

A Common Factor Approach to Spatial Heterogeneity in Agricultural Productivity Analysis

Markus Eberhardt and Francis Teal

Centre for the Study of African Economies (CSAE), Department of Economics, Oxford University

13. May 2009

Online at http://mpra.ub.uni-muenchen.de/15810/ MPRA Paper No. 15810, posted 19. June 2009 05:50 UTC

A Common Factor Approach to Spatial Heterogeneity in Agricultural Productivity Analysis^{*}

Markus EBERHARDT a,b†

Francis $TEAL^b$

^a St. John's College, Oxford ^b Centre for the Study of African Economies, Department of Economics, University of Oxford

Draft: 13th May 2009

Abstract:

In this paper we investigate a 'global' production function for agriculture, using FAO data for 128 countries from 1961-2002. Our review of the empirical literature in this field highlights that existing cross-country studies largely neglect variable time-series properties, parameter heterogeneity and the potential for heterogeneous Total Factor Productivity (TFP) processes across countries. We motivate the case for technology heterogeneity in agricultural production and present statistical tests indicating nonstationarity and cross-section dependence in the data. Our empirical approach deals with these difficulties by adopting the Pesaran (2006) Common Correlated Effects estimators, which we extend by using alternative weight-matrices to model the nature of the cross-section dependence. We furthermore investigate returns to scale of production and production dynamics. Our results support the specification of a common factor model in intercountry production analysis, highlight the rejection of constant returns to scale in pooled models as an artefact of empirical misspecification and suggest that agro-climatic environment, rather than neighbourhood or distance, drives similarity in TFP evolution across countries. The latter finding provides a possible explanation for the observed failure of technology transfer from advanced countries of the temperate 'North' to arid and/or equatorial developing countries of the 'South'.

^{*}We are grateful to Stephen Bond for helpful comments and suggestions. Previous versions of this paper were presented at the Gorman Student Research Workshop (December 2008), the CSAE Workshop, Department of Economics, University of Oxford (January 2009) and the CSAE annual conference (March 2009). All remaining errors are our own. The first author gratefully acknowledges financial support during his doctoral studies from the ESRC, Award PTA-031-2004-00345.

[†]Correspondence: St. John's College, Oxford OX1 3JP; markus.eberhardt@economics.ox.ac.uk

"[A]ssumptions of a common production function, and perfect and competitive factor markets ... get in the way of understanding international differences in productivity — particularly differences between advanced and underdeveloped economies." Nelson (1968, p.1229)

"Techniques developed in advanced countries were not generally directly transferable to less developed countries with different climates and resource endowments." Ruttan (2002, p.162)

Ever since Hayami and Ruttan (1970) introduced the use of panel data to estimate crosscountry production functions for the agriculture sector, academic studies have emphasised the conceptual desirability of technology heterogeneity across the diverse range of agro-climatic environments across countries. The literature further highlighted the potential for barriers to technology transfer between countries which are specific to the agricultural sector, in particular the problems of transfers between the developed countries of the temperate 'North' and the developing countries of the arid or equatorial 'South': innovations in the former did not seem to yield the desired productivity boost in the latter context. In practice, however, empirical investigation was typically based on models which impose technology homogeneity across the diverse sample of countries under analysis, or only allowed for heterogeneity by splitting the sample into crude geographical groups of countries. Further to this choice of empirical specification, many studies opted to impose constant returns to scale on their regressions, despite concerns that the supply of one factor input, land, is essentially fixed.

In this paper we extend the insights gained from the emerging literature on multi-factor models in nonstationary panels (Bai & Ng, 2004; Coakley, Fuertes, & Smith, 2006; Pesaran, 2006; Kapetanios, Pesaran, & Yamagata, 2008) to cross-country empirical productivity analysis in the agricultural sector — to the best of our knowledge this is the first empirical study to do so. We adopt a common factor model approach and estimate production functions for a panel of 128 developing and developed countries using annual data from 1961 to 2002 (FAO, 2007). Our focus is on the changes in the parameter estimates and diagnostic tests when we move between pooled and heterogeneous estimators, between methods which ignore cross-section dependence and those which accommodate it, and between approaches that put different emphasis on the time-series properties of long T panels. This aside, the nature of the data for agriculture allows us to investigate the cross-section dependence properties in a formal manner. These innovations aside we particularly focus on three issues: *firstly*, we do not restrict the returns to scale of production, given that with a fixed input (land) part of the production function we do not have any priors about whether returns can assumed to be constant, decreasing or increasing.

Secondly, in an extension to the Pesaran (2006) common correlated effects estimators, we set out to identify what these 'common effects' might actually represent in the case of agriculture. In the standard CCE approach the nature of the cross-sectional dependence across countries is unspecified; in our extension to this approach, which we believe represents a further original contribution to the empirical literature, we apply a number of weighting schemes in the construction of the cross-section averages, based on neighbourhood, geographical distance and agro-climatic distance. The application of weight matrices in essence imposes more structure on the factor loadings across countries, which in the standard CCE estimators are left unconstrained. The first two of our extensions investigated essentially mimic standard spatial econometric approaches using geographical distance measures, the third represents a more complex cross-section correlation. The economic interpretation of our extension would be that the set of unobserved factors influencing productivity in each country is the same for its neighbours, countries in close(r) proximity or countries with similar agro-climatic environment respectively. Thus, countries that are *not* neighbours, are geographically *more distant* or have a very *dissimilar* agro-climatic conditions are argued to to be driven by different sets of factors.

Thirdly, we check the robustness of our empirical results by comparing them with those derived from a dynamic specification of the production function. Again, the majority of studies in the literature concentrate on static models.

Our empirical analysis thus investigates the interplay and salience of time-series properties of the data, parameter heterogeneity, returns to scale assumptions and the presence as well as potential structure of cross-section dependence in the estimation of cross-country production functions in agriculture.

The remainder of the paper is organised as follows: Section 1 briefly reviews the existing literature on cross-country production function estimation for agriculture. Section 2 presents a number of graphs to highlight agro-climatic heterogeneity across our sample of 128 countries and provides the motivation for the empirical approach. Section 3 introduces the empirical model adopted, develops our extension to the Pesaran (2006) CCE estimators and introduces the data. Section 4 presents and discusses the empirical results,¹ before we conclude our findings in Section 5.

¹The analysis of data time-series and cross-section dependence properties is presented in Appendices B and C respectively.

1 Literature review

Following the seminal contribution by Hayami and Ruttan (1970) and a later update by the same authors (Hayami & Ruttan, 1985), the literature on agricultural productivity analysis across countries using panel data or 'repeated cross-sections' can be broadly distinguished by two aspects. The first of these does not relate to methodological approach, but to the dataset used, whereas the second major aspect relates to the empirical restrictions placed on production technology: whether countries are allowed to have differential technology parameters, TFP levels and evolvement, and whether constant returns to scale are imposed. While our short overview of the literature claims by no means to be exhaustive, we believe that the indicative literature presented in Table 1 and briefly discussed below does represent the breadth of the empirical field at the present time.

Most cross-country studies on agriculture use the data provided by the Food and Agriculture Organisation (FAO) which provides output and input variables for a large number of countries from 1961 onwards but relies on tractors and agricultural machinery as proxy for agricultural capital. Examples include Craig, Pardey, and Roseboom (1997); Cermeño, Maddala, and Trueblood (2003); Bravo-Ortega and Lederman (2004) and Fulginiti, Perrin, and Yu (2004). The alternative to this is a dataset developed by a World Bank team of researchers which provides agricultural fixed capital stock data for a maximum of 57 developing and developed countries (although in practice only 37 or 48 countries are used) from 1967-1992 (Larson, Butzer, Mundlak, & Crego, 2000).² An updated version of the dataset provides agricultural fixed capital stock from 1972-2000 for 30 countries.³ The use of the two World Bank datasets is to our knowledge limited to Mundlak, Larson, and Butzer (1997, 1999), as well as Martin and Mitra (2002), Gutierrez and Gutierrez (2003) and Mundlak, Larson, and Butzer (2008).

We highlight this difference since with the noteworthy exception of Martin and Mitra (2002) *all* empirical studies which use the World Bank dataset(s) obtain very high capital coefficients, typically between .35 and .6. The Martin and Mitra (2002) paper arrives at a much lower coefficient of .12.⁴ In contrast, all studies using the FAO data with tractors proxying for fixed capital stock obtain capital coefficients in the range .05 to .2.

The second major aspect relating to technology heterogeneity has commonly been limited to the modelling of TFP. Technology parameter heterogeneity across countries has either been ignored (Hayami & Ruttan, 1970; Craig et al., 1997; Mundlak et al., 1999; Martin & Mitra, 2002; Mundlak et al., 2008) or approached by splitting the sample into 'homogeneous groups', e.g. by level of development (Hayami & Ruttan, 1985; Cermeño et al., 2003; Gutierrez & Gutierrez, 2003). Although many of these studies stress the importance of allowing for technology differences across country groups, none of them investigates this in an approach which allows for full technology heterogeneity.

²Other variables, such as sectoral value added, arable land and agricultural are taken from World Bank, FAO and the ILO data (see Martin & Mitra, 2002).

³At present the updated data is not publicly available, although the it seems the World Bank team headed by Don Larson is happy to provide the data if approached.

⁴Given that the methods applied are very similar this discrepancy may be caused by the alternative deflation strategy applied in Martin and Mitra (2002). Similar to the practice in the FAO data, the authors advocate the use of a single LCU-US\$ exchange rate (in their case for 1990) in favour of the practice of using annual exchange rates as implemented in the Larson et al. (2000) data.

Closely linked to the empirical specification of production technology is the returns to scale assumption imposed on the regression model or tested. The underlying returns to scale of agricultural production affect the size-distribution of farms within an economy (Mundlak, Larson, & Crego, 1997). However, in addition we can think of a number of constraints, for instance insecure legal environment and variations in land tenure arrangements, that influence both of these processes in a similar fashion. For cross-country production analyses in agriculture findings of increasing, decreasing or constant returns to scale (all of which are present as can be seen in Table 1) are typically justified with reference to micro-economic studies of production or the structural change within countries witnessed over the sample period. Hayami and Ruttan (1985), for instance, report increasing returns to scale for a subsample of developed countries (DC),⁵ while their developing country (LDC) sample cannot reject constant returns. They argue that increasing returns are linked to the indivisibility of fixed capital, which has played an increasingly important role in the substitution of labour in developed countries (laboursaving technology). The result for their LDC sample is said to be the outcome of increasing population pressure on land over the sample period, resulting in a decline in the land-labour ratio. Efforts to increase productivity were therefore directed toward saving land by applying more inputs that acted as land-substitutes, such as fertilizer, chemicals or improved seeds (land-saving technology). Since these inputs are highly divisible, the authors argue, it is not surprising to encounter constant returns in this subsample. Although some LDCs also witnessed labour-saving technological change, it is argued that this must have been dominated by the scale-neutral impact of land-saving technical change.

Mundlak, Larson, and Butzer (1997) in contrast argue that the "contribution of inputs to growth should be judged by their contribution to output under a constant technology, attributing the rest of the growth to technical change [TFP]" (paper summary). Their specification "succeeds in capturing the impact of cross-country differences in technology and thus eliminates the spurious result of increasing returns to scale." (p.13)

With regard to our own analysis it is important to point out that once the empirical implementation allows for heterogeneous technology across countries, the standard *ceteris paribus* property of regression parameters alluded to by Mundlak, Larson, and Butzer (1997) breaks down. The implications are beyond the scope of this paper.

The study by Gutierrez and Gutierrez (2003) to the best of our knowledge represents the only analysis which accounts for time-series properties of the data (nonstationarity, cointegration), using nonstationary panel econometric methods (Kao, Chiang, & Chen, 1999). Phillips and Moon (1999) have shown that even panel regressions can lead consistent 'long-run average' estimates even if the error terms are nonstationary, such that the danger nonsense 'spurious' regression is mitigated in the panel (Fuertes, 2008)— a result which depends on the units of the panel being independent of each other. As in common with the vast majority of cross-country empirical analysis, none of the studies reviewed considers the impact of cross-section dependence in the data on empirical estimates. The presence of such dependence can result in misleading inference and even inconsistency in standard fixed effects panel estimators favoured in this literature (Phillips & Sul, 2003). Furthermore, if common factors drive both the regressors and the error terms this will lead to inconsistent panel estimators due to the correlation between the regressors and the error components (Pesaran, 2006).

 $^{^{5}}$ Only if data is deflated by the number of farms. They remark that their national aggregate data however displays constant returns for both subsamples — unfortunately results are not presented.

Table 1: Selective Review of the Literature

Mundlak et al (2008)		30	870	1972-2000	WB, annual	pooled	2FE		L, N, Live, K, F			implicit	implicit	CRS imposed		.12	.33			.34	.08		.13	accounted via 2FE transformation	(CRS imposed)	Table 2, Within
Bravo-Ortega & Lederman (2004)		86	2993	1961-1997	FAO, annual	pooled	POLS		L, N, P, K, F, Live,	irrigated land		>	>	CRS imposed		.11	.04	.53	.03	.04	.25		.05	sign. trend term (1%na)	(CRS imposed)	Table $6(A)$, (2)
Gutierrez & Gutierrez (2003)		47	1081	1970 - 1992	WB, annual	pooled	panel DOLS		L, N, K			>	>	unrestricted		.29	.14			.58				accounted via DOLS method	CRS	Table 2, DOLS
Cermeño et al (2003)		84	2604	1961 - 1991	FAO, annual	pooled by region	POLS		L, N, K, Live, F			>	~	unrestricted			.0247			.0208	.0340		.0010	sign. diff. across i and over t	differs across regions	Tables $1-4$, (7)
Martin & Mitra (2002)		49	1248	1967-1992	WB, annual	pooled	POLS		L, N, K			N trends	>	CRS imposed		.64	.24			.12				sign. diff. across i , 1.4-3.5% growth na	not tested	Table 1, footnote
Mundlak et al (1999)		37	777	1970-1990	WB, annual	pooled	2FE		L, N, K, F	School, Dev, Yield,	Prices	implicit	implicit	unrestricted		.08	.42			.36			.08	accounted via 2FE transformation	CRS not rejected	Table 4
Craig et al (1997)		98	588	1961 - 1990	FAO, 5-year avg.	pooled	POLS		L, N, Live, F, K	Lit, Life, Infra	(all quality-adjusted)		~	unrestricted		.25	.40			.05	.35	06	.04	no difference across i or over t	DRS	Table 1, (1)
Hayami & Ruttan (1985)		43	129	1960, 1970, 1980	own, annual	pooled	POLS		L, N, Live, F, K \ddagger	School, Tech Edu		>		unrestricted		.50	.03			.07	.31		.15		not tested	Table 6-2, (Q14)
Hayami & Ruttan (1970)		36	108	1955, 1960, 1965	own, annual	pooled	POLS		L, N, Live, F, K	School, Tech Edu		>		CRS imposed		.40	.07			.11	.29		.14		(CRS imposed)	Table 2, (17)
	Data	Countries	Observations	Year(s)/Period	Data source	Specification Model	Estimation method	Covariates:	'standard'	'non-standard'		Year dumnies	Country dummies	Returns to scale	Findings	labour	land	pastures	irrigated land	capital/machinery	livestock	traction animals	fertilizer	TFP	Returns to scale	Reference

Notes: The table compares Cobb-Douglas production function estimates from studies as indicated. Since many studies report results for more than one specification we concentrate on the most general model for 'standard' periodicion intus with panel data. The specific reference for each study's entry is stated as the bottom of the able. The studies by Agami and Ruttan (1985) and Gutierrez (2003) also provide separate estimations by country groups (developed, developed, developed, developed, developed, adveloping), finding production technology differences to be considerable and negligible respectively. The Advisor and Ruttan (1970, 1985) studies use data from a wider range of sources which includes the FAO, OECD and other international institutions. FAO — the various databases provided by the Food and Agriculture Organisation of the UN, WB — the Larson et al. (2000) dataset and its updated version. The agricultural outpout (expressed in some type of constant 'international' montary terms) in all studies. The patients. FAO — the various databases provided by the Food and Dutput to agricultural about. (expressed in some type of constant 'international' montary terms) in all studies. The patients. The evolopent level, Net — tops land, Live — livestock, F — eithlack, F — eaptial stock/machinery/tractors, P — pastures, School — school enrolment, Tech Edu — technical education, Lit — literacy. Life expectancy, Dev — development level, Yield — peak yield, Infra — various infrastructure variables, Prices — various price indicators. Estimators: Dev — development level, Yield — peak yield, Infra — various infrastructure variables, Prices — various price indicators. The oway Fixed Effects, see Section 3.2.1 for details, DOLS — Dynamic OLS, following Kao et al. (1990). This estimator become scheares or entition contry-specific short-run dynamics. The study the reported coefficients are derived form data deflated on outhyraspecific short-run dynamics.

2 Technology Heterogeneity and the Analysis of Agricultural Production

2.1 Heterogeneity in the Agro-Climatic Environment

In this section we attempt to create an impression of the differential agro-climatic environment across different countries. Our focus is here on the differences in the share of arable land⁶ in climatic zones across regions of the globe. The data is taken from FAO (2007) and Gallup, Mellinger, and Sachs (1999). The sample is made up of 128 developing and developed countries; the measures presented are essentially time-invariant. Detailed information about data construction and sample coverage is presented in Appendix A.

In Figure 1 we present the average share of agricultural land in the four major climatic zones (equatorial, arid, temperate & cold, highland) for a number of country groups.⁷ The means are computed as weighted means within regions, where the weights are the size of arable land for each country. The bar chart provides a strong sense of the heterogeneity in agro-climatic environment across regions: Sub-Saharan Africa (SSA), for instance, at 52% has the highest average share of land in the equatorial zone, higher even than the Latin America & Caribbean group (LAC), which includes Brazil. In contrast, this agro-climatic zone is (virtually) absent from the developed (EU & WIC) and MENA countries. Developed countries are dominated by agricultural land in the temperate & cold zone (>80%), which in turn makes up only around 10% of land in the average Sub-Saharan African country — the lowest share across all regions. It would thus be difficult to refer to any of these groupings as 'similar' to each other, as far as agro-climatic environment is concerned.

In order to get an alternative, more refined visualisation of these geographical differences across individual countries, rather than crude groupings, we compute a 'Jaffe-measure' (Jaffe, 1986) for agro-climatic environment. This measure is computed for every possible country-pair and can be interpreted as a multi-variate correlation coefficient which varies between zero and unity, where a low (high) value indicates little (high) similarity in the distribution of cultivated land across climatic zones in the two countries (Pardey et al., 2007). From the Matthews (1983) data we obtain the share of cultivated land within each of twelve climatic zones ($h_i = (h_{i1}, \ldots, h_{i12})$), such that for each country *i* the values in the twelve zones sum up to unity ($\sum_m h_{im} = 1$). The Jaffe measure for 'agro-climatic distance' between countries *i* and *j* is then

$$\omega_{ij} = \frac{\sum_{m} h_{im} h_{jm}}{\left(\sum_{m} h_{im}^2\right)^{1/2} \left(\sum_{m} h_{jm}^2\right)^{1/2}}$$

In Figure 2 we plot the Jaffe-measures for Kenya: countries with dark green shading, such as Ethiopia, Sudan or Ghana, as well as some Central American countries have an agro-climatic makeup (distribution of agricultural land across climate zones) very similar to that of Kenya, whereas countries with lighter, yellow and orange shading are progressively different. At the other end of the scale, countries in red, such as the UK, Ireland or Japan have an agro-climatic environment which is entirely different from the Kenyan one.

⁶Instead of using the full definition of 'arable land and permanent crop area', throughout this paper we refer to land or 'arable land' for simplicity.

⁷See Appendix A for the makeup of each grouping.

Figure 1: Geographical regions and climate zones — weighted means

We may now find the tales of failed agricultural technology transfer from developed to developing countries (Ruttan, 2002; Gutierrez, 2002) rather unsurprising: many of the former have very different agro-climatic characteristics from the latter thus making it rather intuitive that

very different agro-climatic characteristics from the latter thus making it rather intuitive that technology between (and even within) these two groups differs and the potential for successful technology transfer *without adaptation* may be limited.

2.2 The Case for Technology Heterogeneity and Cross-section Dependence in the Data

The previous section highlighted the stark differences in the agro-climatic environment for agricultural production across different countries. In our econometric implementation we translate this into the need to allow for *technology heterogeneity* across countries. The assumption of a homogeneous production function may mask or distort important insights into development, as the comment by Nelson (1968) at the beginning of this paper suggests. Hayami and Ruttan (1970) state that Nelson's comment (referring to the analysis of manufacturing data) equally

Figure 2: Agro-climatic 'distance' — the view from Kenya

Kenya's cultivated land: 40% is located in zone Aw (Equatorial savannah, dry winters), 19% in zone BS (steppe), 17% in zone BW (desert) and 25% in zone H (highland climate). Source: Matthews (1983), in Gallup et al. (1999).

applies to the analysis of agricultural production. Their approach further highlights the implications of and anecdotal evidence for technology being endogenous to the prevailing 'economic system', namely the "differential diffusion of agricultural technology...[and] of the scientific and technical capacity to invent and develop new mechanical, biological, and chemical technology specifically adapted to the factor endowments and prices in a particular country or region" (Hayami & Ruttan, 1970, p.898). In addition to technology heterogeneity, this highlights potential limits to technological spillover from innovations between countries with very different agro-climatic makeup and resource endowment: we indicated the vast differences for the former in our visualisation of agro-climatic 'distance' in the case of Kenya. Much of agricultural technology has to be viewed as location-specific, with attempts at direct technology transfer from one agro-climatic region to another largely doomed to failure (Gutierrez, 2002; Ruttan, 2002). By the early 1960s it had become increasingly clear that "[t]echniques developed in advanced countries were not generally directly transferable to less developed countries with different climates and resource endowments" (Ruttan, 2002, p.162). However, this insight does not seem to have affected the specification of empirical models in any way.

We incorporate these ideas into our empirical model in three ways: *firstly*, we allow for parameter heterogeneity in the observable variables in our empirical model. At present no intercountry production analysis in agriculture has considered this specification.

Secondly, we adopt a common factor approach to model TFP, which we interpret in the Abramowitz (1956) fashion as 'measure of ignorance': all time-variant processes, inputs, 'factors' and characteristics which are not captured by the observable covariates in our model are arguably captured by unobserved common factors, which are allowed to possess heterogeneous 'factor loadings' across countries. This common factor representation enables us to account for

cross-section dependence between countries — this dependence can be hypothesised to arise from common shocks and/or spillover effects, the latter determined for instance by trade, policy or technology (Costantinia & Destefanis, 2008). The importance of accounting for cross-section dependence in estimation and inference has become a major theme in the recent nonstationary panel econometric literature (Bai & Ng, 2004; Pesaran, 2004; Breitung & Pesaran, 2005; Coakley et al., 2006; Baltagi, Bresson, & Pirotte, 2007) and this paper represents our second empirical example of these themes.

Thirdly, we use the above arguments of potential barriers to technology spillovers to motivate an extension to the Pesaran (2006) CCE estimators. In the standard setup these estimators account for the impact of unobserved factors by augmenting the regression equation with a vector of cross-section averages at time t for each of the variables, whereby the averages are constructed from equally weighted observations across all countries. The economic interpretation of this approach would be that the set of unobserved factors which influences productivity is common to all countries — this is not to say that their impact is the same (in fact their heterogeneity is the major contribution of the Pesaran (2006) approach), it is just required that across all countries the impact of each factor is on average non-zero. In our extension we chose to impose some more structure on this framework by investigating three alternative scenarios:

- (i) **The 'Neighbourhood Effect'**: many empirical studies have argued that the economic performance of contiguous neighbours to country *i* has a significant effect on the latter's total factor productivity, and attempted to measure the impact of this spillover empirically by specifying spatially-lagged dependent variables in a production function model (e.g. Ertur & Koch, 2007). In our empirical models we will allow for a conceptually similar relationship in the data using the alternative CCE estimation approach.
- (ii) The 'Gravity Model Effect': gravity models are common in empirical trade analysis where they suggest geographical distance as a powerful determinant of the magnitude of economic exchange between countries (e.g. Frankel & Romer, 1999; Redding & Venables, 2004). We adopt this approach to hypothesise that distance between countries (a crude proxy for factors such as climatic, soil, cultural, ethnic and socio-economic differences) can explain the effects of unobserved heterogeneity across countries. Existing examples in the spatial econometric literature are reviewed in Magrini (2004), Abreu, de Groot, and Florax (2005) and Bode and Rey (2006).
- (iii) The 'Agro-Climatic Distance Effect': much of the existing literature on intercountry production functions in agriculture particularly highlights the differential agro-climatic characteristics across countries and even explicitly links the failure of technology transfer between diverse countries to heterogeneity in resource endowment and climate. Our third alternative to the standard CCE approach hypothesises that countries with similar agro-climatic makeup are influenced by similar unobserved factors.

In the following section we show somewhat more formally how these ideas are introduced into our econometric model.

3 Empirical Model and Implementation

3.1 Common factor model representation

We adopt an unobserved common factor model as our empirical framework. For i = 1, ..., Nand t = 1, ..., T, let

$$y_{it} = \beta'_i \boldsymbol{x}_{it} + u_{it} \qquad u_{it} = \alpha_i + \boldsymbol{\lambda}'_i \boldsymbol{f}_t + \varepsilon_{it}$$
(1)

$$x_{mit} = \pi_{mi} + \boldsymbol{\delta}'_{mi} \, \boldsymbol{g}_{mt} + \rho_{1mi} \, f_{1mt} + \ldots + \rho_{nmi} \, f_{nmt} + v_{mit} \tag{2}$$

where
$$m = 1, \dots, k$$
 and $\boldsymbol{f}_{\cdot mt} \subset \boldsymbol{f}_t$

$$\boldsymbol{f}_t = \boldsymbol{\varrho}' \boldsymbol{f}_{t-1} + \boldsymbol{e}_t \quad \text{and} \quad \boldsymbol{g}_t = \boldsymbol{\kappa}' \boldsymbol{g}_{t-1} + \boldsymbol{\epsilon}_t \quad (3)$$

We assume a production function with observed inputs x_{it} (labour, agricultural capital stock, livestock, fertilizer, land under cultivation) and observed net output y_{it} (all in logarithms). Technology parameters on the inputs can vary across countries (β_i). Unobserved agricultural TFP is represented by a combination of country-specific TFP levels α_i and a set of common factors f_t with factor loadings that can differ across countries (λ'_i) . We also introduce an empirical representation of the observed inputs in equation (2) in order to indicate the possibility for endogeneity: the input variables x_{it} are driven by a set of common factors g_{mt} as well as an additional set of factors f_{nmt} , whereby the latter as indicated represent a subset of the factors driving output in equation (1). The intuition is that some unobserved factors driving agricultural production are likely to similarly drive (at least in parts) the evolution of the inputs. This overlap of common factors creates severe difficulties for the identification of the technology parameters β_i (see Remark 4 in Kapetanios et al., 2008) and our empirical estimators set out to address this issue: previous simulation exercises (Coakley et al., 2006; Kapetanios et al., 2008) as well as our own investigations (available on request) indicate that the newly-developed CCE-type estimators are able to accommodate this type of endogeneity in the estimation equation to arrive at consistent parameter estimates for common β coefficients or the means of heterogeneous β_i . Equation (3) indicates that the factors are persistent over time, which allows for the setup to accommodate nonstationarity in the factors ($\rho = 1, \kappa = 1$) and thus the observables. It further allows for various combinations of cointegration: between output y and inputs x, and between output y, inputs x and (some of) the unobserved factors f_t . The latter alternative is of particular interest, since it will allow us to specify a cointegrating relationship without even knowing its individual elements.

The above empirical framework allows for the maximum level of flexibility, with regard to parameter heterogeneity, cross-section dependence induced by the common factors, and nonstationarity in the observables and unobserved factors.

3.2 Empirical estimators

3.2.1 Estimators imposing homogeneous parameters

We first use the full time-series of the data to estimate pooled OLS (POLS), two-way fixed effects (2FE), and pooled OLS for data in first differences (FD-OLS). In order to capture the unobserved common processes the POLS and FD-OLS estimation equations contain a set of T-1 year dummies (in first differences in the FD-OLS equation); the 2FE estimator captures the common processes by transforming all variables into deviations from the cross-section mean.

Formally, the above estimators are defined as

POLS
$$y_{it} = a + \boldsymbol{b}\boldsymbol{x}_{it} + \sum_{s=2}^{T} c_s D_s + e_{it}$$
 (4)

FD-OLS
$$\Delta y_{it} = \boldsymbol{b} \Delta \boldsymbol{x}_{it} + \sum_{s=2}^{T} c_s \Delta D_s + \Delta e_{it}$$
 (5)

2FE
$$\breve{y}_{it} = \boldsymbol{b}\breve{\boldsymbol{x}}_{it} + \breve{e}_{it}$$
 (6)

where $\breve{z}_{it} = z_{it} - \bar{z}_i - \bar{z}_t + \bar{z}$ with $\bar{z}_i = T^{-1} \sum_{t=1}^T z_{it}$ (country average), $\bar{z}_t = N^{-1} \sum_{i=1}^N z_{it}$ (cross-section average) and $\bar{z} = (NT)^{-1} \sum_{t=1}^T \sum_{i=1}^N z_{it}$ (full sample average).

None of the above estimators explicitly addresses cross-section dependence in the data. This is addressed in the pooled version of the Pesaran (2006) Common Correlated Effects estimator (CCEP), where the pooled fixed effects equation is augmented by cross-section averages of the dependent and the independent variables, in a fashion such that the impact of the unobserved common factors is allowed to vary across countries. Formally,

CCEP
$$y_{it} = a + b\boldsymbol{x}_{it} + \sum_{j=2}^{N} d_j D_j + \sum_{j=1}^{N} c_{1i} \{ \bar{y}_t D_j \} + \sum_{j=1}^{N} \boldsymbol{c}_{2i} \{ \bar{\boldsymbol{x}}_t D_j \} + e_{it}$$
 (7)

where the first three terms represent a standard fixed effects estimator and the last two terms represent the augmentation with cross-section averages at time t ($\bar{z}_t = N^{-1} \sum_{i=1}^N z_{it}$) interacted with a set of N country dummies D_j . This combination creates k + 1 matrices of dimensions $NT \times N$ where k is the number of observed variables in the model.

The intuition why this rather simple augmentation can do away with the impact of unobserved common factors (with heterogeneous factor loadings) is as follows: take the cross-section averages of our hypothesised DGP in equation (1) for each point in time to yield

$$\bar{y}_t = \bar{\alpha} + \bar{\beta}' \bar{x}_t + \bar{\gamma}' \bar{f}_t$$

$$\Leftrightarrow \bar{f}_t = \bar{\gamma}^{-1} (\bar{y}_t - \bar{\alpha} - \bar{\beta}' \bar{x}_t)$$
since
$$\bar{\varepsilon}_t = 0$$

$$(8)$$

This indicates that provided the average impact of each factor across all countries is non-zero $(\bar{\gamma} \neq 0)$, the use of cross-section averages of the dependent (\bar{y}_t) and independent variables (\bar{x}_t) can act as a representation of the unobserved common factors f_t since as the cross-section dimension (N) becomes large $\bar{f}_t \to f_t$ in probability. To allow for heterogeneity in the factor loadings this representation must be implemented in the fashion outlined above.

Pesaran (2006) shows that the asymptotic consistency of the CCEP estimator is based on any weighted cross-section aggregates $(\bar{z}_t = \sum_i w_i z_{it})$ provided the weights w_i satisfy the conditions

$$w_i = O\left(\frac{1}{N}\right) \qquad \sum_{i=1}^N w_i \gamma_i \neq 0 \qquad \sum_{i=1}^N |w_i| < K \tag{9}$$

where K is a finite positive constant (Coakley et al., 2006). In the standard CCE estimator the weights are the same for all countries (1/N) as \bar{z}_t represents the arithmetic mean. In an extension to this standard practice we experiment with a number of weight-matrices to develop alternative CCE estimators. We present three variants of the standard approach:

- 1. The Neighbourhood CCE approach for country i the cross-section averages (means) for y and x are constructed from the values for i's contiguous neighbours.
- 2. The Gravity CCE approach for country *i* the observations for countries j = 1, ..., N-1 are weighted by the inverse of the population-weighted distance between *i* and *j* (these weights were normalised so that they sum to unity) before computing the cross-section aggregate.
- 3. The Agro-Climatic CCE approach for country *i* the observations for countries $j = 1, \ldots, N-1$ are weighted by Jaffe's measure for agricultural distance (see below) between *i* and *j* (these weights were normalised so that they sum to unity) before computing the cross-section aggregate.⁸

Our conceptual justification for these variants of the CCEP (and also the CCEMG) estimator is the situation where the average of factor loadings across countries is non-zero, but systematic patterns drive the data. In the distance case we implicitly test the hypothesis that country iis driven by unobserved common factors which are the same in countries in close proximity, but is much less affected by other factors which drive countries further away from it. The neighbourhood case represents an extreme extension of this argument whereby only countries which share a common border are driven by the same factors. Finally, in the agro-climatic case we test the hypothesis that countries with similar agro-climatic environment are affected by a shared set of common factors, but that these countries are not (or only to a very limited degree) affected by a separate set of common factors, which in turn influences countries in very different agro-climatic environments.

All of the above estimators impose parameter homogeneity on the production technology (observed variables) and TFP (unobserved common factors), with the exception of the CCEP estimator which allows for heterogeneity in TFP evolvement. If variables (y, x) and factors (f) are nonstationary the POLS, FE and 2FE estimators require that the cointegrating relation between y, x and f is homogeneous across countries. Similarly, if only y and x are nonstationary their cointegrating relationship is required to be common across countries. As our simulation study reveals⁹ the use of year dummies can greatly reduce the misspecification bias in a range of scenarios when these assumptions are violated, however the regression equations fundamentally are misspecified and contain nonstationary errors.¹⁰ We now turn to a number of estimators which allow for parameter heterogeneity in both the production technology and TFP evolvement.

3.2.2 Estimators allowing for parameter heterogeneity

All of the following estimators are based on individual country regressions. A starting point is the Pesaran and Smith (1995) Mean Group estimator (MG) which assumes cross-section independence (absence of unobserved common factors) and in the presence of nonstationary variable series requires heterogeneous cointegration, i.e. that the country regression model is correctly specified and encompasses the cointegrating relationship.

⁸For the Jaffe (1986) measure see Section 2.1 for details. For the distance and agro-climatic distance we normalise the weights (across i) so that they sum to unity.

⁹Available on request.

 $^{^{10}\}mathrm{The}$ CCEP estimator seems to be the exception with regard to the latter.

We thus estimate N country regressions

MG
$$y_{it} = a_i + \boldsymbol{b}_i \boldsymbol{x}_{it} + c_i t + e_{it}$$
 (10)
 $\hat{\boldsymbol{b}}_{MG} = N^{-1} \sum_i \hat{\boldsymbol{b}}_i$

where t is a linear trend term with parameter coefficient c_i and a_i is the intercept. By construction all parameters can differ across countries, indicated by the subscript *i*. The linear trend term is included to capture unobserved idiosyncratic processes which are time-invariant. The MG estimates are then derived as averages of the individual country estimates.

3.2.3 Estimators allowing for parameter heterogeneity and common factors

We also present results for the Augmented Mean Group estimator (AMG), which we developed in Eberhardt and Teal (2008). This estimator accounts for potential cross-section dependence by inclusion of a 'common dynamic effect' in the country regression. This variable is extracted from the year dummy coefficients of the pooled regression in first differences and (following transformation) represents a levels-equivalent average evolvement of unobserved common factors across all countries. Provided that the unobserved common factors form part of the countryspecific cointegrating relation, the augmented country regression model thus encompasses the cointegrating relationship, which is allowed to differ across countries.

AMG Stage (i)
$$\Delta y_{it} = \boldsymbol{b} \Delta \boldsymbol{x}_{it} + \sum_{s=2}^{T} c_s \Delta D_s + \Delta e_{it} \qquad (11)$$
$$\Rightarrow \hat{\boldsymbol{c}}_s = \hat{\boldsymbol{\mu}}_s^{\bullet}$$

AMG Stage (ii)

$$y_{it} = a_i + \boldsymbol{b}_i \boldsymbol{x}_{it} + \kappa_i \hat{\mu}_t^{\bullet} + c_i t + e_{it} \qquad (12)$$

$$\hat{\boldsymbol{b}}_{AMG} = N^{-1} \sum_i \hat{\boldsymbol{b}}_i$$

The first stage represents a standard FD-OLS regression with T-1 year dummies in first differences, from which we collect the year dummy coefficients which are labelled as $\hat{\mu}_t^{\bullet}$. In the second stage this variable is included in each of N standard country regression which also includes a linear trend term to capture unobserved idiosyncratic processes which are time-invariant. The AMG estimates are then derived as averages of the individual country estimates.

This approach is conceptually close to the Mean Group version of the Pesaran (2006) Common Correlated Effects (CCEMG) estimator, which is a variant on the pooled estimator CCEP introduced above. For CCEMG we obtain N country regression equations, each of which contains the cross-section average terms for y and x

CCEMG
$$y_{it} = a_i + \boldsymbol{b}_i \boldsymbol{x}_{it} + c_{1i} \bar{y}_t + \boldsymbol{c}_{2i} \bar{\boldsymbol{x}}_t + e_{it}$$
 (13)
 $\hat{\boldsymbol{b}}_{CCEMG} = N^{-1} \sum_i \hat{\boldsymbol{b}}_i$

As was detailed above the cross-section averages can account for unobserved common factors with heterogeneous factor loadings. The CCEMG estimates are then averaged across countries. We develop the three variants of the CCEMG estimator in analogy to the pooled estimator case.

3.3 Data

The principal data source for our empirical analysis is the Food and Agriculture Organisation's *FAOSTAT* panel database (FAO, 2007), from which we obtain annual observations for agricultural net output, economically active labour force in agriculture, number of tractors used in agriculture, arable land and permanent crop land and fertilizer use in 128 countries from 1961 to 2002 (average T = 40.3).

Additional time-invariant data on geographical distance between countries and contiguity (neighborhood) is taken from CEPII (2006), and data on the share of agricultural land by climatic zone from Matthews (1983) available in Gallup et al. (1999). Data construction is discussed in Appendix A which also contains the descriptive statistics.

4 Empirical Results

4.1 Time-Series Properties and Cross-Section Dependence

We carry out a set of stationarity and nonstationarity tests for individual country time-series as well as the panel as a whole, results for which are presented in Appendix B. Ultimately, in case of the present data dimensions and characteristics, and given all the problems and caveats of individual country and panel unit root tests, we can suggest *most conservatively* that nonstationarity cannot be ruled out in this dataset. Investigation of the time-series properties of the data was not intended to select a subset of countries which we can be reasonably certain display nonstationary variable series like in Pedroni (2007); instead, our aim was to indicate that the sample (possibly due to the limited time-series dimension, as argued in Pedroni, 2007) is likely to be made up of a mixture of some countries with stationary and others with nonstationary variable series.

The results for the cross-section dependence (CSD) analysis are presented in Appendix C. Our analysis provides strong evidence for the presence of cross-section dependence within the full sample dataset, based on average variable cross-country correlation coefficients, principal component analysis and the Pesaran (2004) CD test. This result holds for both the individual variables as well as residuals from regressions which do not address cross-section correlation: the pooled OLS (POLS), two-way fixed effects (2FE) and Mean Group (MG) estimators.¹¹ The CD test for residuals from standard CCEMG regressions cannot reject cross-section independence, indicating that this approach successfully deals with the presence of unobserved common factors. It is noteworthy that the average cross-section correlation for residuals from the pooled OLS regression with variables in first differences (FD-OLS) drops considerably and like in the CCEMG case cross-section independence cannot be rejected. This result is surprising - Coakley et al. (2006) did not investigate the FD-OLS estimator in their study and we further noted its performance in our dedicated Monte Carlo analysis (available on request). We also carry out the same testing procedures for various subsamples of the data, based on geographic and climatic categories. The standard CCEMG estimator seems to achieve the elimination of cross-section dependence even within and across narrower subsamples, while most other estimation approaches (now including FD-OLS) are subject to considerable residual correlation within

¹¹POLS is augmented with T-1 year dummies, MG country regressions with a linear trend term.

and across country groupings. CD tests and mean absolute residual correlation are reported in the results section below for each of the empirical specifications considered.

4.2 Pooled estimation results

We present the estimation results for the pooled specifications in Table 2. The dependent variable and the independent variables are expressed in per worker term, such that the addition of the labour variable indicates deviation from constant returns to scale. In the lower panels of the table we report the implied returns to scale and labour coefficients as well as various diagnostic test results. Recall for the following discussion that the 2FE estimator represents the empirical implementation of choice in the present literature.

We first discuss parameter coefficients: most empirical models presented indicate large decreasing returns to scale in agriculture. In common with many studies using the FAO data, the coefficients on capital (tractors) are relatively low across all models, ranging from .04 (FD-OLS) to .13 (POLS). The land coefficients are high and relatively stable across specifications (between .21 and .33), whereas the fertilizer coefficients range from .01 to .17. Livestock again has a rather large coefficient across all specifications (.22 to .37).

Regarding the implied labour coefficients, we find very low magnitudes across all specifications, with the standard and distance-weighted CCEP even providing nonsensical negative parameter values. Certainly the most striking pattern in these results is the general magnitude of the implied decreasing returns to scale: based on this analysis we can conclude that in a pooled specification the data in all but two of the weighted CCE estimators rejects constant returns emphatically, with input elasticities in the commonly favoured 2FE estimator adding up to around .80. This finding may reflect a global production function with substantial decreasing returns to scale, possibly due to the presence of a fixed factor (median land per worker growth rate for the sample: 0.0%); alternatively, it may reflect empirical misspecification.

Turning to the diagnostics, we can see that with the exception of the models in first differences, *all* models seem to display serial correlation in the residuals. Unit root tests indicate that the CCEP-type and first difference estimators seem to yield stationary residuals, in contrast to the standard panel estimators in levels (POLS, 2FE) for which nonstationary residuals cannot be rejected. Recall that *t*-statistics are invalid in the presence of nonstationary errors (Kao, 1999). Mean absolute residual correlations for POLS and 2FE are relatively high, at around .4, whereas this measure drops to around .16 in all other regression models. Nevertheless the Pesaran (2004) CD-test for cross-section dependence yields very mixed results: only the residuals for the agro-climate CCEP and the FD-OLS estimator suggest cross-section independence. Further specification tests emphatically reject residual normality and homoskedasticity in all models. These diagnostics indicate that the commonly preferred 2FE estimator has serially correlated errors, which are nonstationary, nonnormal, heteroskedastic and correlated across countries. Note that input parameter estimates for this estimator are reasonably close to those in Craig et al. (1997), the closest match for this dataset and specification.

	Pooled regressions												
	POOLED regressions dependent variables [1] fr [2] [6] les output per worker [2] dte in $2\mathbf{F}\mathbf{F}$ transformation												
	dependent	variable: [1]	$\& [3]-[6] \log o$	utput per worl	ker, $[2]$ dto. in	2FE transform	ation ⁴ ,						
		$[7] \Delta \log c$	output per wor	rker, [8] dto. ir	1 2FE transfor	mation ^q							
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]					
	POLS	2FE [♯]	CCEP	CCEP	CCEP	CCEP	FD-OLS	\mathbf{FD} -2 \mathbf{FE}^{\natural}					
weight matrix [‡]			none	neighbour	distance	agro-climate							
labour†	-0.0586	-0.1908	-0.3194	-0.0659	-0.2684	-0.2157	-0.3797	-0.1946					
Δ in [7]&[8]	$[17.50]^{**}$	$[14.79]^{**}$	$[2.35]^{**}$	[0.39]	$[2.52]^*$	[1.70]	$[3.60]^{**}$	$[3.54]^{**}$					
tractors pw 0.1315 0.0577 0.0740 0.0898 0.0765 0.0440 0.0383 0.0718 h													
$\Delta \text{ in } [7]\&[8] \qquad [24.12]^{**} \qquad [13.76]^{**} \qquad [4.86]^{**} \qquad [4.13]^{**} \qquad [4.02]^{**} \qquad [2.68]^{**} \qquad [3.21]^{**} \qquad [5.71]^{**}$													
livestock pw 0.2189 0.3579 0.3601 0.2984 0.3669 0.3715 0.2861 0.3012													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
fertilizer pw	0.1690	0.0726	0.0255	0.0497	0.0277	0.0258	0.0086	0.0103					
Δ in [7]&[8]	$[28.08]^{**}$	$[23.63]^{**}$	$[4.67]^{**}$	$[4.97]^{**}$	$[2.59]^*$	$[4.68]^{**}$	$[2.48]^*$	$[3.00]^{**}$					
land pw	0.2529	0.2936	0.2415	0.2854	0.3321	0.2452	0.2101	0.2831					
$\Delta \text{ in } [7]\&[8]$	$[30.42]^{**}$	$[21.07]^{**}$	$[2.34]^*$	$[2.86]^{**}$	$[3.17]^{**}$	$[3.23]^{**}$	$[2.71]^{**}$	$[4.33]^{**}$					
	We in	cluded $(T-1)$) year dummi	es in equations	[1] and (in fin	est differences) [[7].						
Constant	1.9084		2.8646	0.9223	4.2520	2.6092							
	$[28.93]^{**}$		[1.78]	[0.39]	$[2.92]^{**}$	[1.49]							
Observations	5,162	5,162	5,162	5,162	5,162	5,162	5,013	5,013					
groups	128	128	128	128	128	128	128	128					
average T	40.3	40.3	40.3	40.3	40.3	40.3	39.2	39.2					
R-squared	0.91	0.66	0.96	0.94	0.98	0.96	0.16	0.12					
<u>.</u>			•										

	Table 2: Pooled	regressions	unrestricted	returns	to	scale
--	-----------------	-------------	--------------	---------	---------------------	-------

	Returns to scale implications of the parameter estimates b Implied β_L 0.1691 0.0274 -0.0205 0.2108 -0.0716 0.0978 0.0772 0.1390												
Implied β_L	0.1691	0.0274	-0.0205	0.2108	-0.0716	0.0978	0.0772	0.1390					
Returns	DRS	DRS	DRS	CRS	DRS	CRS	DRS	DRS					
	Arellano	Bond Seria	l Correlation	Test $-H_0$:	no serial corre	elation in the re	siduals						
AR(1)(p)	36.72 (.00)	56.21 (.00)	7.62(.00)	16.20(.00)	12.82(.00)	11.40 (.00)	-9.52(.00)	-9.67 (.00)					
AR(2)(p)	36.19 (.00)	49.01 (.00)	0.78(.44)	10.96(.00)	5.05(.00)	3.80(.00)	-0.61(.54)	-0.69(.49)					
AR(3)(p)	35.63(.00)	43.30 (.00)	-3.04 (.00)	6.66(.00)	-0.67 (.50)	-0.50 (.61)	0.49(.62)	0.40 (.69)					
l I	Nonstationarity: Pesaran (2007) CIPS test applied to residuals [#] – H_0 : residuals are I(1)												
lags	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)					
none	-7.94 (.00)	-9.54 (.00)	-40.38 (.00)	-31.21 (.00)	-32.76 (.00)	-33.63 (.00)	-48.92(.00)	-48.78 (.00)					
1 lag	-2.67(.00)	-3.47 (.00)	-32.11 (.00)	-21.03 (.00)	-23.73 (.00)	-24.07(.00)	-38.06 (.00)	-37.83(.00)					
2 lags	0.01(.50)	0.39(.65)	-24.66 (.00)	-15.41 (.00)	-18.45 (.00)	-16.75(.00)	-24.40(.00)	-24.21(.00)					
3 lags	1.79(.96)	2.05(.98)	-20.39 (.00)	-11.28 (.00)	-14.49 (.00)	-13.18 (.00)	-14.87 (.00)	-15.32(.00)					
4 lags	3.91(1.00)	4.20(1.00)	-15.83 (.00)	-5.96 (.00)	-8.72 (.00)	-9.26 (.00)	-8.79 (.00)	-8.94 (.00)					
Cross-S	Section Depe	ndence: Me	an (Absolute	e) Correlatio	n & Pesaran	(2004) CD t	$\mathbf{est} - H_0$: no	CSD					
Mean ρ_{ij}	-0.01	0.02	0.01	0.01	0.07	0.00	0.00	0.02					
Mean $ \rho_{ij} $	0.42	0.41	0.18	0.15	0.17	0.16	0.15	0.15					
CD(p)	-2.49 (.01)	9.64 (.00)	4.97(.00)	4.06 (.00)	38.52(.00)	-0.25 (.80)	0.04 (.97)	12.84(.00)					
	Further resi	idual diagno	stic tests \star –	$-H_0$: no heter	oskedasticity, 1	regular skewnes	s/kurtosis						
(A) Joint test	A) Joint test												
$\chi^2(p)$	119.9 (.00)	238.8 (.00)	585.4(.00)	534.9(.00)	439.6(.00)	471.72 (.00)	976.1 (.00)	975.5(.00)					
(B) Joint test													
χ^2 (p)	1128.1(.00)	459.4(.00)	-	-	-	-	1064.8(.00)	334.6(.00)					

Notes: The values in square brackets are absolute t-statistics of the estimates, based on heteroskedasticity-robust standard errors.
* and ** indicate statistical significance at the 5% and 1% level respectively.
↓ In the 2FE model we transform all variables as follows: (z_{it} - z_i - z_t + z), where

z_i = T⁻¹ ∑_{t=1}^T z_{it}
and
z_t = N⁻¹ ∑_{t=1}^N z_{it}
and
z_t = N⁻¹ ∑_{t=1}^N z_{it}
and
z = (NT)⁻¹ ∑_{t=1}^T Z_{it}
in the exception of the log labour variable: this specification allows for convenient determination of the result is evidence for increasing (decreasing) returns to scale and an insignificant coefficient implies constant returns to scale.
‡ We apply different N × N weight matrices to construct the cross-section averages: in [4] averages are constructed for each country *i* from the values of itself and its neighbours, in [5] we use the inverse of the population-weighted distance between two countries, in [6] the Jaffe correlation coefficient for the 12 agro-climatic zones between two countries. See main text for details.
b The implied returns to scale are labeled decreasing (DRS) if the coefficient on labour is negative, statistically significant, and constant (CRS) if this coefficient is insignificant, see previous note. The implied labour coefficient if constant returns were to hold) and then adding the

(except for labour), subtracting them from unity (the result is the implied labour coefficient is compared by adding up an the coefficient on hold) and then adding the coefficient on labour. \sharp The Pesaran (2007) CIPS test results are for the ADF equation with an intercept and the indicated augmentation with lagged first differences. The test results for the ADF equation with intercept and trend follow the same pattern of rejection and are therefor omitted. The CIPS accounts for cross-section dependence in the residuals.

The D'Agostino et al. (1990) test (A) investigates skewness and kurtosis. The Cameron and Trivedi (1990) decomposition test in (B) analyses residual heteroskedasticity, skewness and kurtosis. Both tests provide joint hypothesis tests. If a test rejects skewness or kurtosis we can no longer assume normality for the residual distribution. Note that we cannot compute the Cameron and Trivedi (1990) for all CCEP estimators due to the large number of parameters in these models.

Pooled regressions dependent variable: [1] & [3]-[6] log output per worker, [2] dto. in 2FE transformation [‡] ,											
	dependent variable: [1] & [3]-[6] log output per worker, [2] dto. in 2FE transformation ^{\ddagger} , [7] Δ log output per worker, [8] dto. in 2FE transformation ^{\ddagger}										
	$ [7] \Delta \log \text{ output per worker, } [8] \text{ dto. in 2FE transformation}^{\natural} \\ [1] [2] [3] [4] [5] [6] [7] [8] \\ [8] \\ [9] $										
[1][2][3][4][5][6][7][8]POLS $2FE^{\natural}$ CCEPCCEPCCEPCCEPFD-OLSFD-2FE^{\natural}weight matrix‡noneneighbourdistanceagro-climate											
	POLS	$2FE^{\natural}$	CCEP	CCEP	CCEP	CCEP	FD-OLS	$FD-2FE^{\natural}$			
weight matrix [‡]			none	neighbour	distance	agro-climate					
tractors pw	0.1437	0.0650	0.0989	0.0982	0.0879	0.0787	0.0542	0.0788			
$\Delta \text{ in } [7]\&[8]$	$[25.96]^{**}$	$[15.27]^{**}$	$[5.63]^{**}$	$[5.35]^{**}$	$[6.37]^{**}$	[4.93]**	[4.00]**	$[5.93]^{**}$			
livestock pw	0.2472	0.4147	0.3869	0.3103	0.4120	0.3994	0.3191	0.3248			
$\Delta \text{ in } [7]\&[8]$	[29.59]**	[37.10]**	[7.53]**	$[4.49]^{**}$	[9.30]**	[8.94]**	[7.84]**	[8.61]**			
fertilizer pw	0.1616	0.0647	0.0289	0.0485	0.0333	0.0326	0.0084	0.0100			
$\Delta \text{ in } [7]\&[8]$	$[26.72]^{**}$	[20.94]**	$[5.19]^{**}$	$[5.10]^{**}$	[3.39]**	[5.72]**	$[2.46]^*$	$[2.97]^{**}$			
land pw	0.2503	0.3955	0.3326	0.3311	0.4550	0.3198	0.3129	0.3239			
$\Delta \text{ in } [7]\&[8]$	[28.68]**	[32.01]**	[3.87]**	[4.74]**	[6.49]**	[4.17]**	[4.68]**	[5.12]**			
	We inc	luded $(T-1)$) year dummie	es in equations	s [1] and (in fi	rst differences)	[7].				
Constant	1.1077		-0.1508	0.2140	0.3488	0.0397					
	$[23.50]^{**}$		$[2.62]^{**}$	[1.73]	$[6.50]^{**}$	[0.65]					
Observations	5,162	5,162	5,162	5,162	5,162	5,162	5,013	5,013			
groups	128	128	128	128	128	128	128	128			
average T	40.3	40.3	40.3	40.3	40.3	40.3	39.2	39.2			
R-squared	0.90	0.64	0.95	0.93	0.98	0.95	0.15	0.11			
			Implications	s for labour	$\operatorname{coefficient}^{\flat}$						
Implied β_L	0.1972	0.0601	0.1527	0.2119	0.0118	0.1695	0.3054	0.2625			
	Arellano-	Bond Serial	Correlation	Test — H_0 :	no serial corre	elation in the r	esiduals				
AR(1)(p)	36.67 (.00)	56.81 (.00)	11.17 (.00)	17.96 (.00)	15.46 (.00)	14.10 (.00)	-9.57 (.00)	-9.60 (.00)			
AR(2)(p)	36.18 (.00)	49.72 (.00)	4.70 (.00)	12.97 (.00)	7.61 (.00)	6.61 (.00)	-0.57 (.57)	-0.62 (.53)			
AR(3)(p)	35.67 (.00)	44.01 (.00)	-0.09 (.93)	8.62 (.00)	1.25(.21)	1.50(.13)	0.45(.65)	0.39(.69)			
N	onstationarit	ty: Pesaran	(2007) CIPS	S test applie	d to residua	$\mathbf{ls}^{\sharp} - H_0$: resid	duals are $I(1)$				
lags	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)			
none	-7.77 (.00)	-5.83 (.00)	-34.17 (.00)	-27.74 (.00)	-30.88 (.00)	-30.98 (.00)	-49.10 (.00)	-48.99 (.00)			
1 lag	-2.47 (.01)	-0.01 (.50)	-24.10 (.00)	-18.15 (.00)	-21.66 (.00)	-21.41 (.00)	-37.52 (.00)	-37.75 (.00)			
2 lags	0.01(.50)	2.74(1.00)	-17.44 (.00)	-12.01 (.00)	-16.91 (.00)	-15.48 (.00)	-24.85 (.00)	-23.64 (.00)			
3 lags	-0.41 (.34)	3.17(1.00)	-13.51 (.00)	-9.57 (.00)	-13.04 (.00)	-11.36 (.00)	-15.90 (.00)	-14.73 (.00)			
4 lags	0.06(.52)	3.99(1.00)	-9.47 (.00)	-4.76 (.00)	-6.54(.00)	-8.72 (.00)	-7.66 (.00)	-7.84 (.00)			
Cross-Se	ection Depen	dence: Mea	an (Absolute	e) Correlatio	n & Pesarar	n (2004) CD	$\mathbf{test} - H_0$: no	o CSD			
Mean ρ_{ij}	-0.01	0.00	0.00	0.01	0.07	0.00	0.00	0.02			
Mean $ \rho_{ij} $	0.43	0.42	0.19	0.16	0.17	0.17	0.14	0.15			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
	Further residual diagnostic tests [*] — H_0 : no heteroskedasticity, regular skewness/kurtosis										
(A) Joint test	(A) Joint test										
$\chi^2(p)$	$\chi^{2}(p)$ 179.4 (.00) 229.3 (.00) 557.5 (.00) 452.1 (.00) 368.4 (.00) 461.7 (.00) 1002.5 (.00) 990.4 (.00)										
(B) Joint test											
$\chi^2(p)$	1078.9 (.00)	424.5 (.00)	-	-	-	-	967.8 (.00)	268.2 (.00)			

Table 3: Pooled regressions (CRS imposed)

Notes: See Table 2 for further details.

In line with much of the literature, we run regressions with CRS imposed to provide a reference point — as just reported this imposition is *rejected* by the data in most models — and report the results in Table 3. Interestingly the parameter estimates for tractors, livestock (moderate increase) and fertilizer are relatively stable compared with the unrestricted models. In contrast the land coefficients shoot up (in the 2FE case from .29 to .40) in all specification safe for POLS. Implied labour coefficients remain relatively stable for POLS and 2FE but rise substantially for the difference and CCEP regressions. Serial correlation tests and the unit root tests display rejection patterns next to identical to those in the unrestricted case. With regard to the CD test, 2FE and CCEP errors now indicate cross-section independence. Again the normality and homoskedasticity tests reject across the all estimators. Existing results for the FAO data and a comparable empirical specification in Bravo-Ortega and Lederman (2004) show similar patterns (albeit with an even higher land-coefficient).

We can see from these results that the the erroneous imposition of CRS (the unrestricted models reject CRS) has led to larger magnitudes for either the land or the implied labour coefficient — in the commonly preferred 2FE model the implied labour coefficient has merely risen from .03 to .06 — albeit with diagnostics that reject the most common regression assumptions for this estimator (residuals which are stationary, serially uncorrelated, normal and homoskedastic). Note that our empirical setup implies that factor-input parameters are unidentified in the POLS and 2FE *if* the same unobserved common factors drive output *and* inputs.

Regarding the Pesaran (2006) CCEP and our extensions, our results show that the former emphatically rejects CRS and yields summed input elasticities of around .68, with *negative* implied labour coefficient; of the other CCE estimators the distance version behaves in a similar fashion, whereas the other two cannot reject CRS. Serial correlation remains a concern in all four models. Surprisingly the agro-climate version is the only model that cannot reject cross-section independence. Once CRS is (despite previous results) imposed, all models yield somewhat similar coefficients, with the land coefficient again rising considerably — most obviously so in the distance model. Diagnostics remain similar, although residuals in the standard CCEP now cannot reject cross-sectional independence.

In conclusion, our pooled models largely reject constant returns to scale, yield very low values for the implied coefficient on labour and over a range of specification tests indicate a combination of non-normality and heteroskedasticity, cross-section dependence, nonstationarity and/or serial correlation in the residuals. Allowing for heterogeneity in the unobserved common factors (CCEP) although alleviating a potential identification problem does not seem to provide an overall panacea; in fact for the most part the CCEP-type estimators are suggested to continue suffering from cross-section dependence. Our next analytical step is therefore to investigate how the parameter estimates and diagnostic tests change if we allow for technology heterogeneity across countries.

4.3 Averaged country regression estimates

We present the results from Mean-Group type estimators in the unrestricted regression model (CRS not imposed) in Table 4. For all estimators we present the mean and robust mean across N country parameters — the latter uses weights to reduce the impact of outliers. In practice the median estimates (not reported) are very close to the robust estimates. In our discussion below we focus on the robust means. The *t*-statistics reported for each average estimate test whether the average parameter is statistically different from zero, following Pesaran, Smith, and Yamagata (2008).

The MG, as well as our two Augmented Mean Group estimators display large decreasing returns, although in the AMG version (i) only at the 10% level of significance. The standard, neighbour and agro-climate CCEMG in contrast have insignificant coefficients on labour, indicating constant returns *in the average country regression*. Around 30 to 40 countries reject CRS at 5% level of significance in each of these models. The distance CCEMG indicates very large and highly significant decreasing returns to scale.

Regarding average parameter estimates on the factor inputs, the MG and AMG estimators yield next to identical results: capital around .07, livestock around .25, fertilizer around .03

Table 4: Mean Group type estimators (no restrictions on returns to scale)

	Average country regression estimates (means and robust means)													
		Returns t	Average o scale ar	e left unr	regressi estricted	on estim (CRS, DR	ates (me S, IRS);	eans and $N=128$, a	robust T verage T	means) =40.3, n =	= 5,126;			
		depen	dent varia	abie. [1],[e	$\beta - [1] \log c$	Juiput pe	worker,	[2] log ou	tput per v	worker les	$s \mu_t$			
	[: M	1] IG	[2 AM	2] G(i)	AM	3] G(ii)	CCH	4] EMG	CCH	5] EMG	CCE	6] EMG	CCF	7] EMG
weight matrix [†]	Maan	Dobust	Maan	Debuat	Maan	Dobust	no	ne Rohust	neigh Mean	nbour Robust	dist	ance	agro-c	limate Robust
lahaun	0.5202	0.2574	0 5428	0.2020	0 5429	0.2664	0.2162	0 1257	0 200	0 1814	0 5200	0.5014	0.2101	0.1102
labour	[1.87]	$[2.23]^*$	[1.83]	[1.90]	[1.96]	$[2.34]^*$	[1.38]	[1.04]	[1.66]	[1.55]	$[4.42]^{**}$	$[5.85]^{**}$	[1.15]	[1.12]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												$\begin{array}{c} 0.0612 \\ [2.74]^{**} \end{array}$		
livestock pw	0.2757 [5.87]**	$\begin{array}{c} 0.2456 \\ [8.07]^{**} \end{array}$	0.2853 $[6.08]^{**}$	$\begin{array}{c} 0.2719 \ [8.28]^{**} \end{array}$	$\begin{array}{c} 0.2761 \\ [6.38]^{**} \end{array}$	$\begin{array}{c} 0.2508 \ [7.82]^{**} \end{array}$	$\begin{array}{c} 0.3803 \\ [7.04]^{**} \end{array}$	$\begin{array}{c} 0.3237 \ [9.44]^{**} \end{array}$	$\begin{array}{c} 0.3044 \\ [6.34]^{**} \end{array}$	$\begin{array}{c} 0.2779 \ [7.22]^{**} \end{array}$	0.3219 [7.66]**	$\begin{array}{c} 0.3336 \ [9.48]^{**} \end{array}$	$\begin{array}{c} 0.3056 \\ [5.78]^{**} \end{array}$	$\begin{array}{c} 0.2760 \\ [7.91]^{**} \end{array}$
fertilizer pw	$\begin{array}{c} 0.0370 \ [5.10]^{**} \end{array}$	$\begin{array}{c} 0.0299 \\ [4.86]^{**} \end{array}$	0.0379 $[5.10]^{**}$	$\begin{array}{c} 0.0315 \ [4.91]^{**} \end{array}$	$\begin{array}{c} 0.0367 \\ [4.99]^{**} \end{array}$	$\begin{array}{c} 0.0309 \\ [4.64]^{**} \end{array}$	0.0366 $[5.39]^{**}$	$\begin{array}{c} 0.0310 \\ [5.02]^{**} \end{array}$	$\begin{array}{c} 0.0394 \\ [4.97]^{**} \end{array}$	$\begin{array}{c} 0.0274 \ [4.59]^{**} \end{array}$	0.0409 $[6.15]^{**}$	$\begin{array}{c} 0.0413 \ [6.74]^{**} \end{array}$	$\begin{array}{c} 0.0467 \\ [5.85]^{**} \end{array}$	$0.0299 \\ [5.26]^{**}$
land pw	0.2549 $[2.12]^*$	0.2102 $[2.79]^{**}$	0.2363 [1.88]	0.1952 $[2.60]^*$	0.2617 [2.06]*	0.1695 $[2.27]^*$	0.0935 [0.82]	0.1999 $[2.68]^{**}$	-0.0327 [0.27]	0.1623 $[2.17]^*$	$0.1235 \\ [1.39]$	0.1414 [2.07]*	0.2316 [2.05]*	0.1966 $[3.13]^{**}$
Common factors			imp	osed	1.0569 $[7.38]^{**}$	$\begin{array}{c} 0.7741 \ [7.72]^{**} \end{array}$								
Country trend	Country trend 0.013 0.0123 -0.0013 -0.0015 -0.0015 $[2.69]^{**}$ $[4.82]^{**}$ $[0.25]$ $[1.20]$ $[0.30]$ $[0.30]$													
$t_i \text{ sign. at } 10\%$ 78 68 42														
Constant	7.0818 [1.79]	5.366 $[2.30]^*$	7.2221 [1.75]	4.7029 $[2.05]^*$	7.2654 [1.87]	5.6869 $[2.51]^*$	$0.9917 \\ [0.38]$	$\begin{array}{c} 0.8964 \\ [0.41] \end{array}$	3.442 [1.49]	$2.1018 \\ [1.27]$	7.5518 [4.33]**	7.1717 $[6.11]^{**}$	2.0287 [0.82]	$1.6316 \\ [1.09]$

			Retu	rns to so	ale impl	ications	of the p	arametei	estimat	esţ				
implied β_L	-0.0458	0.0821	-0.0583	0.1178	-0.0832	0.1103	0.2245	0.2556	0.4100	0.2949	-0.0696	-0.0596	0.2148	0.3171
Returns	CRS	DRS	CRS	CRS	CRS	DRS	CRS	CRS	CRS	CRS	DRS	DRS	CRS	CRS
reject CRS	4	7	4	7	4	6	2	28	3	6	5	3	4	.0
]	Pedroni	(1999) p	anel <i>t</i> -st	atistics						
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{L,i}}$	[7.2	20]**	[6.3	3]**	[6.8	33]**	[2.1	10]*	[2.8	4]**	[14.0	04]**	[2.5	4]**
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{tni}}$	[6.5	7]**	[7.1	1]**	[7.2	27]**	[8.3	86]**	[5.4	1]**	[4.8	81]**	[7.2	4]**
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{line} i}$	[21.4	42]**	[22.5	22]**	[20.3	30]**	[21.	53]**	[20.0)9]**	[23.5	52]**	[18.8	38]**
$N^{-1/2} \sum_i t_{\hat{\beta}_{\ell,i}}$	[9.3	9]**	[9.2	2]**	[8.9)3]**	[7.5	57]**	[9.4	9]**	[11.]	16]**	[9.3	6]**
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{n,i}}$	[8.0	6]**	[7.3	6]**	[6.8	87]**	[3.4	1]**	[5.1	1]**	[6.7	'1]**	[7.0	4]**
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{TED}}$	-	-	_	-	[10.3	37]**	-	-		-	-	-	-	-
$N^{-1/2} \sum_{i}^{j} t_{\hat{t}_i}^{j}$	[33.6	60]**	[28.8	84]**	[15.]	70]**								
		Serial	correlat	tion in th	ne residu	$als^{\sharp} - h$	I ₀ : no seri	ial correla	tion (exce	ept for DV	N d			
	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
Ljung-Box	912.3	(.00)	902.1	(.00)	1005.8	(.00)	47.8	(1.00)	407.0	(.00)	201.3	(1.00)	170.5	(1.00)
Durbin $AR(1)$	778.9	(.00)	929.0	(.00)	758.0	(.00)	356.6	(.00)	545.3	(.00)	387.6	(.00)	431.5	(.00)
Durbin $AR(2)$	782.2	(.00)	771.1	(.00)	782.9	(.00)	508.6	(.00)	683.9	(.00)	521.8	(.00)	531.4	(.00)
BGod AR(1)	755.9	(.00)	738.9	(.00)	701.0	(.00)	437.3	(.00)	578.1	(.00)	449.6	(.00)	486.4	(.00)
BGod AR(2)	750.6	(.00)	746.6	(.00)	720.0	(.00)	623.2	(.00)	723.8	(.00)	613.8	(.00)	611.9	(.00)
	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79
DW d statistic $\#$	29	43	26	42	25	47	4	82	13	76	10	70	8	74
(in %)	23%	34%	20%	33%	20%	37%	3%	64%	10%	59%	8%	55%	6%	58%
	No	onstatior	narity: P	esaran (2007) Cl	IPS test	applied	to residu	ials — H	₀ : residua	uls are I(1))		
lags	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)
none	-35.9	(.00)	-36.6	(.00)	-36.2	(.00)	-43.9	(.00)	-42.0	(.00)	-42.1	(.00)	-44.2	(.00)
1 lag	-27.2	(.00)	-29.2	(.00)	-28.4	(.00)	-33.6	(.00)	-32.3	(.00)	-31.4	(.00)	-35.0	(.00)
2 lags	-20.4	(.00)	-20.1	(.00)	-19.7	(.00)	-23.9	(.00)	-22.5	(.00)	-24.7	(.00)	-25.8	(.00)
3 lags	-17.2	(.00)	-16.2	(.00)	-16.4	(.00)	-18.8	(.00)	-18.9	(.00)	-19.6	(.00)	-21.2	(.00)
4 lags	-10.2	(.00)	-9.7	(.00)	-9.4	(.00)	-14.1	(.00)	-12.3	(.00)	-13.5	(.00)	-16.8	(.00)
Cross-	-section 1	Depende	ence: Me	an (abso	olute) co	rrelation	s and Pe	esaran (2	2004) tes	$\mathbf{t} - H_0$:	no CSD i	n the resi	duals	
	ρ_{ij}	$ \rho_{ij} $	ρ_{ij}	$ ho_{ij} $	ρ_{ij}	$ \rho_{ij} $	ρ_{ij}	$ \rho_{ij} $	ρ_{ij}	$ \rho_{ij} $	ρ_{ij}	$ \rho_{ij} $	ρ_{ij}	$ \rho_{ij} $
Mean Correl.	0.02	0.15	0.00	0.15	0.00	0.15	0.00	0.15	0.00	0.14	0.07	0.15	0.00	0.14
CD statistic (p)	9.16	(.00)	-1.12	(.26)	-2.47	(.02)	0.21	(.83)	2.24	(.03)	37.16	(.00)	-1.72	(.09)
	1	Further 1	residual	diagnost	ic tests [*]	$-H_0$: no	o heterosk	redasticity	, regular :	skewness/	kurtosis			
d'Agostini et al	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
Fisher stat (joint)	379.2	(.00)	343.4	(.00)	355.4	(.00)	318.8	(.00)	299.8	(.01)	258.3	(.45)	308.3	(.03)
Cam & Tri	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
Fisher stat (joint)	374.1	(.00)	368.7	(.00)	293.8	(.05)	245.2	(.68)	236.4	(.80)	233.5	(.84)	256.1	(.49)
homosk.	317.6	(.00)	314.9	(.01)	253.3	(.54)	218.8	(.96)	228.2	(.89)	218.8	(.96)	218.8	(.96)
skewness	374.0	(.00)	367.7	(.00)	342.2	(.00)	300.7	(.03)	259.6	(.43)	275.3	(.19)	324.6	(.00)
kurtosis	264.2	(.35)	254.4	(.52)	256.7	(.48)	242.5	(.72)	256.7	(.48)	248.4	(.62)	252.2	(.55)

Notes: All variables are in logs. * and ** indicate statistical significance at the 5% and 1% level respectively. We present the sample mean and the robust sample mean estimates of all model parameters. Terms in brackets are absolute *t*-statistics $(H_0: N^{-1}\sum_i \hat{\beta}_i = 0)$ following Pesaran et al. (2008). An alternative panel *t*-test by Pedroni (1999) is also provided. The 'common factors' variable refers to $\hat{\mu}_t^i$. † Weight matrix: we use the same approach to construct cross-section averages as in the pooled regressions. ‡ We compute implied labour coefficients and report returns to scale (DRS, CRS are decreasing and constant returns respectively). ‡ The Ljung-Box, Durbin 'alternative' and Breusch-Godfrey procedures test first- and higher-order serial correlation in time-series regression residuals. We convert the *p*-statistics of the *N* results into a Fisher-statistic p_{λ} which is distributed $\chi^2(2N)$. For the Durbin-Watson *d* statistic we report the number of time-series tests with a *d* statistic larger than 1.79 (smaller than 1.23) which is deemed to (be unable to) reject the null of first order serial correlation (under the strong assumption of exogenous regressors).

first order serial correlation (under the strong assumption of exogenous regressors). For all other test statistics please refer to definitions in the footnotes of Table 2.

and land around .20. In comparison to the parameter differences across models in the *pooled* specifications, the MG and AMG parameter estimates are relatively similar to those in the CCEMG models, with the crucial exception of the returns to scale coefficient and thus the implied labour elasticity: in the former group of models the labour coefficient is around .10, whereas in the latter group it is closer to .30 (leaving the nonsensical results produced by the distance CCEMG to one side). Within the CCEMG group the standard and the agro-climate estimators yield very similar results.

Turning to the diagnostics, *all* models reject nonstationary errors in the Pesaran (2007) CIPS test. The panel *t*-statistic following Pedroni (1999) suggests that all coefficients are significant at the 5% level, in contrast to the *t*-statistic following Pesaran et al. (2008) which we used for our discussion above. Mean absolute error correlation is uniformly low at .15 for all estimators, but cross-section independence is rejected in the MG and AMG(ii), as well as in the alternative CCEMG estimators (marginally in case of the agro-climate CCEMG). For the serial correlation tests we need to take recourse to statistics constructed from country-regression diagnostics. In each case these are Fisher (1932)-type statistics (labelled p_{λ}), derived from *p*-values for the test statistics in each country.¹² As can be seen the Durbin 'alternative' and Breusch-Godfrey procedures reject the absence of serially correlated errors, whereas for the Ljung-Watson and Durbin-Watson statistics (see table footnotes) there is some evidence for serially uncorrelated errors in the CCEMG-type estimators. Furthermore, the error normality and homoskedasticity tests (similarly expressed as Fisher-statistics) suggest these properties are rejected in the MG and AMG estimators, and offer conflicting evidence across the CCEMG-type models.

Taking the results for all diagnostic tests into account and recognising the potential problems of the use of time-series tests adjusted for the panel context via computation of the Fisher (1932) statistic, we suggest that evidence in favour of the standard CCEMG and agro-climate CCEMG seems most convincing: compared to the other models these provide some evidence of serially uncorrelated and normal residuals. Since neither of these estimators can reject CRS for the average country production function, we rerun all heterogeneous parameter models with CRS imposed.

The CRS country regression averages in Table 5 produce very similar results across *all* estimators: it can be seen that the imposition of CRS in heterogeneous regression models does not create the same dramatic changes to the estimates as in the pooled estimator case. It can also be seen that the individual country-estimates for each model now contain less outliers, as is evidenced by the precision of the mean estimates and their proximity in parameter value to the robust mean estimates. We focus on the models for which on average we had not rejected CRS: AMG(i), standard, neighbour and agro-climate CCEMG. Factor elasticities in the AMG(i) are close to the unrestricted model ones, with the obvious exception of implied labour, which with CRS imposed is around .33 rather than .12. The standard and agro-climate CCEMG now match each other's (robust) mean parameters even closer than in the unrestricted case, while the neighbour CCEMG in comparison has an inflated land coefficient. Panel *t*-statistics are significant at the 1% level for all parameters in all models and CIPS tests continue to reject nonstationarity in the residuals. AMG(i) as well as standard and agro-climate CCEMG residuals appear cross-sectionally independent.

¹²Constructed as $p_{\lambda} = -2 \sum_{i} log(p_i)$, distribution $\chi^2(2N)$.

In comparison to the unrestricted versions, the models now however seem *more* likely to be subject to serially correlated errors, as evidenced by the fall in the share of countries with a Durbin-Watson statistic above 1.79, as well as the Ljung-Box and other test statistics. The CCEMG now all 'pass' the Cameron and Trivedi (1990) normality/homoskedasticity test, while all models continue to fail the D'Agostino et al. (1990) normality test.

	Average country regression estimates (means and robust means) CRS imposed for all country regressions; $N=128$, average $T=40.3$; dependent variable: [11.[3]-[7] log output per worker. [2] log output per worker less $\hat{\mu}_{\bullet}^{\bullet}$													
	CRS imposed for all country regressions; $N=128$, average $T=40.3$; dependent variable: [1],[3]-[7] log output per worker, [2] log output per worker less $\hat{\mu}_t^{\bullet}$													
						,			-	,,,	-	-	_	
	[1] IC		2] C(i)	[: • • • •	3] C(ii)		4] FMC		5] FMC		6] FMC		7] FMC
weight matrix [†]	10	lG	AM	G(I)	AW	G(II)		me	neigh	bour	dist	ance	agro-c	limate
	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust
tractors pw	$\begin{bmatrix} 0.0700\\ [2.08]^* \end{bmatrix}$	0.0814 $[3.57]^{**}$	$\begin{array}{c} 0.0887\\ [2.57]^* \end{array}$	$\begin{array}{c} 0.0903 \\ [3.71]^{**} \end{array}$	$\begin{array}{c} 0.0780 \\ [2.27]^* \end{array}$	0.0842 $[3.65]^{**}$	$\begin{array}{c} 0.0879\\ [2.50]^* \end{array}$	0.1093 $[5.23]^{**}$	$\begin{array}{c} 0.0673\\ [1.72] \end{array}$	0.0972 [4.27]**	0.1317 [4.67]**	0.1078 $[5.59]^{**}$	$\begin{array}{c} 0.1247 \\ [3.88]^{**} \end{array}$	0.0977 [4.48]**
livestock pw	0.3051 [7.80]**	$\begin{array}{c} 0.2917 \\ [8.82]^{**} \end{array}$	0.3106 [7.89]**	0.3075 $[8.90]^{**}$	$\begin{array}{c} 0.3099 \\ [8.40]^{**} \end{array}$	0.2905 [8.66]**	0.3424 [8.33]**	$\begin{array}{c} 0.3214 \ [9.47]^{**} \end{array}$	0.3231 $[7.53]^{**}$	$\begin{array}{c} 0.3124 \ [8.44]^{**} \end{array}$	0.3726 [11.29]**	$0.3682 \\ [11.52]^{**}$	$\begin{array}{c} 0.3257 \\ [8.02]^{**} \end{array}$	$\begin{array}{c} 0.3298 \\ [9.53]^{**} \end{array}$
fertilizer pw	0.0373 $[5.29]^{**}$	0.0328 $[5.17]^{**}$	0.0414 $[5.52]^{**}$	0.0378 $[5.58]^{**}$	0.0376 $[5.32]^{**}$	0.0348 $[5.31]^{**}$	0.0435 $[5.76]^{**}$	0.0358 $[5.63]^{**}$	0.0437 $[5.34]^{**}$	0.0376 $[5.26]^{**}$	0.0393 $[5.25]^{**}$	0.0365 $[5.15]^{**}$	0.0501 [6.83]**	0.0352 $[5.87]^{**}$
land pw	0.2884 [4.86]**	0.2636 $[4.55]^{**}$	0.2653 $[4.32]^{**}$	0.2234 $[3.78]^{**}$	0.2811 [4.30]**	0.1919 $[3.34]^{**}$	0.2104 $[3.57]^{**}$	0.2008 $[3.57]^{**}$	0.2364 $[3.41]^{**}$	0.2623 $[4.71]^{**}$	0.3478 $[6.25]^{**}$	0.2905 $[5.62]^{**}$	0.2465 $[4.27]^{**}$	0.2139 $[4.02]^{**}$
Common factors			imp	osed	1.0590 $[6.56]^{**}$	0.7808 $[6.77]^{**}$								
Country trend	0.0100 [6.18]**	0.0107 [7.86]**	-0.0029 [1.78]	-0.0019 [1.38]	-0.0035 [1.43]	-0.0035 [1.43]								
\hat{t}_i sign. at 10%	1 8	32	6	5	3	7								
Constant	-0.3487 [1.49]	-0.2095 [1.11]	-0.2145 [0.89]	$-0.1052 \\ [0.55]$	-0.2871 [1.19]	$-0.1604 \\ [0.90]$	-0.2011 [0.44]	$\begin{array}{c} 0.2874 \\ [1.02] \end{array}$	-0.0917 [0.38]	-0.0603 [0.39]	$\begin{array}{c} 0.0431 \\ [0.13] \end{array}$	$\begin{array}{c} 0.1377 \\ [0.95] \end{array}$	-0.0580 [0.26]	-0.0582 [0.33]
	1						6.41		·					
implied Q	0.2002	0.2205	Ret	$\frac{\text{urns to s}}{0.2410}$	scale imp	0 2086	s of the p	0 2207	er estima	ates ⁺	0.1096	0.1070	0.9520	0 2024
implied p_L	0.2992	0.5505	0.2940	0.3410	Pedroni	(1999)	0.3138	tatistics	0.3295	0.2905	0.1080	0.1970	0.2550	0.3234
$N^{-1/2} \sum_{i} t_{\hat{a}}$	[11.	17]**	[13.	16]**	[11.]	35]**	[13.4	46]**	[9.1	.5]**	[12.9	91]**	[12.0)1]**
$N^{-1/2} \sum_{i}^{N} t_{\hat{\beta}_{i}}^{\beta_{tr,i}}$	03]**	[24.]	16]**	[24.0	58]**	[25.75]**		[28.7]**		[22.3	35]**			
$N^{-1/2} \sum_{i}^{j} t_{\hat{\beta}_{i}}$	[10.	94]**	[9.2	[7]**	[9.8	3]**	[11.33]**		[9.85]**		[11.0)0]**		
$N^{-1/2} \sum_{i}^{j} t_{\hat{\beta}_{n,i}}^{\beta_{f,i}}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			83]**	[11.5	28]**	[9.6	6]**	[10.9	93]**	[14.5	22]**	[9.6	1]**
$N^{-1/2} \sum_i t_{\hat{\beta}_{TFP,i}}$					[11.	85]**								
$N^{-1/2}\sum_i t_{\hat{t}_i}$	[38.	89]**	[33.	02]**	[14.8	83]**								
	1		Seri	al correl	ation in	the resid	luals — I	H ₀ : no ser	rial correl	ation		()		
Liung Dou	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
Durbin $AB(1)$	1017.6	(.00)	1342.7 1162.2	(.00)	843.5	(.00)	455.6	(.00)	715.8	(.00)	445.5	(.00)	484 1	(.01)
Durbin $AR(2)$	964.1	(.00)	952.3	(.00)	812.4	(.00)	502.2	(.00)	757.3	(.00)	557.3	(.00)	560.6	(.00)
BGod AR(1)	914.5	(.00)	908.5	(.00)	780.2	(.00)	513.5	(.00)	663.3	(.00)	523.3	(.00)	534.0	(.00)
BGod AR(2)	853.6	(.00)	855.3	(.00)	751.7	(.00)	573.5	(.00)	699.2	(.00)	628.1	(.00)	631.6	(.00)
	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79
DW d statistic $\#$	42	33	42	32	35	41	18	63 40%	21	58 4=07	19	62	17	61 1907
(111 70)	N	Jonstatic	narity:	Pesaran	(2007)	JPS test	applied	to resid	1070 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	4.570 Ho: residu	als are I(1	4070	1370	4070
lag-augmentation	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Zthar	(n)	Ztbar	(<i>p</i>)	Ztbar	(p)	Ztbar	(p)
none		(1)		(1-)								(Γ)	10.01	(P)
	-33.57	(.00)	-34.67	(.00)	-34.32	(.00)	-44.26	(.00)	-42.06	(.00)	-41.62	(.00)	-43.34	(.00)
1 lag	-33.57 -24.56	(00.) (00.)	-34.67 -27.02	(00.) (00.)	-34.32 -25.55	(.00) (.00)	-44.26 -35.24	(.00) (.00)	-42.06 -31.87	(.00) (.00)	-41.62 -31.33	(.00) (.00)	-43.34 -34.59	(.00) (.00)
1 lag 2 lags	-33.57 -24.56 -18.29	(00.) (00.) (00.)	-34.67 -27.02 -19.13	(00.) (00.) (00.)	-34.32 -25.55 -17.87	(.00) (.00) (.00)	-44.26 -35.24 -25.55	$(.00) \\ (.00) \\ (.00) \\ (.00)$	-42.06 -31.87 -23.61	(.00) (.00) (.00)	-41.62 -31.33 -24.79	(00.) (00.) (00.)	-43.34 -34.59 -25.46	(.00) (.00) (.00)
1 lag 2 lags 3 lags	-33.57 -24.56 -18.29 -15.74	$(.00) \\ (.00$	-34.67 -27.02 -19.13 -16.33	(.00.) (.00.) (.00.) (.00.)	-34.32 -25.55 -17.87 -15.89	$(.00) \\ (.00$	-44.26 -35.24 -25.55 -21.35	$(.00) \\ (.00$	-42.06 -31.87 -23.61 -21.24	$(.00) \\ (.00$	-41.62 -31.33 -24.79 -19.31	(.00) (.00) (.00) (.00)	-43.34 -34.59 -25.46 -21.65	(.00) (.00) (.00) (.00)
1 lag 2 lags 3 lags 4 lags	-33.57 -24.56 -18.29 -15.74 -9.45	(.00) (.00) (.00) (.00) (.00)	-34.67 -27.02 -19.13 -16.33 -11.25	(.00) (.00) (.00) (.00) (.00)	-34.32 -25.55 -17.87 -15.89 -9.12	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \end{array}$	-44.26 -35.24 -25.55 -21.35 -16.54	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.000) \\ $	-42.06 -31.87 -23.61 -21.24 -13.57	$(.00) \\ (.00$	-41.62 -31.33 -24.79 -19.31 -12.28	(.00) (.00) (.00) (.00) (.00)	-43.34 -34.59 -25.46 -21.65 -17.13	(.00) (.00) (.00) (.00) (.00)
1 lag 2 lags 3 lags 4 lags	-33.57 -24.56 -18.29 -15.74 -9.45 Cross-se	(.00) (.00) (.00) (.00) (.00) ection De	-34.67 -27.02 -19.13 -16.33 -11.25 ependen	(.00) (.00) (.00) (.00) (.00) ce: Mean	-34.32 -25.55 -17.87 -15.89 -9.12 n correla	(.00) (.00) (.00) (.00) (.00) tions and	-44.26 -35.24 -25.55 -21.35 -16.54 d Pesara	(.00) (.00) (.00) (.00) (.00) n (2004)	-42.06 -31.87 -23.61 -21.24 -13.57 test —	(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00) (.00)	-41.62 -31.33 -24.79 -19.31 -12.28 SD in the r	(.00) (.00) (.00) (.00) (.00) residuals	-43.34 -34.59 -25.46 -21.65 -17.13	(.00) (.00) (.00) (.00) (.00)
1 lag 2 lags 3 lags 4 lags Mean Correl.	$\begin{array}{c} -33.57 \\ -24.56 \\ -18.29 \\ -15.74 \\ -9.45 \\ \hline \mathbf{Cross-se} \\ \hline \rho_{ij} \\ 0.02 \\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline ection De \\ \hline \rho_{ij} \\ \hline 0.15$	$\begin{array}{c c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline \textbf{ependen} \\ \hline \rho_{ij} \\ 0.00 \\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline ce: Mean \\ \hline \rho_{ij} \\ \hline 0.15 \\ \hline \end{tabular}$	$\begin{array}{r} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \hline \mathbf{p}_{ij} \\ 0.00 \\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline tions and \\ \hline \rho_{ij} \\ \hline 0.15$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \mathbf{Pesara}\\ \hline \rho_{ij}\\ 0.00\\ \end{array}$	$\begin{array}{c} (P) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \mathbf{n} \ (2004) \\ \hline \rho_{ij} \\ \hline 0.15 \end{array}$	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline \mathbf{test} - \\ \hline \rho_{ij}\\ 0.00\\ \end{array}$	$ \frac{(.00)}{(.00)} \\ (.00) \\ (.00) \\ (.00) \\ \hline \frac{H_0: \text{ no } CS}{ \rho_{ij} } \\ \hline 0.14 $	$\begin{array}{r} -41.62 \\ -31.33 \\ -24.79 \\ -19.31 \\ -12.28 \\ \text{SD in the r} \\ \hline \rho_{ij} \\ 0.06 \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline cesiduals \\ \hline \rho_{ij} \\ \hline 0.15 \\ \hline \$	$\begin{array}{c} -43.34 \\ -34.59 \\ -25.46 \\ -21.65 \\ -17.13 \\ \hline \\ \hline \\ \rho_{ij} \\ 0.00 \\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ $
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p)	$\begin{array}{c} -33.57 \\ -24.56 \\ -18.29 \\ -15.74 \\ -9.45 \end{array}$ $\begin{array}{c} \mathbf{Cross-se} \\ \hline \rho_{ij} \\ 0.02 \\ 8.98 \end{array}$	$(.00) (.00) (.00) (.00) (.00) ection Do \rho_{ij} 0.15 (.00)$	$\begin{array}{c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline \textbf{ependem} \\ \hline \rho_{ij} \\ \hline 0.00 \\ -0.08 \\ \end{array}$	$(.00) (.00) (.00) (.00) (.00) (.00) ce: Mean \rho_{ij} 0.15(.93)$	$\begin{array}{r} -34.32\\ -25.55\\ -17.87\\ -15.89\\ -9.12\\ \hline \mathbf{n} \ \mathbf{correla}\\ \hline \rho_{ij}\\ 0.00\\ -1.56\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ \hline \\ tions and \\ \hline \\ \rho_{ij} \\ \hline \\ 0.15 \\ (.12) \end{array}$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \mathbf{Pesara}\\ \hline \rho_{ij}\\ 0.00\\ -0.23\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline \mathbf{n} \ (2004) \\ \hline \mathbf{p}_{ij} \\ \hline 0.15 \\ (.82) \end{array}$	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline {\rm test} - \\ \hline \rho_{ij}\\ 0.00\\ 1.69\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline H_0: \text{ no } Cs \\ \hline \hline P_{ij} \\ \hline 0.14 \\ (.05) \end{array}$	$\begin{array}{r} -41.62\\ -31.33\\ -24.79\\ -19.31\\ -12.28\\ \text{SD in the 1}\\ \hline \rho_{ij}\\ 0.06\\ 31.34 \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline \\ \hline \\ residuals \\ \hline \\ \hline \\ \rho_{ij} \\ \hline \\ 0.15 \\ (.00) \\ \hline \end{array}$	$\begin{array}{r} -43.34\\ -34.59\\ -25.46\\ -21.65\\ -17.13\\ \hline \\ \rho_{ij}\\ 0.00\\ -1.51\\ \end{array}$	$(.00) (.00) (.00) (.00) (.00) \rho_{ij} 0.14 (.13)$
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p)	$\begin{array}{c} -33.57\\ -24.56\\ -18.29\\ -15.74\\ -9.45\\ \hline \mathbf{Cross-se}\\ \hline \rho_{ij}\\ 0.02\\ 8.98\\ \hline \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline ection De \\ \hline \rho_{ij} \\ 0.15 \\ (.00) \\ \hline Further \end{array}$	$\begin{array}{c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline \end{tabular}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ \textbf{ce: Mean} \\ \hline \\ 0.15 \\ (.93) \\ \hline \\ \textbf{diagnos} \end{array}$	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \hline \mathbf{correla} \\ \hline \rho_{ij} \\ 0.00 \\ -1.56 \\ \hline \mathbf{tic\ tests} \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \textbf{tions and} \\ \hline \boldsymbol{\rho}_{ij} \\ \hline 0.15 \\ (.12) \\ \bullet & -H_0: 1 \end{array}$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \mathbf{d} \ \mathbf{Pesara}\\ \hline \rho_{ij}\\ 0.00\\ -0.23\\ \mathbf{n} \ \text{heteros} \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ n (2004) \\ \hline \rho_{ij} \\ 0.15 \\ (.82) \\ \hline (.82) \\ \hline (kedasticit) \\ \hline (.82) \\ $	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \textbf{test} \longrightarrow \\ \hline \rho_{ij}\\ 0.00\\ 1.69\\ y, regular \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline H_0: \text{ no } CS \\ \hline \rho_{ij} \\ \hline 0.14 \\ (.05) \\ \hline \text{ skewness} \end{array}$	$\begin{array}{c} -41.62\\ -31.33\\ -24.79\\ -19.31\\ -12.28\\ \text{SD in the 1}\\ \hline \rho_{ij}\\ 0.06\\ 31.34\\ \hline s/kurtosis \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline esiduals \\ \hline \rho_{ij} \\ \hline 0.15 \\ (.00) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} -43.34 \\ -34.59 \\ -25.46 \\ -21.65 \\ -17.13 \\ \hline \\ \rho_{ij} \\ 0.00 \\ -1.51 \\ \hline \end{array}$	(.00) (.00) (.00) (.00) (.00) $(.00) $
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p) d'Agostini et al Fisher stat (icint)	$\begin{array}{c} -33.57 \\ -24.56 \\ -18.29 \\ -15.74 \\ -9.45 \\ \hline \mathbf{Cross-se} \\ \hline \rho_{ij} \\ 0.02 \\ 8.98 \\ \hline \\ \hline \\ p_{\lambda} \\ 383 \\ 1 \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline ection Do \\ \hline \rho_{ij} \\ 0.15 \\ (.00) \\ \hline Further \\ (p) \\ (.00) \\ \hline (.00$	$\begin{array}{c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline ependem \\ \hline \rho_{ij} \\ 0.00 \\ -0.08 \\ \hline residual \\ \hline p_{\lambda} \\ 344.2 \\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00$	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \hline \mathbf{n} \ \mathbf{correla} \\ \hline \rho_{ij} \\ 0.00 \\ -1.56 \\ \hline \mathbf{tic \ tests} \\ \hline p_{\lambda} \\ 343.2 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ (.00) \\ \hline \\ tions and \\ \hline \\ \rho_{ij} \\ 0.15 \\ (.12) \\ \hline \\ (.12) \\ \hline \\ \\$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \mathbf{Pesara}\\ \hline \rho_{ij}\\ 0.00\\ -0.23\\ \hline \mathbf{no} \ \mathbf{heteros}\\ \hline p_{\lambda}\\ 337.0\\ \end{array}$	$\frac{(P)}{(.00)}$ (.00) (.00) (.00) (.00) (.00) (.00) n (2004) $\frac{ \rho_{ij} }{0.15}$ (.82) kedasticit (p) (.00)	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline \textbf{test} - \\ \hline \rho_{ij}\\ 0.00\\ 1.69\\ \textbf{y}, \textbf{regular}\\ \hline p_{\lambda}\\ 334.6 \end{array}$	$ \begin{array}{c} (GP) \\ (GO) \\ (GO) \\ (GO) \\ (GO) \\ (GO) \\ \hline H_0: no CS \\ \hline H_0: no CS \\ \hline H_0: no CS \\ \hline (GO) \\ \hline F skewness \\ \hline (p) \\ (GO) \\ \hline (GO) \\ \hline F skewness \\ \hline (p) \\ \hline (GO) \\ \hline (GO) \\ \hline F skewness \\ \hline (GO) \\ \hline (GO) \\ \hline F skewness \\ \hline (GO) \\ \hline (GO) \\ \hline F skewness \\ \hline F s$	$\begin{array}{c} -41.62 \\ -31.33 \\ -24.79 \\ -19.31 \\ -12.28 \\ \text{SD in the r} \\ \hline \rho_{ij} \\ 0.06 \\ 31.34 \\ \text{s/kurtosis} \\ \hline p_{\lambda} \\ 26^2 8 \end{array}$	(.00) (.0	-43.34 -34.59 -25.46 -21.65 -17.13 ρ_{ij} 0.00 -1.51 p_{λ} 336.2	(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.13) (
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p) d'Agostini et al Fisher stat (joint) Cam & Tri	$\begin{array}{c} -33.57 \\ -24.56 \\ -18.29 \\ -15.74 \\ -9.45 \\ \hline \mathbf{Cross-se} \\ \hline \rho_{ij} \\ 0.02 \\ 8.98 \\ \hline \hline p_{\lambda} \\ 383.1 \\ \hline \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ ection D \\ \hline \\ \hline \\ 0.15 \\ (.00) \\ \hline \\ \hline \\ Further \\ \hline \\ (p) \\ (.00) \\ \hline \\ (.0) \\ \end{array}$	$\begin{array}{c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline ependen \\ \hline \rho_{ij} \\ 0.00 \\ -0.08 \\ \hline residual \\ \hline p_{\lambda} \\ 344.2 \\ \hline p_{\lambda} \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline \\ $	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \textbf{a correla} \\ \hline p_{ij} \\ 0.00 \\ -1.56 \\ \textbf{tic tests} \\ \hline p_{\lambda} \\ 343.2 \\ p_{\lambda} \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline tions and \\ \hline [\rho_{ij}] \\ 0.15 \\ (.12) \\ \hline (.12) \\ \hline (.12) \\ \hline (.12) \\ \hline (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline (.0) \\ \hline (.0$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \\ 0.00\\ -0.23\\ \hline \\ 0 \ heteros\\ p_{\lambda}\\ 337.0\\ \hline \\ p_{\lambda}\end{array}$	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline n \ (2004)\\ \hline n \ (2004)\\ \hline \rho_{ij} \\ 0.15\\ (.82)\\ \hline kedasticit\\ \hline (p)\\ (.00)\\ \hline (.0)\\ \end{array}$	-42.06 -31.87 -23.61 -21.24 -13.57 test — ρ_{ij} 0.00 1.69 y, regular p_{λ} 334.6	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline \\ (.00)\\ \hline \\ H_0: \text{ no } C:\\ \hline \\ \rho_{ij} \\ 0.14\\ (.05)\\ \hline \\ \hline \\ skewness\\ \hline \\ (p)\\ \hline \\ (.00)\\ \hline \\ (.0)\\ \hline \end{array}$	$\begin{array}{c} -41.62 \\ -31.33 \\ -24.79 \\ -19.31 \\ -12.28 \\ \text{SD in the r} \\ \hline \rho_{ij} \\ 0.06 \\ 31.34 \\ \text{s/kurtosis} \\ \hline p_{\lambda} \\ 263.8 \\ p_{\gamma} \end{array}$	(.00) (.0)	-43.34 -34.59 -25.46 -21.65 -17.13 ρ_{ij} 0.00 -1.51 p_{λ} 336.2	(.00) (.00
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p) d'Agostini et al Fisher stat (joint) Cam & Tri Fisher stat (ioint)	$\begin{array}{c} -33.57\\ -24.56\\ -18.29\\ -15.74\\ -9.45\\ \hline \mathbf{Cross-se}\\ \hline \rho_{ij}\\ 0.02\\ 8.98\\ \hline \\ \hline p_{\lambda}\\ 383.1\\ \hline p_{\lambda}\\ 458.5\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ $	$\begin{array}{c} -34.67 \\ -27.02 \\ -19.13 \\ -16.33 \\ -11.25 \\ \hline ependen \\ \hline \rho_{ij} \\ 0.00 \\ -0.08 \\ \hline residual \\ \hline p_{\lambda} \\ 344.2 \\ \hline p_{\lambda} \\ 447.7 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ $	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \textbf{a correla} \\ \hline \rho_{ij} \\ 0.00 \\ -1.56 \\ \textbf{tic tests} \\ \hline p_{\lambda} \\ 343.2 \\ \hline p_{\lambda} \\ 355.5 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline (.12) \\ \hline (.00) \\ \hline$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \mathbf{d} \ \mathbf{Pesara}\\ \hline \rho_{ij}\\ 0.00\\ -0.23\\ \mathbf{no} \ \mathrm{heteros}\\ \hline p_{\lambda}\\ 337.0\\ \hline p_{\lambda}\\ 259.5\\ \end{array}$	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline n \ (2004)\\ \hline \rho_{ij} \\ 0.15\\ (.82)\\ \hline (.82)\\ \hline (.82)\\ \hline (.82)\\ \hline (.9)\\ \hline (.9)\\ \hline (.9)\\ \hline (.43)\\ \hline (.43)\\ \hline (.0)\\ \hline (.10)\\ \hline$	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline \textbf{test} - \\ \hline \rho_{ij}\\ 0.00\\ 1.69\\ \textbf{y}, \text{ regular}\\ \hline p_{\lambda}\\ 334.6\\ \hline p_{\lambda}\\ 260.7 \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ (.00) \\ \hline \\ H_0: \text{ no C:} \\ \hline \\ \hline \\ h_{ij} \\ 0.14 \\ \hline \\ (.05) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ (.00) \\ \hline \\ \hline \\ \hline \\ (.41) \\ \hline \end{array}$	$\begin{array}{c} -41.62 \\ -31.33 \\ -24.79 \\ -19.31 \\ -12.28 \\ \text{SD in the r} \\ \hline \rho_{ij} \\ 0.06 \\ 31.34 \\ \hline \rho_{\lambda} \\ 263.8 \\ \hline p_{\lambda} \\ 247.1 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline \\ \hline \\ residuals \\ \hline \\ \hline \\ 0.15 \\ (.00) \\ \hline \\ \hline \\ \hline \\ (.00) \\ \hline \\ \hline \\ \hline \\ (.36) \\ \hline \\ \hline \\ (.63) \\ \hline \end{array}$	$\begin{array}{c} -43.34 \\ -34.59 \\ -25.46 \\ -21.65 \\ -17.13 \\ \hline \\ \rho_{ij} \\ 0.00 \\ -1.51 \\ \hline \\ p_{\lambda} \\ 336.2 \\ \hline \\ p_{\lambda} \\ 248.2 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ \hline \\ \hline \\ 0.14 \\ (.13) \\ \hline \\ \hline \\ (.00) \\ \hline \\ (.00) \\ \hline \\ (.62) \\ \end{array}$
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p) <i>d'Agostini et al</i> Fisher stat (joint) <i>Cam & Tri</i> Fisher stat (joint) homosk.	$\begin{array}{c} -33.57\\ -24.56\\ -18.29\\ -15.74\\ -9.45\\ \hline \\ \hline$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ $	$\begin{array}{c} -34.67\\ -27.02\\ -19.13\\ -16.33\\ -11.25\\ \hline ependen\\ \hline \rho_{ij}\\ 0.00\\ -0.08\\ \hline residual\\ \hline p_{\lambda}\\ 344.2\\ \hline p_{\lambda}\\ 447.7\\ 385.7\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\$	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \textbf{a correla} \\ \hline \rho_{ij} \\ 0.00 \\ -1.56 \\ \textbf{tic tests}^{\circ} \\ \hline p_{\lambda} \\ 343.2 \\ \hline p_{\lambda} \\ 355.5 \\ 310.6 \\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline (.12) \\ (.12) \\ \hline (.12) \\ \hline (.12) \\ \hline (.12) \\ (.12) \\ \hline (.1$	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline n \ (2004)\\ \hline n \ (200$	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline {\bf test} \\ - \\ \hline \rho_{ij}\\ 0.00\\ 1.69\\ y, regular\\ \hline p_{\lambda}\\ 334.6\\ \hline p_{\lambda}\\ 260.7\\ 221.2 \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline H_0: \text{ no CS} \\ \hline \rho_{ij} \\ 0.14 \\ \hline (.05) \\ \hline (.05) \\ \hline (.00) \\ \hline (.00) \\ \hline (.41) \\ (.94) \\ \hline \end{array}$	$\begin{array}{c} -41.62\\ -31.33\\ -24.79\\ -19.31\\ -12.28\\ \text{SD in the r}\\ \hline \rho_{ij}\\ 0.06\\ 31.34\\ \hline p_{\lambda}\\ 263.8\\ \hline p_{\lambda}\\ 247.1\\ 218.8\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline \\ $	$\begin{array}{c} -43.34 \\ -34.59 \\ -25.46 \\ -21.65 \\ -17.13 \\ \hline \\ $	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.14 \\ (.13) \\ \hline \\ \hline \\ \hline \\ (.00) \\ \hline \\ (.00) \\ \hline \\ (.62) \\ (.96) \\ \hline \end{array}$
1 lag 2 lags 3 lags 4 lags Mean Correl. CD statistic (p) <i>d'Agostini et al</i> Fisher stat (joint) <i>Cam & Tri</i> Fisher stat (joint) homosk. skewness	$\begin{array}{c} -33.57\\ -24.56\\ -18.29\\ -15.74\\ -9.45\\ \hline \\ \hline$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline \hline \\ \hline $	$\begin{array}{c} -34.67\\ -27.02\\ -19.13\\ -16.33\\ -11.25\\ \hline ependen\\ \hline \rho_{ij}\\ 0.00\\ -0.08\\ \hline residual\\ \hline p_{\lambda}\\ 344.2\\ \hline p_{\lambda}\\ 447.7\\ 385.7\\ 393.5\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.00) \\ \hline (.00) \\ \hline (.015 \hline \hline (.015 \\ \hline (.015 \hline \hline (.015 \\ \hline (.015 \hline \hline (.015 \hline$	$\begin{array}{c} -34.32 \\ -25.55 \\ -17.87 \\ -15.89 \\ -9.12 \\ \textbf{a correla} \\ \hline \rho_{ij} \\ 0.00 \\ -1.56 \\ \textbf{ic tests} \\ \hline p_{\lambda} \\ 343.2 \\ \hline p_{\lambda} \\ 355.5 \\ 310.6 \\ 356.4 \\ \end{array}$	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline (.00)\\ \hline (.00)\\ \hline (.00)\\ \hline (.12)\\ $	$\begin{array}{c} -44.26\\ -35.24\\ -25.55\\ -21.35\\ -16.54\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} (.0)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ (.00)\\ \hline n \ (2004)\\ \hline n \ (200$	$\begin{array}{c} -42.06\\ -31.87\\ -23.61\\ -21.24\\ -13.57\\ \hline \textbf{test} \longrightarrow \\ \hline p_{ij}\\ 0.00\\ 1.69\\ \textbf{y}, \text{ regular}\\ \hline p_{\lambda}\\ 334.6\\ \hline p_{\lambda}\\ 260.7\\ 221.2\\ 324.2\\ \end{array}$	$\begin{array}{c} (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline \\ (.00) \\ \hline \\ H_0: \text{ no } CS \\ \hline \\ \hline \\ 0.14 \\ (.05) \\ \hline \\ \hline \\ (.05) \\ \hline \\ \hline \\ (.00) \\ \hline \\ \hline \\ (.00) \\ \hline \\ (.41) \\ (.94) \\ (.00) \\ \hline \end{array}$	$\begin{array}{c} -41.62\\ -31.33\\ -24.79\\ -19.31\\ -12.28\\ \text{SD in the r}\\ \hline \rho_{ij}\\ 0.06\\ 31.34\\ \hline p_{\lambda}\\ 263.8\\ \hline p_{\lambda}\\ 247.1\\ 218.8\\ 311.0\\ \end{array}$	$(.00) \\ (.00) \\ (.00) \\ (.00) \\ (.00) \\ \hline (.01) \\ \hline (.00) \\ \hline (.$	$\begin{array}{c} -43.34\\ -34.59\\ -25.46\\ -21.65\\ -17.13\\ \hline \\ \hline$	(.00) (.00) (.00) (.00) (.00) (.00) (.00) (.14) (.13) (.00) (.00) (.00) (.00) (.00) (.96) (.02) (.02)

Table 5: Mean Group type estimators (CRS imposed)

Notes: See Table 4 for details.

In summary, while parameter estimates for the four models which could not reject CRS did not change considerably (in magnitude) compared to the unrestricted models, their precision has improved while some diagnostic test results have deteriorated. Given that in any finite sample the cointegrating relationship may be affected by short-run dynamics, and furthermore on the back of the serial correlation test results we carry out the country-regressions in a dynamic specification, focusing on long-run coefficients in the MG (as a benchmark) and the four CCEMG estimators. Table 6 presents these results.

It can be seen that the robust mean long-run parameter estimates¹³ are again virtually identical between the standard and agro-climate CCEMG in columns [2] and [5]. Furthermore, there is only one small deviation from the respective parameter estimates in the static models, namely the increase in the mean fertilizer elasticities. According to the Pedroni (1999) panel *t*-statistics all parameters are significant at the 1% level in these two models. The results for the MG estimator in contrast show considerable differences and crucially cannot arrive at a statistically significant capital estimate. Both the neighbour and distance CCEMG collapse in the dynamic specification and yield largely insignificant long-run coefficients — in this case the panel *t*-statistics support this insignificance emphatically. We interpret this breakdown in the shift from static to dynamic specification as a strong indication for the invalidity of the weighting strategy adopted. This suggests that neither neighbourhood nor geographical distance drive the impact of the unobserved common factors in this data.

Comparing diagnostic test results across the dynamic models and with their static versions in Table 5 we can see that while parameter estimates have not changed a great deal for our two preferred estimators (standard and agro-climate CCEMG), the serial correlation tests now provide more reassuring evidence of serially uncorrelated errors. Furthermore, the agro-climate CCEMG now 'passes' both tests for homoskedasticity and normality. Residuals from both estimators continue to show no evidence of nonstationarity and/or cross-section dependence — the latter in contrast to all other models presented. We provide an interpretation of the similarity between standard and agri-climate CCEMG in the next section.

We also estimated the *pooled* version of the dynamic specification with CRS imposed. Results presented in Table D-1 in Appendix D are still broadly in line with those from the *static* pooled CRS models. Focusing on the 2FE as the commonly preferred estimator in the literature, the dynamic equation yields very similar long-run coefficients for capital (\approx .07), livestock (\approx .40) and fertilizer (\approx .08), with the land elasticity dropping from .40 in the static to .31 in the dynamic equation. As a result the implied labour coefficient rises from .06 to .13. Crucially, however, the dynamic 2FE rejects cross-section independence, normality/homoskedasticity and the null of no serial correlation in the residuals, thus not improving on the diagnostic results of the static model.

$$\Delta y_{it} = -(1-r_i) y_{i,t-1} + (1-r_i) a_i + (1-r_i) c_i t + (1-r_i) b_i x_{i,t-1} + b_i \Delta x_{it}$$

¹³These long-run parameters are derived from an error correction model regression, in the MG case

where in practice the common factor restrictions indicated are not imposed. x and Δx represent all observed regressors in levels and first differences respectively; a_i and c_i capture country-specific TFP level and constant growth rate. Long-run coefficients are then computed as the negative difference of the coefficient on the lagged x-variables in levels and the lagged dependent variable.

For the CCEMG regressions we include cross-section averages of the dependent variable $(\Delta \bar{y}_t)$, the lagged level of the dependent variable (\bar{y}_{t-1}) , the set of \boldsymbol{x} -variables in lagged levels $(\bar{\boldsymbol{x}}_{t-1})$ and in first difference $(\Delta \bar{\boldsymbol{x}}_t)$. No trend is included here and the long-run coefficients are computed as in the MG case.

Average country long-run coefficient estimates (means and robust means) CRS imposed for all country regressions; $N=128$, average $T=39.2$;										
	CRS in	nposed for	all coun	try regress	sions; $N=$	=128, avei	rage $T=3$	39.2;		
dependent variable: growth of output per worker [1] [2] [3] [4]										
		1]		2]		3]		4]		5]
	IV.	lG	CCI	SMG		SMG		EMG	CCI	SMG
weight matrix	Moon	Pobust	Moon	Pobust	Moon	nour Robust	Moon	Robust	agro-o	Robust
	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust	Mean	Robust
tractors	0.246	0.042	0.000	0 000	0.125	0.010	2 780	0.116	0.191	0.085
tractors pw	[1.19]	[1.50]	$\begin{bmatrix} 0.099\\ [1.37] \end{bmatrix}$	0.088 [3.18]**	[0.125]	[0.14]	$\begin{bmatrix} -2.780\\ [0.78] \end{bmatrix}$	[1.39]	$\begin{bmatrix} 0.121\\ [1.67] \end{bmatrix}$	$[2.85]^{**}$
lineate als mar	0.405	0.000	0.204	0.207	1 202	0.201	[0110]	0.507	0.216	0.207
Investock pw	$[3.33]^{**}$	$[6.97]^{**}$	[0.304]	0.307 [6.82]**	[0.51]	[1.75]	[1.66]	-0.597 [3.43]**	$[3.46]^{**}$	0.327
font:1:	0 192	0.046		0.054	0.576	0.016	0.546	0.015	0.001	0.077
lertnizer pw	$\begin{bmatrix} 0.123 \\ [1.67] \end{bmatrix}$	$[4.50]^{**}$	$[5.41]^{**}$	$[4.84]^{**}$	[0.376]	[0.39]	[0.340]	[0.48]	$[6.59]^{**}$	$[6.42]^{**}$
land nu	4.040	0 100	0.244	0.915	0.622	0.055	2 026	0.007	0 102	0 101
land pw	[0.95]	$[2.50]^*$	$[0.244]{2.42}*$	$[2.73]^{**}$	[0.023]	[0.23]	[0.64]	[0.007]	[0.102]	$[2.33]^*$
tuon d	0.007	0.006	[[]	[=]	[0.20]	[0.=0]	[0.0-]	[0.00]	[0]	[=:00]
trenu	$[4.00]^{**}$	$[4.96]^{**}$								
\hat{t}_i sign. at 10%	[]	58								
Constant	0.476	0.008	1 949	0.056	0.053	0.061	0.151	0.002	0.030	0.020
Constant	[1 76]	-0.098	$[2 00]^*$	0.050	[0.15]	[0.34]	[0.65]	[0.002]		[0 10]
	[1.70]	[0.71]	[[2.00]	[0.10]	[0.10]	[0.04]	[0.00]	[0.01]	[0.05]	[0.10]
	Retur	ns to sca	ue impli	cations o	of the pa	rameter	estimat	tes+		
implied β_L	5.066	0.436	0.284	0.335	-1.526	1.433	12.649	1.721	0.381	0.321
	Serial	correlat	ion in th	e residu	$als - H_0$): no seria	al correla	tion		
	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
Ljung-Box	72.9	(1.00)	0.6	(1.00)	21.0	(1.00)	2.1	(1.00)	0.9	(1.00)
Durbin AR(1)	299.3	(.03)	332.4	(.00)	487.5	(.00)	488.3	(.00)	493.2	(.00)
Durbin $AR(2)$	370.5	(.00)	525.8	(.00)	678.2	(.00)	741.9	(.00)	775.2	(.00)
BGod AR(1)	300.7 465.6	(.00)	573.0	(.00)	(81.9	(.00)	(15.4 1150 F	(.00)	1120 6	(.00)
DG00 AR(2)	403.0	(.00)	902.7	(.00)	1072.3	(.00)	1108.0	(.00)	1130.0	(.00)
DW d statistic //	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79	< 1.23	> 1.79
$\begin{bmatrix} DW & a \text{ statistic } \# \\ (in & \%) \end{bmatrix}$	0%	111 870%		115	0%	124 07%	0%	124 07%		124
	070	0170 D	odnoni (<u>3070</u>	$\frac{0.0}{100}$	tictica	070	3170	070	3170
<u>ar-1/2</u>	[0.1	P	earon (1999) pa	nei <i>t</i> -sta		[0	011*	[F.(11**
$\frac{N^{-1/2} \sum_{i} t_{\hat{\beta}_{tr,i}}}{N^{-1/2} \sum_{i} t_{i}}$	[0.1	.8] 40]**	[1.1	Z]	[0.	08] 02]	[2.	401	[] [] [] [] [] [] [] [] [] [] [] [] [] [94])1]**
$N^{1/2} \sum_{i} t_{\hat{\beta}_{live,i}}$	[15.	42]**	[12.	06]**	[1.	03]	[1.	.46]	[15.9	91]** 01**
$N^{-1/2} \sum_i t_{\hat{\beta}_{f,i}}$	[8.2	20]**	[7.4	40]***	[].	43]	[0.	.97]	[8.9	98]***
$N^{-1/2} \sum_{i} t_{\hat{\beta}_{n,i}}$	[6.4	[8]** 	[5.7	[4]**	[1.	81]	[0.	.70]	[6.2	25]**
$ N^{-1/2} \sum_i t_{\hat{t}_i} $	[19.	50]**								
Nonstationa	arity: Pe	esaran (2	007) CII	PS test a	pplied t	o residu	als — H	₀ : residua	ls are $I(1$)
lag-augmentation	Ztbar	(\overline{p})	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)	Ztbar	(p)
none	-48.9	(.00)	-50.0	(.00)	-51.1	(.00)	-50.8	(.00)	-50.8	(.00)
1 lag	-32.1	(.00)	-38.9	(.00)	-38.8	(.00)	-38.8	(.00)	-40.8	(.00)
2 lags	-24.6	(.00)	-30.5	(.00)	-29.2	(.00)	-28.0	(.00)	-31.7	(.00)
3 lags	-20.3	(.00)	-25.2	(.00)	-22.3	(.00)	-22.1	(.00)	-25.8	(.00)
4 lags	-11.0	(.00)	-10.1	(.00)	-14.0	(.00)	-13.0	(.00)	-10.0	(.00)
	iean cor	relations	and Pe	saran (20	JU4) tes	H_0 :		n the resi	auais	
Marco I	ρ_{ij}	$\frac{ \rho_{ij} }{0.14}$	ρ_{ij}	$\frac{ \rho_{ij} }{0.10}$	ρ_{ij}	$\frac{ \rho_{ij} }{0.14}$	ρ_{ij}	$\frac{ \rho_{ij} }{0.15}$	ρ_{ij}	$\frac{ \rho_{ij} }{0.15}$
Mean Correl.	0.02	(0.14)	0.00	0.16 (09)	0.00	(0.14)	0.07	(0.15)	0.00	0.15
D statistic (<i>p</i>)	(.U)	(.00)	-0.22	(.03)	2.01	(10.)	00.31	(.00)	-0.42	(.07)
Further re	siqual d	agnosti	: tests^ -	$-\pi_0$: no	neteroske	equasticity,	regular	skewness/	KUITOSIS	
a'Agostini et al	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	
r isner stat (joint)	$\begin{array}{c c} \text{er stat (joint)} & 402.2 & (.00) \\ \hline \end{array}$			(.00)	341.4	(.00)	<u>ə</u> 03.3	(.02)	280.1	(.14)
<i>Cameron</i> © <i>Trivedi</i>	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)	p_{λ}	(p)
rusher stat (Joint)	∠40.4	(00)	199.7	(.99)	194.5	(.99)	∠10.0	(.98)	240.1	(.02)

Table 6: Dynamic Specification — MG-type estimators (CRS imposed)

Notes: The values in square brackets are absolute t-statistics of the estimates, based on heteroskedasticity-robust standard errors (Pesaran et al., 2008). An alternative 'panel t-test' by Pedroni (1999) is also provided — both are with reference to the long-run coefficients computed for each country regression. * and ** indicate statistical significance at the 5% and 1% level respectively. Long-run coefficients are computed from the lagged levels estimates using the nlcom command in Stata. For the diagnostic tests refer to Table 4 for more details. Residuals tested are those from the ECM regressions for each country.

5 Conclusions

In this paper we investigated the impact of variable nonstationarity, technology heterogeneity, cross-section dependence and imposition of returns to scale on the results for cross-country production functions in agriculture for a large sample of countries. Our review of the literature indicated that the empirical implementations of the intercountry production functions for agriculture are dominated by the two-way fixed effects (2FE) model, with constant returns to scale often imposed without formal testing. Variable and residual analysis indicates that all of the aforementioned properties may be present in the data for 128 countries in our empirical analysis. Our estimation results display considerable differences in the estimated parameters when moving from pooled models to averaged country regressions, and between equations ignoring and accounting for cross-section dependence, and we use diagnostic testing to determine the most favourable specification and estimator(s).

We draw the following conclusions from our empirical analysis:

- (i) Parameter heterogeneity plays an important role in cross-country productivity investigation for agriculture. The use of pooled models is largely rejected by the diagnostic tests we apply. These tests further indicate that the standard pooled estimator applied in the literature (2FE) is seriously misspecified.
- (ii) The imposition of constant returns to agricultural production (CRS) on pooled regression equations — e.g. in the commonly preferred two-way fixed effects model — is rejected by the data and further leads to qualitatively different empirical results. In contrast, the imposition of CRS on individual country regressions does not change average parameter coefficients considerably compared with the unrestricted results: thus the observed decreasing returns in the pooled models is an artefact of empirical misspecification.
- (iii) The presence of unobserved common factors with heterogeneous factor loadings *does* matter, as is highlighted by diagnostic tests comparing the MG and CCEMG-type estimators: the standard CCEMG estimator yields very favourable test statistics and shows robustness across various specifications (static, dynamic; unrestricted, CRS imposed). As was suggested in Kapetanios et al. (2008) estimators which do not account for cross-section correlation are unable to identify the technology parameters β or mean of β_i separately from the impact of the factor loadings λ_i if the same common factors drive both inputs and output.
- (iv) Our own AMG estimator yields results much closer to the standard MG than the Pesaran (2006) CCEMG estimator, often failing specification tests in a similar fashion to the MG Monte Carlo simulations (available on request) indicate a set of circumstances in which the AMG yields biased estimates but the CCEMG remains unbiased. We would speculate that the explicit, common TFP estimate $\hat{\mu}_t^{\bullet}$ applied in the AMG estimation may be unable to capture the heterogeneity in the underlying factor structure of the agriculture data, where heterogeneous factors play a much more prominent role (see next point).
- (v) Our extension to the CCEMG estimator of applying (exogenous) weight matrices before computing the cross-section averages and in effect imposing more structure on the nature of cross-section correlation in the data has provided very interesting insights. We suggest that given the close match between the standard and agro-climate CCEMG that the common correlated effects driving the cross-section dependence are closely proxied by our measure for agro-climatic distance. In contrast, neighbourhood or geographical distance measures do not seem to play a major role. The implication of this finding is

that agricultural TFP is affected by different factors and has different levels of responsiveness across geographic regions of the world due to agro-climatic diversity. Furthermore, technology transfer between countries is limited by the adaptiveness of technology to the local environment — both of these statements are widely accepted in the literature but prior to this study were ignored in empirical analyses of cross-country productivity.

(vi) While the preferred standard and agro-climate CCEMG estimators yielded very similar results across static and dynamic specifications, the other heterogeneous parameter estimators collapse to a larger or smaller extent when we introduce a dynamic specification. In our mind this is strong evidence for the robustness of the standard and agro-climate CCEMG.

In future research we will investigate the patterns of parameter values across countries as well as those of the TFP residuals derived from our preferred specification. Methods such as principal component analysis could be employed to obtain and investigate the underlying factors and country-specific factor loadings that make up TFP.

References

- Abramowitz, M. (1956). Resource and output trend in the United States since 1870. American Economic Review, 46(2), 5-23.
- Abreu, M., de Groot, H. L. F., & Florax, R. (2005). Space and Growth: A Survey of Empirical Evidence and Methods. Région et Développement, 21.
- Bai, J., & Ng, S. (2004). A PANIC attack on unit roots and cointegration. Econometrica, 72, 191-221.
- Baltagi, B. H., Bresson, G., & Pirotte, A. (2007). Panel unit root tests and spatial dependence. Journal of Applied Econometrics, 22(2), 339-360.
- Bode, E., & Rey, S. J. (2006). The spatial dimension of economic growth and convergence. Papers in Regional Science, 85(2), 171-176.
- Bravo-Ortega, C., & Lederman, D. (2004). Agricultural Productivity and its Determinants: Revisiting International Experiences. Estudios de Economia, 31(2), 133-163.
- Breitung, J., & Pesaran, M. H. (2005). Unit roots and cointegration in panels (Discussion Paper Series 1: Economic Studies No. 2005-42). Deutsche Bundesbank, Research Centre.
- Cameron, A. C., & Trivedi, P. (1990). The information matrix test and its applied alternative hypotheses. (Working Paper, University of California, Davis)
- CEPII. (2006). Datasets for Geodesic Distances. (Centre D'Etudes Prospectives et D'Information Internationales. See note on CEPII website by Thierry Mayer and Soledad Zignago)
- Cermeño, R., Maddala, G., & Trueblood, M. A. (2003). Modelling technology as a dynamic error components process: The case of the inter-country agricultural production function. *Econometric Reviews*, 22, 289-306.
- Coakley, J., Fuertes, A. M., & Smith, R. (2006). Unobserved heterogeneity in panel time series models. Computational Statistics & Data Analysis, 50(9), 2361-2380.
- Costantinia, M., & Destefanis, S. (2008). Cointegration analysis for cross-sectionally dependent panels: The case of regional production functions. *Economic Modelling*.
- Craig, B. J., Pardey, P. G., & Roseboom, J. (1997). International Productivity Patterns: Accounting for Input Quality, Infrastructure, and Research. American Journal of Agricultural Economics, 79(4), 1064-1076.
- D'Agostino, R. B., Balanger, A., & D'Agostino Jr., R. B. (1990). A suggestion for using powerful and informative tests of normality. *American Statistician*, 44.
- Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74 (366), 427-431.
- Eberhardt, M., & Teal, F. (2008). Modeling Technology and Technological Change in Manufacturing: How do Countries Differ? (CSAE Working Paper, WPS/2008-12). Centre for the Study of African Economies.
- Ertur, C., & Koch, W. (2007). Growth, technological interdependence and spatial externalities: theory and evidence. *Journal of Applied Econometrics*, 22(6), 1033-1062.
- FAO. (2007). FAOSTAT (Online database, Rome: FAO). United Nations Food and Agriculture Organisation. (Accessed July 2007)

Fisher, R. A. (1932). Statistical Methods for Research Workers (4th Edition. ed.). Oliver & Boyd, Edinburgh.

- Frankel, J. A., & Romer, D. (1999). Does trade cause growth? American Economic Review, 89(3), 379-399.
- Fuertes, A.-M. (2008). Sieve bootstrap t-tests on long-run average parameters. Computational Statistics & Data Analysis, 52(7), 3354-3370.
- Fulginiti, L. E., Perrin, R. K., & Yu, B. (2004). Institutions and agricultural productivity in Sub-Saharan Africa. Agricultural Economics, 31(2-3), 169-180.
- Gallup, J. L., Mellinger, A. D., & Sachs, J. D. (1999). Geography Datasets: Agricultural Measures. Available online at CID, Harvard University.
- Gutierrez, L. (2002). Why is agricultural labour productivity higher in some countries than in others? Agricultural Economics Review, 3(1), 58-72.
- Gutierrez, L., & Gutierrez, M. M. (2003). International R&D spillovers and productivity growth in the agricultural sector. A panel cointegration approach. European Review of Agriculture Economics, 30(3), 281-303.
- Hanck, C. (2008). Nonstationary-Volatility Robust Panel Unit Root Tests and the Great Moderation (MPRA Paper, #11,988). University Library of Munich, Germany.
- Harris, R. (1994). Using Cointegration Analysis in Econometric Modelling. London: Prentice Hall.
- Hayami, Y., & Ruttan, V. (1970). Agricultural Productivity Differences Among Countries. American Economic Review, 60(5), 895-911.
- Hayami, Y., & Ruttan, V. (1985). Agricultural development: An international perspective. Baltimore: Johns Hopkins University Press.
- Hobijn, B., Franses, P.-H., & Ooms, M. (2004). Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 58(4), 483-502.
- Im, K., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53-74.
- Jaffe, A. (1986). Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits and Market Value [NBER Working Paper Series]. (No. 1815).
- Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 65(1), 9-15.
- Kao, C., Chiang, M., & Chen, B. (1999). International R&D spillovers: An application of estimation and inference in panel cointegration. Oxford Bulletin of Economics and Statistics, 61 (Special Issue), 691-709.
- Kao, C., Trapani, L., & Urga, G. (2007). Modelling and Testing for Structural Changes in Panel Cointegration Models with Common and Idiosyncratic Stochastic Trends (Syracuse University, CPR Working Paper 92).
- Kapetanios, G., Pesaran, M. H., & Yamagata, T. (2008). Panels with nonstationary multifactor error structures (Tech. Rep.). (unpublished working paper, updated version of IZA Discussion Paper #2243)
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. *Meteorologische Zeitschrift*, 15(3), 259-263.
- Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? *Journal of Econometrics*, 54(1-3), 159-178.
- Larson, D. F., Butzer, R., Mundlak, Y., & Crego, A. (2000). A cross-country database for sector investment and capital. World Bank Economic Review, 14(2), 371-391.
- Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61 (Special Issue), 631-652.
- Magrini, S. (2004, July). Regional (di)convergence. In J. V. Henderson & J. F. Thisse (Eds.), Handbook of Regional and Urban Economics (Vol. 4, p. 2741-2796). Elsevier.
- Martin, W., & Mitra, D. (2002). Productivity Growth and Convergence in Agriculture versus Manufacturing. Economic Development and Cultural Change, 49(2), 403-422.
- Matthews, E. (1983). Global Vegetation and Land Use: New High Resolution Databases for Climate Studies. Journal of Climate and Applied Meteorology, 22, 474-487.
- Mundlak, Y., Larson, D., & Butzer, R. (1997). The determinants of agricultural production: a cross-country analysis (Policy Research Working Paper Series No. 1827). The World Bank.
- Mundlak, Y., Larson, D., & Butzer, R. (1999). Rethinking within and between regressions: The case of agricultural production functions. Annales D'Economie et de Statistique, 55/56, 475-501.
- Mundlak, Y., Larson, D. F., & Butzer, R. (2008). Heterogeneous technology and panel data: the case of the agricultural production function (Policy Research Working Paper Series No. 4536). The World Bank.
- Mundlak, Y., Larson, D. F., & Crego, A. (1997, August). Agricultural development: issues, evidence, and consequences (Policy Research Working Paper Series No. 1811). The World Bank.

- Nelson, R. R. (1968). A 'Diffusion' Model of International Productivity Differences in Manufacturing Industry. American Economic Review, 58(5), 1219-1248.
- Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix estimation. Review of Economic Studies, 61(4), 631-53.
- Pardey, P., James, J., Alston, J., Wood, S., Koo, B., Binenbaum, E., et al. (2007). Science, Technology and Skills (Background Paper for the World Bank 'World Development Report 2008: Agriculture for Development'). University of Minnesota, Department of Applied Economics.
- Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61 (Special Issue), 653-670.
- Pedroni, P. (2007). Social capital, barriers to production and capital shares: implications for the importance of parameter heterogeneity from a nonstationary panel approach. *Journal of Applied Econometrics*, 22(2), 429-451.
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. (IZA Discussion Paper No. 1240 and CESifo Working Paper No. 1229)
- Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012.
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265-312.
- Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79-113.
- Pesaran, M. H., Smith, V., & Yamagata, T. (2008). Panel unit root tests in the presence of a multifactor error structure. (Paper presented at the 'Unobserved Factor Models' Conference, Birkbeck College, 20-21 November 2008)
- Phillips, P. C. B., & Moon, H. R. (1999). Linear regression limit theory for nonstationary panel data. *Econometrica*, 67(5), 1057-1112.
- Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. *Biometrika*, 75(2), 335-346.
- Phillips, P. C. B., & Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. *Econometrics Journal*, 6(1), 217-259.
- Redding, S., & Venables, A. J. (2004). Economic geography and international inequality. Journal of International Economics, 62(1), 53-82.
- Ruttan, V. W. (2002). Productivity Growth in World Agriculture: Sources and Constraints. Journal of Economic Perspectives, 16(4), 161-184.
- Westerlund, J. (2006). Testing for panel cointegration with a level break. *Economics Letters*, 91(1), 27-33.

Appendix

A Data construction and descriptives

The principal data source for our empirical analysis is the Food and Agriculture Organisation's FAOSTAT panel database (FAO, 2007), from which we obtain annual observations for agricultural net output, economically active labour force in agriculture, number of tractors used in agriculture, arable land and permanent crop land and fertilizer use in 128 countries from 1961 to 2002. The specific sources and definitions are detailed below. Descriptive statistics for all variables are presented in Table A-1. The countries in our sample (ordered by country isocode) and the number of country observations for the regressions in levels and first differences respectively are presented in Table A-2. The total number of observations is 5,162 in the levels and 5,013 in the first difference specification, minimum T is 19 and 17 respectively, and average T 40.3 and 39.2 respectively.

Real agricultural net output (in thousand International \$), taken from *ProdSTAT* is based on all crops and livestock products originating in each country: "practically all products are covered, with the main exception of fodder crops." (FAO, 2007). Intermediate primary inputs of agricultural origin are deducted, including fodder and seed. The quantities for each commodity are weighted by the respective 1999-2001 average international commodity prices and then summed for each year by country. The prices are in international dollars, which are derived using a Geary-Khamis formula for the agricultural sector. The labour variable is taken from *PopSTAT* and represents the annual time series for **total economically active population in agriculture**. For capital stock in agriculture we follow a common convention and use **total number of agricultural tractors in use** as a proxy. This variable can be found in the 'Machinery' section of *ResourceSTAT*. The **livestock** variable is constructed from the data for asses (donkeys), buffalos, camels, cattle, chickens, ducks, horses, mules, pigs, sheep & goats and turkeys in the 'Live animals' section of *ProdStat*. Following convention we use the below formula to convert the numbers for individual animal species into the livestock variable:

 $livestock = 1.1^{*}camels + buffalos + horses + mules + 0.8^{*}cattle + 0.8^{*}asses + 0.2^{*}pigs + 0.1^{*}(sheep+goats) + 0.01^{*}(chickens+ducks+turkeys)$

The fertilizer variable is taken from the 'Fertilizers archive' of *ResourceSTAT* and represents **agricultural fertilizer consumed in metric tons**, which includes 'crude' and 'manufactured' fertilizers. The land variable is taken from *ResourceSTAT* and represents **arable and permanent crop land (in 1000 hectare)**.

Additional time-invariant data on geographical distance between countries and contiguity (neighbourhood) is taken from CEPII (2006), and data on the share of agricultural land by climatic zone from Matthews (1983), available in Gallup et al. (1999). For a number of diagnostics we group the data by region or climate zone — Table A-3 details these groupings using country iso-codes.

Finally, Table A-4 provides an overview of the climatic zones referred to in the Köppen-Geiger classification, taken from Kottek, Grieser, Beck, Rudolf, and Rubel (2006).

Variables in untransformed level terms											
Variable	mean	median	std. dev.	min.	max.						
levels											
output	$6,\!659,\!293$	1,523,753	19,900,000	3,196	317,000,000						
labour	8,528,396	1,317,000	42,400,000	3,000	511,000,000						
tractors	149,528	7,124	512,278	2	$5,\!470,\!000$						
livestock	11,800,000	3,031,056	31,900,000	6,644	298,000,000						
fertilizer	721,176	58,000	2,680,786	5	$39,\!600,\!000$						
land	9,799,731	$2,\!628,\!500$	25,500,000	1,000	191,000,000						
logs											
output	14.24	14.24	1.71	8.07	19.57						
labour	14.01	14.09	1.84	8.01	20.05						
tractors	9.01	8.87	2.79	0.69	15.51						
livestock	14.90	14.92	1.71	8.80	19.51						
fertilizer	10.82	10.97	2.69	1.61	17.49						
land	14.69	14.78	1.80	6.91	19.07						
annual growth rate											
output	2.3%	2.4%	8.8%	-83.0%	87.6%						
labour	0.3%	0.8%	2.6%	-28.8%	28.8%						
tractors	4.4%	2.0%	9.9%	-121.8%	138.6%						
livestock	1.4%	1.6%	6.4%	-93.3%	182.9%						
fertilizer	5.6%	3.5%	40.1%	-626.3%	393.2%						
land	0.8%	0.1%	3.6%	-41.8%	79.0%						

Table A-1: Descriptive statistics

	Variable	es in per w	orker term	s	
variable	mean	median	std. dev.	min.	max.
levels					
output	3.86	0.97	7.40	0.11	54.85
tractors	0.13	0.01	0.29	0.00	1.97
livestock	6.60	2.24	12.76	0.06	102.28
fertilizer	0.43	0.06	0.94	0.00	7.05
land	4.88	1.96	12.87	0.11	140.47
logs					
output	0.23	-0.03	1.42	-2.22	4.00
tractors	-5.00	-4.97	3.01	-13.67	0.68
livestock	0.89	0.81	1.38	-2.77	4.63
fertilizer	-3.19	-2.87	2.67	-11.56	1.95
land	0.68	0.67	1.15	-2.20	4.95
annual growth rate					
output	2.0%	2.0%	9.0%	-80.3%	109.9%
tractors	4.1%	2.1%	10.1%	-120.2%	136.5%
livestock	1.2%	1.2%	6.6%	-93.5%	182.9%
fertilizer	5.4%	4.2%	40.0%	-627.8%	390.8%
land	0.5%	0.0%	4.1%	-43.0%	81.6%

Notes: We report the descriptive statistics for output (in I1,000), labour (headcount), tractors (number), livestock (cattle-equivalent numbers), fertilizer (in metric tonnes) and land (in hectare) for the full regression sample (n = 5, 162; N = 128).

Country	Code	levels	FD	Country	Code	levels	FD
Afghanistan	AFG	40	38	Cambodia	KHM	33	30
Angola	AGO	40	39	South Korea	KOR	42	41
Albania	ALB	42	41	Kuwait	KWT	24	22
United Arab Emirates	ARE	31	30	Lao PDR	LAO	38	35
Argentina	ARG	42	41	Lebanon	LBN	42	41
Australia	AUS	42	41	Liberia	LBR	30	29
Austria	AUT	42	41	Libya	LBY	42	41
Burundi	BDI	37	36	Sri Lanka	LKA	42	41
Benin	BEN	42	41	Lesotho	LSO	42	41
Burkina Faso	BFA	42	41	Morocco	MAR	42	41
Bangladesh	BGD	42	41	Madagascar	MDG	42	41
Bulgaria	BGR	42	41	Mexico	MEX	42	41
Belgium-Luxembourg	BLX	39	38	Mali	MLI	42	41
Belize	BLZ	42	41	Myanmar	MMR	42	41
Bolivia	BOL	42	41	Mongolia	MNG	34	33
Brazil	BRA	42	41	Mozambique	MOZ	42	41
Botswana	BWA	42	41	Mauritania	MRT	33	29
Central African Republic	CAF	42	41	Malawi	MWI	42	41
Canada	CAN	42	41	Malaysia	MYS	42	41
Switzerland	CHE	42	41	Niger	NER	34	33
Chile	CHL	42	41	Nigeria	NGA	42	41
China	CHN	42	41	Nicaragua	NIC	42	41
Cote d'Ivoire		42	41	Netherlands	NLD	42	41
Cameroon Common Damach lin	CMR	42	41	Norway	NOR	42	41
Congo, Republic	COG	41	39	Nepai Nepai	NPL NZI	42	41
Colombia Costo Disc	COL	42	41	New Zealand	NZL OMN	42	41
Costa Rica	CUD	42	41	Oman Del-ister	DAV	30 49	29
Cuba	CVD	42	41	Pakistan	PAK	42	41
Cyprus		42	41	Panama	PAN DUI	42	41
Donmark	DEU	42	41	Papua New Cuinca	T IIL DNC	42	41
Deminiark	DOM	42	41	Paland	POL	42	41
Algoria		42	41	Folalid Koroo DDP	FOL DDV	42	41
Feundor	FCU	42	41	Portugal	PRT	42	41
Egypt	EGY	42	41	Paraguay	PRV	42	41
Spain	ESP	42	41	Oatar	OAT	-12 97	26
Ethiopia	ETH	42	41	Romania	ROM	42	41
Finland	FIN	30	29	Rwanda	RWA	34	32
France	FRA	42	41	Saudi Arabia	SAU	42	41
Gabon	GAB	31	30	Sudan	SDN	42	41
United Kingdom	GBR	42	41	Senegal	SEN	42	41
Ghana	GHA	42	41	Sierra Leone	SLE	42	41
Guinea	GIN	41	39	El Salvador	SLV	42	41
Gambia	GMB	39	38	Somalia	SOM	36	33
Guinea-Bissau	GNB	26	23	Suriname	SUR	42	41
Equatorial Guinea	GNQ	19	17	Sweden	SWE	42	41
Greece	GRC	42	41	Swaziland	SWZ	42	41
Guatemala	GTM	42	41	Syria	SYR	42	41
Guyana	GUY	42	41	Chad	TCD	41	39
Honduras	HND	42	41	Togo	TGO	37	36
Haiti	HTI	42	41	Thailand	THA	42	41
Hungary	HUN	42	41	Trinidad & Tobago	TTO	42	41
Indonesia	IDN	42	41	Tunisia	TUN	42	41
India	IND	42	41	Turkey	TUR	42	41
Ireland	IRL	42	41	Tanzania	TZA	42	41
Iran	IRN	42	41	Uganda	UGA	39	36
Iraq	IRQ	42	41	Uruguay	URY	42	41
Iceland	ISL	42	41	United States	USA	42	41
Israel	ISR	42	41	Venezuela	VEN	42	41
Italy	ITA	42	41	Vietnam	VNM	42	41
Jamaica	JAM	42	41	Yemen, Republic	YEM	37	36
Jordan	JOR	42	41	South Africa	ZAF	42	41
Japan	JPN	42	41	Congo, DR	ZAR	41	39
Kenya	KEN	42	41	Zimbabwe	ZWE	42	41

Table A-2: Sample of countries and number of observations

Notes: The full levels sample contains n=5,162 observations, the sample with variables in first differences (FD) contains n=5,013 observations. The sample period is from 1961 to 2002.

Table A-3: Country groupings

Regional country groups								
Grouping	Ν	Country Codes						
East Asia	14	CHN, IDN, JPN, KHM, KOR, LAO, MMR, MNG, MYS, PHL, PNG, PRK, THA, VNM						
Europe & other WIC	28	ALB, AUS, AUT, BGR, BLX, CAN, CHE, CYP, DEU, DNK, ESP, FIN, FRA, GBR,						
		GRC, HUN, IRL, ISL, ITA, NLD, NOR, NZL, POL, PRT, ROM, SWE, TUR, USA						
LATIN AMERICA & CARIBBEAN	24	ARG, BLZ, BOL, BRA, CHL, COL, CRI, CUB, DOM, ECU, GTM, GUY, HND, HTI,						
		JAM, MEX, NIC, PAN, PRY, SLV, SUR, TTO, URY, VEN						
South America	11	ARG, BOL, BRA, CHL, COL, ECU, GUY, PRY, SUR, URY, VEN						
C. America & Caribbean	13	BLZ, CRI, CUB, DOM, GTM, HND, HTI, JAM, MEX, NIC, PAN, SLV, TTO						
MIDDLE EAST & NORTH AFRICA	17	ARE, DZA, EGY, IRN, IRQ, ISR, JOR, KWT, LBN, LBY, MAR, OMN, QAT, SAU,						
		SYR, TUN, YEM						
North Africa	5	DZA, EGY, LBY, MAR, TUN						
South Asia	6	AFG, BGD, IND, LKA, NPL, PAK						
SUB-SAHARAN AFRICA	39	AGO, BDI, BEN, BFA, BWA, CAF, CIV, CMR, COG, ETH, GAB, GHA, GIN, GMB,						
		GNB, GNQ, KEN, LBR, LSO, MDG, MLI, MOZ, MRT, MWI, NER, NGA, RWA, SDN,						
		SEN, SLE, SOM, SWZ, TCD, TGO, TZA, UGA, ZAF, ZAR, ZWE						
Eastern Africa	9	BDI, ETH, KEN, MOZ, MWI, RWA, SOM, TZA, UGA						
Western Africa	16	BEN, CAF, CIV, CMR, COG, GAB, GHA, GIN, GMB, GNB, GNQ, LBR, NGA, SEN,						
		SLE, TGO						
Southern Africa	7	AGO, BWA, LSO, MDG, SWZ, ZAR, ZWE (does not include ZAF)						
Sahel	6	BFA, MLI, MRT, NER, SDN, TCD						

	Climate-zone country groups								
Grouping	Ν	Country Codes							
Equatorial (EQ)	52	AGO, BDI, BEN, BGD, BLZ, BOL, BRA, CAF, CIV, CMR, COG, COL, CRI, CUB,							
		DOM, GAB, GHA, GIN, GMB, GNB, GNQ, GTM, GUY, HND, HTI, IDN, JAM, KHM,							
		LAO, LBR, LKA, MDG, MMR, MOZ, MYS, NGA, NIC, PAN, PHL, PNG, RWA, SLE,							
		SLV, SUR, TGO, THA, TTO, TZA, UGA, VEN, VNM, ZAR							
Arid (AR)	19	AUS, BEN, BFA, BWA, EGY, IRQ, LBY, MLI, MNG, MRT, NER, PAK, SAU, SDN,							
		SEN, SOM, TCD, ZAF, ZWE							
TEMPERATE & COLD (TEMP)	51	ALB, ARG, AUS, AUT, BGR, BLX, CAN, CHE, CHL, CHN, CYP, DEU, DNK, DZA,							
		ESP, FIN, FRA, GBR, GRC, HUN, IRL, ISL, ISR, ITA, JOR, JPN, KOR, LAO,							
		LBN, LSO, MAR, MWI, NLD, NOR, NPL, NZL, POL, PRK, PRT, PRY, ROM, SWE,							
		SWZ, SYR, TUN, TUR, URY, USA, VNM, ZAF, ZWE							
Highland	12	AFG, CHE, CHL, ECU, ETH, GTM, HND, IRN, MEX, NIC, SAU, YEM							
INBETWEEN CATEGORIES ¹	2	IND, KEN							
Multiple categories	11	AUS, BEN, CHL, GTM, HND, LAO, NIC, SAU, VNM, ZAF, ZWE							
Not classified	4	ARE, OMN, KWT, QAT							

Notes: ¹ India has around 30-35% of arable land in each of the equatorial, and temperate & cold zones; Kenya has around 39% in the equatorial, 36% in the arid and 25% in the highland zones respectively.

	Köppen-Geiger Classification								
Α	Equatorial climates	Af	Equatorial rainforest, fully humid						
		Am	Equatorial monsoon						
		As	Equatorial savannah with dry summer						
		Aw	Equatorial savannah with dry winter						
В	Arid climates	BS	Steppe climate						
		BW	Desert climate						
С	Warm temperate climates	Cs	Warm temperate climate with dry summer						
		Cw	Warm temperate climate with dry winter						
		Cf	Warm temperate climate, fully humid						
D	Snow climates	Ds	Snow climate with dry summer						
		Dw	Snow climate with dry winter						
		Df	Snow climate, fully humid						
Е	Polar climates	ET	Tundra climate						
		\mathbf{EF}	Frost climate						
Н	Highland climate		above 2.500m elevation						

Table A-4: Clin	nate Zones	following	Köppen-	Geiger
-----------------	------------	-----------	---------	--------

Notes: This classification is taken from Kottek et al. (2006). The H category for Highland climate was added after the creation of the Köppen-Geiger classification, however it was impossible to establish the elevation cut-off definitively. The 2,500m mark is implicitly suggested in a number of online databases.

B Time-series properties of the data

In this section we report results relating to the time-series properties of the data. Since the time dimension of the panel is sizeable (T ranges from 19 to 42, average T = 40.3), we first carry out Augmented Dickey-Fuller (Dickey & Fuller, 1979) and KPSS (Kwiatkowski, Phillips, Schmidt, & Shin, 1992) tests for the variable series within each individual country.¹⁴ We use this combination of tests since the ADF test has the null of nonstationary variable series, whereas the KPSS test has the null of stationary variable series. The **time-series unit root test** rejection frequencies for variables in *levels* and in *first differences* are shown in Table B-1: we report the share of countries (in %) for which the null hypothesis (stationarity or nonstationarity as indicated) is rejected. The theoretical rejection frequencies at our sample size are 12.8% (H_0 : nonstationarity) and 87.2% (H_0 : stationarity) for the 10% significance level we adopted.

	Unit root tests													
share of country tests which reject H_0 (stationarity or nonstationarity as indicated);														
no adjustment for cross-sectional dependence; all variables in logs														
· · · · · · · · · · · · · · · · · · ·														
Testing for levels-stationarity														
Test			log output pw	labour	tractors pw	livestock pw	fertilizer pw	land pw						
ADF without trend	H_0 : nonstationary	H_1 : levels-stationary	9%	9%	48%	16%	41%	10%						
KPSS without trend	KPSS without trend H_0 : levels-stationary H_1 : nonstationary 82% 91% 81% 85% 70% 82%													
		Testing for	$\cdot trend-station$	arity										
Test			output pw	labour	tractors pw	livestock pw	fertilizer pw	land pw						
ADF with trend	H_0 : nonstationary	H_1 : trend-stationary	16%	15%	24%	12%	21%	11%						
KPSS with trend	H_0 : trend-stationary	H_1 : nonstationary	65%	71%	88%	65%	74%	66%						
		Testing for d	ifference- $stati$	onarity										
Test			output pw	labour	tractors pw	livestock pw	fertilizer pw	land pw						
ADF with drift	H_0 : nonstationary	H_1 : stationary	94%	16%	48%	88%	78%	67%						
KPSS with drift	H_0 : stationary	H_1 : nonstationary	13%	38%	81%	81%	70%	82%						

Table B-1: Time-series unit root tests — rejection frequency

Notes: All variables are in logs. We report the share of countries (out of N = 128) for which the respective unit root test is rejected at the 10% level of significance. All unit root tests for variables in levels contain an intercept term in the estimating equation. ADF refers to the augmented Dickey-Fuller test, which has the null of nonstationarity. KPSS refers to the Kwiatkowski et al. (1992) unit root test, which has the null of (trend-)stationarity. Lag-augmentation or bandwidth selection in these tests to account for serial correlation in the variables is allowed to vary by country. For the ADF test we determined 'ideal' lag-augmentation using the Akaike Information Criterion (AIC). For the KPSS tests an automated bandwidth selection following Newey and West (1994) and discussed in Hobijn et al. (2004) is used. For KPSS we use the kpss command in Stata written by Kit Baum.

For the majority of countries the ADF tests for the variables in levels cannot reject nonstationarity, with the notable exceptions of tractors per worker and fertilizer per worker. Consistently with this finding the majority of country KPSS tests reject the null of level stationarity. The tests for trend stationarity reveal a similar pattern. The difference stationarity tests show considerable differences across variables: in the ADF tests the labour and tractors per worker variables reject the nonstationarity null in far less countries than we would expect (87.2%) and the KPSS tests reject stationarity in the vast majority of countries for the tractors, livestock, fertilizer and land (all in per worker terms) variables.

Our analysis based on standard time-series (non)stationarity tests therefore has no clearcut message regarding variable properties. It needs to be emphasised that country-specific unit root tests suffer from low power, in particular in the case where the persistence in the variable is high — i.e. in the case when the test matters most (Harris, 1994).

¹⁴Whereas the Stata command for ADF allows us to run country regressions with gaps in the data, this is not possible for the KPSS tests. We interpolate data in order to run the KPSS for a balanced panel.

Next we apply **'first generation' panel unit root tests** to the data. These were developed due to the desirable property of increased power from pooling the results from many low-powered country unit root tests. It is important to stress that rejection of the unit root null hypothesis does not imply that the panel is stationary, but rather that the variable series does not follow a unit root process *in all countries*. Table B-2 presents the results for the Maddala and Wu (1999) (MW) panel unit root test and a panel version of Phillips and Perron (1988) (PP) test, for which serial correlation is accounted for using nonparametric methods rather than lagged differences. Following Fisher's suggestion the MW statistic is constructed as $P = -2\sum_i log(p_i)$, where p_i is the *p*-value for the individual country ADF statistics. The PP test is constructed in analogy. For both tests the theoretical distribution of the statistic is $\chi^2(2N)$, s.t. critical values are 97.35 for 5% and 92.16 for 10%.

For both tests tractors per worker and fertilizer per worker in levels reject nonstationarity in both the standard ADF equation and the ADF equation with a trend. All other variables in levels seemingly cannot reject the null of nonstationarity once augmented with sufficient lags or once a trend is added to the ADF equation. For the variables in first differences the tests unanimously reject nonstationarity.

Similarly to the above analysis we cannot definitely reject nonstationarity in all variables. However, as Baltagi et al. (2007) point out the first generation panel unit root tests which do not account for cross-section dependence can be subject to considerable size distortions, such that the test tends to overreject. This issue led to the development of 'second generation' panel unit root tests, namely the Im, Pesaran, and Shin (2003) and the Pesaran (2007) tests, results for which are presented in Table B-3. These tests explicitly allow for cross-sectional dependence in the data and therefore have better performance than the 'classic' panel unit root tests that assume cross-sectional independence.

Our results now seem to provide a more consistent theme across the different variables and specifications: following augmentation with lags or a linear trend term the levels variables cannot reject the null of nonstationarity. For the variables in first differences all variables reject nonstationarity with the exception of labour.

It should be noted that our preferred panel unit root test by Pesaran (2007) can only account for a single unobserved common factor as the cause for cross-sectional dependence in the data. More recent extensions of this test (Pesaran et al., 2008) can accommodate multiple unobserved common factors, but this development was too recent for the test to be included in this paper. Further issues which have received attention in the recent panel unit root literature such as structural breaks in data series (Westerlund, 2006; Kao, Trapani, & Urga, 2007) and changes in the volatility of the innovations (Hanck, 2008) could also not be accommodated.

Maddala & Wu (1999) unit root test													
Variables in levels: ADF equation contains intercept													
variable †	ly		lL		ltr		llive	;	lf		ln		
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
0	264.33	.35	836.91	.00	2776.92	.00	318.88	.00	713.80	.00	202.25	.99	
1	248.31	.62	212.39	.98	897.70	.00	269.52	.27	672.69	.00	174.36	1.00	
2	216.15	.97	161.97	1.00	716.62	.00	298.71	.03	593.96	.00	185.48	1.00	
3	205.40	.99	137.31	1.00	707.83	.00	274.18	.21	561.27	.00	172.74	1.00	
4	198.13	1.00	139.56	1.00	614.63	.00	236.64	.80	586.15	.00	252.63	.55	
5	217.60	.96	138.40	1.00	663.07	.00	236.17	.81	551.27	.00	189.16	1.00	
6	180.78	1.00	140.82	1.00	532.05	.00	219.06	.95	399.06	.00	159.21	1.00	
		Varia	bles in le	vels: A	ADF equat	ion c	ontains in	tercep	ot & trend	l			
variable †	ly		lL		ltr		llive	;	lf		ln		
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
0	473.86	.00	205.02	.99	916.00	.00	272.79	.22	411.14	.00	160.72	1.00	
1	322.37	.00	676.49	.00	499.77	.00	326.65	.00	319.24	.00	340.40	.00	
2	241.67	.73	293.71	.05	423.53	.00	318.07	.00	256.12	.49	255.62	.50	
3	230.43	.87	266.99	.31	335.91	.00	319.78	.00	235.53	.82	269.17	.27	
4	224.20	.92	249.02	.61	449.23	.00	286.63	.09	256.61	.48	305.17	.02	
5	205.05	.99	254.56	.51	479.71	.00	286.74	.09	313.58	.01	290.07	.07	
6	184.29	1.00	230.35	.87	436.98	.00	248.59	.62	190.53	1.00	275.99	.19	
		Vari	iables in	first di	ifferences:	ADF	equation	conta	ains drift				
variable ‡	Δly	7	Δl	L	Δltr	•	Δlliv	e	Δ lf		Δln	1	
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
0	5893.19	.00	513.12	.00	2092.88	.00	2780.22	.00	5138.24	.00	2408.11	.00	
1	2875.38	.00	538.34	.00	1206.83	.00	1561.93	.00	2475.73	.00	1153.82	.00	
2	1571.83	.00	414.45	.00	773.43	.00	1052.88	.00	1437.93	.00	806.68	.00	
3	1048.43	.00	338.69	.00	603.03	.00	867.15	.00	956.45	.00	616.82	.00	
4	779.00	.00	289.06	.08	534.76	.00	669.12	.00	662.53	.00	473.58	.00	
5	564.99	.00	312.39	.01	627.47	.00	601.37	.00	517.31	.00	441.97	.00	
6	425.31	.00	341.73	.00	534.53	.00	504.60	.00	420.91	.00	426.10	.00	

Table B-2: First generation panel unit root tests: Fisher tests

	Philipps & Perron (1988)-type unit root test (panel version)												
		V	ariables	in leve	els: ADF e	quati	on contair	ns int	ercept				
variable †	ly		lL	I I	ltr		llive	•	lf		ln		
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
0	264.33	.35	836.91	.00	2776.92	.00	318.88	.00	713.80	.00	202.25	.99	
1	264.64	.34	523.52	.00	2373.71	.00	289.99	.07	764.06	.00	187.07	1.00	
2	274.14	.21	403.42	.00	2180.19	.00	280.98	.14	815.30	.00	179.45	1.00	
3	281.71	.13	344.04	.00	2100.88	.00	279.59	.15	858.99	.00	181.16	1.00	
4	288.05	.08	311.81	.01	2063.62	.00	279.96	.15	899.75	.00	180.85	1.00	
5	298.86	.03	294.77	.05	2089.83	.00	283.25	.12	946.55	.00	183.07	1.00	
6	308.91	.01	287.25	.09	2013.23	.00	285.65	.10	983.57	.00	184.63	1.00	
		Varia	bles in le	vels: A	ADF equat	tion c	ontains in	tercep	ot & trend				
variable †	ly		lL		ltr		llive	;	lf		ln		
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	<i>p</i>	
0	473.86	.00	205.02	.99	916.00	.00	272.79	.22	411.14	.00	160.72	1.00	
1	459.81	.00	136.91	1.00	803.17	.00	267.51	.30	408.40	.00	167.54	1.00	
2	463.28	.00	120.88	1.00	759.12	.00	260.85	.40	411.18	.00	174.00	1.00	
3	468.30	.00	117.74	1.00	762.21	.00	258.26	.45	412.02	.00	180.44	1.00	
4	472.24	.00	119.26	1.00	775.59	.00	254.96	.51	411.84	.00	183.58	1.00	
5	475.65	.00	121.56	1.00	819.31	.00	251.47	.57	411.58	.00	184.72	1.00	
6	478.72	.00	123.13	1.00	883.30	.00	246.73	.65	410.36	.00	184.77	1.00	
		Vari	ables in	first di	ifferences:	ADF	equation	conta	ains drift				
variable ‡	Δly		$\Delta \mathbf{l}$	L	Δltr	•	Δlliv	e	Δ lf		Δln	1	
lags	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	
0	5893.19	.00	513.12	.00	2092.88	.00	2780.22	.00	5138.24	.00	2408.11	.00	
1	5958.33	.00	517.81	.00	2103.97	.00	2763.12	.00	5179.80	.00	2390.08	.00	
2	6140.51	.00	548.19	.00	2108.97	.00	2759.40	.00	5284.52	.00	2410.07	.00	
3	6261.04	.00	571.63	.00	2106.40	.00	2768.50	.00	5357.08	.00	2438.08	.00	
4	6369.17	.00	571.18	.00	2111.24	.00	2774.13	.00	5418.36	.00	2463.51	.00	
5	6487.63	.00	566.35	.00	2121.16	.00	2782.00	.00	5469.27	.00	2484.50	.00	
6	6592.92	.00	565.60	.00	2135.74	.00	2798.47	.00	5520.19	.00	2499.74	.00	

Notes: †Output per worker (lo), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per worker (lf) and land per worker (ln) — all in logs. ‡The Δ symbolise the growth rates for the above variables (first differences of the variables in logs). The null is nonstationarity in all countries' variable series, the alternative stationarity in *all* countries' variable series.

Im, Pesaran & Shin (2003) unit root test													
Variables in levels: ADE equation contains intercent													
waniahla +	1	Vä	ariables I	n iever	s: ADF ee	quatio		is inter	cept 1		10		
variable j	Wther	n	Wther	1 m	Wther	m	Wther	e n	Wther	n	Wther	<i>m</i>	
lags	0.70	$\frac{p}{76}$	20 00	$\frac{p}{1.00}$	20.22	$\frac{p}{00}$	0.65	$\frac{p}{1.00}$	7.02	$\frac{p}{00}$	15.95	$\frac{p}{1.00}$	
1	0.70	1.00	20.00	1.00	20.52	.00	9.00 6.27	1.00	-7.05	.00	11.00	1.00	
	2.71	1.00	11.50	1.00	-3.05	.00	0.57	1.00	-0.04	.00	11.00	1.00	
	3.37	1.00	11.58	1.00	-1.32	.09	0.11	1.00	-3.21	.00	9.28	1.00	
3	2.11	1.00	11.43	1.00	-2.11	.02	4.51	1.00	-1.68	.05	8.35	1.00	
4	2.35	.99	12.44	1.00	-3.19	.00	4.47	1.00	-2.00	.02	7.16	1.00	
5	2.70	1.00	13.47	1.00	-4.60	.00	4.33	1.00	-1.50	.07	7.10	1.00	
6	2.80	1.00	14.24	1.00	-1.71	.04	3.74	1.00	-3.11	.00	7.89	1.00	
		Variab	les in lev	vels: Al	DF equat	ion co	ntains in	tercept	& trend				
variable †	ly		lL	ı –	ltr		lliv	e	lf		ln		
lags	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	
0	-4.59	.00	16.98	1.00	-9.05	.00	6.63	1.00	-9.30	.00	10.28	1.00	
1	0.13	.55	-0.02	.49	-0.53	.30	1.87	.97	-3.66	.00	1.69	.95	
2	2.53	.99	0.08	.53	-0.61	.27	0.52	.70	-2.54	.01	1.65	.95	
3	2.46	.99	2.02	.98	-1.99	.02	0.75	.77	-0.27	.39	0.30	.62	
4	1.56	.94	1.46	.93	-1.07	.14	1.19	.88	-1.00	.16	-0.28	.39	
5	2.50	.99	1.75	.96	-2.96	.00	0.45	.67	-0.01	.50	-1.01	.16	
6	2.27	.99	3.53	1.00	0.15	.56	1.39	.92	-3.77	.00	-0.85	.20	
[Varia	ables in f	irst dif	ferences:	ADF (equation	contai	ns drift				
variable ‡	Δl	y	Δl	L	Δlt	r	Δlli ⁻	ve	Δlf	•	Δh	n	
lags	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	Wtbar	p	
0	-77.80	.00	-10.40	.00	-42.24	.00	-46.39	.00	-69.35	.00	-39.20	.00	
1	-47.05	.00	-6.55	.00	-28.17	.00	-28.74	.00	-39.86	.00	-23.90	.00	
2	-29.98	.00	-6.85	.00	-18.86	.00	-20.97	.00	-29.20	.00	-15.43	.00	
3	-21.77	.00	-5.17	.00	-15.16	.00	-17.02	.00	-21.12	.00	-11.75	.00	
4	-16.67	.00	-4.88	.00	-11.55	.00	-12.87	.00	-16.44	.00	-8.77	.00	
5	-12.57	.00	-5.75	.00	-10.40	.00	-10.83	.00	-13.12	.00	-7.89	.00	
6	-9.57	.00	-3.90	.00	-8.52	.00	-7.83	.00	-12.38	.00	-7.58	.00	

Table B-3: Secon	d generation pa	anel unit root tests
------------------	-----------------	----------------------

	Pesaran (2007) unit root test (CIPS) for heterogeneous panels with cross-section dependence													
Variables in levels: CADF equation contains intercept														
variable †	ly		lL		ltr	•	lliv	e	lf		ln			
lags	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p		
0	-7.19	.00	14.77	1.00	-0.38	.35	2.56	.99	-9.53	.00	12.13	1.00		
1	-2.55	.01	11.70	1.00	-3.17	.00	-1.37	.08	-5.23	.00	7.95	1.00		
2	-0.78	.22	13.78	1.00	-2.16	.02	-0.96	.17	-2.51	.01	7.94	1.00		
3	-0.34	.37	16.22	1.00	-3.37	.00	0.14	.55	0.54	.71	6.33	1.00		
4	0.29	.61	17.63	1.00	0.08	.53	3.06	1.00	1.54	.94	7.89	1.00		
	I	/ariabl	es in leve	els: CA	DF equa	tion co	ontains ir	tercep	t & tren	d				
variable †	ly		lL		ltr	•	lliv	e	lf		ln			
lags	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p		
0	-2.31	.01	7.90	1.00	3.26	1.00	6.68	1.00	-9.31	.00	9.69	1.00		
1	2.94	1.00	-0.82	.20	-1.09	.14	1.80	.96	-5.61	.00	1.70	.96		
2	5.85	1.00	5.24	1.00	-0.59	.28	2.74	1.00	-2.33	.01	0.71	.76		
3	7.15	1.00	8.98	1.00	-0.17	.43	4.51	1.00	0.63	.74	-0.07	.47		
4	7.38	1.00	10.17	1.00	0.42	.66	6.97	1.00	1.90	.97	0.59	.72		
		Varia	bles in fii	st diffe	erences:	CADF	equation	conta	ins drift					
variable ‡	Δly	y	Δl	[]	Δlt	r	Δlli	ve	Δlf	•	Δh	n		
lags	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p	Ztbar	p		
0	-48.44	.00	-1.37	.09	-32.95	.00	-33.72	.00	-48.55	.00	-28.58	.00		
1	-33.63	.00	-0.84	.20	-20.81	.00	-21.62	.00	-35.92	.00	-15.30	.00		
2	-20.34	.00	-0.52	.30	-14.15	.00	-13.72	.00	-25.44	.00	-7.51	.00		
3	-14.30	.00	1.84	.97	-8.11	.00	-8.41	.00	-16.36	.00	-4.64	.00		
4	-7.54	.00	3.41	1.00	-4.26	.00	-4.01	.00	-10.44	.00	-0.92	.18		

Notes: †Output per worker (ly), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per worker (lf) and land per worker (ln) — all in logs. \ddagger The Δ symbolise the growth rates for the above variables (first differences of the variables in logs). The null is nonstationarity in all countries' variable series, the alternative stationarity in *some* countries' variable series.

Cross-section dependence in the data C

In this section we investigate the potential for cross-section dependence in the data. We initially focus on the full sample 'global' data (N = 128, average T = 40.3 for the variables in levels). Table C-1 details the share of the variance accounted for by the first two principal components (PCs) to indicate the factor structure of the data, as suggested by Coakley et al. (2006). In principal component analysis (PCA) the eigenvalues (ordered by magnitude) over the cumulated eigenvalues give an indication of the variance in the standardized data explained by the different 'principal components'. The latter are linear combinations of the N(N-1) data time-series to account for the maximum variation in the overall dataset. In Panel [a] we apply this method to the variables in levels (log) and find that the first two principal components account for 76-93% of the variance. We also investigate whether the residuals from pooled OLS (\hat{e}^{POLS^*}) and 2-way Fixed Effects (\hat{e}^{2FE^*}) regressions¹⁵ show signs of factor structures. Again the share of the first two PCs is very high, around 65% in both cases. In Panel [b] we carry out the same analysis for the variables in first differences (for the residuals the production function OLS and 2FE regressions are run with variables in first differences); the explained variance is now considerably lower, although labour force growth (dlL) and growth in tractors per worker (dltr) still exhibit strong underlying factor structures.

	Principal Component Analysis												
Share of variance (in $\%$) accounted for by the first two Principal Components													
Panel [a]		${\rm Variables \ in \ levels^{\dagger}} \qquad \qquad {\rm Residuals^{\ddagger}}$											
	ly	ly lL ltr llive lf* ln \hat{e}^{POLS^*} \hat{e}^{2FE}											
%V Comp1	66.8	83.2	75.0	59.4	62.8	67.5	48.3	44.5					
%V Comp2	11.5	9.5	15.0	17.0	13.8	16.0	16.8	20.3					
sum	78.4	92.7	90.0	76.3	76.7	83.5	65.1	64.8					
Panel [b]		Va	riables in	first differen	\mathbf{nces}^{\dagger}		Resid	uals^{\ddagger}					
Panel [b]	dly*	Va dlL*	$\frac{riables in}{dltr^*}$	first differen dllive*	nces [†] dlf [*]	dln*	$\underset{\hat{e}^{FD-OLS^{*}}}{\mathbf{Resid}}$	\mathbf{uals}^{\ddagger} $\hat{e}^{FD2FE^{*}}$					
Panel [b] %V Comp1	dly* 12.03	Va dlL* 28.6	riables in dltr* 29.7	first differendlive*	$nces^{\dagger}$ dlf^{*} 15.4	dln* 13.8	$\frac{\textbf{Resid}}{\hat{e}^{FD-OLS^*}}$ 12.5	$\frac{\text{uals}^{\ddagger}}{\hat{e}^{FD2FE^*}}$ 12.3					
Panel [b] %V Comp1 %V Comp2	dly* 12.03 5.97	Va dlL* 28.6 22.3	riables in dltr* 29.7 11.9	first differen dllive* 10.7 7.4	nces [†] dlf [*] 15.4 8.9	dln* 13.8 10.5	$\begin{array}{c} \textbf{Resid} \\ \hat{e}^{FD-OLS^*} \\ 12.5 \\ 6.1 \end{array}$	$ \begin{array}{c} \mathbf{uals}^{\ddagger} \\ \hat{e}^{FD2FE^*} \\ \hline 12.3 \\ 7.6 \end{array} $					
Panel [b] %V Comp1 %V Comp2 sum	dly* 12.03 5.97 18.0	Va dlL* 28.6 22.3 50.9	riables in dltr* 29.7 11.9 41.6	first differen dllive* 10.7 7.4 18.0	nces [†] dlf* 15.4 8.9 24.3	dln* 13.8 10.5 24.2	Resid \hat{e}^{FD-OLS^*} 12.5 6.1 18.6	uals [‡] \hat{e}^{FD2FE^*} 12.3 7.6 19.9					
Panel [b] %V Comp1 %V Comp2 sum N	dly* 12.03 5.97 18.0 127	Va dlL* 28.6 22.3 50.9 127	riables in dltr* 29.7 11.9 41.6 127	first differen dllive* 10.7 7.4 18.0 126	$ \frac{\text{nces}^{\dagger}}{\text{dlf}^{*}} \\ \frac{15.4}{8.9} \\ 24.3 \\ 128 $	dln* 13.8 10.5 24.2 126	$\begin{array}{c} \textbf{Resid} \\ \hat{e}^{FD-OLS^*} \\ 12.5 \\ 6.1 \\ 18.6 \\ 128 \end{array}$	$ uals‡ \hat{e}^{FD2FE*}12.37.619.9128$					

Table C-1: 'Global' Cross-section Dependence (i)

[†]Output per worker (ly), labour (lL), tractors per worker (ltr), livestock per worker (llive), fertilizer per worker (lf) and land per worker (ln) — all in logs. The prefix d- identifies data in first differences. [‡]These are the residuals from a pooled OLS regression with T - 1 year dummies (POLS), the 2-way Fixed Effects regression (2FE), the pooled OLS regression with variables (and year dummies) in first differences (FD-OLS) and the 2-way Fixed Effects regression with variables in first differences (FD-OLS).

*This indicates that the variable had to be interpolated since there were not enough common years of data across all countries to carry out PCA. Otherwise we excluded some countries from the analysis as indicated.

In Table C-2 we report the means for the N(N-1) correlation coefficients for variable series or regression residuals, as well as the Pesaran (2004) Cross-Section Dependence (CD) test statistics. The former represents the simple average of the pairwise correlation coefficients between all country series $(\hat{\rho}_{ij})$ or the average of their absolute values $(|\hat{\rho}_{ij}|)$. The CD test statistic is also based on the mean pairwise correlation coefficients. In the unbalanced panel case it is defined as

$$CD = \sqrt{\left(\frac{2}{N(N-1)}\right)} \left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sqrt{T_{ij}} \hat{\rho}_{ij}\right)$$

were T_{ij} is the number of observations used to estimate the correlation coefficient between the series in country i and j and $CD \sim N(0,1)$ for $T_{ij} > 3$ and sufficiently large N under the null

 $^{^{15}\}mathrm{These}$ are production function regressions as outlined in the main section of this paper.

of cross-section independence. This test is robust to the presence of nonstationary processes, parameter heterogeneity or structural breaks, and was shown to perform well even in small samples.

Mean Correlation Coefficients and Pesaran (2004) CD test [‡]												
Global cross-section dependence in the data; $N = 128$, $n = 16,256$												
Panel [a]		${\bf Variables \ in \ levels^{\dagger}} \qquad {\bf Residuals^{\ddagger}}$										
	ly	lL	ltr	llive	lf	ln	\hat{e}^{POLS}	\hat{e}^{2FE}				
$(N(N-1))^{-1}\sum_{i}\sum_{j}\hat{\rho}_{ij}$	0.372	0.100	0.532	0.125	0.458	-0.007	-0.005	0.015				
$(N(N-1))^{-1}\sum_{i}\sum_{j}^{n} \hat{\rho}_{ij} $	0.611	0.799	0.699	0.561	0.544	0.645	0.424	0.408				
Pesaran CD Statistic							-2.49	9.64				
Panel [b]	V	Variabl	es in fi	rst diff	erence	\mathbf{s}^{\dagger}	Resid	$uals^{\ddagger}$				
	dly	dlL	dltr	dllive	dlf	dln	\hat{e}^{FD-OLS}	\hat{e}^{FD2FE}				
$(N(N-1))^{-1}\sum_{i}\sum_{j}\hat{\rho}_{ij}$	0.021	0.053	0.210	0.020	0.051	0.008	0.000	0.023				
$(N(N-1))^{-1}\sum_{i}\sum_{j}^{J} \hat{\rho}_{ij} $	0.141	0.351	0.276	0.144	0.147	0.172	0.145	0.149				
Pesaran CD Statistic							0.04	12.84				
Panel [c]		AR r	egressi	on resi	$duals^{\natural}$		Resid	$uals^{\ddagger}$				
	\hat{e}^{ly}	\hat{e}^{lL}	\hat{e}^{ltr}	\hat{e}^{llive}	\hat{e}^{lf}	\hat{e}^{ln}	\hat{e}^{MG}	\hat{e}^{CCEMG}				
$(N(N-1))^{-1}\sum_{i}\sum_{j}\hat{\rho}_{ij}$	0.020	0.075	0.012	0.013	0.025	0.008	0.017	0.001				
$(N(N-1))^{-1}\sum_{i}\sum_{j}^{j} \hat{\rho}_{ij} $	0.137	0.301	0.143	0.134	0.143	0.141	0.147	0.150				
Pesaran CD Statistic	11.52	42.23	7.02	7.47	14.63	4.36	9.16	0.21				

Table C-2: 'Global' Cross-section Dependence (ii)

†Variables as defined in Table C-2. ‡These are the residuals from a pooled OLS regression with T - 1 year dummies (POLS), the 2-way Fixed Effects regression (2FE), individual country regressions with intercept and linear trend (MG) and from the Pesaran (2006) Common Correlated Effects MG estimator (CCEMG).

 \downarrow Each of the variables in levels is entered into a regression $z_{it} = \pi_{1,i} z_{i,t-1} + \pi_{2,i} z_{i,t-2} + \pi_{t,i} t + \pi_{0,i}$, conducted separately for each country *i*. The correlations and cross-section dependence statistic are then based on the residuals from these AR regressions.

 $|\hat{\rho}_{ij}|$ where $i \neq j$ refers to the correlation coefficient for the variable/residuals in question between countries i and j. $|\hat{\rho}_{ij}|$ is the absolute value of the same statistic. The CD Test Statistic (for unbalanced panels) is

$$CD = \sqrt{\left(\frac{2}{N(N-1)}\right) \left(\sum_{i} \sum_{j} \sqrt{T_{ij}} \hat{\rho}_{ij}\right)}$$

where $i = 1, \ldots, N-1$ and $j = i + 1, \ldots, N$ and T_{ij} is the number of observations for each pairwise correlation. In our case N = 128 and average T = 38.8. Note that we adjusted the residual series for each i by subtracting their mean for the period T_{ij} since they may not sum to zero otherwise (Pesaran, 2004, p.17). For $N \to \infty$ the CD statistic is distributed standard normal under the null of cross-section independence.

Panel [a] of Table C-2 again investigates the variable series in levels and residuals from the pooled OLS and 2FE regressions. Average correlation varies considerably across the variables, from .53 in the case of tractors per worker (ltr) to virtually no correlation in land per worker (ln). Average correlation is low for the regression residuals, however the CD statistic rejects the null of cross-section independence at p < .01 in both cases. This result emphasises the importance of parameter heterogeneity (in the presence of nonstationarity): if production function parameters and the influence of the unobserved common factor(s) were *identical* across countries the 2FE transformation should be able to eliminate all the cross-section dependence in the data (Coakley et al., 2006). This is seemingly not the case here.

Panel [b] shows the average correlations for the data in first differences and the CD statistic for residuals from OLS and 2FE regressions with the data in first differences. A similar pattern to the PCA results emerges, in that the average correlations are considerably lower than in the levels case in panel [a]. The CD test cannot reject cross-section independence for the FD-OLS residuals (CD=0.04) — recall that this regression includes T - 1 year dummies which seem to capture the average impact of the unobserved common factor(s) across countries. In contrast the residuals from the 2FE regression with data in first differences (*after* the 2FE transformation) display cross-section dependence.

Finally, we follow Pesaran (2004) and run autoregressions for each variable in each country. Panel [c] reports CD statistics and the mean correlations across countries for the residuals (\hat{e}_{it}) from an AR(2) regression defined $z_{it} = \pi_{1,i} z_{i,t-1} + \pi_{2,i} z_{i,t-2} + \pi_{t,i} t + \pi_{0,i} + e_{it}$. We also report these statistics for the residuals from individual country regressions (\hat{e}^{MG}) and the Pesaran (2006) Common Correlated Effects country regressions (\hat{e}^{CCEMG}) — again, these are the production functions discussed in the main section. The AR regression and country regression residual series fail the test for cross-section independence since these regressions do not account for the impact of unobserved common factors. In contrast we cannot reject cross-section independence for the CCEMG residuals (CD=0.21).

In summary, the investigation of the full sample ('global' data) offers strong evidence of crosssection dependence in the variable series studied. The basic assumption of the standard panel estimators that data is cross-sectionally independent is therefore violated. We can see this in our analysis of the regression residuals from the pooled OLS and 2-way Fixed Effects estimators, as well as the individual country regressions (MG). Crucially, residuals from the pooled OLS estimator with variables in first differences (FD-OLS) and the Pesaran (2006) CCEMG estimator, the latter specifically developed to deal with heterogeneous and cross-sectionally dependent panels, both pass the test for cross-section independence.

Having investigated the full sample case, we now turn to analyse unobserved common factors in various spatial groupings. We begin with an investigation of the within-group correlations in a number of 'geo-historical' categories, where we distinguish countries from East Asia (EA), Latin America & the Caribbean (LAC), Middle East & North Africa (MENA), South Asia (SA), Sub-Saharan Africa (SSA) and Europe & other Western Industrialised Countries (EU). The latter category includes the United States, Canada, New Zealand and Australia, pointing to the general makeup of each category not just based on geography, but also cultural characteristics and historical grounds.

Mean Absolute Correlation Coefficients									
Regional cross-section dependence									
Panel [a]				Varia	\mathbf{bles}^{\dagger}			Resi	$duals^{\ddagger}$
	obs	ly lL ltr llive lf ln \hat{e}^{POLS} \hat{e}^{2FE}							
Mean a	absolut	e correl	ations:	(N(N -	$(-1))^{-1}$	$\sum_{i}\sum_{j} _{i}$	\hat{o}_{ij}		
East Asia	182	0.727	0.740	0.617	0.461	0.600	0.554	0.407	0.516
Europe & other WIC	756	0.893	0.870	0.848	0.732	0.726	0.843	0.682	0.479
Latin America & Caribbean	552	0.610	0.661	0.657	0.465	0.566	0.544	0.365	0.445
MENA	272	0.697	0.643	0.871	0.640	0.725	0.531	0.320	0.331
South Asia	30	0.497	0.914	0.740	0.680	0.733	0.871	0.781	0.313
SSA	1482	0.427	0.914	0.631	0.520	0.385	0.634	0.367	0.350
Panel [b]			AR r	egressi	on resi	$\mathrm{duals}^{\natural}$		Resi	$\mathrm{duals}^{\ddagger}$
	obs	\hat{e}^{ly}	\hat{e}^{lL}	\hat{e}^{ltr}	\hat{e}^{llive}	\hat{e}^{lf}	\hat{e}^{ln}	\hat{e}^{MG}	\hat{e}^{CCEMG}
Mean a	absolut	e correl	ations:	(N(N -	$(-1))^{-1}$	$\sum_{i}\sum_{j} _{I}$	\hat{o}_{ij}		
East Asia	182	0.132	0.409	0.170	0.142	0.164	0.136	0.139	0.159
Europe & other WIC	756	0.155	0.420	0.163	0.154	0.176	0.155	0.149	0.156
Latin America & Caribbean	552	0.139	0.347	0.146	0.131	0.135	0.140	0.154	0.154
MENA	272	0.156	0.321	0.131	0.133	0.156	0.151	0.154	0.171
South Asia	30	0.108	0.388	0.125	0.138	0.169	0.142	0.137	0.126
SSA	1482	0.131	0.232	0.151	0.133	0.149	0.135	0.152	0.157

Table C-3: Regional Cross-section Dependence (i)

See Table C-2 for notes and descriptions. Country groupings are described in Table ?? ("other WIC" refers to other Western industrialised countries, namely the US, Canada, New Zealand and Australia).

Table C-3 presents variable (and residual) mean absolute correlations (we omit the mean standard correlations to save space) within each of these country groupings. The number of observations ranges from 30 in South Asia (N = 6) to 1,482 in Sub-Saharan Africa (N = 39). In panel [a] we report results for the variables in levels and the regression residuals from OLS and 2FE regressions. All variables are uniformly highly correlated within country groupings. For the regression residuals in particular the members of the Europe & WIC and East Asia groups show high levels of correlation.¹⁶ In panel [b] we investigate residuals from the autoregressions outlined above as well as the country regressions and CCE country regressions. All of these show significantly lower levels of correlation. Average correlation (not reported) shows a much higher range of correlation coefficients across the groups, in the case of land from -.06 in East Asia to .58 in Europe & WIC and .87 in South Asia. In the latter analysis regression residuals from POLS and 2FE remain high in the Europe & WIC case (.41 and .28 respectively), but are virtually insignificant in the MG and CCEMG case (.05 and .02).

In Table C-4 we present the results for the CD test statistic within and across regions applied to various regression residuals. Panels [a] to [e] are for the pooled OLS (POLS), 2-way Fixed Effects (2FE), OLS in first differences (FD-OLS), country regression and CCE country regression residuals respectively. Panel [f] shows the number of observations (pairwise correlations) for each test. We marked the test statistics which indicate rejection of the null of cross-section independence in bold.

Focusing first on the *within-group* CD test statistics (on the diagonals), we can see that these commonly reject cross-section independence across all estimation strategies, although less so in the country and CCEMG regression cases. With regard to *cross-group* dependence tests, it can be seen that residuals from the pooled regression in levels and the pooled 2FE regression display a high level of common factor structure, leading to the rejection of the null of cross-section independence in almost all cases. For the pooled regression with variables in first differences 10 out of 15 cross-group tests cannot reject the null of cross-section independence, whereas for country regressions 12 tests cannot reject. For CCEMG all 15 tests cannot reject independence across groups. The results in panel [e] for CCEMG residuals suggests that this estimation approach cannot entirely wipe out the cross-section dependence in the data if viewed from a group-perspective. It is no longer the case that the number of observations is systematically linked to the test statistic, suggesting that the results are not driven by small sample size.

In Table C-5 we apply an alternative 'spatial' grouping, whereby the share of arable land in one of three eco-climatic zones determines group membership. We use data from Matthews (1983), reported in Gallup et al. (1999), on this variable and group countries into equatorial (EQ), arid (AR) or temperate & cold (TEMP) climate zones if they have 40% or more arable land share in the respective climatic zone. We provide details on the countries that drop out of the sample as a result of this categorisation and the treatment of those countries that enter more than one category in the table footnote. Panels [a] to [e] again provide CD test statistics for regression residuals, panel [f] shows the number of observations for each climate-zone combination. Again the pooled and standard country regression estimators fail most or all tests for residual independence within and across groups, although for 2FE only the temperate & cold zone shows high levels of dependence. The CCEMG residuals now cannot reject independence in any of the tests.

¹⁶Note that the South Asian group is made up of 6 countries only, so that the CD test statistics are likely to be highly distorted. We nevertheless kept these countries separate due to their distinct geographical and climatic characteristics.

Pesaran CD statis	Pesaran CD statistic — within and across regions								
Regional cross-section dependence									
Panel [a]	Resi	iduals fr	om poo	led OLS	regress	sion			
	EA	EU	LAC	MENA	SA	SSA			
East Asia (EA)	0.42								
Europe & other WIC (EU)	-11.31	50.77							
Latin America & Caribbean (LAC)	0.64	7.11	3.45						
Middle East & N Africa (MENA)	-4.33	9.72	-2.37	1.06					
South Asia (SA)	4.84	-21.47	-4.20	-2.85	7.07				
Sub-Saharan Africa (SSA)	5.41	-26.89	-4.85	-5.97	11.73	10.42			
Panel [b]	Res	siduals f	rom 2-1	way FE	regressi	ion			
	EA	EU	LAC	MENA	SA	SSA			
East Asia (EA)	0.59								
Europe & other WIC (EU)	10.00	34.51							
Latin America & Caribbean (LAC)	4.00	13.46	3.69						
Middle East & N Africa (MENA)	3.54	12.20	2.07	11.62					
South Asia (SA)	0.36	-3.44	-2.11	6.14	3.80				
Sub-Saharan Africa (SSA)	-5.14	-15.29	-4.93	-13.44	-5.07	10.82			
Panel [c]	Re	siduals j	from F	D-OLS r	regressi	on			
	EA	EU	LAC	MENA	\mathbf{SA}	SSA			
East Asia (EA)	2.15								
Europe & other WIC (EU)	2.04	3.17							
Latin America & Caribbean (LAC)	2.32	0.60	2.45						
Middle East & N Africa (MENA)	-1.82	0.16	-2.04	0.11					
South Asia (SA)	1.63	-0.04	0.83	-0.99	2.71				
Sub-Saharan Africa (SSA)	-0.10	-2.20	-1.11	-2.07	0.24	0.96			
Panel [d]	Re	siduals j	from co	ountry re	gressio	ns			
	EA	EU	LAC	MENA	SA	SSA			
East Asia (EA)	0.83								
Europe & other WIC (EU)	3.00	6.21							
Latin America & Caribbean (LAC)	0.58	0.02	1.86						
Middle East & N Africa (MENA)	0.29	2.77	0.18	0.32					
South Asia (SA)	0.87	1.65	0.73	-0.15	1.87				
Sub-Saharan Africa (SSA)	0.05	1.92	2.04	1.03	1.31	5.92			
Panel [e]	Residuals from CCE country regressions								
	EA	EU	LAC	MENA	SA	SSA			
East Asia (EA)	2.14								
Europe & other WIC (EU)	1.35	2.36							
Latin America & Caribbean (LAC)	0.13	-1.92	1.58						
Middle East & N Africa (MENA)	0.27	0.40	-0.94	1.29					
South Asia (SA)	0.94	-0.26	0.34	-0.10	2.43				
Sub-Saharan Africa (SSA)	-0.47	-1.91	0.53	-0.48	-0.37	1.29			

Table C-4: Regional	Cross-section	Dependence	(ii))
---------------------	---------------	------------	------	---

Panel [f]	Number of observations						
	EA	EU	LAC	MENA	SA	SSA	
East Asia (EA)	182						
Europe & other WIC (EU)	392	756					
Latin America & Caribbean (LAC)	336	672	552				
Middle East & N Africa (MENA)	238	476	408	272			
South Asia (SA)	84	168	144	102	30		
Sub-Saharan Africa (SSA)	546	1092	936	663	234	1482	

See Table C-2 for notes and descriptions. Country groupings are described in Table ?? ("other WIC" refers to other Western industrialised countries, namely the US, Canada, New Zealand and Australia). The test statistics in bold are statistically significant at the 5% level and thus reject the null of cross-section independence. Note that the 'own-correlation' coefficients ($\hat{\rho}_{ii} = 1$) are excluded from the analysis, such that they do not interfere with the within-group dependence statistic on the diagonal. Panel [f] reports the number of individual correlation estimates (N(N - 1)) used in the construction of the CD statistic.

Pesaran CD statistics — within and across climate zones									
We take 40% of a rable land in each climate-zone as cut-off									
Panel [a]				Panel [b]					
POLS residuals	EQ	AR	TEMP	2FE residuals	\mathbf{EQ}	AR	TEMP		
Equatorial (EQ)	2.29			Equatorial (EQ)	-0.09				
Arid (AR)	2.00	-0.59		Arid (AR)	-1.18	-1.78			
Temperate & Cold (TEMP)	-11.71	-9.36	31.28	Temperate & Cold (TEMP)	-0.89	1.38	32.79		
Panel [c]				Panel [d]					
FD-OLS	EQ	AR	TEMP	MG residuals	\mathbf{EQ}	AR	TEMP		
quatorial (EQ)	4.10			Equatorial (EQ)	2.50				
Arid (AR)	-3.02	0.68		Arid (AR)	3.47	3.90			
Temperate & Cold (TEMP)	0.39	-2.74	0.20	Temperate & Cold (TEMP)	2.64	3.47	6.67		
Panel [e]				Panel [f]					
CCEMG residuals	EQ	AR	TEMP	Observations	EQ	AR	TEMP		
Equatorial (EQ)	1.93			Equatorial (EQ)	2652				
Arid (AR)	0.29	1.31		Arid (AR)	987	342			
Temperate & Cold (TEMP)	-0.78	-1.78	1.39	Temperate & Cold (TEMP)	2650	966	2550		

Table C-5: Climate-zone Cross-section Dependence

We divide countries into climatic zones based on the share of their arable land within the (a) equatorial, (b) arid, or (c) temperate & cold climate zones, based on the data provided in Gallup et al. (1999). The cut-off is 40%; for instance a country is grouped as equatorial if 40% or more of its arable land is in the equatorial climate zone. The following 12 countries are excluded from the analysis since they do not have 40% of more in either of the three categories: AFG, ARE, ECU, ETH, IND, IRN, KEN, KWT, MEX, OMN, QAT, YEM. Note that half of these 12 countries have 59% or more land in the 'highland' climatic zone. Further, the following 6 countries are contained in more than one climatic zone: AUS, BEN, LAO, VNM, ZAF, ZWE; since the own-correlation coefficients ($\hat{\rho}_{ii} = 1$) are excluded from the analysis, this does not affect the CD statistics. The test statistics in bold are statistically significant at the 5% level and thus reject cross-section independence.

Additional tables and figures \mathbf{D}

Table D-1: D	Dynamic	specification		Po
--------------	---------	---------------	--	----

oled regressions (CRS imposed)

Pooled regressions								
[8] $\Delta \log$ output per worker, [9] dto. in 2FE transformation ^{\beta}								
	$\mathbf{POLS}^{[1]}$	[2] 2FE ^は	[3] CCEP	[4] CCEP	[5] CCEP	[6] CCEP		
weight matrix [‡]			none	neighbour	distance	agro-climate		
lagged levels								
output pw $(t-1)$	-0.0189 $[5.71]^{**}$	-0.1764 [22.80]**	-0.6072 [22.54]**	-0.4024 [19.87]**	-0.4959 $[21.44]^{**}$	-0.5699 [22.80]**		
tractors pw $(t-1)$	$\begin{array}{c} 0.0022\\ [1.85] \end{array}$	0.0134 [5.47]**	0.0678 $[7.02]^{**}$	0.0454 $[7.51]^{**}$	0.0429 $[5.90]^{**}$	0.0493 $[5.76]^{**}$		
livestock pw $(t-1)$	$0.0042 \\ [2.49]^*$	0.0709 [10.07]**	0.2045 [9.67]**	0.1064 [5.89]**	0.1850 $[9.31]^{**}$	0.2298 [10.32]**		
fertilizer pw $(t-1)$	$\begin{array}{c} 0.0061 \\ [5.86]^{**} \end{array}$	0.0147 $[7.76]^{**}$	0.0258 $[5.79]^{**}$	$\begin{array}{c} 0.0360 \\ [8.45]^{**} \end{array}$	0.0243 [4.10]**	0.0237 $[5.64]^{**}$		
and pw $(t-1)$	$0.0045 \\ [2.28]^*$	0.0554 $[7.28]^{**}$	0.1959 $[5.35]^{**}$	$\begin{array}{c} 0.1097 \\ [4.46]^{**} \end{array}$	$0.1980 \\ [6.38]^{**}$	0.1837 $[5.77]^{**}$		
growth rates								
Δ tractors pw	0.0555 $[4.12]^{**}$	0.0970 [8.49]**	0.0828 [4.37]**	0.0591 $[3.55]^{**}$	0.0558 $[4.61]^{**}$	0.0771 [4.82]**		
Δ livestock pw	$\begin{array}{c} 0.3153 \ [7.57]^{**} \end{array}$	0.3307 $[17.31]^{**}$	0.3097 $[9.43]^{**}$	0.2899 [8.82]**	0.3175 [10.65]**	0.2726 [8.21]**		
Δ fertilizer pw	0.0123 $[3.48]^{**}$	0.0172 [5.63]**	0.0132 [3.27]**	0.0196 [4.79]**	0.0171 $[3.67]^{**}$	0.0152 $[3.99]^{**}$		
Δ land pw	$\begin{array}{c} 0.3010 \ [4.38]^{**} \end{array}$	$0.3290 \\ [11.67]^{**}$	0.3249 [4.86]**	$\begin{array}{c} 0.3272 \\ [5.88]^{**} \end{array}$	0.3404 [7.42]**	0.3170 $[6.42]^{**}$		
Constant	0.0485 $[5.34]^{**}$		$2.6725 \\ [0.35]$	$1.7939 \\ [1.75]$	0.0141 [0.01]	$3.5301 \\ [1.85]$		
Observations	5,013	5,013	5,013	5,013	5,013	5,013		
R-squared	0.12	0.20	0.54	0.54	0.81	0.60		
	Es	timated long	g-run coeffic	$ients^{\flat}$				
tractors pw	0.118 [2.09]*	0.076 [5.58]**	0.112 [7.21]**	0.113 [7.73]**	0.087 [6.33]**	0.087 $[5.80]^{**}$		
livestock pw	0.224 [2.77]**	$0.402 \\ [11.30]^{**}$	0.337 $[10.51]^{**}$	$0.264 \\ [6.30]^{**}$	0.373 [10.40]**	0.403 [11.27]**		
fertilizer pw	0.322 [5.07]**	0.083 [8.09]**	0.042 [5.85]**	0.089 [8.67]**	$0.049 \\ [4.16]^{**}$	0.042 [5.80]**		
land pw	0.238 [2.56]*	0.314 [7.95]**	0.323 $[5.34]^{**}$	0.273 $[4.50]^{**}$	0.399 [6.69]**	0.322 [5.93]**		
Implied β_L	0.098	0.125	0.186	0.261	0.092	0.146		
Arellano-Bo	nd Serial Co	rrelation Tes	$\mathbf{t} - H_0$: no s	erial correlation	on in the resid	luals		
$\overline{AR(1)(p)}$	-9.69 (.00)	-14.95 (.00)	-3.30 (.00)	-6.46 (.00)	-4.71 (.00)	-3.88 (.00)		
AR(2)(p)	-0.41 (.68)	3.15(.00)	-1.28 (.20)	1.43(.15)	-3.36 (.00)	0.06(.95)		
AR(3)(p)	0.60(.55)	4.12 (.00)	-1.68 (.09)	0.39(.70)	-0.82 (.41)	-1.98 (.05)		
Nonstationarity:	Pesaran (20	07) CIPS tes	st applied to	residuals [‡] –	$-H_0$: residua	ls are $I(1)$		
lags	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)	Ztbar (p)		
none	-48.93 (.00)	-44.51 (.00)	-45.04 (.00)	-47.06(.00)	-45.84 (.00)	-44.61 (.00)		
1 lag	-38.33 (.00)	-29.68 (.00)	-32.18 (.00)	-32.43 (.00)	-32.08 (.00)	-31.67 (.00)		
2 lags	-23.23(.00)	-16.08 (.00)	-20.66(.00)	-21.58(.00)	-22.27(.00)	-20.41(.00)		
3 lags	-15.77 (.00)	-8.30 (.00)	-10.05 (.00)	-14.15 (.00)	-10.51 (.00)	-15.44(.00)		
Maan a	Correlation	Coefficient &	ϵ resaran (2	0.04 (0.00 tes	$n - n_0: no ($	0.00		
Mean ρ_{ij}	0.00	0.01	0.00	0.00	0.10	0.00		
$ \begin{array}{c} \text{Mean} \rho_{ij} \\ \text{CD} (p) \end{array} \rangle$	-0.08 (.94)	2.66 (.00)	-0.47 (.64)	1.31(.19)	26.34(.00)	-0.62 (.53)		
Further residue	al diagnostic	$tests^* - H_{a}$	no heteroske	lasticity, regu	lar skewness / 1	curtosis		
(A) Joint test								
$\chi^2(p)$ (B) Joint test	1019.7 (.00)	943.6 (.00)	623.4 (.00)	551.0 (.00)	559.4 (.00)	566.1 (.00)		
$\chi^2(p)$	1463.7 (.00)	1166.1 (.00)	_	-	-	_		

Notes: See Table 6 for details. \diamondsuit We include T - 1 year dummies in equation [1].