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ABSTRACT 
 

The elaboration of Environmental Quality Indexes (EQI) for big cities is one of 
the main topics in regional and environmental economics. One of the usual 
methodological paths consists of generating a single measure as a linear combination of 
several air contaminants applying Principal Component Analysis (PCA). Then, as a 
final step, a spatial interpolation is carried out to determine the level of contamination 
across the city in order to point out the so-called ‘hot points’. In this article, we propose 
an alternative approach to build an EQI introducing some methodological and practical 
novelties. From the point of view of the selection of the variables, first we will consider 
noise -joint to air pollution- as a relevant environmental variable. We also propose to 
add ‘subjective’ data -available at the census tracts level- to the group of ‘objective’ 
environmental variables, which are only available at a number of environmental 
monitoring stations. This combination leads to a mixed environmental index (MEQI), 
which is more complete and adequate in a socioeconomic context. From the point of 
view of the computation process, we use kriging to match the monitoring stations 
registers to the Census data. We follow an inverse process as usual, since it leads to 
better estimates. In a first step, we krige the environmental variables to the complete 
surface and finally, we elaborate the environmental index. At last, in order to build the 
final synthetic index, we do not use Principal Components Analysis -as it is usual in this 
kind of exercises- but a better one, the Pena Distance method (DP2). 
 
Key words: Environmental index, Air pollution, Noise, Subjecive expectations, Kriging, 

Distance indicators 

JEL codes: C21, C43, Q53 

 
 
1. Introduction 
 

Air pollution is at the top on the list of citizens’ environmental concerns. This is 

particularly true in big cities where more than half the world’s population (3.3 billion 

people) lives. The link between air quality and human health worries many health 

experts, policy-makers and citizens. The World Health Organization states that almost 

                                                 
1 Jose-Maria Montero and Beatriz Larraz acknowledge financial support from the FEDER PAI-05-021 
Project of the Junta de Comunidades de Castilla-La Mancha. Coro Chasco acknowledges financial 
support from the Spanish Ministry of Education and Science SEJ2006-02328/ECON and SEJ2006-
14277-C04-01. 
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2.5 million people die each year from causes directly attributable to air pollution. In this 

sense, the elaboration of Environmental Quality Indexes (EQIs) for big cities is one of 

the main topics in regional and environmental economics. Making EQIs can pursuit 

several objectives. The main one is to report daily air pollution levels to the public in 

order to prevent from potential health effects of air pollutants and determine specific 

actions when alert thresholds are exceeded. Environmental variables are also important 

as determinants of housing prices. In effect, it is reasonable to assume that pollution 

enters into the utility function of potential house buyers, since consumers are willing to 

pay for environmental goods, such as air quality, absence of acoustic pollution, etc. In 

the two last decades, Smith and Kaoru (1995), Smith and Huang (1993, 1995), Kim et 

al. (2003), Anselin and Le Gallo (2006) and Anselin and Lozano-Gracia (2008) among 

others, are good examples of the focus on hedonic property-value models for estimating 

the marginal willingness of people to pay for a reduction in the local concentration of 

specified air pollutants. 

 

For all the abovementioned reasons, in this paper we elaborate an EQI for the 

municipality of Madrid (Spain), at the spatial level of census tracts, since there are no 

similar measures for this city. In addition, we propose some methodological and 

practical improvements, which are novel in this kind of analysis. From the point of view 

of the selection of the variables, first we will consider noise -joint to air pollution- as a 

relevant environmental variable. We also propose to add ‘subjective’ data -available at 

the census tracts level- to the group of ‘objective’ environmental variables, which are 

only available at a number of environmental monitoring stations. This combination 

leads to a more complete mixed (objective-subjective) environmental index (MEQI), 

which is more adequate in socioeconomic contexts. From the point of view of the 

computation process, we will use kriging to match the monitoring stations registers to 

the Census data -which are available for the much numerous census tracts. We follow 

an inverse process as usual: in a first step, we krige the environmental variables to the 

complete surface and finally, we elaborate the environmental index. It can be 

demonstrated that this process leads to better estimates (less MSE). At last, in order to 

build the final synthetic index, we do not use Principal Components Analysis -as it is 

usual in this kind of exercises- but a better one, the Pena Distance method (DP2). 
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The paper is organized as follows. In the following section, we present the 

methodological aspects used in the paper. In the third section, we describe the complete 

construction process of a Mixed Environmental Quality Index (MEQI) for the city of 

Madrid. The article concludes with a summary of key findings and future research. 

 

2. Methodological questions 

 

2.1. Selection of the variables 

 

As stated before, in order to build a more complete environmental index, we 

propose on the one hand, the introduction of noise and on the other hand, the 

consideration of subjective data to the group of objective environmental variables. In 

fact, though noise policies have been implemented in several developed countries in the 

recent decades, the proportion of the population that is exposed to noise levels above 

legal limits is still relatively important. For this reason, in the urban contexts, noise 

levels have an economic value (e.g. on housing prices) that has been quantified in the 

empirical literature using different methodologies. The hedonic approach is the more 

dominant. It infers individual preferences as revealed in the markets (Baranzini and 

Ramírez, 2005). For example, housing market data can be analyzed in order to assess 

whether and how much of the house selling price differentials can be explained by 

different noise levels. 

 

We also recommend joining ‘subjective’ to ‘objective’ environmental variables 

in the composition of the environmental index. In empirical applications, it is quite 

common to use data extracted from the monitoring stations as environmental variables. 

These ones are considered as ‘objective’ information in the sense that they are based on 

observable phenomena. Alternatively, people’s perceptions of contamination, which are 

usually available in the Census at the level of census tracts, are considered as 

‘subjective’ indicators. It must be said that subjective data are not always correlated 

with the real air quality or noise pollution.  

 

In the specialized literature on hedonic house price models, where these kind of 

environmental indexes haven been built as explanatory variables (see Escobar 2006), it 

is not frequent to find applications using a mixture of objective-subjective variables. 
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Hedonic specifications typically include air pollutants such as ground-level ozone 

(Banzhaf 2005, Hartley et al. 2005 and Anselin and Le Gallo 2006), or particle matter 

(Chay and Greenstone 2005, Murthy et al. 2003), since these are more visible (like 

smog) and have the greatest impact on health. Sometimes, they include two pollutants, 

such as carbon monoxide and particle matter or ground level ozone (Neill at al 2007, 

Anselin and Lozano-Gracia 2008, respectively). Moreover, as far as we know Baranzini 

and Ramirez (2005) is the only case that considers jointly air and acoustic pollutants 

and there are no articles considering both objective/subjective pollutants. 

 

In a socioeconomic context, an EQI is more realistic when contains both kind of 

information. For example, prospective homebuyers most likely evaluate air quality 

based on whether or not the air ‘appears’ to be polluted or what people and the media 

say about the local air contamination (Delucchi et al., 2002). The same can be said in 

the case of noise (Miedema and Oudshoorn, 2001, Nelson, 2004 and Palmquist, 2004). 

Therefore, mixed –objective and subjective- indexes (MEQI) are preferable to only 

objective measures. 

 
2.2. The combination of point-data and area-data with kriging 

 

The elaboration of a MEQI implies the combination of different kind of data 

available at different spatial supports. The objective variables are registered in a small 

number of monitoring stations, which produces point-data, whereas the Census always 

provides information for area-data at the level of much numerous census tracts. We also 

find that the location of the air quality monitoring stations rarely coincides with the 

acoustic ones. In effect, the location of environmental monitoring stations is based on 

regular sampling and unfortunately, they are certainly scarce due to both physical and 

economic constraints. This is the case of many other similar applications as De Iaco et 

al. (2002), which work with an air pollution data set available at 30 locations in Milan 

district or Anselin and Le Gallo (2006), Anselin and Lozano-Gracia (2008), which 

consider 27 and 28 stations in California, respectively. 

 

Matching all these heterogeneous data can lead to a well-known situation called 

the “change of support problem” (COSP). Kriging is very often the solution to 

overcome this mismatch of spatial support (Gotway and Young 2002), particularly 



 5

when dealing with socioeconomic data, since it takes into account spatial dependence. 

In the specialized literature, the usual solution to the abovementioned problem is to 

interpolate the environmental variable(s) to obtain their interpolated values in the 

locations where socioeconomic data are available (Census data, housing prices, etc.). 

Several interpolative alternatives have been considered in recent research: Thiessen 

polygons, inverse distance method, splines, kriging and cokriging, though the last two 

ones are more appropriate when dealing with environmental variables (Anselin and Le 

Gallo, 2006). When dealing with an only spatial environmental variable, kriging is a 

good option to get optimal estimates, since it considers its spatial dependence2. 

 

Kriging is a univariate procedure, which interpolates the values of the target 

variable at unobserved locations using the available observations of the same variable. 

This interpolation procedure, which is a minimum mean-squared-error method of spatial 

estimation, produces the best linear unbiased estimator. In order to obtain the 

interpolative estimates, it uses the covariance or variogram function, which is the spatial 

equivalent of the autocorrelation function in time series analysis. Kriging strategy is 

based on the idea that variables follow a stochastic process over space. It takes into 

account the multidirectional feature of space in a similar fashion as time series in the 

unidirectional stochastic process. This approach, which has been applied to a wide range 

of phenomena (Tzeng et al. 2005, Spence et al. 2007), implies dealing with an infinite 

family of random variables ( )X s  constructed at all points s in a region. Depending on 

the location and the correlation structure, the variables adopt different values. Each 

observed datum ( )x s  is supposed to be a realization of the process. 

 

Observing the set of air quality monitoring sites 1 2, , , ns s s…  as a group of n 

points in a map, the pollution level of pollutant k (for 1, ,k K= … ), measured at each 

site, could be regarded as a spatial process ( )k iX s . The observed values are kix , i.e. the 

registered level for pollutant k at the ith site. As the monitoring sites only report data for 

                                                 
2 In a multivariate approach, cokriging can also be a good option since it not only accounts for the spatial 
dependence of each variable but also for the inter-variable correlation. However, it is more complex than 
kriging and, in many occasions, does not provide added benefits. For example, it is the case of the so-
called ‘isotopic case’, i.e. when variables are measured at the same monitoring stations. Cokriging also 
reduces to kriging in the specific case of autokrigeability (Subramanyam and Pandalai, 2004). Besides, 
when using cokriging, not only valid variograms are needed to represent the structure of the spatial 
dependence of the variables but also valid cross-variograms. 
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a limited number of n locations, we use interpolation to estimate the pollution level for 

each of the j much more numerous census tracts of the city  j, j∈{1,…,m}. The kriged 

estimate for pollutant k in site j is computed as a weighted average of the levels of this 

pollutant in the n sampled sites as follows: 

*

1

( ) ( )
n

k j i k i
i

X Xλ
=

=∑s s  (1)  

being iλ  the weight assigned to pollutant level Xk in the sample site i. 

 

Depending on the nature of stochastic processes, there are different kinds of 

kriging: simple kriging (SK), ordinary kriging (OK) and universal kriging (UK). In this 

work, we will use OK since the stochastic processes are intrinsically stationary with 

unknown constant means. A spatial intrinsically stationary stochastic process is such 

that for every vector h linking two locations in the map, is and i +s h , the difference of 

( ) ( )i iX X+ −s h s  is a second-order stationary stochastic process. 

 

Hence, requiring the classical conditions of unbiasedness: 

*

1
( ) ( ) 0 1

n

k j k j i
i

E X X λ
=

⎡ ⎤− = ⇔ =⎣ ⎦ ∑s s  (2)  

and minimum error variance: 

*

1 1 1
min ( ) ( ) min 2 ( ) ( )

n n n

k j k j i i j i l i l
i i l

V X X λ γ λ λ γ
= = =

⎛ ⎞⎡ ⎤− = − − −⎜ ⎟⎣ ⎦ ⎝ ⎠
∑ ∑∑s s s s s s  (3)  

where i l−s s  represents the vector that links each air monitoring stations i, l. 

 

The weights in expression (1) could be achieved from λ= Γ-1 Γ0 as follows (see 

in Montero and Larraz 2006, pp. 207-209, a further explanation): 
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 In this expression, α  is a Lagrange multiplier and [ ]1( ) ( ) ( )
2 i iV X Xγ = + −h s h s  

is the variogram function that shows how the dissimilarity between pairs of 

observations is and i +s h  evolves with separation (or distance).  

 

We have followed a two-step procedure to obtain the variograms. First, we have 

reached ballpark point estimates of the variograms using the classical variogram 

estimator based on the method-of-moments (Lark and Papritz 2003). Second, in order to 

ensure a positive definite model, we have fitted a theoretical variogram function (see, 

e.g. Emery, 2000, pp. 93-104) to the sequence of average dissimilarities in keeping with 

the linear model of regionalization (see, e.g. Goovaerts 1997, pp. 108-115)3. 

 

Once presented the kriging rudiments, we will focus on the reason why kriging 

the environmental variables and then elaborating an index is a better option than 

following the inverted process. In effect, the usual procedure in the literature consists of 

building first an environmental synthetic index that will be kriged afterwards to the 

whole map, arguing that it is a way to transform a multivariate problem in an univariate 

one (Preisendorfer 1988; De Iaco et al. 2001, 2002). Nevertheless, we think that our 

option –building a synthetic index first and kriging afterwards- is a better option 

because it leads to a lower error variance (Myers, 1983)4. 

 

 In effect, let the variables of different pollutants, 1 2, , , KX X X… , be intrinsic 

stationary stochastic processes of order zero. There are two options to linearly 

estimating an environmental index: 

 

(i) Elaborating a synthetic index with the K environmental variables provided by the 

n monitoring stations, ( )iMEQI s , and after that computing the kriged estimates of 

this index for the total number of m census tracts: 

 ( ) ( )*

1

m

j i i
j

MEQI MEQIλ
=

= ⋅∑s s ,    1, ,j m= …  (5)  

                                                 
3 We have used ISATIS v4.1.1. (2001) to reach the OK estimates. 
4 Another alternative could be the direct estimation of the environmental index including the correction 
factor and the conditions proposed by Matheron (1979), but it is -in our opinion- much more difficult to 
implement than our proposal. 
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for ( ) ( )
1

K

i k k i
k

MEQI a X
=

′= =∑s s A X , being 

 ( )1, , Ka a′ =A , ( ) ( )1 , ,i K iX X= ⎡ ⎤⎣ ⎦X s s  the vectors of weights and variables, 

respectively. 

 

(ii) Kriging each original variable ( ) ( )1 , , KX Xs s  for the m census tracts, and next 

compute the synthetic index of the interpolated variables ( ) ( )1 , , KX X∗ ∗s s  as 

follows: 

( ) ( ) ( )* *

1 1 1

nK K

j j k k j k i k i
k k i

MEQI a X a Xλ
= = =

′= = =∑ ∑∑s A X s s  (6)  

 

 Following Myers (1983, pp.634), it can be demonstrated that: 

 ( ) ( ) ( ) ( )*
j j j jVar MEQI MEQI Var MEQI MEQI⎡ ⎤⎡ ⎤− > −⎣ ⎦ ⎣ ⎦s s s s  (7)  

 
2.3. The use of DP2 to build environmental quality indexes 

 

Finally, in order to build the global synthetic index, we opt to use a distance 

indicator, the Pena Distance or DP2, instead of the more commonly used PCA5. DP2 is 

an iterative procedure that weights partial indicators depending on their correlation with 

a global index. Its most attractive feature is that it uses all the valuable information 

contained in the partial indicators eliminating all the redundant variance present in these 

variables (i.e. avoiding multicollinearity). This method has mainly been used to 

compute quality of life and other social indicators (Pena 1977, Zarzosa 1996, Royuela et 

al. 2003). However, we propose its use in other fields -like environmental indexes- due 

to its good statistical properties; i.e. multidimensionality, comparability and 

comprehensibility. 

 

First, it is a multidimensional indicator, which is able to aggregate different 

environmental quality variables expressed in different measurement units. Second, it is 

                                                 
5 PCA and DP2 are complementary -no substitute- methods (see Zarzosa 1996, p. 194 or Cancelo and 
Uriz 1994, pp. 177-178). The first is capable of reducing the information of a group of variables 
eliminating redundant information. Nevertheless, DP2 also allows relative comparisons between different 
spatial units and/or time periods. 
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a quantitative distance indicator, which allows comparing the environmental quality in 

several spatial units, since it is referred to a same base or ‘ideal state’. Third, it is an 

exhaustive indicator, which is not based on a mere reduction of information as PCA. It 

uses all the ‘valuable information’ contained in the partial indicators; i.e. it gets the 

statistical information that is not either false or duplicate, which can be interpreted using 

ordinal or -better- cardinal scales. This property allows including a great number of 

variables since all useless redundant variance will be removed by the own process, 

avoiding multicollinearity. Following Ivanovic (1974), the more data are included in the 

partial indicators (related to the subject matter) the more complete will be the final 

synthetic index, since each variable always contain unique and proper information not 

present in the others. DP2 can eliminate all the superfluous common variance selecting 

only the part of the information which is original. 

 

 These characteristics allow including -in the same synthetic index- several 

sources of pollution, such as air and noise, as well as subjective information. Although 

these data are measured in different units and can contain more or less repeated 

information, DP2 distance method will express all them in abstract comparable units, 

taking into account only the useful variance, excluding the rest.  

 

DP2 is a relatively complex method, which implies several iterations or matrix 

rearrangements. The point of departure of the whole process is a matrix V of order 

(K,m), in which m is the number of census tracts and K is the number of partial 

indicators (which includes both the interpolated objective variables and the subjective 

ones). Each element of this matrix, vkj, represents the state of the partial indicator k in 

the census tract j. In this matrix, those partial indicators negatively connected with 

environmental quality must change their sign (i.e. all their data must be multiplied by -

1). On their side, variables positively linked with environmental quality do not suffer 

any change. As a result, an increase/decrease of the values of any partial indicator will 

correspond with an improvement/worsening in environmental quality. 

 

In a second stage, we compute a distance matrix D such that each element, dk, is 

defined as follows: 

k kj kvd v ∗= −  (8)  
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where kv ∗  is the kth component of the reference base vector { }1 2 ... Kv v v v∗ ∗∗ ∗= . It 

is necessary to define a reference value for each partial indicator in order to make 

comparisons -in terms of environmental quality- between different spatial units (census 

tracts). In quality-of-life applications, it is quite common to consider the minimum 

value as the reference (Vicéns and Chasco 2001, Sánchez and Rodríguez 2003, CES 

Murcia 2003). As a result, a higher value in DP2 (which will always adopt positive 

values) will imply a higher environment quality level, since it implies a longer distance 

respect to a theoretical ‘non-desired’ situation6. In addition, this property allows making 

a ranking between the spatial units in terms of environmental quality. Therefore, dk 

measures the distance between the partial indicator k in the census tract j and its 

reference value. 

 
In a third stage, in order to express all the indicators in abstract comparable 

units, we compute a first global index, the Frechet Distance (DF), which is defined as: 

( )
11

  ;   1,2,...,
K

kj k

k k

K
k

k k

v v
j j m

dDF
σσ

∗

==

−
= == ∑∑  (9)  

where σk is the standard deviation of partial indicator k. For each partial indicator, the 

distance between two spatial units dk is weighted by the inverse of σk. That is to say, the 

contribution of each dk to the global indicator is inversely proportional to their 

corresponding indicator standard deviation. This weighting scheme, which is similar to 

those used in heteroskedastic models, gives less importance to those distances with 

more variability, and vice versa. 

 

 DF is a valid concept of distance only in a theoretical situation of uncorrelated 

indicators. When there is a direct relationship between the partial indicators (as it is 

usual), DF will include some duplicated information. Therefore, DF must be corrected 

in order to eliminate this dependence effect (i.e. the redundant information existent in 

other variables), which is supposed to be linear. This is why -for each spatial unit j- DF 

is the maximum value that can reach DP2, which is defined as follows: 

                                                 
6 Some indicators have clear reference values (e.g. those legally established by national or international 
organizations). This is the case of most air quality variables (SO2, CO, etc.), for which the EU has fixed 
limit levels for the protection of human health (Official Journal of the European Union 2008). However, 
we have opted not to use them due to the complexity and diversity of the measurements, which do not 
match with the average monthly data available for the city of Madrid. 
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( ) ( )2
1, 2,...,1

1
  ;   1, 2,...,2 1

K
k

k k k
k k

j j m
dDP R
σ ⋅ − −

=
== −∑  (10)  

where 2
1, 2,...,1k k kR ⋅ − −  is the determination coefficient of the regression of each partial 

indicator k on the others (k–1, k–2,…,1). It expresses the part of the variance of k that is 

linearly explained by the rest of partial indicators7. As a result, the correction factor 

( )2
1, 2,...,11 k k kR ⋅ − −−  deducts the part of the variation of the observed values that is 

explained by the linear dependence8. Note that R2 is an abstract concept, which is 

unrelated with the measurement units of the indicators. 

 

DP2 implies a decision about the entrance order of the partial indicators in the 

computation process. That is to say, it must be decided which partial indicator k is the 

first in contributing its variance to the global index, which one will be the second, etc. 

In this process, the first indicator (k=1) will contribute all its information to the global 

index (d1/σ1). However, the second indicator (k=2) will only add the part of its variance 

that is not correlated with the first one: ( )( )2 2
2
2 11d Rσ ⋅− . Regarding the third indicator, 

it will contribute to DP2 the part of its variance that is not correlated with the first and 

the second one: ( )( )3 3
2
3 2,11d Rσ ⋅− . And so forth. 

 

Obviously, depending on the decision DP2 will adopt different values. Thus, it is 

important to find an objective hierarchical method that leads to a unique entrance order 

of the partial indicators. If DF is a compendium of all the partial indicators, it seems 

logical to make the selection taking into account the correlation between each partial 

indicator and DF. The indicator with the highest correlation with DF will be the leader 

given that it is the most informative; i.e. the indicator that contributes more variance to 

the global index. 

 

The whole process is a four-step procedure that can be summarized as follows: 

 

                                                 
7 If all the partial indicators are uncorrelated, R2=0 and DP2=DF. 
8 Ivanovic (1963) proposed the I-Distance, which considered the partial coefficients as a correction factor. 
However, as stated in Pena (1977), this procedure cannot eliminate the redundant information of the DF. 
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• First, we compute the DF values for each spatial unit using expression (9); i.e. 

taking into account the reference base vector v∗  of minimum values. 

• Second, we calculate the correlation coefficients of the partial indicators and DF to 

ordering the former in accordance with their degree of dependence with the later. 

• Third, we compute DP (expression 10) considering the previously determined 

entrance order of the partial indicators. This first global index is called DP-1. 

• Forth, we make a new ranking with the partial indicators in accordance with their 

correlation degree with DP-1 with the aim of re-computing DP. We call this second 

global index as DP-2. 

• We repeat this iterative process until a convergence is reached; i.e. the difference 

between two DP contiguous indexes is null. In the case of non-convergent DP 

values, we can choose the first DP index (or even the average of the two final ones). 
 

The numeric value of DP index has no real sense but it is useful to compare the 

state of different spatial units (census tracts) about environmental quality. We can rank 

census tracts according to this criterion. If we use the same variables and method, we 

can compare our results for Madrid with those obtained in other cities or even in other 

moments of time. DP2 lets comparing changes in relative positions and even detecting 

their causes. 

 

3. Building a Environmental Quality Index (MEQI) for the city of Madrid 

 

3.1. Data set 

 There are several types of air pollutants. These include the primary pollutants, 

which are directly emitted from a process, and the secondary ones, which are formed in 

the air when primary pollutants react or interact together to produce harmful chemicals. 

Primary pollutants are the ones that cause most damage to ecosystems and human 

health. They are, among others, sulphur dioxide (SO2), oxides of nitrogen (NOx), 

nitrogen dioxide (NO2), carbon monoxide (CO) and particulate matter (PM). Regarding 

secondary pollutants, ground-level ozone (O3) is considered -joint with PM- the most 

dangerous pollutant for human health. 
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a) SO2 is produced by volcanoes, coal burning (e.g. for home heating), road transport, 

power stations and other industries. When inhaled at very high levels, it results in 

panting breathing, coughing and -in some occasions- permanent pulmonary damage. 

SO2 causes more damage when particulate and other pollution concentrations are 

high. 

b) PM is a general term used for a mixture of solid particles and liquid droplets found 

in the air. It comes from many sources, including non-combustion processes (24%), 

industrial combustion plants (17%), commercial and residential combustion, as 

domestic heating (16%) and power stations (15%). Fine particles can affect lungs, 

where they cause inflammation, and heart. 

c) NOx is a generic term for mono-nitrogen oxides (NO and NO2). It means the sum of 

the volume mixing ratio (ppbv) of nitrogen monoxide (nitric oxide) and nitrogen 

dioxide expressed in units of mass concentration of nitrogen dioxide (µg/m3). Both 

oxides are emitted by elevated temperature combustion, mainly in high vehicle 

traffic areas, such as large cities, and power stations. As well as SO2, frequent 

exposure to high concentrations of these gasses affect specially to children and those 

who suffer from acute respiratory illness. 

d) CO is a very poisonous gas, which comes from the incomplete combustion of fuels 

(e.g. natural gas, coal or wood) being vehicular exhaust its major source. In sensitive 

individuals, this gas prevents the normal transport of oxygen in the body, affecting 

particularly to people suffering from heart diseases. 

e) O3 is formed when NOx and volatile organic compounds, such as hydrocarbon fuel 

vapours and solvents, react chemically in the presence of sunlight in the lowest 

layers of the atmosphere (close to the ground). Most of it is produced in hot sunny 

weather, being more prevalent in summer. This gas has an irritant effect on the 

surface tissues of the body, such as eyes, nose and lungs. Irreversible damage to the 

respiratory tract can occur if ground-level ozone is present in sufficiently high 

quantities. 

‘Noise pollution’ is the named given to the unwanted sound. Noise is the most 

pervasive environmental pollutant of the modern world. The excessive noise induce 

imbalance in a person’s mental state, affecting its psychological health. It can cause 

annoyance, high stress levels as well as noise-induced hearing loss. The source of most 
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acoustic pollution worldwide is transportation systems (motor vehicles, aircrafts, rails), 

as well as machinery and construction works. It is measured in decibels ( ( ))dB A . 

Apart from these seven aforementioned pollutants, we suggest to complement 

the ‘objective’ information with other ‘subjective’ variables, such as the population 

perception of pollution, green areas and noise around their homes. Therefore, we will 

use ten indicators to elaborate a mixed environmental quality index (MEQI), which can 

synthesize true pollution values with citizen perceptions of their own residential place 

welfare. The seven objective variables provide all the necessary scientific information 

about air and sound pollution in a specific area of the city, whereas the three subjective 

variables measure the opinion of the people about the contamination levels in their 

neighborhood. 

Table 1. Description of the environmental variables 

Variables  Statistical font Unit Spatial 
level Reference 

1. Objective indicators      

1.1. Air quality indicators      

SO2 Sulphur dioxide Council of 
Madrid 

3/g mµ 25 
stations 

Average 
(Jan. 2008)

CO Carbon monoxide  Council of 
Madrid 

3/mg m 25 
stations 

Average 
(Jan. 2008)

NOx Oxides of nitrogen  Council of 
Madrid 

3/g mµ 25 
stations 

Average 
(Jan. 2008)

NO2 Nitrogen dioxide  Council of 
Madrid 

3/g mµ 25 
stations 

Average 
(Jan. 2008)

PM 
PM10 particulate matter (fraction of suspended 
particles < 10 3/g mµ  in diameter) 

Council of 
Madrid 

3/g mµ 25 
stations 

Average 
(Jan. 2008)

O3 Ground-level ozone  Council of 
Madrid 

3/g mµ 25 
stations 

Average 
(Jan. 2008)

1.2. Noise pollution indicators:      

LAeq Equivalent continuous noise, dB(A) Council of 
Madrid dB(A) 28 

stations 
Average 

(Jan. 2008)
2. Subjective indicators      

pollut Proportion of houses with air-pollution 
problems in the neighborhood Census % 2,358    

cen. tracts 
October 1, 

2001 

ngreen Proportion of houses with scarcity of green 
areas in the neighborhood Census % 2,358    

cen. tracts 
October 1, 

2001 

noise Proportion of houses with noise in the 
neighborhood Census % 2,358    

cen. tracts 
October 1, 

2001 
 
The data used in this paper come from two different sources (Table 1). On the 

one hand, the environmental ‘objective’ measures are published in the ‘Atmosphere 
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Pollution Monitoring System’ (Council of Madrid)9. The six air pollution variables are 

measured at 25 fixed operative monitoring stations as monthly averages of hourly 

readings in January 2008. The noise measure comes from 28 fixed operative monitoring 

stations, which include the above mentioned10. It indicates the equivalent continuous 

noise level in January 2008 (according to the standardized curve A). On the other hand, 

the three ‘subjective’ variables, which report the opinion of the people about pollution 

and noise in their own neighborhood, are available in the 2001 Spanish Census of 

Population at the level of census tracts. 

 
Figure 1 Location of the active monitoring stations in the districts of Madrid 

 
Figure 1 shows the locations of the operative air quality and noise monitoring 

stations. As it can be seen, most of them are located in the central districts and only a 

relatively small number can be found in the periphery. Note the reasonable coverage of 

                                                 
9 These data can be downloaded from the Municipality of Madrid’s web page (www.munimadrid.es). 
10 The three noise monitoring stations that do not register pollution are Cuatro Vientos (district 10), El 
Pardo (district 8) and Campo de las Naciones (district 21). 
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the domain under study by the monitoring stations since every district has one o more 

stations or, in the case of the peripheral less densely populated ones, share a station with 

their neighbors. 

 
3.2. Kriging process 

 

As it was pointed out in the introduction, there is a mismatch between the spatial 

level of the environmental measured ‘objective’ variables and the support for 2001 

Spanish Census of Population (at the census tract level). This disparity lead us to 

interpolate the values at the monitoring stations to the locations of every 2,358 census 

tracts using kriging in order to homogenize the support of the variables considered in 

the MEQI. 

 
Table 2. Descriptive statistics of the environmental variables 

Variables  Min Max Mean PVC* 

1. Objective indicators: 25 stations     
1.1. Air quality indicators     
SO2 Sulphur dioxide ( 3/g mµ ) 8.00 28.00 16.36 0.33 
CO Carbon monoxide ( 3/mg m )  0.23 0.81 0.58 0.23 
NOx Oxides of nitrogen ( 3/g mµ )  84.00 221.00 143.64 0.23 
NO2 Nitrogen dioxide ( 3/g mµ )  38.00 93.00 65.76 0.20 
PM PM10 particulate matter ( 3/g mµ ) 25.00 50.00 33.08 0.19 
O3 Ground-level ozone ( 3/g mµ )  11.00 23.00 16.68 0.19 
1.2. Noise pollution indicators:     
LAeq Equivalent continuous noise, dB(A) 50.10 71.30 65.63 0.06 
2. Subjective indicators: 2,358 tracts (%)     
pollut Houses with air-pollution problems 0.00 82.21 25.49 0.51 
ngreen Houses with scarce green areas 0.00 89.44 31.66 0.68 
noise Houses with noise outside 1.15 92.33 38.59 0.31 
* Pearson Variation Coefficient (std. dev. / mean) 

 

As a first step, in order to show the structure of the spatial dependence of each 

variable, we have computed their experimental and fitted theoretical variograms (Table 

3). In order to calculate the experimental variograms, we have considered 10 lags with a 

lag size of 600 meters. 

 

 Note that the variogram fitting shows a short range for NOx, NO2 and PM. In the 

rest of the cases, the sill is reached between 2.5 and 5.0 km. Once the variogram models 
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have been chosen, we next proceed to the kriged estimation. (ordinary kriging, OK) of 

the monthly averages of each pollutant in the total area of Madrid (and thus, in the 

2,358 census tracts of this city). 

 

Table 3. Variogram fitting 

Variogram model Environmental pollution 
variables  Sill Range 

Experimental and fitted 
variogram 

Sulphur dioxide  
( 3µg/m ) 

SO2 Spherical 28.8704 4600 
D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0. 

 10. 

 20. 

 30. 

 40. 

V
ar
io
g
ra
m 
:
 S
O2

 
Carbon 
monoxide 
( 3mg/m ) 

CO Gaussian 
Nugget 

0.0195 
0.0005 

3600 
 D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0.00 

 0.01 

 0.02 

 0.03 

Va
ri
o
gr
a
m 
:
 C
O

 
Oxides of 
nitrogen 
( 3µg/m ) 

NOx Gaussian 1130.4704 600 
D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0. 

 500. 

 1000. 

 1500. 

 2000. 

 2500. 

V
ar
io
g
ra
m 
:
 N
OX

 
Nitrogen dioxide 
( 3µg/m ) 

NO2 Spherical 174 950 
D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0. 

 100. 

 200. 

 300. 

V
a
ri
og
ra
m
 :
 N
O
2

 
Particulate 
matter 
( 3µg/m ) 

PM Gaussian 41.2736 650 
D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0. 

 10. 

 20. 

 30. 

 40. 

 50. 

 60. 

 70. 

 80. 

V
ar
i
og
ra
m
 :
 P
A
RT

 



 18

Variogram model Environmental pollution 
variables  Sill Range 

Experimental and fitted 
variogram 

Ground-level 
ozone 
( 3µg/m ) 

O3 Gaussian 
Nugget 

10 
0.4000 

2500 
 D1

M

 0.  1000.  2000.  3000.  4000.  5000. 
Distance (m)

 0. 

 5. 

 10. 

 15. 

Va
ri
o
gr
a
m 
:
 O
3

 
Noise (dB(A))  LAeq Spherical 16.6664 5000 

D1

M

 0.  1000.  2000.  3000.  4000.  5000. 

Distance (m)

 0. 

 10. 

 20. 

 30. 

V
a
r
i
o
g
r
a
m
 
:
 
c
o
n
t
_
a
c
u
s
t
i
c
a

 
 

Figure 2.a to 2.f show the resulting kriged values of each objective contaminant 

in a regular grid (25 meters mesh) and its corresponding standard deviation error map. 

In general, the precision of the kriged values varies across the sample, becoming worse 

for locations further away from monitoring sites. 

 

As can be seen in Figure 2, the city center (mainly districts 1 and 7) is the most 

contaminated place of Madrid, due to the significant emissions of road vehicles. This is 

why it registers the highest score in all the pollutants, with the exception of ground-level 

ozone because of the peculiar behavior of this variable. In effect, when O3 finds NOx in 

the air, it reacts and transforms itself into NO2. For this reason, it usually registers 

higher values in places with lower concentrations of NOx -mainly green areas and rural 

places-, and vice versa. Another sensitive area is the Northeast, in the surroundings of 

the International Airport, where SO2 and CO are also intensively active. However, there 

has not been found an elevated level of noise pollution there, maybe because the 

corresponding monitoring site is not located just in the airport but in the nearby 

residence area. The North and West are the least contaminated neighborhoods of the 

city, coinciding with the most extensive green areas of the city: El Pardo and Casa de 

Campo, respectively. 

 

Figures 2.c to 2.d show the resulting estimation map of NO2, NOx and PM, 

respectively, as well as their corresponding standard deviation error maps. These figures 
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clearly show a small range of the variograms, which represent the spatial 

autocorrelation of such contaminants. Because of this fact, estimates are very accurate 

nearby the monitoring stations, whereas pollutant levels far from them are approached 

by the mean. This circumstance must be taken into account when interpreting the kriged 

values obtained for these three pollutants. 

 

Figure 2 Estimation (left) and standard deviation error (right) maps of the 
pollution variables 

 

 

 

Fig. 2.a. Sulphur dioxide (SO2)

Fig. 2.b. Carbon monoxide (CO)

Fig. 2.c. Oxides of nitrogen (NOx)
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Fig. 2.d. Nitrogen dioxide (NO2)

Fig. 2.e. Particulate matter (PM)

Fig. 2.f. Ground-level ozone (O3)

Fig. 2.g. Noise
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Regarding noise, this variable highlights other critical parts of the city not 

sufficiently detected by the other objective indicators. They are mainly the Southeastern 

industrial districts of the city (18 and 19) and (though to a lesser extent) the East and 

Northwestern segments of the M-40 bypass, which are the most congested ones. 

 
3.3. Computing the MEQI with DP2 method  

 
In the previous sections, we have presented our research variables and we have 

kriged the objective indicators with the intention of building the matrix V of partial 

indicators. Note that we have not followed the same process as usual in this kind of 

applications. Firstly, we have kriged the objective indicators to secondly building a 

synthetic index, what allows including other subjective variables. As shown above, this 

procedure leads to estimators that are more accurate. 

 

In order to compare the results of objective measures (EQI) and mixed objective-

subjective indexes (MEQI), we have computed several indexes. Firstly, we have applied 

DP2 to three matrixes: V1, which is of order 6 air-pollution objective indicators by 

2,358 census tracts, V2, which is of order 7 objective indicators (air-pollution plus 

noise) by 2,358 census tracts and V3, which is of order 10 objective-subjective 

indicators by 2,358 census tracts. Secondly, we have also applied PCA to the total 10 

indicators with the purpose of comparing the MEQI results obtained with both DP2 and 

PCA. 

 

Before starting the DP2 computation process, we must determine how the partial 

indicators contribute to the global one; i.e. if they have a positive or negative impact on 

environmental quality. As it was stated before, all the indicators must have a positive 

contribution to the phenomenon we are measuring, which is -in our case- environmental 

quality. In our case, the whole set of variables is negatively related to environmental 

quality. Hence, we decided not to change the sign of all the variables so as instead of 

measuring environmental quality, we will measure pollution; i.e. an increase/decrease of 

the values of any partial indicator will correspond with an improvement/worsening in 

pollution. 
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Next, for each matrix V1, V2 and V3, we have computed their corresponding DF 

considering the minimum value of every partial indicator as the reference base 

( { }min kjvv∗ = ). As a result, a higher value in the global indicator will imply a higher 

pollution level, since it implies a longer distance respect to a theoretical ‘most-desired’ 

situation. After that, we have calculated the correlation coefficients of each variable and 

their corresponding DF what lead to a first arrangement of the variables, in order to 

compute a first estimation of DP2. The final DP2 indexes reached the convergence after 

2, 3 and 2 iterations for MEQI, EQI7 and EQI6, respectively. In Table 4, we show the 

main results of DP2 computations for the three environmental indexes. Additionally, we 

have also included the coefficients of the first component (F1) computed after the 

application of PCA. From a total number of 4 components, we have selected the first 

one, which is an 80% of the total variance (10 environmental indicators). 

 
Table 4. Main results of DP2 and PCA computations for MEQI and EQI 

 Statistics for the last iteration of DP2 PCA 
 Rank Correlation coefficient Correction factor Comp. 1

 MEQI
DP2 

MEQI 
DP2 EQI7 EQI6 MEQI EQI7 EQI6 MEQI 

PCA 
1. Objective kriged indicators:         
SO2 Sulphur dioxide ( 3/g mµ ) 9 0.46 0.56 0.53 0.56 0.62 0.74 0.03 
CO Carbon monoxide ( 3/mg m ) 5 0.59 0.68 0.71 0.46 0.46 0.45 0.56 
NOx Oxides of nitrogen ( 3/g mµ ) 1 0.78 0.90 0.92 1.00 1.00 1.00 0.90 
NO2 Nitrogen dioxide ( 3/g mµ )  2 0.72 0.82 0.84 0.21 0.21 0.21 0.86 
PM PM10 particulate matter ( 3/g mµ ) 8 0.52 0.60 0.73 0.37 0.38 0.49 0.88 
O3 Ground-level ozone ( 3/g mµ ) 10 -0.10 -0.10 -0.10 0.55 0.56 0.57 -0.03 
LAeq Noise, dB(A) 3 0.66 0.72 - 0.77 0.77 - 0.24 
2. Subjective indicators (%):         
pollut Houses with air-pollution 4 0.66 - - 0.87 - - 0.15 
ngreen Houses with scarce green areas 6 0.58 - - 0.83 - - 0.06 
noise Houses with noise outside 7 0.56 - - 0.51 - - 0.08 

Note: MEQI: Mixed Environmental Quality Index, EQI: Environmental Quality Index, Rank: entrance 
order of partial indicators in the final DP2, Correlation coefficient: Pearson correlation coefficient of each 
indicator with the final DP2, Correction factor: ( )2

1, 2,...,11 k k kR ⋅ − −−  or the part of the variance that is not 

explained by the previously introduced indicators, PCA: Prinicpal Components Analysis, Comp. 1: first 
component. 

 

Concerning DP2 results, the correlation coefficients of the indicators and the final 

index -produced by the last iteration of DP2- are quite high and significant for the three 

indexes. Only in the case of ground-level ozone (O3) the correlation is low and even 

negative (-0.10). As already shown, this variable has a peculiar behavior since it 
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experiences an opposite performance than the oxides of nitrogen (NOx), which is the 

most influent variable. In effect, NOx registers the highest correlation with the final DP2 

in both indexes. This is why in the computation of DP2, it enters the first contributing 

all its variance to the final DP2 (correction factor=1). While a primary gaseous pollutant 

-NOx- is the most important variable, the second contributor to DP2 is a secondary 

pollutant (NO2). Nevertheless, it only donates to the final DP2 a 21% of its variance 

(correction factor=0.21), since the remaining 79% is already present in NOx. 

 

In the third place (only in the case of MEQI-DP2 and EQI7), the variable of 

‘objective’ noise (LAeq) is also highly correlated with DP2 to which it donates a 77% of 

its variance. For this reason, noise will have a relevant role in those indexes that include 

this variable. It must be noted that though O3 is the least important indicator in both 

global indexes, the rest of partial indicators collects less than the 50% of its variance. 

This is why it gives to the final DP2 a 55-57% of its information. It must also be 

highlighted the high level of contribution of the subjective indicators in MEQI-DP2, 

mainly ‘pollut’ (proportion of houses with air pollution) and ‘ngreen’ (proportion of 

houses with scarce green areas), with a correction factor above 0.80 in both indexes. It 

can be due to the originality of this richer information (originally available for the 

complete set of 2,358 census tracts), which is based on citizens’ perceptions. 

 

The decisive importance of NOx and NO2 in the composition of EQIs (above 0.90 

for NOx and 0.80 for NO2 in both EQI7 and EQI6) can produce less accurate estimates 

in the locations faraway the monitoring stations. In effect, as stated before the lowest 

degree of spatial autocorrelation exhibited by these pollutants (joint with PM) produces 

kriged estimates only accurate nearby the monitoring stations, whereas the locations far 

from them are approached by the mean. Even in the case of F1 (first component in 

PCA), the highest component coefficients correspond to NOx (0.90), PM (0.88) and 

NO2 (0.86)11. This is another reason that supports our preference for MEQI (calculated 

with DP2), in which the important role of these pollutants is shared with other variables. 

 
The computation results are apparently quite similar for the four indexes (EQI6, 

EQI7, MEQI-PCA and MEQI-DP2), though some interesting differences can be 
                                                 
11 It must been remarked that the three subjective indicators are basically present in the second 
component; i.e. the first component cannot conveniently include all the relevant information. All the 
computations are available upon request from the authors.   
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detected in their spatial distribution. In Figure 3, we have represented these indexes. 

However, we have previously standardized the three DP2 variables to facilitate their 

interpretation. In effect, though the original DP2 values are nonsensical in real terms, it 

is possible to compute the deviation to the mean value (multiplied by 100). Therefore, a 

value of 100 will correspond to the DP2 city average and values above/below 100 mean 

pollution levels better/worse than the city average. 

 
Figure 3 Distribution of the environmental quality indexes in the city of Madrid 
 

EQI6-DP2
6 air-pollutants

115 to 171
100 to 115
80 to 100
48 to 80

EQI7-DP2
7 objective vars.

115 to 152
100 to 115
80 to 100
29 to 80

MEQI-PCA
total 10 vars

0.85 to 2.87
0.02 to 0.85

-0.82 to 0.02
-2.08 to -0.82

MEQI-DP2
total 10 variables

115 to 149
100 to 115
80 to 100
30 to 80

Notes: The classification method is “natural breaks” (Jenks and Caspall 1971) 
 

 A first analysis of the maps can conclude that they reach to the same conclusion: 

the highest levels of pollution are concentrated in the ‘Central Almond’ (the 7 central 

districts surrounded by the M-30 first belt) and the industrial northern and southeastern 

peripheries. The lowest levels of pollution seem to be located in some eastern/western 

districts. Nevertheless, some interesting differences can be appreciated when comparing 

these results. Actually, EQI7 seems to estimate better those districts in which an extra 

noise monitoring station is places, particularly districts 8 and 10. Besides, MEQI-DP2, 

which also includes subjective information, when compared with the objective indexes, 
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penalizes some peripheral neighborhoods affected by the main radial highways and the 

M-40 second belt; i.e. people seem to be particularly sensitive to traffic congestion and 

its consequent noise. On the other side, northwestern neighborhoods are better 

perceived possibly due to their proximity to big green areas (El Pardo and Casa de 

Campo), as well as the existence of several groups of high-class residences. Regarding 

MEQI-PCA, the main function played by the oxides of nitrogen and particulate matter 

in the final index is possibly biasing the results, since they benefit the southeastern 

districts but penalize the whole north periphery area. One interesting result is the higher 

level of pollution detected by both MEQI in the census tracts closed to the International 

Airport. In effect, as stated before, while the monitoring stations nearby are not located 

in the same airport, people’s perceptions worsen the kriged objective estimates. 

 

4. Main conclusions 

 

As it is well known, the elaboration of Environmental Quality Indexes for big 

cities is one of the main topics in regional and environmental economics. However, 

research in this topic is in his early stages and there is a vast field for new insights. In 

this paper, we have contributed to the development of the topic with several practical 

and methodological novelties. Concerning the first, we build a Mixed Environmental 

Quality Index with both objective and subjective environmental indicators. The 

inclusion of subjective indicators must be regarded because people (e.g. prospective 

homebuyers) most likely evaluate air quality based on whether or not the air ‘appears’ 

to be polluted or what the media say about the local air or noise contamination. In 

addition, while in the literature it is difficult to find environmental indexes with more 

than tree partial indicators, we have considered seven objective air-pollution variables 

(SO2, CO, NOx, NO2, PM and O3) as well as a noise indicator. 

 

The elaboration of Mixed Environmental Quality Indexes can lead to the well-

known ‘change of support’ problem. In effect, the subjective indicators are commonly 

available for much more locations than the objective ones. Kriging is the solution we 

propose to overcome this mismatch of spatial support since it takes into account spatial 

dependence, which is a usual effect in the environmental variables. Although this scope 

is not new in the literature, we propose -as an innovation- a change of order in the 

procedure, since it leads to lower estimation errors. Firstly, we obtain the kriged 
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estimates of the partial objective indicators for the desired locations, and secondly we 

compute the global index. Furthermore, we also recommend using a distance indicator -

the Pena Distance or DP2- instead of other synthesis methods, such as PCA. On the one 

hand, PCA is based on a mere reduction of information, while DP2 uses all the valuable 

information contained in the partial indicators, eliminating all the redundant variance 

present in these variables. On the other hand, DP2 has good statistical properties; i.e 

multidimensionality, comparability and comprehensibility. 

 

The abovementioned practical and methodological novelties have empirically 

been checked in a study case: the elaboration of a Mixed Environmental Quality Index 

for the city of Madrid. Results have been certainly satisfactory and some interesting 

differences can be detected in their spatial distribution. For example, since the proposed 

MEQI includes subjective information, when compared with the objective indexes, it 

penalizes some peripheral neighborhoods affected by the main radial highways and 

belts. On the other side, it favors those neighborhoods that are close to big green areas 

and high-class residences. Besides, the PCA estimation is not always capable of 

including all the relevant information in the first component. In our case, this first 

component is mainly determined by the oxides of nitrogen and particulate matter, which 

kriging estimators are less accurate, and seems to underestimate the subjective 

indicators. 

 

Once shown the main concluding remarks, new future lines of research 

immediately arise. For instance, in certain situations, cokriging could overcome better 

than kriging the ‘change of support’ problem or even extending this framework to a 

spatio-temporal context. Besides, the use of observation networks could reduce the 

estimation errors in the interpolative stage of the elaboration of the index. At last, in 

other empirical context, Mixed Environmental Quality Indexes could be used as 

explanatory variables in hedonic housing price models. 
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