension (N) becomes large f̄t → ft in probability. To allow for heterogeneity in the factor
loadings this representation must be implemented in the fashion outlined above.

Pesaran (2006) shows that the asymptotic consistency of the CCEP estimator is based on any
weighted cross-section aggregates (z̄t =

∑
iwizit) provided the weights wi satisfy the condi-

tions

wi = O

(
1

N

) N∑
i=1

wiγi 6= 0
N∑
i=1

|wi| < K (9)

where K is a finite positive constant (Coakley et al., 2006). In the standard CCE estimator
the weights are the same for all countries (1/N) as z̄t represents the arithmetic mean. In an
extension to this standard practice we experiment with a number of weight-matrices to develop

11



alternative CCE estimators. We present three variants of the standard approach:

1. The Neighbourhood CCE approach — for country i the cross-section averages (means)
for y and x are constructed from the values for i’s contiguous neighbours.

2. The Gravity CCE approach — for country i the observations for countries j = 1, . . . , N−1
are weighted by the inverse of the population-weighted distance between i and j (these
weights were normalised so that they sum to unity) before computing the cross-section
aggregate.

3. The Agro-Climatic CCE approach — for country i the observations for countries j =
1, . . . , N−1 are weighted by Jaffe’s measure for agricultural distance (see below) between
i and j (these weights were normalised so that they sum to unity) before computing the
cross-section aggregate.8

Our conceptual justification for these variants of the CCEP (and also the CCEMG) estimator
is the situation where the average of factor loadings across countries is non-zero, but systematic
patterns drive the data. In the distance case we implicitly test the hypothesis that country i
is driven by unobserved common factors which are the same in countries in close proximity,
but is much less affected by other factors which drive countries further away from it. The
neighbourhood case represents an extreme extension of this argument whereby only countries
which share a common border are driven by the same factors. Finally, in the agro-climatic
case we test the hypothesis that countries with similar agro-climatic environment are affected
by a shared set of common factors, but that these countries are not (or only to a very limited
degree) affected by a separate set of common factors, which in turn influences countries in very
different agro-climatic environments.

All of the above estimators impose parameter homogeneity on the production technology (ob-
served variables) and TFP (unobserved common factors), with the exception of the CCEP
estimator which allows for heterogeneity in TFP evolvement. If variables (y,x) and factors (f)
are nonstationary the POLS, FE and 2FE estimators require that the cointegrating relation
between y,x and f is homogeneous across countries. Similarly, if only y and x are nonsta-
tionary their cointegrating relationship is required to be common across countries. As our
simulation study reveals9 the use of year dummies can greatly reduce the misspecification bias
in a range of scenarios when these assumptions are violated, however the regression equations
fundamentally are misspecified and contain nonstationary errors.10 We now turn to a number
of estimators which allow for parameter heterogeneity in both the production technology and
TFP evolvement.

3.2.2 Estimators allowing for parameter heterogeneity

All of the following estimators are based on individual country regressions. A starting point
is the Pesaran and Smith (1995) Mean Group estimator (MG) which assumes cross-section
independence (absence of unobserved common factors) and in the presence of nonstationary
variable series requires heterogeneous cointegration, i.e. that the country regression model is
correctly specified and encompasses the cointegrating relationship.

8For the Jaffe (1986) measure see Section 2.1 for details. For the distance and agro-climatic distance we
normalise the weights (across i) so that they sum to unity.

9Available on request.
10The CCEP estimator seems to be the exception with regard to the latter.
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We thus estimate N country regressions

MG yit = ai + bixit + cit+ eit (10)

b̂MG = N−1
∑
i

b̂i

where t is a linear trend term with parameter coefficient ci and ai is the intercept. By construc-
tion all parameters can differ across countries, indicated by the subscript i. The linear trend
term is included to capture unobserved idiosyncratic processes which are time-invariant. The
MG estimates are then derived as averages of the individual country estimates.

3.2.3 Estimators allowing for parameter heterogeneity and common factors

We also present results for the Augmented Mean Group estimator (AMG), which we developed
in Eberhardt and Teal (2008). This estimator accounts for potential cross-section dependence by
inclusion of a ‘common dynamic effect’ in the country regression. This variable is extracted from
the year dummy coefficients of the pooled regression in first differences and (following trans-
formation) represents a levels-equivalent average evolvement of unobserved common factors
across all countries. Provided that the unobserved common factors form part of the country-
specific cointegrating relation, the augmented country regression model thus encompasses the
cointegrating relationship, which is allowed to differ across countries.

AMG Stage (i) ∆yit = b∆xit +
T∑
s=2

cs∆Ds + ∆eit (11)

⇒ ĉs ≡ µ̂•t
AMG Stage (ii) yit = ai + bixit + κiµ̂

•
t + cit+ eit (12)

b̂AMG = N−1
∑
i

b̂i

The first stage represents a standard FD-OLS regression with T − 1 year dummies in first
differences, from which we collect the year dummy coefficients which are labelled as µ̂•t . In
the second stage this variable is included in each of N standard country regression which
also includes a linear trend term to capture unobserved idiosyncratic processes which are time-
invariant. The AMG estimates are then derived as averages of the individual country estimates.

This approach is conceptually close to the Mean Group version of the Pesaran (2006) Common
Correlated Effects (CCEMG) estimator, which is a variant on the pooled estimator CCEP
introduced above. For CCEMG we obtain N country regression equations, each of which
contains the cross-section average terms for y and x

CCEMG yit = ai + bixit + c1iȳt + c2ix̄t + eit (13)

b̂CCEMG = N−1
∑
i

b̂i

As was detailed above the cross-section averages can account for unobserved common factors
with heterogeneous factor loadings. The CCEMG estimates are then averaged across countries.
We develop the three variants of the CCEMG estimator in analogy to the pooled estimator
case.
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3.3 Data

The principal data source for our empirical analysis is the Food and Agriculture Organisation’s
FAOSTAT panel database (FAO, 2007), from which we obtain annual observations for agricul-
tural net output, economically active labour force in agriculture, number of tractors used in
agriculture, arable land and permanent crop land and fertilizer use in 128 countries from 1961
to 2002 (average T = 40.3).

Additional time-invariant data on geographical distance between countries and contiguity (neigh-
borhood) is taken from CEPII (2006), and data on the share of agricultural land by climatic
zone from Matthews (1983) available in Gallup et al. (1999). Data construction is discussed in
Appendix A which also contains the descriptive statistics.

4 Empirical Results

4.1 Time-Series Properties and Cross-Section Dependence

We carry out a set of stationarity and nonstationarity tests for individual country time-series as
well as the panel as a whole, results for which are presented in Appendix B. Ultimately, in case
of the present data dimensions and characteristics, and given all the problems and caveats of
individual country and panel unit root tests, we can suggest most conservatively that nonsta-
tionarity cannot be ruled out in this dataset. Investigation of the time-series properties of the
data was not intended to select a subset of countries which we can be reasonably certain display
nonstationary variable series like in Pedroni (2007); instead, our aim was to indicate that the
sample (possibly due to the limited time-series dimension, as argued in Pedroni, 2007) is likely
to be made up of a mixture of some countries with stationary and others with nonstationary
variable series.

The results for the cross-section dependence (CSD) analysis are presented in Appendix C. Our
analysis provides strong evidence for the presence of cross-section dependence within the full
sample dataset, based on average variable cross-country correlation coefficients, principal com-
ponent analysis and the Pesaran (2004) CD test. This result holds for both the individual
variables as well as residuals from regressions which do not address cross-section correlation:
the pooled OLS (POLS), two-way fixed effects (2FE) and Mean Group (MG) estimators.11

The CD test for residuals from standard CCEMG regressions cannot reject cross-section in-
dependence, indicating that this approach successfully deals with the presence of unobserved
common factors. It is noteworthy that the average cross-section correlation for residuals from
the pooled OLS regression with variables in first differences (FD-OLS) drops considerably and
like in the CCEMG case cross-section independence cannot be rejected. This result is surprising
— Coakley et al. (2006) did not investigate the FD-OLS estimator in their study and we further
noted its performance in our dedicated Monte Carlo analysis (available on request). We also
carry out the same testing procedures for various subsamples of the data, based on geographic
and climatic categories. The standard CCEMG estimator seems to achieve the elimination of
cross-section dependence even within and across narrower subsamples, while most other estima-
tion approaches (now including FD-OLS) are subject to considerable residual correlation within

11POLS is augmented with T − 1 year dummies, MG country regressions with a linear trend term.
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and across country groupings. CD tests and mean absolute residual correlation are reported in
the results section below for each of the empirical specifications considered.

4.2 Pooled estimation results

We present the estimation results for the pooled specifications in Table 2. The dependent vari-
able and the independent variables are expressed in per worker term, such that the addition
of the labour variable indicates deviation from constant returns to scale. In the lower panels
of the table we report the implied returns to scale and labour coefficients as well as various
diagnostic test results. Recall for the following discussion that the 2FE estimator represents
the empirical implementation of choice in the present literature.

We first discuss parameter coefficients: most empirical models presented indicate large de-
creasing returns to scale in agriculture. In common with many studies using the FAO data,
the coefficients on capital (tractors) are relatively low across all models, ranging from .04 (FD-
OLS) to .13 (POLS). The land coefficients are high and relatively stable across specifications
(between .21 and .33), whereas the fertilizer coefficients range from .01 to .17. Livestock again
has a rather large coefficient across all specifications (.22 to .37).

Regarding the implied labour coefficients, we find very low magnitudes across all specifications,
with the standard and distance-weighted CCEP even providing nonsensical negative parameter
values. Certainly the most striking pattern in these results is the general magnitude of the
implied decreasing returns to scale: based on this analysis we can conclude that in a pooled
specification the data in all but two of the weighted CCE estimators rejects constant returns
emphatically, with input elasticities in the commonly favoured 2FE estimator adding up to
around .80. This finding may reflect a global production function with substantial decreasing
returns to scale, possibly due to the presence of a fixed factor (median land per worker growth
rate for the sample: 0.0%); alternatively, it may reflect empirical misspecification.

Turning to the diagnostics, we can see that with the exception of the models in first differences,
all models seem to display serial correlation in the residuals. Unit root tests indicate that the
CCEP-type and first difference estimators seem to yield stationary residuals, in contrast to
the standard panel estimators in levels (POLS, 2FE) for which nonstationary residuals cannot
be rejected. Recall that t-statistics are invalid in the presence of nonstationary errors (Kao,
1999). Mean absolute residual correlations for POLS and 2FE are relatively high, at around
.4, whereas this measure drops to around .16 in all other regression models. Nevertheless the
Pesaran (2004) CD-test for cross-section dependence yields very mixed results: only the residu-
als for the agro-climate CCEP and the FD-OLS estimator suggest cross-section independence.
Further specification tests emphatically reject residual normality and homoskedasticity in all
models. These diagnostics indicate that the commonly preferred 2FE estimator has serially
correlated errors, which are nonstationary, nonnormal, heteroskedastic and correlated across
countries. Note that input parameter estimates for this estimator are reasonably close to those
in Craig et al. (1997), the closest match for this dataset and specification.
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Table 2: Pooled regressions (unrestricted returns to scale)

Pooled regressions
dependent variable: [1] & [3]-[6] log output per worker, [2] dto. in 2FE transformation\,

[7] ∆log output per worker, [8] dto. in 2FE transformation\

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE\ CCEP CCEP CCEP CCEP FD-OLS FD-2FE\

weight matrix‡ none neighbour distance agro-climate
labour† -0.0586 -0.1908 -0.3194 -0.0659 -0.2684 -0.2157 -0.3797 -0.1946

∆ in [7]&[8] [17.50]∗∗ [14.79]∗∗ [2.35]∗∗ [0.39] [2.52]∗ [1.70] [3.60]∗∗ [3.54]∗∗

tractors pw 0.1315 0.0577 0.0740 0.0898 0.0765 0.0440 0.0383 0.0718
∆ in [7]&[8] [24.12]∗∗ [13.76]∗∗ [4.86]∗∗ [4.13]∗∗ [4.02]∗∗ [2.68]∗∗ [3.21]∗∗ [5.71]∗∗

livestock pw 0.2189 0.3579 0.3601 0.2984 0.3669 0.3715 0.2861 0.3012
∆ in [7]&[8] [28.61]∗∗ [30.85]∗∗ [7.00]∗∗ [3.95]∗∗ [10.03]∗∗ [7.26]∗∗ [6.87]∗∗ [7.80]∗∗

fertilizer pw 0.1690 0.0726 0.0255 0.0497 0.0277 0.0258 0.0086 0.0103
∆ in [7]&[8] [28.08]∗∗ [23.63]∗∗ [4.67]∗∗ [4.97]∗∗ [2.59]∗ [4.68]∗∗ [2.48]∗ [3.00]∗∗

land pw 0.2529 0.2936 0.2415 0.2854 0.3321 0.2452 0.2101 0.2831
∆ in [7]&[8] [30.42]∗∗ [21.07]∗∗ [2.34]∗ [2.86]∗∗ [3.17]∗∗ [3.23]∗∗ [2.71]∗∗ [4.33]∗∗

We included (T − 1) year dummies in equations [1] and (in first differences) [7].
Constant 1.9084 2.8646 0.9223 4.2520 2.6092

[28.93]∗∗ [1.78] [0.39] [2.92]∗∗ [1.49]
Observations 5,162 5,162 5,162 5,162 5,162 5,162 5,013 5,013
groups 128 128 128 128 128 128 128 128
average T 40.3 40.3 40.3 40.3 40.3 40.3 39.2 39.2
R-squared 0.91 0.66 0.96 0.94 0.98 0.96 0.16 0.12

Returns to scale implications of the parameter estimates [
Implied βL 0.1691 0.0274 -0.0205 0.2108 -0.0716 0.0978 0.0772 0.1390
Returns DRS DRS DRS CRS DRS CRS DRS DRS

Arellano-Bond Serial Correlation Test — H0: no serial correlation in the residuals
AR(1) (p) 36.72 (.00) 56.21 (.00) 7.62 (.00) 16.20 (.00) 12.82 (.00) 11.40 (.00) -9.52 (.00) -9.67 (.00)
AR(2) (p) 36.19 (.00) 49.01 (.00) 0.78 (.44) 10.96 (.00) 5.05 (.00) 3.80 (.00) -0.61 (.54) -0.69 (.49)
AR(3) (p) 35.63 (.00) 43.30 (.00) -3.04 (.00) 6.66 (.00) -0.67 (.50) -0.50 (.61) 0.49 (.62) 0.40 (.69)

Nonstationarity: Pesaran (2007) CIPS test applied to residuals] — H0: residuals are I(1)
lags Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -7.94 (.00) -9.54 (.00) -40.38 (.00) -31.21 (.00) -32.76 (.00) -33.63 (.00) -48.92 (.00) -48.78 (.00)
1 lag -2.67 (.00) -3.47 (.00) -32.11 (.00) -21.03 (.00) -23.73 (.00) -24.07 (.00) -38.06 (.00) -37.83 (.00)
2 lags 0.01 (.50) 0.39 (.65) -24.66 (.00) -15.41 (.00) -18.45 (.00) -16.75 (.00) -24.40 (.00) -24.21 (.00)
3 lags 1.79 (.96) 2.05 (.98) -20.39 (.00) -11.28 (.00) -14.49 (.00) -13.18 (.00) -14.87 (.00) -15.32 (.00)
4 lags 3.91(1.00) 4.20 (1.00) -15.83 (.00) -5.96 (.00) -8.72 (.00) -9.26 (.00) -8.79 (.00) -8.94 (.00)

Cross-Section Dependence: Mean (Absolute) Correlation & Pesaran (2004) CD test — H0: no CSD
Mean ρij -0.01 0.02 0.01 0.01 0.07 0.00 0.00 0.02
Mean |ρij | 0.42 0.41 0.18 0.15 0.17 0.16 0.15 0.15
CD (p) -2.49 (.01) 9.64 (.00) 4.97 (.00) 4.06 (.00) 38.52 (.00) -0.25 (.80) 0.04 (.97) 12.84 (.00)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis
(A) Joint test
χ2 (p) 119.9 (.00) 238.8 (.00) 585.4 (.00) 534.9 (.00) 439.6 (.00) 471.72 (.00) 976.1 (.00) 975.5 (.00)
(B) Joint test
χ2 (p) 1128.1 (.00) 459.4 (.00) - - - - 1064.8 (.00) 334.6 (.00)

Notes: The values in square brackets are absolute t-statistics of the estimates, based on heteroskedasticity-robust standard errors.
∗ and ∗∗ indicate statistical significance at the 5% and 1% level respectively.
\ In the 2FE model we transform all variables as follows: (zit − z̄i − z̄t + z̄), where

z̄i = T−1∑T
t=1 zit and z̄t = N−1∑N

i=1 zit and z̄ = (NT )−1∑T
t=1

∑N
i=1 zit

† All variables are in log per worker terms with the exception of the log labour variable: this specification allows for convenient determination of
the returns to scale, whereby a positive (negative) significant coefficient on log labour is evidence for increasing (decreasing) returns to scale and
an insignificant coefficient implies constant returns to scale.
‡ We apply different N ×N weight matrices to construct the cross-section averages: in [4] averages are constructed for each country i from the
values of itself and its neighbours, in [5] we use the inverse of the population-weighted distance between two countries, in [6] the Jaffe correlation
coefficient for the 12 agro-climatic zones between two countries. See main text for details.
[ The implied returns to scale are labeled decreasing (DRS) if the coefficient on labour is negative, statistically significant, and constant (CRS) if
this coefficient is insignificant, see previous note. The implied labour coefficient is computed by adding up all the coefficients on the RHS variables
(except for labour), subtracting them from unity (the result is the implied labour coefficient if constant returns were to hold) and then adding the
coefficient on labour.
] The Pesaran (2007) CIPS test results are for the ADF equation with an intercept and the indicated augmentation with lagged first differences.
The test results for the ADF equation with intercept and trend follow the same pattern of rejection and are therefor omitted. The CIPS accounts
for cross-section dependence in the residuals.
? The D’Agostino et al. (1990) test (A) investigates skewness and kurtosis. The Cameron and Trivedi (1990) decomposition test in (B) analyses
residual heteroskedasticity, skewness and kurtosis. Both tests provide joint hypothesis tests. If a test rejects skewness or kurtosis we can no longer
assume normality for the residual distribution. Note that we cannot compute the Cameron and Trivedi (1990) for all CCEP estimators due to the
large number of parameters in these models.
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Table 3: Pooled regressions (CRS imposed)

Pooled regressions
dependent variable: [1] & [3]-[6] log output per worker, [2] dto. in 2FE transformation\,

[7] ∆log output per worker, [8] dto. in 2FE transformation\

[1] [2] [3] [4] [5] [6] [7] [8]
POLS 2FE\ CCEP CCEP CCEP CCEP FD-OLS FD-2FE\

weight matrix‡ none neighbour distance agro-climate

tractors pw 0.1437 0.0650 0.0989 0.0982 0.0879 0.0787 0.0542 0.0788
∆ in [7]&[8] [25.96]∗∗ [15.27]∗∗ [5.63]∗∗ [5.35]∗∗ [6.37]∗∗ [4.93]∗∗ [4.00]∗∗ [5.93]∗∗

livestock pw 0.2472 0.4147 0.3869 0.3103 0.4120 0.3994 0.3191 0.3248
∆ in [7]&[8] [29.59]∗∗ [37.10]∗∗ [7.53]∗∗ [4.49]∗∗ [9.30]∗∗ [8.94]∗∗ [7.84]∗∗ [8.61]∗∗

fertilizer pw 0.1616 0.0647 0.0289 0.0485 0.0333 0.0326 0.0084 0.0100
∆ in [7]&[8] [26.72]∗∗ [20.94]∗∗ [5.19]∗∗ [5.10]∗∗ [3.39]∗∗ [5.72]∗∗ [2.46]∗ [2.97]∗∗

land pw 0.2503 0.3955 0.3326 0.3311 0.4550 0.3198 0.3129 0.3239
∆ in [7]&[8] [28.68]∗∗ [32.01]∗∗ [3.87]∗∗ [4.74]∗∗ [6.49]∗∗ [4.17]∗∗ [4.68]∗∗ [5.12]∗∗

We included (T − 1) year dummies in equations [1] and (in first differences) [7].

Constant 1.1077 -0.1508 0.2140 0.3488 0.0397
[23.50]∗∗ [2.62]∗∗ [1.73] [6.50]∗∗ [0.65]

Observations 5,162 5,162 5,162 5,162 5,162 5,162 5,013 5,013
groups 128 128 128 128 128 128 128 128
average T 40.3 40.3 40.3 40.3 40.3 40.3 39.2 39.2
R-squared 0.90 0.64 0.95 0.93 0.98 0.95 0.15 0.11

Implications for labour coefficient[

Implied βL 0.1972 0.0601 0.1527 0.2119 0.0118 0.1695 0.3054 0.2625

Arellano-Bond Serial Correlation Test — H0: no serial correlation in the residuals

AR(1) (p) 36.67 (.00) 56.81 (.00) 11.17 (.00) 17.96 (.00) 15.46 (.00) 14.10 (.00) -9.57 (.00) -9.60 (.00)
AR(2) (p) 36.18 (.00) 49.72 (.00) 4.70 (.00) 12.97 (.00) 7.61 (.00) 6.61 (.00) -0.57 (.57) -0.62 (.53)
AR(3) (p) 35.67 (.00) 44.01 (.00) -0.09 (.93) 8.62 (.00) 1.25 (.21) 1.50 (.13) 0.45 (.65) 0.39 (.69)

Nonstationarity: Pesaran (2007) CIPS test applied to residuals] — H0: residuals are I(1)

lags Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -7.77 (.00) -5.83 (.00) -34.17 (.00) -27.74 (.00) -30.88 (.00) -30.98 (.00) -49.10 (.00) -48.99 (.00)
1 lag -2.47 (.01) -0.01 (.50) -24.10 (.00) -18.15 (.00) -21.66 (.00) -21.41 (.00) -37.52 (.00) -37.75 (.00)
2 lags 0.01 (.50) 2.74 (1.00) -17.44 (.00) -12.01 (.00) -16.91 (.00) -15.48 (.00) -24.85 (.00) -23.64 (.00)
3 lags -0.41 (.34) 3.17 (1.00) -13.51 (.00) -9.57 (.00) -13.04 (.00) -11.36 (.00) -15.90 (.00) -14.73 (.00)
4 lags 0.06 (.52) 3.99 (1.00) -9.47 (.00) -4.76 (.00) -6.54 (.00) -8.72 (.00) -7.66 (.00) -7.84 (.00)

Cross-Section Dependence: Mean (Absolute) Correlation & Pesaran (2004) CD test — H0: no CSD

Mean ρij -0.01 0.00 0.00 0.01 0.07 0.00 0.00 0.02
Mean |ρij| 0.43 0.42 0.19 0.16 0.17 0.17 0.14 0.15
CD (p) -3.79 (.01) -0.71 (.48) 1.46 (.14) 5.51 (.00) 38.48 (.00) -1.28 (.20) -0.19 (.85) 9.21 (.00)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis

(A) Joint test
χ2 (p) 179.4 (.00) 229.3 (.00) 557.5 (.00) 452.1 (.00) 368.4 (.00) 461.7 (.00) 1002.5 (.00) 990.4 (.00)

(B) Joint test
χ2 (p) 1078.9 (.00) 424.5 (.00) - - - - 967.8 (.00) 268.2 (.00)

Notes: See Table 2 for further details.

In line with much of the literature, we run regressions with CRS imposed to provide a reference
point — as just reported this imposition is rejected by the data in most models — and report
the results in Table 3. Interestingly the parameter estimates for tractors, livestock (moderate
increase) and fertilizer are relatively stable compared with the unrestricted models. In contrast
the land coefficients shoot up (in the 2FE case from .29 to .40) in all specification safe for POLS.
Implied labour coefficients remain relatively stable for POLS and 2FE but rise substantially
for the difference and CCEP regressions. Serial correlation tests and the unit root tests display
rejection patterns next to identical to those in the unrestricted case. With regard to the CD
test, 2FE and CCEP errors now indicate cross-section independence. Again the normality and
homoskedasticity tests reject across the all estimators. Existing results for the FAO data and a
comparable empirical specification in Bravo-Ortega and Lederman (2004) show similar patterns
(albeit with an even higher land-coefficient).
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We can see from these results that the the erroneous imposition of CRS (the unrestricted models
reject CRS) has led to larger magnitudes for either the land or the implied labour coefficient —
in the commonly preferred 2FE model the implied labour coefficient has merely risen from .03 to
.06 — albeit with diagnostics that reject the most common regression assumptions for this esti-
mator (residuals which are stationary, serially uncorrelated, normal and homoskedastic). Note
that our empirical setup implies that factor-input parameters are unidentified in the POLS and
2FE if the same unobserved common factors drive output and inputs.

Regarding the Pesaran (2006) CCEP and our extensions, our results show that the former em-
phatically rejects CRS and yields summed input elasticities of around .68, with negative implied
labour coefficient; of the other CCE estimators the distance version behaves in a similar fash-
ion, whereas the other two cannot reject CRS. Serial correlation remains a concern in all four
models. Surprisingly the agro-climate version is the only model that cannot reject cross-section
independence. Once CRS is (despite previous results) imposed, all models yield somewhat
similar coefficients, with the land coefficient again rising considerably — most obviously so in
the distance model. Diagnostics remain similar, although residuals in the standard CCEP now
cannot reject cross-sectional independence.

In conclusion, our pooled models largely reject constant returns to scale, yield very low values for
the implied coefficient on labour and over a range of specification tests indicate a combination of
non-normality and heteroskedasticity, cross-section dependence, nonstationarity and/or serial
correlation in the residuals. Allowing for heterogeneity in the unobserved common factors
(CCEP) although alleviating a potential identification problem does not seem to provide an
overall panacea; in fact for the most part the CCEP-type estimators are suggested to continue
suffering from cross-section dependence. Our next analytical step is therefore to investigate how
the parameter estimates and diagnostic tests change if we allow for technology heterogeneity
across countries.

4.3 Averaged country regression estimates

We present the results from Mean-Group type estimators in the unrestricted regression model
(CRS not imposed) in Table 4. For all estimators we present the mean and robust mean across
N country parameters — the latter uses weights to reduce the impact of outliers. In practice
the median estimates (not reported) are very close to the robust estimates. In our discussion
below we focus on the robust means. The t-statistics reported for each average estimate test
whether the average parameter is statistically different from zero, following Pesaran, Smith,
and Yamagata (2008).

The MG, as well as our two Augmented Mean Group estimators display large decreasing re-
turns, although in the AMG version (i) only at the 10% level of significance. The standard,
neighbour and agro-climate CCEMG in contrast have insignificant coefficients on labour, in-
dicating constant returns in the average country regression. Around 30 to 40 countries reject
CRS at 5% level of significance in each of these models. The distance CCEMG indicates very
large and highly significant decreasing returns to scale.

Regarding average parameter estimates on the factor inputs, the MG and AMG estimators
yield next to identical results: capital around .07, livestock around .25, fertilizer around .03
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Table 4: Mean Group type estimators (no restrictions on returns to scale)

Average country regression estimates (means and robust means)
Returns to scale are left unrestricted (CRS, DRS, IRS); N=128, average T=40.3, n = 5, 126;

dependent variable: [1],[3]-[7] log output per worker, [2] log output per worker less µ̂•t

[1] [2] [3] [4] [5] [6] [7]
MG AMG(i) AMG(ii) CCEMG CCEMG CCEMG CCEMG

weight matrix† none neighbour distance agro-climate
Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust

labour -0.5393 -0.3574 -0.5438 -0.3039 -0.5438 -0.3664 -0.2162 -0.1257 -0.309 -0.1814 -0.5309 -0.5014 -0.2101 -0.1192
[1.87] [2.23]∗ [1.83] [1.90] [1.96] [2.34]∗ [1.38] [1.04] [1.66] [1.55] [4.42]∗∗ [5.85]∗∗ [1.15] [1.12]

tractors pw -0.0611 0.0748 -0.045 0.0797 -0.0351 0.0721 0.0489 0.0641 -0.0301 0.0561 0.0524 0.0419 -0.0088 0.0612
[0.51] [3.31]∗∗ [0.40] [3.52]∗∗ [0.36] [3.34]∗∗ [1.19] [3.26]∗∗ [0.31] [2.08]∗ [2.51]* [2.83]∗∗ [0.13] [2.74]∗∗

livestock pw 0.2757 0.2456 0.2853 0.2719 0.2761 0.2508 0.3803 0.3237 0.3044 0.2779 0.3219 0.3336 0.3056 0.2760
[5.87]∗∗ [8.07]∗∗ [6.08]∗∗ [8.28]∗∗ [6.38]∗∗ [7.82]∗∗ [7.04]∗∗ [9.44]∗∗ [6.34]∗∗ [7.22]∗∗ [7.66]∗∗ [9.48]∗∗ [5.78]∗∗ [7.91]∗∗

fertilizer pw 0.0370 0.0299 0.0379 0.0315 0.0367 0.0309 0.0366 0.0310 0.0394 0.0274 0.0409 0.0413 0.0467 0.0299
[5.10]∗∗ [4.86]∗∗ [5.10]∗∗ [4.91]∗∗ [4.99]∗∗ [4.64]∗∗ [5.39]∗∗ [5.02]∗∗ [4.97]∗∗ [4.59]∗∗ [6.15]∗∗ [6.74]∗∗ [5.85]∗∗ [5.26]∗∗

land pw 0.2549 0.2102 0.2363 0.1952 0.2617 0.1695 0.0935 0.1999 -0.0327 0.1623 0.1235 0.1414 0.2316 0.1966
[2.12]∗ [2.79]∗∗ [1.88] [2.60]∗ [2.06]∗ [2.27]∗ [0.82] [2.68]∗∗ [0.27] [2.17]∗ [1.39] [2.07]∗ [2.05]∗ [3.13]∗∗

Common factors imposed 1.0569 0.7741
[7.38]∗∗ [7.72]∗∗

Country trend 0.013 0.0123 -0.0013 -0.0031 -0.0015 -0.0015
[2.69]∗∗ [4.82]∗∗ [0.25] [1.20] [0.30] [0.30]

t̂i sign. at 10% 78 68 42

Constant 7.0818 5.366 7.2221 4.7029 7.2654 5.6869 0.9917 0.8964 3.442 2.1018 7.5518 7.1717 2.0287 1.6316
[1.79] [2.30]∗ [1.75] [2.05]∗ [1.87] [2.51]∗ [0.38] [0.41] [1.49] [1.27] [4.33]∗∗ [6.11]∗∗ [0.82] [1.09]

Returns to scale implications of the parameter estimates‡
implied βL -0.0458 0.0821 -0.0583 0.1178 -0.0832 0.1103 0.2245 0.2556 0.4100 0.2949 -0.0696 -0.0596 0.2148 0.3171
Returns CRS DRS CRS CRS CRS DRS CRS CRS CRS CRS DRS DRS CRS CRS
reject CRS 47 47 46 28 36 53 40

Pedroni (1999) panel t-statistics

N−1/2
∑

i tβ̂L,i [7.20]∗∗ [6.33]∗∗ [6.83]∗∗ [2.10]∗ [2.84]∗∗ [14.04]∗∗ [2.54]∗∗

N−1/2
∑

i tβ̂tr,i [6.57]∗∗ [7.11]∗∗ [7.27]∗∗ [8.36]∗∗ [5.41]∗∗ [4.81]∗∗ [7.24]∗∗

N−1/2
∑

i tβ̂live,i [21.42]∗∗ [22.22]∗∗ [20.30]∗∗ [21.53]∗∗ [20.09]∗∗ [23.52]∗∗ [18.88]∗∗

N−1/2
∑

i tβ̂f,i [9.39]∗∗ [9.22]∗∗ [8.93]∗∗ [7.57]∗∗ [9.49]∗∗ [11.16]∗∗ [9.36]∗∗

N−1/2
∑

i tβ̂n,i [8.06]∗∗ [7.36]∗∗ [6.87]∗∗ [3.41]∗∗ [5.11]∗∗ [6.71]∗∗ [7.04]∗∗

N−1/2
∑

i tβ̂TFP,i [10.37]∗∗

N−1/2
∑

i tt̂i [33.60]∗∗ [28.84]∗∗ [15.70]∗∗

Serial correlation in the residuals] — H0: no serial correlation (except for DW d)

pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Ljung-Box 912.3 (.00) 902.1 (.00) 1005.8 (.00) 47.8 (1.00) 407.0 (.00) 201.3 (1.00) 170.5 (1.00)
Durbin AR(1) 778.9 (.00) 929.0 (.00) 758.0 (.00) 356.6 (.00) 545.3 (.00) 387.6 (.00) 431.5 (.00)
Durbin AR(2) 782.2 (.00) 771.1 (.00) 782.9 (.00) 508.6 (.00) 683.9 (.00) 521.8 (.00) 531.4 (.00)
BGod AR(1) 755.9 (.00) 738.9 (.00) 701.0 (.00) 437.3 (.00) 578.1 (.00) 449.6 (.00) 486.4 (.00)
BGod AR(2) 750.6 (.00) 746.6 (.00) 720.0 (.00) 623.2 (.00) 723.8 (.00) 613.8 (.00) 611.9 (.00)

< 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79
DW d statistic # 29 43 26 42 25 47 4 82 13 76 10 70 8 74
(in %) 23% 34% 20% 33% 20% 37% 3% 64% 10% 59% 8% 55% 6% 58%

Nonstationarity: Pesaran (2007) CIPS test applied to residuals — H0: residuals are I(1)

lags Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -35.9 (.00) -36.6 (.00) -36.2 (.00) -43.9 (.00) -42.0 (.00) -42.1 (.00) -44.2 (.00)
1 lag -27.2 (.00) -29.2 (.00) -28.4 (.00) -33.6 (.00) -32.3 (.00) -31.4 (.00) -35.0 (.00)
2 lags -20.4 (.00) -20.1 (.00) -19.7 (.00) -23.9 (.00) -22.5 (.00) -24.7 (.00) -25.8 (.00)
3 lags -17.2 (.00) -16.2 (.00) -16.4 (.00) -18.8 (.00) -18.9 (.00) -19.6 (.00) -21.2 (.00)
4 lags -10.2 (.00) -9.7 (.00) -9.4 (.00) -14.1 (.00) -12.3 (.00) -13.5 (.00) -16.8 (.00)

Cross-section Dependence: Mean (absolute) correlations and Pesaran (2004) test — H0: no CSD in the residuals

ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij|
Mean Correl. 0.02 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.14 0.07 0.15 0.00 0.14
CD statistic (p) 9.16 (.00) -1.12 (.26) -2.47 (.02) 0.21 (.83) 2.24 (.03) 37.16 (.00) -1.72 (.09)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis

d’Agostini et al pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 379.2 (.00) 343.4 (.00) 355.4 (.00) 318.8 (.00) 299.8 (.01) 258.3 (.45) 308.3 (.03)

Cam & Tri pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 374.1 (.00) 368.7 (.00) 293.8 (.05) 245.2 (.68) 236.4 (.80) 233.5 (.84) 256.1 (.49)
homosk. 317.6 (.00) 314.9 (.01) 253.3 (.54) 218.8 (.96) 228.2 (.89) 218.8 (.96) 218.8 (.96)
skewness 374.0 (.00) 367.7 (.00) 342.2 (.00) 300.7 (.03) 259.6 (.43) 275.3 (.19) 324.6 (.00)
kurtosis 264.2 (.35) 254.4 (.52) 256.7 (.48) 242.5 (.72) 256.7 (.48) 248.4 (.62) 252.2 (.55)

Notes: All variables are in logs. ∗ and ∗∗ indicate statistical significance at the 5% and 1% level respectively. We present the sample mean and

the robust sample mean estimates of all model parameters. Terms in brackets are absolute t-statistics (H0: N−1∑
i β̂i = 0) following Pesaran et

al. (2008). An alternative panel t-test by Pedroni (1999) is also provided. The ‘common factors’ variable refers to µ̂•t .
† Weight matrix: we use the same approach to construct cross-section averages as in the pooled regressions.
‡ We compute implied labour coefficients and report returns to scale (DRS, CRS are decreasing and constant returns respectively).
] The Ljung-Box, Durbin ‘alternative’ and Breusch-Godfrey procedures test first- and higher-order serial correlation in time-series regression
residuals. We convert the p-statistics of the N results into a Fisher-statistic pλ which is distributed χ2(2N). For the Durbin-Watson d statistic we
report the number of time-series tests with a d statistic larger than 1.79 (smaller than 1.23) which is deemed to (be unable to) reject the null of
first order serial correlation (under the strong assumption of exogenous regressors).
For all other test statistics please refer to definitions in the footnotes of Table 2.
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and land around .20. In comparison to the parameter differences across models in the pooled
specifications, the MG and AMG parameter estimates are relatively similar to those in the
CCEMG models, with the crucial exception of the returns to scale coefficient and thus the
implied labour elasticity: in the former group of models the labour coefficient is around .10,
whereas in the latter group it is closer to .30 (leaving the nonsensical results produced by the
distance CCEMG to one side). Within the CCEMG group the standard and the agro-climate
estimators yield very similar results.

Turning to the diagnostics, all models reject nonstationary errors in the Pesaran (2007) CIPS
test. The panel t-statistic following Pedroni (1999) suggests that all coefficients are significant
at the 5% level, in contrast to the t-statistic following Pesaran et al. (2008) which we used for
our discussion above. Mean absolute error correlation is uniformly low at .15 for all estimators,
but cross-section independence is rejected in the MG and AMG(ii), as well as in the alternative
CCEMG estimators (marginally in case of the agro-climate CCEMG). For the serial correlation
tests we need to take recourse to statistics constructed from country-regression diagnostics. In
each case these are Fisher (1932)-type statistics (labelled pλ), derived from p-values for the
test statistics in each country.12 As can be seen the Durbin ‘alternative’ and Breusch-Godfrey
procedures reject the absence of serially correlated errors, whereas for the Ljung-Watson and
Durbin-Watson statistics (see table footnotes) there is some evidence for serially uncorrelated
errors in the CCEMG-type estimators. Furthermore, the error normality and homoskedasticity
tests (similarly expressed as Fisher-statistics) suggest these properties are rejected in the MG
and AMG estimators, and offer conflicting evidence across the CCEMG-type models.

Taking the results for all diagnostic tests into account and recognising the potential problems
of the use of time-series tests adjusted for the panel context via computation of the Fisher
(1932) statistic, we suggest that evidence in favour of the standard CCEMG and agro-climate
CCEMG seems most convincing: compared to the other models these provide some evidence
of serially uncorrelated and normal residuals. Since neither of these estimators can reject CRS
for the average country production function, we rerun all heterogeneous parameter models with
CRS imposed.

The CRS country regression averages in Table 5 produce very similar results across all estima-
tors: it can be seen that the imposition of CRS in heterogeneous regression models does not
create the same dramatic changes to the estimates as in the pooled estimator case. It can also
be seen that the individual country-estimates for each model now contain less outliers, as is
evidenced by the precision of the mean estimates and their proximity in parameter value to the
robust mean estimates. We focus on the models for which on average we had not rejected CRS:
AMG(i), standard, neighbour and agro-climate CCEMG. Factor elasticities in the AMG(i) are
close to the unrestricted model ones, with the obvious exception of implied labour, which with
CRS imposed is around .33 rather than .12. The standard and agro-climate CCEMG now
match each other’s (robust) mean parameters even closer than in the unrestricted case, while
the neighbour CCEMG in comparison has an inflated land coefficient. Panel t-statistics are
significant at the 1% level for all parameters in all models and CIPS tests continue to reject non-
stationarity in the residuals. AMG(i) as well as standard and agro-climate CCEMG residuals
appear cross-sectionally independent.

12Constructed as pλ = −2
∑
i log(pi), distribution χ2(2N).
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In comparison to the unrestricted versions, the models now however seem more likely to be
subject to serially correlated errors, as evidenced by the fall in the share of countries with a
Durbin-Watson statistic above 1.79, as well as the Ljung-Box and other test statistics. The
CCEMG now all ‘pass’ the Cameron and Trivedi (1990) normality/homoskedasticity test, while
all models continue to fail the D’Agostino et al. (1990) normality test.

Table 5: Mean Group type estimators (CRS imposed)

Average country regression estimates (means and robust means)
CRS imposed for all country regressions; N=128, average T=40.3;

dependent variable: [1],[3]-[7] log output per worker, [2] log output per worker less µ̂•t

[1] [2] [3] [4] [5] [6] [7]
MG AMG(i) AMG(ii) CCEMG CCEMG CCEMG CCEMG

weight matrix† none neighbour distance agro-climate
Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust

tractors pw 0.0700 0.0814 0.0887 0.0903 0.0780 0.0842 0.0879 0.1093 0.0673 0.0972 0.1317 0.1078 0.1247 0.0977
[2.08]∗ [3.57]∗∗ [2.57]∗ [3.71]∗∗ [2.27]∗ [3.65]∗∗ [2.50]∗ [5.23]∗∗ [1.72] [4.27]∗∗ [4.67]∗∗ [5.59]∗∗ [3.88]∗∗ [4.48]∗∗

livestock pw 0.3051 0.2917 0.3106 0.3075 0.3099 0.2905 0.3424 0.3214 0.3231 0.3124 0.3726 0.3682 0.3257 0.3298
[7.80]∗∗ [8.82]∗∗ [7.89]∗∗ [8.90]∗∗ [8.40]∗∗ [8.66]∗∗ [8.33]∗∗ [9.47]∗∗ [7.53]∗∗ [8.44]∗∗ [11.29]∗∗ [11.52]∗∗ [8.02]∗∗ [9.53]∗∗

fertilizer pw 0.0373 0.0328 0.0414 0.0378 0.0376 0.0348 0.0435 0.0358 0.0437 0.0376 0.0393 0.0365 0.0501 0.0352
[5.29]∗∗ [5.17]∗∗ [5.52]∗∗ [5.58]∗∗ [5.32]∗∗ [5.31]∗∗ [5.76]∗∗ [5.63]∗∗ [5.34]∗∗ [5.26]∗∗ [5.25]∗∗ [5.15]∗∗ [6.83]∗∗ [5.87]∗∗

land pw 0.2884 0.2636 0.2653 0.2234 0.2811 0.1919 0.2104 0.2008 0.2364 0.2623 0.3478 0.2905 0.2465 0.2139
[4.86]∗∗ [4.55]∗∗ [4.32]∗∗ [3.78]∗∗ [4.30]∗∗ [3.34]∗∗ [3.57]∗∗ [3.57]∗∗ [3.41]∗∗ [4.71]∗∗ [6.25]∗∗ [5.62]∗∗ [4.27]∗∗ [4.02]∗∗

Common factors imposed 1.0590 0.7808
[6.56]∗∗ [6.77]∗∗

Country trend 0.0100 0.0107 -0.0029 -0.0019 -0.0035 -0.0035
[6.18]∗∗ [7.86]∗∗ [1.78] [1.38] [1.43] [1.43]

t̂i sign. at 10% 82 65 37

Constant -0.3487 -0.2095 -0.2145 -0.1052 -0.2871 -0.1604 -0.2011 0.2874 -0.0917 -0.0603 0.0431 0.1377 -0.0580 -0.0582
[1.49] [1.11] [0.89] [0.55] [1.19] [0.90] [0.44] [1.02] [0.38] [0.39] [0.13] [0.95] [0.26] [0.33]

Returns to scale implications of the parameter estimates‡

implied βL 0.2992 0.3305 0.2940 0.3410 0.2934 0.3986 0.3158 0.3327 0.3295 0.2905 0.1086 0.1970 0.2530 0.3234

Pedroni (1999) panel t-statistics

N−1/2
∑

i tβ̂tr,i [11.17]∗∗ [13.16]∗∗ [11.35]∗∗ [13.46]∗∗ [9.15]∗∗ [12.91]∗∗ [12.01]∗∗

N−1/2
∑

i tβ̂live,i [24.88]∗∗ [26.03]∗∗ [24.16]∗∗ [24.68]∗∗ [25.75]∗∗ [28.7]∗∗ [22.35]∗∗

N−1/2
∑

i tβ̂f,i [10.34]∗∗ [10.94]∗∗ [9.27]∗∗ [9.83]∗∗ [11.33]∗∗ [9.85]∗∗ [11.00]∗∗

N−1/2
∑

i tβ̂n,i [13.45]∗∗ [11.83]∗∗ [11.28]∗∗ [9.66]∗∗ [10.93]∗∗ [14.22]∗∗ [9.61]∗∗

N−1/2
∑

i tβ̂TFP,i [11.85]∗∗

N−1/2
∑

i tt̂i [38.89]∗∗ [33.02]∗∗ [14.83]∗∗

Serial correlation in the residuals — H0: no serial correlation

pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Ljung-Box 1579.7 (.00) 1542.7 (.00) 1426.8 (.00) 380.2 (.00) 830.6 (.00) 443.5 (.00) 312.2 (.01)
Durbin AR(1) 1017.6 (.00) 1162.2 (.00) 843.5 (.00) 455.6 (.00) 715.8 (.00) 471.0 (.00) 484.1 (.00)
Durbin AR(2) 964.1 (.00) 952.3 (.00) 812.4 (.00) 502.2 (.00) 757.3 (.00) 557.3 (.00) 560.6 (.00)
BGod AR(1) 914.5 (.00) 908.5 (.00) 780.2 (.00) 513.5 (.00) 663.3 (.00) 523.3 (.00) 534.0 (.00)
BGod AR(2) 853.6 (.00) 855.3 (.00) 751.7 (.00) 573.5 (.00) 699.2 (.00) 628.1 (.00) 631.6 (.00)

< 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79
DW d statistic # 42 33 42 32 35 41 18 63 21 58 19 62 17 61

(in %) 33% 26% 33% 25% 27% 32% 14% 49% 16% 45% 15% 48% 13% 48%

Nonstationarity: Pesaran (2007) CIPS test applied to residuals — H0: residuals are I(1)

lag-augmentation Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -33.57 (.00) -34.67 (.00) -34.32 (.00) -44.26 (.00) -42.06 (.00) -41.62 (.00) -43.34 (.00)
1 lag -24.56 (.00) -27.02 (.00) -25.55 (.00) -35.24 (.00) -31.87 (.00) -31.33 (.00) -34.59 (.00)
2 lags -18.29 (.00) -19.13 (.00) -17.87 (.00) -25.55 (.00) -23.61 (.00) -24.79 (.00) -25.46 (.00)
3 lags -15.74 (.00) -16.33 (.00) -15.89 (.00) -21.35 (.00) -21.24 (.00) -19.31 (.00) -21.65 (.00)
4 lags -9.45 (.00) -11.25 (.00) -9.12 (.00) -16.54 (.00) -13.57 (.00) -12.28 (.00) -17.13 (.00)

Cross-section Dependence: Mean correlations and Pesaran (2004) test — H0: no CSD in the residuals

ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij|
Mean Correl. 0.02 0.15 0.00 0.15 0.00 0.15 0.00 0.15 0.00 0.14 0.06 0.15 0.00 0.14
CD statistic (p) 8.98 (.00) -0.08 (.93) -1.56 (.12) -0.23 (.82) 1.69 (.05) 31.34 (.00) -1.51 (.13)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis

d’Agostini et al pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 383.1 (.00) 344.2 (.00) 343.2 (.00) 337.0 (.00) 334.6 (.00) 263.8 (.36) 336.2 (.00)

Cam & Tri pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 458.5 (.00) 447.7 (.00) 355.5 (.00) 259.5 (.43) 260.7 (.41) 247.1 (.63) 248.2 (.62)
homosk. 392.7 (.00) 385.7 (.00) 310.6 (.01) 218.8 (.96) 221.2 (.94) 218.8 (.96) 218.8 (.96)
skewness 396.9 (.00) 393.5 (.00) 356.4 (.00) 337.8 (.00) 324.2 (.00) 311.0 (.01) 305.6 (.02)
kurtosis 262.3 (.38) 245.4 (.67) 251.2 (.57) 247.9 (.63) 294.5 (.05) 254.3 (.52) 278.3 (.16)

Notes: See Table 4 for details.
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In summary, while parameter estimates for the four models which could not reject CRS did
not change considerably (in magnitude) compared to the unrestricted models, their precision
has improved while some diagnostic test results have deteriorated. Given that in any finite
sample the cointegrating relationship may be affected by short-run dynamics, and furthermore
on the back of the serial correlation test results we carry out the country-regressions in a dy-
namic specification, focusing on long-run coefficients in the MG (as a benchmark) and the four
CCEMG estimators. Table 6 presents these results.

It can be seen that the robust mean long-run parameter estimates13 are again virtually iden-
tical between the standard and agro-climate CCEMG in columns [2] and [5]. Furthermore,
there is only one small deviation from the respective parameter estimates in the static models,
namely the increase in the mean fertilizer elasticities. According to the Pedroni (1999) panel
t-statistics all parameters are significant at the 1% level in these two models. The results for
the MG estimator in contrast show considerable differences and crucially cannot arrive at a
statistically significant capital estimate. Both the neighbour and distance CCEMG collapse
in the dynamic specification and yield largely insignificant long-run coefficients — in this case
the panel t-statistics support this insignificance emphatically. We interpret this breakdown in
the shift from static to dynamic specification as a strong indication for the invalidity of the
weighting strategy adopted. This suggests that neither neighbourhood nor geographical dis-
tance drive the impact of the unobserved common factors in this data.

Comparing diagnostic test results across the dynamic models and with their static versions
in Table 5 we can see that while parameter estimates have not changed a great deal for our
two preferred estimators (standard and agro-climate CCEMG), the serial correlation tests now
provide more reassuring evidence of serially uncorrelated errors. Furthermore, the agro-climate
CCEMG now ‘passes’ both tests for homoskedasticity and normality. Residuals from both esti-
mators continue to show no evidence of nonstationarity and/or cross-section dependence — the
latter in contrast to all other models presented. We provide an interpretation of the similarity
between standard and agri-climate CCEMG in the next section.

We also estimated the pooled version of the dynamic specification with CRS imposed. Results
presented in Table D-1 in Appendix D are still broadly in line with those from the static pooled
CRS models. Focusing on the 2FE as the commonly preferred estimator in the literature, the
dynamic equation yields very similar long-run coefficients for capital (≈.07), livestock (≈.40)
and fertilizer (≈.08), with the land elasticity dropping from .40 in the static to .31 in the
dynamic equation. As a result the implied labour coefficient rises from .06 to .13. Crucially,
however, the dynamic 2FE rejects cross-section independence, normality/homoskedasticity and
the null of no serial correlation in the residuals, thus not improving on the diagnostic results of
the static model.

13These long-run parameters are derived from an error correction model regression, in the MG case

∆yit = −(1− ri) yi,t−1 + (1− ri) ai + (1− ri) cit+ (1− ri)bi xi,t−1 + bi ∆xit

where in practice the common factor restrictions indicated are not imposed. x and ∆x represent all observed
regressors in levels and first differences respectively; ai and ci capture country-specific TFP level and constant
growth rate. Long-run coefficients are then computed as the negative difference of the coefficient on the lagged
x-variables in levels and the lagged dependent variable.
For the CCEMG regressions we include cross-section averages of the dependent variable (∆ȳt), the lagged level
of the dependent variable (ȳt−1), the set of x-variables in lagged levels (x̄t−1) and in first difference (∆x̄t). No
trend is included here and the long-run coefficients are computed as in the MG case.
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Table 6: Dynamic Specification — MG-type estimators (CRS imposed)

Average country long-run coefficient estimates (means and robust means)
CRS imposed for all country regressions; N=128, average T=39.2;

dependent variable: growth of output per worker

[1] [2] [3] [4] [5]
MG CCEMG CCEMG CCEMG CCEMG

weight matrix† none neighbour distance agro-climate
Mean Robust Mean Robust Mean Robust Mean Robust Mean Robust

long-run coefficients
tractors pw 0.346 0.043 0.099 0.088 0.125 0.019 -2.780 -0.116 0.121 0.085

[1.19] [1.50] [1.37] [3.18]∗∗ [0.24] [0.14] [0.78] [1.39] [1.67] [2.85]∗∗

livestock pw 0.405 0.288 0.304 0.307 1.203 -0.381 -5.298 -0.597 0.316 0.327
[3.33]∗∗ [6.97]∗∗ [3.71]∗∗ [6.82]∗∗ [0.51] [1.75] [1.66] [3.43]∗∗ [3.46]∗∗ [6.67]∗∗

fertilizer pw 0.123 0.046 0.070 0.054 0.576 -0.016 -0.546 -0.015 0.081 0.077
[1.67] [4.50]∗∗ [5.41]∗∗ [4.84]∗∗ [0.86] [0.39] [0.84] [0.48] [6.59]∗∗ [6.42]∗∗

land pw -4.940 0.188 0.244 0.215 0.623 -0.055 -3.026 0.007 0.102 0.191
[0.95] [2.50]∗ [2.42]∗ [2.73]∗∗ [0.49] [0.23] [0.64] [0.03] [0.72] [2.33]∗

trend 0.007 0.006
[4.00]∗∗ [4.96]∗∗

t̂i sign. at 10% 58

Constant -0.476 -0.098 -1.242 0.056 -0.053 0.061 0.151 0.002 0.030 0.020
[1.76] [0.71] [2.00]∗ [0.16] [0.15] [0.34] [0.65] [0.01] [0.09] [0.10]

Returns to scale implications of the parameter estimates‡

implied βL 5.066 0.436 0.284 0.335 -1.526 1.433 12.649 1.721 0.381 0.321

Serial correlation in the residuals — H0: no serial correlation

pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Ljung-Box 72.9 (1.00) 0.6 (1.00) 21.0 (1.00) 2.1 (1.00) 0.9 (1.00)
Durbin AR(1) 299.3 (.03) 332.4 (.00) 487.5 (.00) 488.3 (.00) 493.2 (.00)
Durbin AR(2) 370.5 (.00) 525.8 (.00) 678.2 (.00) 741.9 (.00) 775.2 (.00)
BGod AR(1) 366.7 (.00) 573.0 (.00) 781.9 (.00) 715.4 (.00) 775.2 (.00)
BGod AR(2) 465.6 (.00) 902.7 (.00) 1072.3 (.00) 1158.5 (.00) 1130.6 (.00)

< 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79 < 1.23 > 1.79
DW d statistic # 0 111 0 115 0 124 0 124 0 124
(in %) 0% 87% 0% 90% 0% 97% 0% 97% 0% 97%

Pedroni (1999) panel t-statistics

N−1/2
∑

i tβ̂tr,i [6.18]∗∗ [7.72]∗∗ [0.58] [2.01]∗ [5.94]∗∗

N−1/2
∑

i tβ̂live,i [15.42]∗∗ [12.06]∗∗ [1.03] [1.46] [15.91]∗∗

N−1/2
∑

i tβ̂f,i [8.20]∗∗ [7.40]∗∗ [1.43] [0.97] [8.98]∗∗

N−1/2
∑

i tβ̂n,i [6.48]∗∗ [5.74]∗∗ [1.81] [0.70] [6.25]∗∗

N−1/2
∑

i tt̂i [19.50]∗∗

Nonstationarity: Pesaran (2007) CIPS test applied to residuals — H0: residuals are I(1)

lag-augmentation Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -48.9 (.00) -50.0 (.00) -51.1 (.00) -50.8 (.00) -50.8 (.00)
1 lag -32.1 (.00) -38.9 (.00) -38.8 (.00) -38.8 (.00) -40.8 (.00)
2 lags -24.6 (.00) -30.5 (.00) -29.2 (.00) -28.0 (.00) -31.7 (.00)
3 lags -20.3 (.00) -25.2 (.00) -22.3 (.00) -22.1 (.00) -25.8 (.00)
4 lags -11.5 (.00) -15.1 (.00) -14.0 (.00) -13.6 (.00) -15.5 (.00)

CSD: Mean correlations and Pesaran (2004) test — H0: no CSD in the residuals

ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij| ρij |ρij|
Mean Correl. 0.02 0.14 0.00 0.16 0.00 0.14 0.07 0.15 0.00 0.15
CD statistic (p) 7.07 (.00) -0.22 (.83) 2.57 (.01) 38.31 (.00) -0.42 (.67)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis

d’Agostini et al pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 402.2 (.00) 336.7 (.00) 347.4 (.00) 303.3 (.02) 280.1 (.14)

Cameron & Trivedi pλ (p) pλ (p) pλ (p) pλ (p) pλ (p)
Fisher stat (joint) 246.4 (.66) 199.7 (.99) 194.3 (.99) 210.6 (.98) 248.7 (.62)

Notes: The values in square brackets are absolute t-statistics of the estimates, based on heteroskedasticity-robust standard errors
(Pesaran et al., 2008). An alternative ‘panel t-test’ by Pedroni (1999) is also provided — both are with reference to the long-run
coefficients computed for each country regression. ∗ and ∗∗ indicate statistical significance at the 5% and 1% level respectively.
Long-run coefficients are computed from the lagged levels estimates using the nlcom command in Stata.
For the diagnostic tests refer to Table 4 for more details. Residuals tested are those from the ECM regressions for each country.
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5 Conclusions

In this paper we investigated the impact of variable nonstationarity, technology heterogeneity,
cross-section dependence and imposition of returns to scale on the results for cross-country
production functions in agriculture for a large sample of countries. Our review of the literature
indicated that the empirical implementations of the intercountry production functions for agri-
culture are dominated by the two-way fixed effects (2FE) model, with constant returns to scale
often imposed without formal testing. Variable and residual analysis indicates that all of the
aforementioned properties may be present in the data for 128 countries in our empirical anal-
ysis. Our estimation results display considerable differences in the estimated parameters when
moving from pooled models to averaged country regressions, and between equations ignoring
and accounting for cross-section dependence, and we use diagnostic testing to determine the
most favourable specification and estimator(s).

We draw the following conclusions from our empirical analysis:

(i) Parameter heterogeneity plays an important role in cross-country productivity investiga-
tion for agriculture. The use of pooled models is largely rejected by the diagnostic tests
we apply. These tests further indicate that the standard pooled estimator applied in the
literature (2FE) is seriously misspecified.

(ii) The imposition of constant returns to agricultural production (CRS) on pooled regression
equations — e.g. in the commonly preferred two-way fixed effects model — is rejected
by the data and further leads to qualitatively different empirical results. In contrast, the
imposition of CRS on individual country regressions does not change average parame-
ter coefficients considerably compared with the unrestricted results: thus the observed
decreasing returns in the pooled models is an artefact of empirical misspecification.

(iii) The presence of unobserved common factors with heterogeneous factor loadings does mat-
ter, as is highlighted by diagnostic tests comparing the MG and CCEMG-type estimators:
the standard CCEMG estimator yields very favourable test statistics and shows robust-
ness across various specifications (static, dynamic; unrestricted, CRS imposed). As was
suggested in Kapetanios et al. (2008) estimators which do not account for cross-section
correlation are unable to identify the technology parameters β or mean of βi separately
from the impact of the factor loadings λi if the same common factors drive both inputs
and output.

(iv) Our own AMG estimator yields results much closer to the standard MG than the Pesaran
(2006) CCEMG estimator, often failing specification tests in a similar fashion to the MG
— Monte Carlo simulations (available on request) indicate a set of circumstances in which
the AMG yields biased estimates but the CCEMG remains unbiased. We would speculate
that the explicit, common TFP estimate µ̂•t applied in the AMG estimation may be unable
to capture the heterogeneity in the underlying factor structure of the agriculture data,
where heterogeneous factors play a much more prominent role (see next point).

(v) Our extension to the CCEMG estimator of applying (exogenous) weight matrices before
computing the cross-section averages and in effect imposing more structure on the na-
ture of cross-section correlation in the data has provided very interesting insights. We
suggest that given the close match between the standard and agro-climate CCEMG that
the common correlated effects driving the cross-section dependence are closely proxied
by our measure for agro-climatic distance. In contrast, neighbourhood or geographical
distance measures do not seem to play a major role. The implication of this finding is
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that agricultural TFP is affected by different factors and has different levels of responsive-
ness across geographic regions of the world due to agro-climatic diversity. Furthermore,
technology transfer between countries is limited by the adaptiveness of technology to the
local environment — both of these statements are widely accepted in the literature but
prior to this study were ignored in empirical analyses of cross-country productivity.

(vi) While the preferred standard and agro-climate CCEMG estimators yielded very similar
results across static and dynamic specifications, the other heterogeneous parameter esti-
mators collapse to a larger or smaller extent when we introduce a dynamic specification.
In our mind this is strong evidence for the robustness of the standard and agro-climate
CCEMG.

In future research we will investigate the patterns of parameter values across countries as well as
those of the TFP residuals derived from our preferred specification. Methods such as principal
component analysis could be employed to obtain and investigate the underlying factors and
country-specific factor loadings that make up TFP.
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Appendix

A Data construction and descriptives

The principal data source for our empirical analysis is the Food and Agriculture Organisation’s
FAOSTAT panel database (FAO, 2007), from which we obtain annual observations for agri-
cultural net output, economically active labour force in agriculture, number of tractors used
in agriculture, arable land and permanent crop land and fertilizer use in 128 countries from
1961 to 2002. The specific sources and definitions are detailed below. Descriptive statistics for
all variables are presented in Table A-1. The countries in our sample (ordered by country iso-
code) and the number of country observations for the regressions in levels and first differences
respectively are presented in Table A-2. The total number of observations is 5,162 in the levels
and 5,013 in the first difference specification, minimum T is 19 and 17 respectively, and average
T 40.3 and 39.2 respectively.

Real agricultural net output (in thousand International $), taken from ProdSTAT is
based on all crops and livestock products originating in each country: “practically all products
are covered, with the main exception of fodder crops.” (FAO, 2007). Intermediate primary
inputs of agricultural origin are deducted, including fodder and seed. The quantities for each
commodity are weighted by the respective 1999-2001 average international commodity prices
and then summed for each year by country. The prices are in international dollars, which
are derived using a Geary-Khamis formula for the agricultural sector. The labour variable is
taken from PopSTAT and represents the annual time series for total economically active
population in agriculture. For capital stock in agriculture we follow a common convention
and use total number of agricultural tractors in use as a proxy. This variable can be
found in the ‘Machinery’ section of ResourceSTAT. The livestock variable is constructed from
the data for asses (donkeys), buffalos, camels, cattle, chickens, ducks, horses, mules, pigs,
sheep & goats and turkeys in the ‘Live animals’ section of ProdStat. Following convention we
use the below formula to convert the numbers for individual animal species into the livestock
variable:

livestock = 1.1∗camels + buffalos + horses + mules + 0.8∗cattle + 0.8∗asses
+0.2∗pigs + 0.1∗(sheep+goats) + 0.01∗(chickens+ducks+turkeys)

The fertilizer variable is taken from the ‘Fertilizers archive’ of ResourceSTAT and represents
agricultural fertilizer consumed in metric tons, which includes ‘crude’ and ‘manufac-
tured’ fertilizers. The land variable is taken from ResourceSTAT and represents arable and
permanent crop land (in 1000 hectare).

Additional time-invariant data on geographical distance between countries and contiguity (neigh-
bourhood) is taken from CEPII (2006), and data on the share of agricultural land by climatic
zone from Matthews (1983), available in Gallup et al. (1999). For a number of diagnostics we
group the data by region or climate zone — Table A-3 details these groupings using country
iso-codes.

Finally, Table A-4 provides an overview of the climatic zones referred to in the the Köppen-
Geiger classification, taken from Kottek, Grieser, Beck, Rudolf, and Rubel (2006).
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Table A-1: Descriptive statistics

Variables in untransformed level terms

Variable mean median std. dev. min. max.

levels
output 6,659,293 1,523,753 19,900,000 3,196 317,000,000
labour 8,528,396 1,317,000 42,400,000 3,000 511,000,000
tractors 149,528 7,124 512,278 2 5,470,000
livestock 11,800,000 3,031,056 31,900,000 6,644 298,000,000
fertilizer 721,176 58,000 2,680,786 5 39,600,000
land 9,799,731 2,628,500 25,500,000 1,000 191,000,000

logs
output 14.24 14.24 1.71 8.07 19.57
labour 14.01 14.09 1.84 8.01 20.05
tractors 9.01 8.87 2.79 0.69 15.51
livestock 14.90 14.92 1.71 8.80 19.51
fertilizer 10.82 10.97 2.69 1.61 17.49
land 14.69 14.78 1.80 6.91 19.07

annual growth rate
output 2.3% 2.4% 8.8% -83.0% 87.6%
labour 0.3% 0.8% 2.6% -28.8% 28.8%
tractors 4.4% 2.0% 9.9% -121.8% 138.6%
livestock 1.4% 1.6% 6.4% -93.3% 182.9%
fertilizer 5.6% 3.5% 40.1% -626.3% 393.2%
land 0.8% 0.1% 3.6% -41.8% 79.0%

Variables in per worker terms

variable mean median std. dev. min. max.

levels
output 3.86 0.97 7.40 0.11 54.85
tractors 0.13 0.01 0.29 0.00 1.97
livestock 6.60 2.24 12.76 0.06 102.28
fertilizer 0.43 0.06 0.94 0.00 7.05
land 4.88 1.96 12.87 0.11 140.47

logs
output 0.23 -0.03 1.42 -2.22 4.00
tractors -5.00 -4.97 3.01 -13.67 0.68
livestock 0.89 0.81 1.38 -2.77 4.63
fertilizer -3.19 -2.87 2.67 -11.56 1.95
land 0.68 0.67 1.15 -2.20 4.95

annual growth rate
output 2.0% 2.0% 9.0% -80.3% 109.9%
tractors 4.1% 2.1% 10.1% -120.2% 136.5%
livestock 1.2% 1.2% 6.6% -93.5% 182.9%
fertilizer 5.4% 4.2% 40.0% -627.8% 390.8%
land 0.5% 0.0% 4.1% -43.0% 81.6%

Notes: We report the descriptive statistics for output (in I$1,000), labour (headcount), tractors (number), livestock
(cattle-equivalent numbers), fertilizer (in metric tonnes) and land (in hectare) for the full regression sample
(n = 5, 162; N = 128).
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Table A-2: Sample of countries and number of observations

Country Code levels FD Country Code levels FD
Afghanistan AFG 40 38 Cambodia KHM 33 30
Angola AGO 40 39 South Korea KOR 42 41
Albania ALB 42 41 Kuwait KWT 24 22
United Arab Emirates ARE 31 30 Lao PDR LAO 38 35
Argentina ARG 42 41 Lebanon LBN 42 41
Australia AUS 42 41 Liberia LBR 30 29
Austria AUT 42 41 Libya LBY 42 41
Burundi BDI 37 36 Sri Lanka LKA 42 41
Benin BEN 42 41 Lesotho LSO 42 41
Burkina Faso BFA 42 41 Morocco MAR 42 41
Bangladesh BGD 42 41 Madagascar MDG 42 41
Bulgaria BGR 42 41 Mexico MEX 42 41
Belgium-Luxembourg BLX 39 38 Mali MLI 42 41
Belize BLZ 42 41 Myanmar MMR 42 41
Bolivia BOL 42 41 Mongolia MNG 34 33
Brazil BRA 42 41 Mozambique MOZ 42 41
Botswana BWA 42 41 Mauritania MRT 33 29
Central African Republic CAF 42 41 Malawi MWI 42 41
Canada CAN 42 41 Malaysia MYS 42 41
Switzerland CHE 42 41 Niger NER 34 33
Chile CHL 42 41 Nigeria NGA 42 41
China CHN 42 41 Nicaragua NIC 42 41
Côte d’Ivoire CIV 42 41 Netherlands NLD 42 41
Cameroon CMR 42 41 Norway NOR 42 41
Congo, Republic COG 41 39 Nepal NPL 42 41
Colombia COL 42 41 New Zealand NZL 42 41
Costa Rica CRI 42 41 Oman OMN 30 29
Cuba CUB 42 41 Pakistan PAK 42 41
Cyprus CYP 42 41 Panama PAN 42 41
Germany DEU 42 41 Philippines PHL 42 41
Denmark DNK 42 41 Papua New Guinea PNG 42 41
Dominican Republic DOM 42 41 Poland POL 42 41
Algeria DZA 42 41 Korea, DPR PRK 42 41
Ecuador ECU 42 41 Portugal PRT 42 41
Egypt EGY 42 41 Paraguay PRY 42 41
Spain ESP 42 41 Qatar QAT 27 26
Ethiopia ETH 42 41 Romania ROM 42 41
Finland FIN 30 29 Rwanda RWA 34 32
France FRA 42 41 Saudi Arabia SAU 42 41
Gabon GAB 31 30 Sudan SDN 42 41
United Kingdom GBR 42 41 Senegal SEN 42 41
Ghana GHA 42 41 Sierra Leone SLE 42 41
Guinea GIN 41 39 El Salvador SLV 42 41
Gambia GMB 39 38 Somalia SOM 36 33
Guinea-Bissau GNB 26 23 Suriname SUR 42 41
Equatorial Guinea GNQ 19 17 Sweden SWE 42 41
Greece GRC 42 41 Swaziland SWZ 42 41
Guatemala GTM 42 41 Syria SYR 42 41
Guyana GUY 42 41 Chad TCD 41 39
Honduras HND 42 41 Togo TGO 37 36
Haiti HTI 42 41 Thailand THA 42 41
Hungary HUN 42 41 Trinidad & Tobago TTO 42 41
Indonesia IDN 42 41 Tunisia TUN 42 41
India IND 42 41 Turkey TUR 42 41
Ireland IRL 42 41 Tanzania TZA 42 41
Iran IRN 42 41 Uganda UGA 39 36
Iraq IRQ 42 41 Uruguay URY 42 41
Iceland ISL 42 41 United States USA 42 41
Israel ISR 42 41 Venezuela VEN 42 41
Italy ITA 42 41 Vietnam VNM 42 41
Jamaica JAM 42 41 Yemen, Republic YEM 37 36
Jordan JOR 42 41 South Africa ZAF 42 41
Japan JPN 42 41 Congo, DR ZAR 41 39
Kenya KEN 42 41 Zimbabwe ZWE 42 41

Notes: The full levels sample contains n=5,162 observations, the sample with variables in first differences (FD)
contains n=5,013 observations. The sample period is from 1961 to 2002.
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Table A-3: Country groupings

Regional country groups

Grouping N Country Codes

East Asia 14 CHN, IDN, JPN, KHM, KOR, LAO, MMR, MNG, MYS, PHL, PNG, PRK, THA, VNM
Europe & other WIC 28 ALB, AUS, AUT, BGR, BLX, CAN, CHE, CYP, DEU, DNK, ESP, FIN, FRA, GBR,

GRC, HUN, IRL, ISL, ITA, NLD, NOR, NZL, POL, PRT, ROM, SWE, TUR, USA
Latin America & Caribbean 24 ARG, BLZ, BOL, BRA, CHL, COL, CRI, CUB, DOM, ECU, GTM, GUY, HND, HTI,

JAM, MEX, NIC, PAN, PRY, SLV, SUR, TTO, URY, VEN
South America 11 ARG, BOL, BRA, CHL, COL, ECU, GUY, PRY, SUR, URY, VEN

C. America & Caribbean 13 BLZ, CRI, CUB, DOM, GTM, HND, HTI, JAM, MEX, NIC, PAN, SLV, TTO
Middle East & North Africa 17 ARE, DZA, EGY, IRN, IRQ, ISR, JOR, KWT, LBN, LBY, MAR, OMN, QAT, SAU,

SYR, TUN, YEM
North Africa 5 DZA, EGY, LBY, MAR, TUN

South Asia 6 AFG, BGD, IND, LKA, NPL, PAK
Sub-Saharan Africa 39 AGO, BDI, BEN, BFA, BWA, CAF, CIV, CMR, COG, ETH, GAB, GHA, GIN, GMB,

GNB, GNQ, KEN, LBR, LSO, MDG, MLI, MOZ, MRT, MWI, NER, NGA, RWA, SDN,
SEN, SLE, SOM, SWZ, TCD, TGO, TZA, UGA, ZAF, ZAR, ZWE

Eastern Africa 9 BDI, ETH, KEN, MOZ, MWI, RWA, SOM, TZA, UGA
Western Africa 16 BEN, CAF, CIV, CMR, COG, GAB, GHA, GIN, GMB, GNB, GNQ, LBR, NGA, SEN,

SLE, TGO
Southern Africa 7 AGO, BWA, LSO, MDG, SWZ, ZAR, ZWE (does not include ZAF)

Sahel 6 BFA, MLI, MRT, NER, SDN, TCD

Climate-zone country groups

Grouping N Country Codes

Equatorial (EQ) 52 AGO, BDI, BEN, BGD, BLZ, BOL, BRA, CAF, CIV, CMR, COG, COL, CRI, CUB,
DOM, GAB, GHA, GIN, GMB, GNB, GNQ, GTM, GUY, HND, HTI, IDN, JAM, KHM,
LAO, LBR, LKA, MDG, MMR, MOZ, MYS, NGA, NIC, PAN, PHL, PNG, RWA, SLE,
SLV, SUR, TGO, THA, TTO, TZA, UGA, VEN, VNM, ZAR

Arid (AR) 19 AUS, BEN, BFA, BWA, EGY, IRQ, LBY, MLI, MNG, MRT, NER, PAK, SAU, SDN,
SEN, SOM, TCD, ZAF, ZWE

Temperate & Cold (TEMP) 51 ALB, ARG, AUS, AUT, BGR, BLX, CAN, CHE, CHL, CHN, CYP, DEU, DNK, DZA,
ESP, FIN, FRA, GBR, GRC, HUN, IRL, ISL, ISR, ITA, JOR, JPN, KOR, LAO,
LBN, LSO, MAR, MWI, NLD, NOR, NPL, NZL, POL, PRK, PRT, PRY, ROM, SWE,
SWZ, SYR, TUN, TUR, URY, USA, VNM, ZAF, ZWE

Highland 12 AFG, CHE, CHL, ECU, ETH, GTM, HND, IRN, MEX, NIC, SAU, YEM
Inbetween categories1 2 IND, KEN
Multiple categories 11 AUS, BEN, CHL, GTM, HND, LAO, NIC, SAU, VNM, ZAF, ZWE
Not classified 4 ARE, OMN, KWT, QAT

Notes: 1 India has around 30-35% of arable land in each of the equatorial, arid and temperate & cold zones; Kenya has around 39% in the
equatorial, 36% in the arid and 25% in the highland zones respectively.

Table A-4: Climate Zones following Köppen-Geiger

Köppen-Geiger Classification

A Equatorial climates Af Equatorial rainforest, fully humid
Am Equatorial monsoon
As Equatorial savannah with dry summer
Aw Equatorial savannah with dry winter

B Arid climates BS Steppe climate
BW Desert climate

C Warm temperate climates Cs Warm temperate climate with dry summer
Cw Warm temperate climate with dry winter
Cf Warm temperate climate, fully humid

D Snow climates Ds Snow climate with dry summer
Dw Snow climate with dry winter
Df Snow climate, fully humid

E Polar climates ET Tundra climate
EF Frost climate

H Highland climate above 2,500m elevation

Notes: This classification is taken from Kottek et al. (2006). The H category for Highland
climate was added after the creation of the Köppen-Geiger classification, however it was
impossible to establish the elevation cut-off definitively. The 2,500m mark is implicitly
suggested in a number of online databases.
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B Time-series properties of the data

In this section we report results relating to the time-series properties of the data. Since the time
dimension of the panel is sizeable (T ranges from 19 to 42, average T = 40.3), we first carry out
Augmented Dickey-Fuller (Dickey & Fuller, 1979) and KPSS (Kwiatkowski, Phillips, Schmidt,
& Shin, 1992) tests for the variable series within each individual country.14 We use this com-
bination of tests since the ADF test has the null of nonstationary variable series, whereas the
KPSS test has the null of stationary variable series. The time-series unit root test rejection
frequencies for variables in levels and in first differences are shown in Table B-1: we report
the share of countries (in %) for which the null hypothesis (stationarity or nonstationarity as
indicated) is rejected. The theoretical rejection frequencies at our sample size are 12.8% (H0 :
nonstationarity) and 87.2% (H0 : stationarity) for the 10% significance level we adopted.

Table B-1: Time-series unit root tests — rejection frequency

Unit root tests
share of country tests which reject H0 (stationarity or nonstationarity as indicated);

no adjustment for cross-sectional dependence; all variables in logs

Testing for levels-stationarity

Test log output pw labour tractors pw livestock pw fertilizer pw land pw
ADF without trend H0: nonstationary H1: levels-stationary 9% 9% 48% 16% 41% 10%
KPSS without trend H0: levels-stationary H1: nonstationary 82% 91% 81% 85% 70% 82%

Testing for trend-stationarity

Test output pw labour tractors pw livestock pw fertilizer pw land pw
ADF with trend H0: nonstationary H1: trend-stationary 16% 15% 24% 12% 21% 11%
KPSS with trend H0: trend-stationary H1: nonstationary 65% 71% 88% 65% 74% 66%

Testing for difference-stationarity

Test output pw labour tractors pw livestock pw fertilizer pw land pw
ADF with drift H0: nonstationary H1: stationary 94% 16% 48% 88% 78% 67%
KPSS with drift H0: stationary H1: nonstationary 13% 38% 81% 81% 70% 82%

Notes: All variables are in logs. We report the share of countries (out of N = 128) for which the respective unit root test is rejected at the 10%
level of significance. All unit root tests for variables in levels contain an intercept term in the estimating equation. ADF refers to the augmented
Dickey-Fuller test, which has the null of nonstationarity. KPSS refers to the Kwiatkowski et al. (1992) unit root test, which has the null of
(trend-)stationarity. Lag-augmentation or bandwidth selection in these tests to account for serial correlation in the variables is allowed to vary by
country. For the ADF test we determined ‘ideal’ lag-augmentation using the Akaike Information Criterion (AIC). For the KPSS tests an
automated bandwidth selection following Newey and West (1994) and discussed in Hobijn et al. (2004) is used. For KPSS we use the kpss

command in Stata written by Kit Baum.

For the majority of countries the ADF tests for the variables in levels cannot reject nonstation-
arity, with the notable exceptions of tractors per worker and fertilizer per worker. Consistently
with this finding the majority of country KPSS tests reject the null of level stationarity. The
tests for trend stationarity reveal a similar pattern. The difference stationarity tests show
considerable differences across variables: in the ADF tests the labour and tractors per worker
variables reject the nonstationarity null in far less countries than we would expect (87.2%) and
the KPSS tests reject stationarity in the vast majority of countries for the tractors, livestock,
fertilizer and land (all in per worker terms) variables.

Our analysis based on standard time-series (non)stationarity tests therefore has no clearcut
message regarding variable properties. It needs to be emphasised that country-specific unit
root tests suffer from low power, in particular in the case where the persistence in the variable
is high — i.e. in the case when the test matters most (Harris, 1994).

14Whereas the Stata command for ADF allows us to run country regressions with gaps in the data, this is
not possible for the KPSS tests. We interpolate data in order to run the KPSS for a balanced panel.
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Next we apply ‘first generation’ panel unit root tests to the data. These were devel-
oped due to the desirable property of increased power from pooling the results from many
low-powered country unit root tests. It is important to stress that rejection of the unit root
null hypothesis does not imply that the panel is stationary, but rather that the variable series
does not follow a unit root process in all countries. Table B-2 presents the results for the
Maddala and Wu (1999) (MW) panel unit root test and a panel version of Phillips and Perron
(1988) (PP) test, for which serial correlation is accounted for using nonparametric methods
rather than lagged differences. Following Fisher’s suggestion the MW statistic is constructed
as P = −2

∑
i log(pi), where pi is the p-value for the individual country ADF statistics. The

PP test is constructed in analogy. For both tests the theoretical distribution of the statistic is
χ2(2N), s.t. critical values are 97.35 for 5% and 92.16 for 10%.

For both tests tractors per worker and fertilizer per worker in levels reject nonstationarity in
both the standard ADF equation and the ADF equation with a trend. All other variables in
levels seemingly cannot reject the null of nonstationarity once augmented with sufficient lags
or once a trend is added to the ADF equation. For the variables in first differences the tests
unanimously reject nonstationarity.

Similarly to the above analysis we cannot definitely reject nonstationarity in all variables. How-
ever, as Baltagi et al. (2007) point out the first generation panel unit root tests which do not
account for cross-section dependence can be subject to considerable size distortions, such that
the test tends to overreject. This issue led to the development of ‘second generation’ panel
unit root tests, namely the Im, Pesaran, and Shin (2003) and the Pesaran (2007) tests, results
for which are presented in Table B-3. These tests explicitly allow for cross-sectional dependence
in the data and therefore have better performance than the ‘classic’ panel unit root tests that
assume cross-sectional independence.

Our results now seem to provide a more consistent theme across the different variables and
specifications: following augmentation with lags or a linear trend term the levels variables can-
not reject the null of nonstationarity. For the variables in first differences all variables reject
nonstationarity with the exception of labour.

It should be noted that our preferred panel unit root test by Pesaran (2007) can only account
for a single unobserved common factor as the cause for cross-sectional dependence in the data.
More recent extensions of this test (Pesaran et al., 2008) can accommodate multiple unob-
served common factors, but this development was too recent for the test to be included in
this paper. Further issues which have received attention in the recent panel unit root litera-
ture such as structural breaks in data series (Westerlund, 2006; Kao, Trapani, & Urga, 2007)
and changes in the volatility of the innovations (Hanck, 2008) could also not be accommodated.
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Table B-2: First generation panel unit root tests: Fisher tests

Maddala & Wu (1999) unit root test

Variables in levels: ADF equation contains intercept
variable † ly lL ltr llive lf ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 264.33 .35 836.91 .00 2776.92 .00 318.88 .00 713.80 .00 202.25 .99
1 248.31 .62 212.39 .98 897.70 .00 269.52 .27 672.69 .00 174.36 1.00
2 216.15 .97 161.97 1.00 716.62 .00 298.71 .03 593.96 .00 185.48 1.00
3 205.40 .99 137.31 1.00 707.83 .00 274.18 .21 561.27 .00 172.74 1.00
4 198.13 1.00 139.56 1.00 614.63 .00 236.64 .80 586.15 .00 252.63 .55
5 217.60 .96 138.40 1.00 663.07 .00 236.17 .81 551.27 .00 189.16 1.00
6 180.78 1.00 140.82 1.00 532.05 .00 219.06 .95 399.06 .00 159.21 1.00

Variables in levels: ADF equation contains intercept & trend
variable † ly lL ltr llive lf ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 473.86 .00 205.02 .99 916.00 .00 272.79 .22 411.14 .00 160.72 1.00
1 322.37 .00 676.49 .00 499.77 .00 326.65 .00 319.24 .00 340.40 .00
2 241.67 .73 293.71 .05 423.53 .00 318.07 .00 256.12 .49 255.62 .50
3 230.43 .87 266.99 .31 335.91 .00 319.78 .00 235.53 .82 269.17 .27
4 224.20 .92 249.02 .61 449.23 .00 286.63 .09 256.61 .48 305.17 .02
5 205.05 .99 254.56 .51 479.71 .00 286.74 .09 313.58 .01 290.07 .07
6 184.29 1.00 230.35 .87 436.98 .00 248.59 .62 190.53 1.00 275.99 .19

Variables in first differences: ADF equation contains drift
variable ‡ ∆ly ∆lL ∆ltr ∆llive ∆lf ∆ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 5893.19 .00 513.12 .00 2092.88 .00 2780.22 .00 5138.24 .00 2408.11 .00
1 2875.38 .00 538.34 .00 1206.83 .00 1561.93 .00 2475.73 .00 1153.82 .00
2 1571.83 .00 414.45 .00 773.43 .00 1052.88 .00 1437.93 .00 806.68 .00
3 1048.43 .00 338.69 .00 603.03 .00 867.15 .00 956.45 .00 616.82 .00
4 779.00 .00 289.06 .08 534.76 .00 669.12 .00 662.53 .00 473.58 .00
5 564.99 .00 312.39 .01 627.47 .00 601.37 .00 517.31 .00 441.97 .00
6 425.31 .00 341.73 .00 534.53 .00 504.60 .00 420.91 .00 426.10 .00

Philipps & Perron (1988)-type unit root test (panel version)

Variables in levels: ADF equation contains intercept
variable † ly lL ltr llive lf ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 264.33 .35 836.91 .00 2776.92 .00 318.88 .00 713.80 .00 202.25 .99
1 264.64 .34 523.52 .00 2373.71 .00 289.99 .07 764.06 .00 187.07 1.00
2 274.14 .21 403.42 .00 2180.19 .00 280.98 .14 815.30 .00 179.45 1.00
3 281.71 .13 344.04 .00 2100.88 .00 279.59 .15 858.99 .00 181.16 1.00
4 288.05 .08 311.81 .01 2063.62 .00 279.96 .15 899.75 .00 180.85 1.00
5 298.86 .03 294.77 .05 2089.83 .00 283.25 .12 946.55 .00 183.07 1.00
6 308.91 .01 287.25 .09 2013.23 .00 285.65 .10 983.57 .00 184.63 1.00

Variables in levels: ADF equation contains intercept & trend
variable † ly lL ltr llive lf ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 473.86 .00 205.02 .99 916.00 .00 272.79 .22 411.14 .00 160.72 1.00
1 459.81 .00 136.91 1.00 803.17 .00 267.51 .30 408.40 .00 167.54 1.00
2 463.28 .00 120.88 1.00 759.12 .00 260.85 .40 411.18 .00 174.00 1.00
3 468.30 .00 117.74 1.00 762.21 .00 258.26 .45 412.02 .00 180.44 1.00
4 472.24 .00 119.26 1.00 775.59 .00 254.96 .51 411.84 .00 183.58 1.00
5 475.65 .00 121.56 1.00 819.31 .00 251.47 .57 411.58 .00 184.72 1.00
6 478.72 .00 123.13 1.00 883.30 .00 246.73 .65 410.36 .00 184.77 1.00

Variables in first differences: ADF equation contains drift
variable ‡ ∆ly ∆lL ∆ltr ∆llive ∆lf ∆ln
lags χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p
0 5893.19 .00 513.12 .00 2092.88 .00 2780.22 .00 5138.24 .00 2408.11 .00
1 5958.33 .00 517.81 .00 2103.97 .00 2763.12 .00 5179.80 .00 2390.08 .00
2 6140.51 .00 548.19 .00 2108.97 .00 2759.40 .00 5284.52 .00 2410.07 .00
3 6261.04 .00 571.63 .00 2106.40 .00 2768.50 .00 5357.08 .00 2438.08 .00
4 6369.17 .00 571.18 .00 2111.24 .00 2774.13 .00 5418.36 .00 2463.51 .00
5 6487.63 .00 566.35 .00 2121.16 .00 2782.00 .00 5469.27 .00 2484.50 .00
6 6592.92 .00 565.60 .00 2135.74 .00 2798.47 .00 5520.19 .00 2499.74 .00

Notes: †Output per worker (lo), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per
worker (lf) and land per worker (ln) — all in logs. ‡The ∆ symbolise the growth rates for the above variables (first
differences of the variables in logs).
The null is nonstationarity in all countries’ variable series, the alternative stationarity in all countries’ variable series.
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Table B-3: Second generation panel unit root tests

Im, Pesaran & Shin (2003) unit root test
for heterogeneous panels with cross-section dependence

Variables in levels: ADF equation contains intercept
variable † ly lL ltr llive lf ln
lags Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p
0 0.70 .76 28.08 1.00 -20.32 .00 9.65 1.00 -7.03 .00 15.85 1.00
1 2.71 1.00 13.00 1.00 -3.05 .00 6.37 1.00 -3.84 .00 11.00 1.00
2 3.37 1.00 11.58 1.00 -1.32 .09 5.11 1.00 -3.21 .00 9.28 1.00
3 2.77 1.00 11.43 1.00 -2.11 .02 4.51 1.00 -1.68 .05 8.35 1.00
4 2.35 .99 12.44 1.00 -3.19 .00 4.47 1.00 -2.00 .02 7.16 1.00
5 2.70 1.00 13.47 1.00 -4.60 .00 4.33 1.00 -1.50 .07 7.10 1.00
6 2.80 1.00 14.24 1.00 -1.71 .04 3.74 1.00 -3.11 .00 7.89 1.00

Variables in levels: ADF equation contains intercept & trend
variable † ly lL ltr llive lf ln
lags Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p
0 -4.59 .00 16.98 1.00 -9.05 .00 6.63 1.00 -9.30 .00 10.28 1.00
1 0.13 .55 -0.02 .49 -0.53 .30 1.87 .97 -3.66 .00 1.69 .95
2 2.53 .99 0.08 .53 -0.61 .27 0.52 .70 -2.54 .01 1.65 .95
3 2.46 .99 2.02 .98 -1.99 .02 0.75 .77 -0.27 .39 0.30 .62
4 1.56 .94 1.46 .93 -1.07 .14 1.19 .88 -1.00 .16 -0.28 .39
5 2.50 .99 1.75 .96 -2.96 .00 0.45 .67 -0.01 .50 -1.01 .16
6 2.27 .99 3.53 1.00 0.15 .56 1.39 .92 -3.77 .00 -0.85 .20

Variables in first differences: ADF equation contains drift
variable ‡ ∆ly ∆lL ∆ltr ∆llive ∆lf ∆ln
lags Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p Wtbar p
0 -77.80 .00 -10.40 .00 -42.24 .00 -46.39 .00 -69.35 .00 -39.20 .00
1 -47.05 .00 -6.55 .00 -28.17 .00 -28.74 .00 -39.86 .00 -23.90 .00
2 -29.98 .00 -6.85 .00 -18.86 .00 -20.97 .00 -29.20 .00 -15.43 .00
3 -21.77 .00 -5.17 .00 -15.16 .00 -17.02 .00 -21.12 .00 -11.75 .00
4 -16.67 .00 -4.88 .00 -11.55 .00 -12.87 .00 -16.44 .00 -8.77 .00
5 -12.57 .00 -5.75 .00 -10.40 .00 -10.83 .00 -13.12 .00 -7.89 .00
6 -9.57 .00 -3.90 .00 -8.52 .00 -7.83 .00 -12.38 .00 -7.58 .00

Pesaran (2007) unit root test (CIPS)
for heterogeneous panels with cross-section dependence

Variables in levels: CADF equation contains intercept
variable † ly lL ltr llive lf ln
lags Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p
0 -7.19 .00 14.77 1.00 -0.38 .35 2.56 .99 -9.53 .00 12.13 1.00
1 -2.55 .01 11.70 1.00 -3.17 .00 -1.37 .08 -5.23 .00 7.95 1.00
2 -0.78 .22 13.78 1.00 -2.16 .02 -0.96 .17 -2.51 .01 7.94 1.00
3 -0.34 .37 16.22 1.00 -3.37 .00 0.14 .55 0.54 .71 6.33 1.00
4 0.29 .61 17.63 1.00 0.08 .53 3.06 1.00 1.54 .94 7.89 1.00

Variables in levels: CADF equation contains intercept & trend
variable † ly lL ltr llive lf ln
lags Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p
0 -2.31 .01 7.90 1.00 3.26 1.00 6.68 1.00 -9.31 .00 9.69 1.00
1 2.94 1.00 -0.82 .20 -1.09 .14 1.80 .96 -5.61 .00 1.70 .96
2 5.85 1.00 5.24 1.00 -0.59 .28 2.74 1.00 -2.33 .01 0.71 .76
3 7.15 1.00 8.98 1.00 -0.17 .43 4.51 1.00 0.63 .74 -0.07 .47
4 7.38 1.00 10.17 1.00 0.42 .66 6.97 1.00 1.90 .97 0.59 .72

Variables in first differences: CADF equation contains drift
variable ‡ ∆ly ∆lL ∆ltr ∆llive ∆lf ∆ln
lags Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p Ztbar p
0 -48.44 .00 -1.37 .09 -32.95 .00 -33.72 .00 -48.55 .00 -28.58 .00
1 -33.63 .00 -0.84 .20 -20.81 .00 -21.62 .00 -35.92 .00 -15.30 .00
2 -20.34 .00 -0.52 .30 -14.15 .00 -13.72 .00 -25.44 .00 -7.51 .00
3 -14.30 .00 1.84 .97 -8.11 .00 -8.41 .00 -16.36 .00 -4.64 .00
4 -7.54 .00 3.41 1.00 -4.26 .00 -4.01 .00 -10.44 .00 -0.92 .18

Notes: †Output per worker (ly), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per
worker (lf) and land per worker (ln) — all in logs. ‡The ∆ symbolise the growth rates for the above variables (first
differences of the variables in logs).
The null is nonstationarity in all countries’ variable series, the alternative stationarity in some countries’ variable
series.
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C Cross-section dependence in the data

In this section we investigate the potential for cross-section dependence in the data. We ini-
tially focus on the full sample ‘global’ data (N = 128, average T = 40.3 for the variables in
levels). Table C-1 details the share of the variance accounted for by the first two principal
components (PCs) to indicate the factor structure of the data, as suggested by Coakley et al.
(2006). In principal component analysis (PCA) the eigenvalues (ordered by magnitude) over
the cumulated eigenvalues give an indication of the variance in the standardized data explained
by the different ‘principal components’. The latter are linear combinations of the N(N−1) data
time-series to account for the maximum variation in the overall dataset. In Panel [a] we apply
this method to the variables in levels (log) and find that the first two principal components
account for 76-93% of the variance. We also investigate whether the residuals from pooled OLS
(êPOLS

∗
) and 2-way Fixed Effects (ê2FE

∗
) regressions15 show signs of factor structures. Again

the share of the first two PCs is very high, around 65% in both cases. In Panel [b] we carry out
the same analysis for the variables in first differences (for the residuals the production function
OLS and 2FE regressions are run with variables in first differences); the explained variance is
now considerably lower, although labour force growth (dlL) and growth in tractors per worker
(dltr) still exhibit strong underlying factor structures.

Table C-1: ‘Global’ Cross-section Dependence (i)

Principal Component Analysis
Share of variance (in %) accounted for by the first two Principal Components

Panel [a] Variables in levels† Residuals‡

ly lL ltr llive lf∗ ln êPOLS
∗

ê2FE
∗

%V Comp1 66.8 83.2 75.0 59.4 62.8 67.5 48.3 44.5
%V Comp2 11.5 9.5 15.0 17.0 13.8 16.0 16.8 20.3
sum 78.4 92.7 90.0 76.3 76.7 83.5 65.1 64.8

Panel [b] Variables in first differences† Residuals‡

dly∗ dlL∗ dltr∗ dllive∗ dlf∗ dln∗ êFD−OLS
∗

êFD2FE∗

%V Comp1 12.03 28.6 29.7 10.7 15.4 13.8 12.5 12.3
%V Comp2 5.97 22.3 11.9 7.4 8.9 10.5 6.1 7.6
sum 18.0 50.9 41.6 18.0 24.3 24.2 18.6 19.9

N 127 127 127 126 128 126 128 128
excluded FIN FIN FIN BLX,FIN - BLX,FIN - -

†Output per worker (ly), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per worker (lf)
and land per worker (ln) — all in logs. The prefix d- identifies data in first differences.
‡These are the residuals from a pooled OLS regression with T − 1 year dummies (POLS), the 2-way Fixed Effects
regression (2FE), the pooled OLS regression with variables (and year dummies) in first differences (FD-OLS) and
the 2-way Fixed Effects regression with variables in first differences (FD2FE).
∗This indicates that the variable had to be interpolated since there were not enough common years of data across all
countries to carry out PCA. Otherwise we excluded some countries from the analysis as indicated.

In Table C-2 we report the means for the N(N − 1) correlation coefficients for variable series
or regression residuals, as well as the Pesaran (2004) Cross-Section Dependence (CD) test
statistics. The former represents the simple average of the pairwise correlation coefficients
between all country series (ρ̂ij) or the average of their absolute values (|ρ̂ij|). The CD test
statistic is also based on the mean pairwise correlation coefficients. In the unbalanced panel
case it is defined as

CD =

√(
2

N(N − 1)

)(N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

)
were Tij is the number of observations used to estimate the correlation coefficient between the
series in country i and j and CD ∼ N(0, 1) for Tij > 3 and sufficiently large N under the null

15These are production function regressions as outlined in the main section of this paper.
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of cross-section independence. This test is robust to the presence of nonstationary processes,
parameter heterogeneity or structural breaks, and was shown to perform well even in small
samples.

Table C-2: ‘Global’ Cross-section Dependence (ii)

Mean Correlation Coefficients and Pesaran (2004) CD test]

Global cross-section dependence in the data; N = 128, n = 16, 256

Panel [a] Variables in levels† Residuals‡

ly lL ltr llive lf ln êPOLS ê2FE

(N(N − 1))−1
∑

i

∑
j ρ̂ij 0.372 0.100 0.532 0.125 0.458 -0.007 -0.005 0.015

(N(N − 1))−1
∑

i

∑
j |ρ̂ij| 0.611 0.799 0.699 0.561 0.544 0.645 0.424 0.408

Pesaran CD Statistic -2.49 9.64

Panel [b] Variables in first differences† Residuals‡

dly dlL dltr dllive dlf dln êFD−OLS êFD2FE

(N(N − 1))−1
∑

i

∑
j ρ̂ij 0.021 0.053 0.210 0.020 0.051 0.008 0.000 0.023

(N(N − 1))−1
∑

i

∑
j |ρ̂ij| 0.141 0.351 0.276 0.144 0.147 0.172 0.145 0.149

Pesaran CD Statistic 0.04 12.84

Panel [c] AR regression residuals\ Residuals‡

êly êlL êltr êllive êlf êln êMG êCCEMG

(N(N − 1))−1
∑

i

∑
j ρ̂ij 0.020 0.075 0.012 0.013 0.025 0.008 0.017 0.001

(N(N − 1))−1
∑

i

∑
j |ρ̂ij| 0.137 0.301 0.143 0.134 0.143 0.141 0.147 0.150

Pesaran CD Statistic 11.52 42.23 7.02 7.47 14.63 4.36 9.16 0.21

†Variables as defined in Table C-2. ‡These are the residuals from a pooled OLS regression with T − 1 year dummies
(POLS), the 2-way Fixed Effects regression (2FE), individual country regressions with intercept and linear trend
(MG) and from the Pesaran (2006) Common Correlated Effects MG estimator (CCEMG).
\ Each of the variables in levels is entered into a regression zit = π1,izi,t−1 + π2,izi,t−2 + πt,it + π0,i, conducted
separately for each country i. The correlations and cross-section dependence statistic are then based on the residuals
from these AR regressions.
] ρ̂ij where i 6= j refers to the correlation coefficient for the variable/residuals in question between countries i and j.
|ρ̂ij | is the absolute value of the same statistic. The CD Test Statistic (for unbalanced panels) is

CD =

√(
2

N(N−1)

) (∑
i

∑
j

√
Tij ρ̂ij

)
where i = 1, . . . , N − 1 and j = i + 1, . . . , N and Tij is the number of observations for each pairwise correlation. In
our case N = 128 and average T = 38.8. Note that we adjusted the residual series for each i by subtracting their
mean for the period Tij since they may not sum to zero otherwise (Pesaran, 2004, p.17). For N →∞ the CD
statistic is distributed standard normal under the null of cross-section independence.

Panel [a] of Table C-2 again investigates the variable series in levels and residuals from the
pooled OLS and 2FE regressions. Average correlation varies considerably across the variables,
from .53 in the case of tractors per worker (ltr) to virtually no correlation in land per worker
(ln). Average correlation is low for the regression residuals, however the CD statistic rejects
the null of cross-section independence at p < .01 in both cases. This result emphasises the
importance of parameter heterogeneity (in the presence of nonstationarity): if production func-
tion parameters and the influence of the unobserved common factor(s) were identical across
countries the 2FE transformation should be able to eliminate all the cross-section dependence
in the data (Coakley et al., 2006). This is seemingly not the case here.

Panel [b] shows the average correlations for the data in first differences and the CD statistic for
residuals from OLS and 2FE regressions with the data in first differences. A similar pattern to
the PCA results emerges, in that the average correlations are considerably lower than in the
levels case in panel [a]. The CD test cannot reject cross-section independence for the FD-OLS
residuals (CD=0.04) — recall that this regression includes T − 1 year dummies which seem to
capture the average impact of the unobserved common factor(s) across countries. In contrast
the residuals from the 2FE regression with data in first differences (after the 2FE transforma-
tion) display cross-section dependence.
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Finally, we follow Pesaran (2004) and run autoregressions for each variable in each country.
Panel [c] reports CD statistics and the mean correlations across countries for the residuals (êit)
from an AR(2) regression defined zit = π1,izi,t−1+π2,izi,t−2+πt,it+π0,i+eit. We also report these
statistics for the residuals from individual country regressions (êMG) and the Pesaran (2006)
Common Correlated Effects country regressions (êCCEMG) — again, these are the production
functions discussed in the main section. The AR regression and country regression residual
series fail the test for cross-section independence since these regressions do not account for the
impact of unobserved common factors. In contrast we cannot reject cross-section independence
for the CCEMG residuals (CD=0.21).

In summary, the investigation of the full sample (‘global’ data) offers strong evidence of cross-
section dependence in the variable series studied. The basic assumption of the standard panel
estimators that data is cross-sectionally independent is therefore violated. We can see this in
our analysis of the regression residuals from the pooled OLS and 2-way Fixed Effects estima-
tors, as well as the individual country regressions (MG). Crucially, residuals from the pooled
OLS estimator with variables in first differences (FD-OLS) and the Pesaran (2006) CCEMG
estimator, the latter specifically developed to deal with heterogeneous and cross-sectionally
dependent panels, both pass the test for cross-section independence.

Having investigated the full sample case, we now turn to analyse unobserved common factors
in various spatial groupings. We begin with an investigation of the within-group correlations
in a number of ‘geo-historical’ categories, where we distinguish countries from East Asia (EA),
Latin America & the Caribbean (LAC), Middle East & North Africa (MENA), South Asia
(SA), Sub-Saharan Africa (SSA) and Europe & other Western Industrialised Countries (EU).
The latter category includes the United States, Canada, New Zealand and Australia, pointing
to the general makeup of each category not just based on geography, but also cultural charac-
teristics and historical grounds.

Table C-3: Regional Cross-section Dependence (i)

Mean Absolute Correlation Coefficients
Regional cross-section dependence

Panel [a] Variables† Residuals‡

obs ly lL ltr llive lf ln êPOLS ê2FE

Mean absolute correlations: (N(N − 1))−1
∑

i

∑
j |ρ̂ij|

East Asia 182 0.727 0.740 0.617 0.461 0.600 0.554 0.407 0.516
Europe & other WIC 756 0.893 0.870 0.848 0.732 0.726 0.843 0.682 0.479
Latin America & Caribbean 552 0.610 0.661 0.657 0.465 0.566 0.544 0.365 0.445
MENA 272 0.697 0.643 0.871 0.640 0.725 0.531 0.320 0.331
South Asia 30 0.497 0.914 0.740 0.680 0.733 0.871 0.781 0.313
SSA 1482 0.427 0.914 0.631 0.520 0.385 0.634 0.367 0.350

Panel [b] AR regression residuals\ Residuals‡

obs êly êlL êltr êllive êlf êln êMG êCCEMG

Mean absolute correlations: (N(N − 1))−1
∑

i

∑
j |ρ̂ij|

East Asia 182 0.132 0.409 0.170 0.142 0.164 0.136 0.139 0.159
Europe & other WIC 756 0.155 0.420 0.163 0.154 0.176 0.155 0.149 0.156
Latin America & Caribbean 552 0.139 0.347 0.146 0.131 0.135 0.140 0.154 0.154
MENA 272 0.156 0.321 0.131 0.133 0.156 0.151 0.154 0.171
South Asia 30 0.108 0.388 0.125 0.138 0.169 0.142 0.137 0.126
SSA 1482 0.131 0.232 0.151 0.133 0.149 0.135 0.152 0.157

See Table C-2 for notes and descriptions. Country groupings are described in Table ?? (”other WIC” refers to other
Western industrialised countries, namely the US, Canada, New Zealand and Australia).
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Table C-3 presents variable (and residual) mean absolute correlations (we omit the mean stan-
dard correlations to save space) within each of these country groupings. The number of obser-
vations ranges from 30 in South Asia (N = 6) to 1,482 in Sub-Saharan Africa (N = 39). In
panel [a] we report results for the variables in levels and the regression residuals from OLS and
2FE regressions. All variables are uniformly highly correlated within country groupings. For
the regression residuals in particular the members of the Europe & WIC and East Asia groups
show high levels of correlation.16 In panel [b] we investigate residuals from the autoregressions
outlined above as well as the country regressions and CCE country regressions. All of these
show significantly lower levels of correlation. Average correlation (not reported) shows a much
higher range of correlation coefficients across the groups, in the case of land from -.06 in East
Asia to .58 in Europe & WIC and .87 in South Asia. In the latter analysis regression residuals
from POLS and 2FE remain high in the Europe & WIC case (.41 and .28 respectively), but
are virtually insignificant in the MG and CCEMG case (.05 and .02).

In Table C-4 we present the results for the CD test statistic within and across regions applied
to various regression residuals. Panels [a] to [e] are for the pooled OLS (POLS), 2-way Fixed
Effects (2FE), OLS in first differences (FD-OLS), country regression and CCE country regres-
sion residuals respectively. Panel [f] shows the number of observations (pairwise correlations)
for each test. We marked the test statistics which indicate rejection of the null of cross-section
independence in bold.

Focusing first on the within-group CD test statistics (on the diagonals), we can see that these
commonly reject cross-section independence across all estimation strategies, although less so
in the country and CCEMG regression cases. With regard to cross-group dependence tests,
it can be seen that residuals from the pooled regression in levels and the pooled 2FE regres-
sion display a high level of common factor structure, leading to the rejection of the null of
cross-section independence in almost all cases. For the pooled regression with variables in first
differences 10 out of 15 cross-group tests cannot reject the null of cross-section independence,
whereas for country regressions 12 tests cannot reject. For CCEMG all 15 tests cannot reject
independence across groups. The results in panel [e] for CCEMG residuals suggests that this
estimation approach cannot entirely wipe out the cross-section dependence in the data if viewed
from a group-perspective. It is no longer the case that the number of observations is systemat-
ically linked to the test statistic, suggesting that the results are not driven by small sample size.

In Table C-5 we apply an alternative ‘spatial’ grouping, whereby the share of arable land in one
of three eco-climatic zones determines group membership. We use data from Matthews (1983),
reported in Gallup et al. (1999), on this variable and group countries into equatorial (EQ), arid
(AR) or temperate & cold (TEMP) climate zones if they have 40% or more arable land share
in the respective climatic zone. We provide details on the countries that drop out of the sample
as a result of this categorisation and the treatment of those countries that enter more than one
category in the table footnote. Panels [a] to [e] again provide CD test statistics for regression
residuals, panel [f] shows the number of observations for each climate-zone combination. Again
the pooled and standard country regression estimators fail most or all tests for residual indepen-
dence within and across groups, although for 2FE only the temperate & cold zone shows high
levels of dependence. The CCEMG residuals now cannot reject independence in any of the tests.

16Note that the South Asian group is made up of 6 countries only, so that the CD test statistics are likely
to be highly distorted. We nevertheless kept these countries separate due to their distinct geographical and
climatic characteristics.
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Table C-4: Regional Cross-section Dependence (ii)

Pesaran CD statistic — within and across regions
Regional cross-section dependence

Panel [a] Residuals from pooled OLS regression
EA EU LAC MENA SA SSA

East Asia (EA) 0.42
Europe & other WIC (EU) -11.31 50.77
Latin America & Caribbean (LAC) 0.64 7.11 3.45
Middle East & N Africa (MENA) -4.33 9.72 -2.37 1.06
South Asia (SA) 4.84 -21.47 -4.20 -2.85 7.07
Sub-Saharan Africa (SSA) 5.41 -26.89 -4.85 -5.97 11.73 10.42

Panel [b] Residuals from 2-way FE regression
EA EU LAC MENA SA SSA

East Asia (EA) 0.59
Europe & other WIC (EU) 10.00 34.51
Latin America & Caribbean (LAC) 4.00 13.46 3.69
Middle East & N Africa (MENA) 3.54 12.20 2.07 11.62
South Asia (SA) 0.36 -3.44 -2.11 6.14 3.80
Sub-Saharan Africa (SSA) -5.14 -15.29 -4.93 -13.44 -5.07 10.82

Panel [c] Residuals from FD-OLS regression
EA EU LAC MENA SA SSA

East Asia (EA) 2.15
Europe & other WIC (EU) 2.04 3.17
Latin America & Caribbean (LAC) 2.32 0.60 2.45
Middle East & N Africa (MENA) -1.82 0.16 -2.04 0.11
South Asia (SA) 1.63 -0.04 0.83 -0.99 2.71
Sub-Saharan Africa (SSA) -0.10 -2.20 -1.11 -2.07 0.24 0.96

Panel [d] Residuals from country regressions
EA EU LAC MENA SA SSA

East Asia (EA) 0.83
Europe & other WIC (EU) 3.00 6.21
Latin America & Caribbean (LAC) 0.58 0.02 1.86
Middle East & N Africa (MENA) 0.29 2.77 0.18 0.32
South Asia (SA) 0.87 1.65 0.73 -0.15 1.87
Sub-Saharan Africa (SSA) 0.05 1.92 2.04 1.03 1.31 5.92

Panel [e] Residuals from CCE country regressions
EA EU LAC MENA SA SSA

East Asia (EA) 2.14
Europe & other WIC (EU) 1.35 2.36
Latin America & Caribbean (LAC) 0.13 -1.92 1.58
Middle East & N Africa (MENA) 0.27 0.40 -0.94 1.29
South Asia (SA) 0.94 -0.26 0.34 -0.10 2.43
Sub-Saharan Africa (SSA) -0.47 -1.91 0.53 -0.48 -0.37 1.29

Panel [f ] Number of observations
EA EU LAC MENA SA SSA

East Asia (EA) 182
Europe & other WIC (EU) 392 756
Latin America & Caribbean (LAC) 336 672 552
Middle East & N Africa (MENA) 238 476 408 272
South Asia (SA) 84 168 144 102 30
Sub-Saharan Africa (SSA) 546 1092 936 663 234 1482

See Table C-2 for notes and descriptions. Country groupings are described in Table ?? (”other WIC” refers to other
Western industrialised countries, namely the US, Canada, New Zealand and Australia).
The test statistics in bold are statistically significant at the 5% level and thus reject the null of cross-section
independence.
Note that the ‘own-correlation’ coefficients (ρ̂ii = 1) are excluded from the analysis, such that they do not interfere
with the within-group dependence statistic on the diagonal.
Panel [f] reports the number of individual correlation estimates (N(N − 1)) used in the construction of the CD
statistic.
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Table C-5: Climate-zone Cross-section Dependence

Pesaran CD statistics — within and across climate zones
We take 40% of arable land in each climate-zone as cut-off

Panel [a] Panel [b]
POLS residuals EQ AR TEMP 2FE residuals EQ AR TEMP

Equatorial (EQ) 2.29 Equatorial (EQ) -0.09
Arid (AR) 2.00 -0.59 Arid (AR) -1.18 -1.78
Temperate & Cold (TEMP) -11.71 -9.36 31.28 Temperate & Cold (TEMP) -0.89 1.38 32.79

Panel [c] Panel [d]
FD-OLS EQ AR TEMP MG residuals EQ AR TEMP

quatorial (EQ) 4.10 Equatorial (EQ) 2.50
Arid (AR) -3.02 0.68 Arid (AR) 3.47 3.90
Temperate & Cold (TEMP) 0.39 -2.74 0.20 Temperate & Cold (TEMP) 2.64 3.47 6.67

Panel [e] Panel [f ]
CCEMG residuals EQ AR TEMP Observations EQ AR TEMP

Equatorial (EQ) 1.93 Equatorial (EQ) 2652
Arid (AR) 0.29 1.31 Arid (AR) 987 342
Temperate & Cold (TEMP) -0.78 -1.78 1.39 Temperate & Cold (TEMP) 2650 966 2550

We divide countries into climatic zones based on the share of their arable land within the (a) equatorial, (b) arid, or (c) temperate & cold climate
zones, based on the data provided in Gallup et al. (1999). The cut-off is 40%; for instance a country is grouped as equatorial if 40% or more of its
arable land is in the equatorial climate zone. The following 12 countries are excluded from the analysis since they do not have 40% of more in
either of the three categories: AFG, ARE, ECU, ETH, IND, IRN, KEN, KWT, MEX, OMN, QAT, YEM. Note that half of these 12 countries have
59% or more land in the ‘highland’ climatic zone. Further, the following 6 countries are contained in more than one climatic zone: AUS, BEN,
LAO, VNM, ZAF, ZWE; since the own-correlation coefficients (ρ̂ii = 1) are excluded from the analysis, this does not affect the CD statistics.
The test statistics in bold are statistically significant at the 5% level and thus reject cross-section independence.
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D Additional tables and figures

Table D-1: Dynamic specification — Pooled regressions (CRS imposed)

Pooled regressions
dependent variable: [1],[2] & [4]-[7] log output per worker, [3] dto. in 2FE transformation\,

[8] ∆log output per worker, [9] dto. in 2FE transformation\

[1] [2] [3] [4] [5] [6]
POLS♦ 2FE\ CCEP CCEP CCEP CCEP

weight matrix‡ none neighbour distance agro-climate

lagged levels

output pw (t− 1) -0.0189 -0.1764 -0.6072 -0.4024 -0.4959 -0.5699
[5.71]∗∗ [22.80]∗∗ [22.54]∗∗ [19.87]∗∗ [21.44]∗∗ [22.80]∗∗

tractors pw (t− 1) 0.0022 0.0134 0.0678 0.0454 0.0429 0.0493
[1.85] [5.47]∗∗ [7.02]∗∗ [7.51]∗∗ [5.90]∗∗ [5.76]∗∗

livestock pw (t− 1) 0.0042 0.0709 0.2045 0.1064 0.1850 0.2298
[2.49]∗ [10.07]∗∗ [9.67]∗∗ [5.89]∗∗ [9.31]∗∗ [10.32]∗∗

fertilizer pw (t− 1) 0.0061 0.0147 0.0258 0.0360 0.0243 0.0237
[5.86]∗∗ [7.76]∗∗ [5.79]∗∗ [8.45]∗∗ [4.10]∗∗ [5.64]∗∗

land pw (t− 1) 0.0045 0.0554 0.1959 0.1097 0.1980 0.1837
[2.28]∗ [7.28]∗∗ [5.35]∗∗ [4.46]∗∗ [6.38]∗∗ [5.77]∗∗

growth rates

∆tractors pw 0.0555 0.0970 0.0828 0.0591 0.0558 0.0771
[4.12]∗∗ [8.49]∗∗ [4.37]∗∗ [3.55]∗∗ [4.61]∗∗ [4.82]∗∗

∆livestock pw 0.3153 0.3307 0.3097 0.2899 0.3175 0.2726
[7.57]∗∗ [17.31]∗∗ [9.43]∗∗ [8.82]∗∗ [10.65]∗∗ [8.21]∗∗

∆fertilizer pw 0.0123 0.0172 0.0132 0.0196 0.0171 0.0152
[3.48]∗∗ [5.63]∗∗ [3.27]∗∗ [4.79]∗∗ [3.67]∗∗ [3.99]∗∗

∆land pw 0.3010 0.3290 0.3249 0.3272 0.3404 0.3170
[4.38]∗∗ [11.67]∗∗ [4.86]∗∗ [5.88]∗∗ [7.42]∗∗ [6.42]∗∗

Constant 0.0485 2.6725 1.7939 0.0141 3.5301
[5.34]∗∗ [0.35] [1.75] [0.01] [1.85]

Observations 5,013 5,013 5,013 5,013 5,013 5,013
R-squared 0.12 0.20 0.54 0.54 0.81 0.60

Estimated long-run coefficients[

tractors pw 0.118 0.076 0.112 0.113 0.087 0.087
[2.09]∗ [5.58]∗∗ [7.21]∗∗ [7.73]∗∗ [6.33]∗∗ [5.80]∗∗

livestock pw 0.224 0.402 0.337 0.264 0.373 0.403
[2.77]∗∗ [11.30]∗∗ [10.51]∗∗ [6.30]∗∗ [10.40]∗∗ [11.27]∗∗

fertilizer pw 0.322 0.083 0.042 0.089 0.049 0.042
[5.07]∗∗ [8.09]∗∗ [5.85]∗∗ [8.67]∗∗ [4.16]∗∗ [5.80]∗∗

land pw 0.238 0.314 0.323 0.273 0.399 0.322
[2.56]∗ [7.95]∗∗ [5.34]∗∗ [4.50]∗∗ [6.69]∗∗ [5.93]∗∗

Implied βL 0.098 0.125 0.186 0.261 0.092 0.146

Arellano-Bond Serial Correlation Test — H0: no serial correlation in the residuals

AR(1) (p) -9.69 (.00) -14.95 (.00) -3.30 (.00) -6.46 (.00) -4.71 (.00) -3.88 (.00)
AR(2) (p) -0.41 (.68) 3.15 (.00) -1.28 (.20) 1.43 (.15) -3.36 (.00) 0.06 (.95)
AR(3) (p) 0.60 (.55) 4.12 (.00) -1.68 (.09) 0.39 (.70) -0.82 (.41) -1.98 (.05)

Nonstationarity: Pesaran (2007) CIPS test applied to residuals] — H0: residuals are I(1)

lags Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p) Ztbar (p)
none -48.93 (.00) -44.51 (.00) -45.04 (.00) -47.06 (.00) -45.84 (.00) -44.61 (.00)
1 lag -38.33 (.00) -29.68 (.00) -32.18 (.00) -32.43 (.00) -32.08 (.00) -31.67 (.00)
2 lags -23.23 (.00) -16.08 (.00) -20.66 (.00) -21.58 (.00) -22.27 (.00) -20.41 (.00)
3 lags -15.77 (.00) -8.30 (.00) -16.05 (.00) -14.15 (.00) -16.51 (.00) -15.44 (.00)

CSD: Mean Correlation coefficient & Pesaran (2004) CD test — H0: no CSD

Mean ρij 0.00 0.01 0.00 0.00 0.10 0.00
Mean |ρij| 0.14 0.15 0.17 0.14 0.16 0.15
CD (p) -0.08 (.94) 2.66 (.00) -0.47 (.64) 1.31 (.19) 26.34 (.00) -0.62 (.53)

Further residual diagnostic tests? — H0: no heteroskedasticity, regular skewness/kurtosis

(A) Joint test
χ2 (p) 1019.7 (.00) 943.6 (.00) 623.4 (.00) 551.0 (.00) 559.4 (.00) 566.1 (.00)

(B) Joint test
χ2 (p) 1463.7 (.00) 1166.1 (.00) - - - -

Notes: See Table 6 for details.
♦ We include T − 1 year dummies in equation [1].
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