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With or Without U?

The appropriate test for a U shaped relationship.

Jo Thori Lind and Halvor Mehlum∗

September 2007

Abstract

Non-linear relationships are common in economic theory, and such relationships

are also frequently tested empirically. We argue that the usual test of non-linear

relationships is flawed, and derive the appropriate test for a U shaped relationship.

Our test gives the exact necessary and sufficient conditions for the test of a U shape

in both finite samples and for a large class of models.

JEL: C12, C20
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1 Introduction

Economics is full of humps and U’s. It is often seen as an intriguing possibility that a

relationship which is positive in some ranges, may turn negative in other ranges. Famous

examples of non-monotone relationships are the ”Laffer curve”, the ”Kuznets curve” (an

inverted U between income and inequality, Kuznets (1955)), and the ”Environmental

Kuznets curve” (inverted U between income and pollution, Selden and Song (1994) and

Grossman and Krueger (1995)). In growth theory, poverty traps are generated if the

growth rate of per capita capital stock first increases and then decreases with income
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(Nelson 1956). In industrial organization it has been found that innovation is most intense

at intermediate levels of competition (Aghion et al. 2005). In political science, a finding

is that countries with an intermediate level of democracy are more prone to war compared

to both dictatorships and democracies (Hegre et al. 2001). Finally, it has been argued

that there is a hump shaped relationship between union bargaining centralization and

wage growth (Calmfors and Driffill 1988), although few econometric studies of this exists

mostly due to the scarcity of data.

For many of the examples above, the existence of genuinely U shaped (or hump shaped)

relationships have been the subject of intense debate. The debates takes many forms and

takes issue with conceptual, empirical, and theoretical problems. There is one important

common empirical question, however, that to the best of our knowledge has not been

adequately addressed anywhere in this diverse literature. Namely: Given the estimates of

a regression model, what is the test at level α of the presence of a U shape?

In most empirical work trying to identify U shapes, the researcher include a non-

linear (usually quadratic) term in an otherwise standard regression model. If this term is

significant and, in addition, the estimated extremum point is within the data-range, it is

common to conclude that there is a U shaped relationship. We argue in this paper that

this criteria is too weak. The problem arises when the true relationship is convex but

monotone. A quadratic approximation will then erroneously yield an extreme point and

hence a U shape.

In order to test properly for the presence of a U shape, on some interval of values,

we need to test whether the relationship is decreasing at low values within this interval

and increasing at high values within the interval. As the distribution of the estimated

slope at any point is readily available, a test for the sign of the slope at any given point is

straightforward. A test for a U shape gets more involved, however, as the null hypothesis is

that the relationship is increasing at the left hand side of the interval and/or is decreasing

at the right hand side. For this composite null hypothesis, standard testing methodology

is no longer suitable. Fortunately, a general framework for such tests has been developed

by Sasabuschi (1980). We adopt his general framework to test for the presence of a U

shaped relationship. The extension to an inverse U shape is of course trivial.

We have searched through all articles published in the American Economic Review

since 2001 and found seven articles that uses regression techniques to identify a U or
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inverted-U shape in their data. Many of them conclude that they have found significant

non-monotone relationships. In this paper we will present the appropriate test and then

contrast it to the tests employed by the seven articles. In addition we provide a detailed

example of the test in the case of a Kuznets curve.

2 A test of a U shape

In order to allow the regression to have a U shape, the standard approach has been to

include a quadratic or an inverse term in a linear model. A more general formulation is

yi = α + βxi + γf (xi) + ξ′zi + εi , i = 1 . . . n (1)

Here x is the explanatory variable of main interest (e.g. income) while y is the variable

to be explained (e.g. inequality), ε is an error term, and z is a vector of control variables.

The known function f gives (1) a curvature and, depending on the parameters γ and β,

(1) may be a U or not. We assume that f is chosen so that the relationship has at most

one extreme point. In that case the relationship is either hump-shaped, U shaped, or

monotone. In the following we focus on the case of testing for a U shape1

Given (1) and the assumption of only one extreme point, the requirement for a U

shape is that the slope of the curve is negative at the start and positive at the end of

a reasonably chosen interval of x-values [xl, xh]. The natural choice of interval in many

contexts is the observed data range [min (x) , max (x)]. If we want to make sure that

the inverse U shape is not only a marginal phenomenon the interval could also be in the

interior of the domain of x. To assure at most one extreme point on [xl, xh], as assumed

above, we require f ′ to be monotone on this interval. A U shape is then implied by the

conditions

β + γf ′ (xl) < 0 < β + γf ′ (xh) (2)

If either of these inequalities are violated the curve is not U shaped but inversely U shaped

or monotone.

In order to test whether the conditions in (2) are supported by the data, we need to

test whether the combined null hypothesis

H0 : β + γf ′ (xl) ≥ 0 and/or β + γf ′ (xh) ≤ 0 (3)

1The test for an inverse U is achieved by changing the sign on y.
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can be rejected in favour of the combined alternative hypothesis

H1 : β + γf ′ (xl) < 0 and β + γf ′ (xh) > 0. (4)

Due to the linearity of the specification (1) with respect to β and γ , the test of (3) vs. (4)

is simply a test of linear restrictions on β and γ. The difficulty is that the test involves

a set of inequality constraints. Hence the set of (β, γ) that satisfy H1 is a sector in R2

contained between the two lines β + γf ′ (xl) = 0 and β + γf ′ (xh) = 0.

Assuming that εi ∼ NID (0, σ2), Sasabuchi (1980) shows that a test of H0 in (3) based

on the likelihood ratio principle takes the form

Reject H0 at the α level of confidence only if either

HL
0 or HH

0 or both can be rejected at the α level of confidence.

where HL
0 or HH

0 are the null hypotheses in the two standard one-sided tests

HL
0 : β + γf ′ (xl) ≥ 0 vs HL

1 : β + γf ′ (xl) < 0

HH
0 : β + γf ′ (xh) ≤ 0 vs HH

1 : β + γf ′ (xh) > 0

The rejection area is

Rα =

(β, γ) :
β + γf ′ (xl)√

F ′
l Σ̂

−1Fl

< −tα and
β + γf ′ (xh)√

F ′
hΣ̂

−1Fh

> tα

 (5)

where Fi =

 1

f ′ (xi)

 , i = l, h

and where Σ̂ is the estimated covariance matrix of the estimated β and γ and tα the

α-level tail probability of the t distribution with the appropriate degrees of freedom. Rα

is also a convex cone in parameter space.

The test above is also known as an intersection-union test (see e.g. Casella and Berger

2002, Ch 8.2.3); Sasabuchi’s (1980) main contribution is to show that in our case, the

likelihood ratio test takes the form of an intersection-union test.

The two most common specifications of (1) is the quadratic form

yi = α + βxi + γx2
i + ξ′zi + εi (6)

and the inverse form

yi = α + βxi + γx−1
i + ξ′zi + εi. (7)
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In the first case, the presence of a U implies β + 2γxl < 0 and β + 2γxh > 0. A U shape

in the second implies β − γx−2
l < 0 and β − γx−2

h > 0. In both cases, the test is easily

carried out as two ordinary t-tests. 2

An equivalent test can be found by constructing a confidence interval for the minimum

point and checking whether this confidence interval is contained within the interval [xl, xh].

Particularly, notice that the estimated extreme point of (1) is

x̂min = f ′−1

(
− β̂

γ̂

)

where f ′−1 is the inverse of the derivative of f . From the work of Fieller (1943), it is known

how to construct an exact confidence interval for the ratio of two normally distributed

estimates. In our case a (1− 2α) confidence interval for −β̂/γ̂ is given by

θ̂l, θ̂h =
s12T

2
α − β̂γ̂ ± Tα

√
(s2

12 − s22s11) T 2
α + γ̂2s11 + β2s22 − 2s12β̂γ̂(

γ̂2 − s22T 2
α

) , (8)

and a (1− 2α) confidence interval for x̂min is [x̃l, x̃h] = f ′−1
([
−θ̂l, θ̂h

])
. To perform

the test of (3) vs. (4) at the α level of significance is then equivalent to see whether

the (1− 2α) confidence interval for x̂min is inside the data range, [x̃l, x̃h] ⊂ [xl, xh]. To

find a confidence interval for x̂min, one could also use the delta method, which would be

only asymptotically correct. For finite samples, however, this may be severely biased. In

addition, also when using the delta method the (1− 2α) interval is the proper interval to

use when testing for a U shape at α−level.

The testing strategy is easily carried over to more involved estimations. First, it is

readily extended to a more general structure3 like yi = α+
∑H

j=1 βjfj (x)+ z′iγ + εi where

fj is a set of known functions. The appropriate test of the presence of a inverse U shaped

2A routine to perform the test in these two cases in the software package Stata is available from the

authors
3The difficulty with this general specification is that although the relationship is decreasing at the

left hand side of the relevant interval and increasing at the right hand side, it may not be an inverse

U shaped relationship inside, but instead for instance a M shaped relationship. It is then necessary to

perform a joint test of the whole shape of the relationship, which is much more complicated. See Doveh

et al. (2002) for some developments in this direction.
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relationship between x and y is now

H0 :
∑

βjf
′
j (xl) ≤ 0 and/or

∑
βjf

′
j (xh) ≥ 0

vs.

H1 :
∑

βjf
′
j (xl) > 0 and

∑
βjf

′
j (xh) < 0.

(9)

The test is also applicable to studies of U shaped relationships in the full class of

generalized linear models, encompassing most models of limited dependent variables. As

the estimated parameters are asymptotically jointly normally distributed, the distribution

of the test is asymptotically as explained above. In these cases it is only asymptotically

valid, but as parameters estimates also only have known properties in large samples, this

is not a limiting factor.

3 A comparison with applied work

We have read through a large number of applied econometrics works where U shapes are

identified using (6). Most authors focus on the significance and sign of both β̂ and γ̂.

How does the significance of these parameters relate to the test in (5)?

If the data range is the whole of R the significance of γ̂ (with right sign) is necessary

and sufficient for rejecting H0. If the data range is any subset of R, the significance of γ̂

is still necessary but not sufficient.

If the data range is exactly R+ or R− the significance (with right sign) individually of

both β̂ and γ̂ is necessary and sufficient for rejecting H0. If the data range is a subset of

R+ (or of R−) the individual significance of both β̂ and γ̂ is necessary but not sufficient.

If the data range is neither R, R+ or R−, the necessary and sufficient conditions are

only found using (5). Obviously, a simple first check is whether the estimated minimum

point
(
x̂min = −β̂/ (2γ̂)

)
itself is within the date range.

Most works use the criteria that if both β̂ and γ̂ are significant and if the implied

extreme point is within the data range, they have found a U. This is a sensible criteria

but it is neither sufficient nor necessary. It is insufficient as the estimated extreme point

may be too close, given the uncertainty, to a end point of the data range. It is not

generally necessary as β̂ may be zero if the data range extends to both sides of x = 0.

A small number of works use the delta method to calculate the standard deviation of

the extreme point. This method, though sound, is only reliable with a very large number
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of observations.

We have in particular looked at articles in the American Economic Review. There are

seven articles since 2001 that uses regression techniques to identify a U shape. All use a

formulation similar to (6).

Abdul and Mody (2006) uses several specifications, the closest they come to assessing

the significance of the U shape is when they estimate (6) and find that both γ̂ and β̂ have

the right sign and are individually significant. Based on this they conclude that there is

an inverted U shape. They do not, however, calculate the estimated extreme point.

Aghion, Griffith, and Howitt (2006) uses their estimates to calculate predicted values

ŷ. They find that the estimated minimum is inside the x−range, but they do not explicitly

asses the significance of the result.

Carr, Markusen, and Maskus (2001) do not test their U shape against the alternatives

of monotone relationships. Their specification does only include γx2 and not βx while

their x-range covers both negative and positive values. Hence, they rule out monotonically

increasing or decreasing relationships between x and y.

Imbs and Wacziarg (2003) first use nonparametric techniques to find the relationship

between per capita income x and sectoral concentration y and find a U shape. They use

this technique also to construct 95% intervals for the minimum point. They then turn to

a parametric specification with x and x2 in the right hand side. Both coefficients have

the right sign and are individually significant. The significance of the U shape is assessed

by plotting x and ŷ versus the scatter plot of the data. The regression curve fits the

data very well and based on the plot alone one can safely conclude that the U shape is

significant at all conventional levels. But, the precise significance level is unclear and so

is the precision of the estimated minimum point.

McKinnish (2004) and Kalemli-Ozcan, Sørensen, and Yosha (2003) find that both β̂

and γ̂ have the right sign and are individually significant. Based on this both conclude

that there is an inverted U shape.

Sigman (2002) includes x and x2 and find that both β̂ and γ̂ have the right sign in

all specifications. She also calculates the maximum point and find it to be within the

data range. She also writes (p.1157): “The GDP coefficients always appear to follow

an inverted U shaped pattern, but are jointly statistically significant at 5 percent only in

columns (3) and (4)”. Testing for joint significance of β̂ and γ̂ is, however, not particularly
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Table 1: Estimates of the Kuznets curve

Dependent variable: Gini index

log per capita GDP (Xi) β̂ = 32.27

(11.63)∗∗∗

log per capita GDP squared (X2
i ) γ̂ = −1.88

(0.65)∗∗∗

Slope at Xl β̂ + 2γ̂Xl = 8.15

(3.65)∗∗

Slope at Xh β̂ + 2γ̂Xh = −4.33

(2.34)∗

Sasabuchi test for inverse U shape 1.85

[0.033]

Extremum point −β̂/ (2γ̂) = 8.60

90% confidence interval, Fieller method [7.44, 9.58]

90% confidence interval, Delta method [7.73, 9.47]

Robust standard errors in parenthesis and p-values in square brackets.

***, ** and * denotes significant at the 1%, 5%, and 10% level.

relevant when looking for a U shape. As we have argued above, the individual significance

of γ̂ is always a necessary condition in the test of a U shape.

4 Illustration

As a concrete illustration of our methodology, we use a recent study by Chambers (2007).

The paper contains a standard Kuznets regression between GDP and inequality. The

data are an unbalanced panel of 29 countries giving a total of 232 observations. We

have information on the level of inequality measured by the Gini coefficient, log of PPP

adjusted GDP per capita, and a set of control variables (see Chambers (2007) for details).

Results from the regression analysis, test statistics from the Sasabuschi-test, and the

derived Fieller interval are reported in Table 1. The conventional method would simply
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test the significance of β̂ and γ̂, which in this case yields a t-values of 2.77 and 2.89. With

the appropriate Sasabuchi-test, however, we see that the test for a positive slope at xh

yields a t-value of only 1.85 and hence a p-value of 0.032 with the required one-sided test.

Figure 1 illustrates the estimated relationship4, the confidence interval for the maxi-

mum and the two lower bounds on the slopes in each endpoint. We see that the turning

point of the relationship is quite close to xh, and that the slope of the curve at xh is

negative, but not very steep and only just significant at the 5% level. Hence there is a

significant hump shaped relationship over the range of the data, but the significance of

this relationship is weaker than what would be detected by traditional approaches.

Figure 1: Illustrative Kuznets curve
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5 Conclusion

In this paper we have provided an appropriate test of a U shaped relationship in a re-

gression model. In the applied econometrics literature a large number of articles tries to

identify non-monotone relationships using regression analysis. Hardly any of these use

adequate formal procedures when they test for the presence of a U shape. To the best

of our knowledge none has used the simple test that we are suggesting. Most works,

nevertheless, seems to be on fairly safe ground when they claim to have found a U shape.

The reason is that the common practice is to check two necessary conditions, namely that

the second derivative has the right sign and that the extremum point is within the data

4We have used average values for all the controls.
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range. This criteria will be misleading, however, if the estimated extremum point is too

close to the end point of the data range. Our test gives the exact necessary and sufficient

conditions for the test of a U shape. In addition, the interval interpretation provides a

confidence interval for the extremum point.
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