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Abstract

Due to the increasing risk of inflation and diminishing pension benefits, insurance

companies have started selling inflation-linked products. Selling such products the

insurance company takes over some or all of the inflation risk from their customers. On

the other side financial derivatives which are linked to inflation such as inflation linked

bonds are traded on financial markets and appear to be of increasing popularity. The

insurance company can use these products to hedge its own inflation risk. In this article

we study how to optimally manage a pension fund taking positions in a money market

account, a stock and an inflation linked bond, while financing investments through

a continuous stochastic income stream such as the plan member’s contributions. We

use the martingale method in order to compute an analytic expression for the optimal

strategy and express it in terms of observable market variables.
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1. Introduction

In a classical defined contribution pension plan, the plan member bears a considerable

risk due to inflation. As investment into a pension plan is in general carried out over a long

period of 30 years or more, the plan member may lose a considerable amount in real value

of his pension benefit. In fact, many plan members may not be aware that the benefits

they will obtain from a classical, non-inflation-linked pension plan may not be sufficient

to carry their expenses in the future, as price levels may have increased due to inflation.

A simple calculation shows that given an annual inflation rate of 1, 5% over 30 years will

reduce the real value of 100.000 Euro then to 63.976 Euro today. It therefore makes sense

to link pension products to inflation. Selling such products, the insurance company enters

into a considerable risk itself. The financial management of the insurance company must

therefore think how to invest the plan members’ contributions optimally in the presence

of inflation. One way to decrease the risk due to inflation is to trade in so called inflation-

linked products. These products enjoy increasing popularity in the UK, Canada, Australia

and some continental European states, while in Germany the state agency for Finance is

still evaluating in how far interest rate related costs can be lowered by the introduction

of inflation-linked bonds. Other inflation-linked products are for example inflation swaps,

puts, calls, caps and floors. For an illustration of these products we refer to Korn and

Kruse [12]. In this article, we mainly consider inflation-linked bonds of the following type.

Definition 1. An inflation-linked coupon bearing bond with non-inflation protected face

value F is a bond paying coupons Ci
I(ti)
I(t0)

at times ti, i = 1, ..., n and a final payment F at

time tn = T where I(t) denotes the value of some specific consumer price index at time

t..

In theory individual investors could use these inflation-linked products to insure their

pension benefits against inflation risk, but according to Korn and Kruse [12], the demand
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in inflation-linked products among private investors is rather low. On the other side, firms

whose profits are strongly negatively correlated with inflation, and to which insurance

companies clearly belong, have recognized the advantages of inflation-linked products and

trade large quantities of them in their portfolios. In our study we consider the optimal

asset allocation problem of an insurance company, that trades in a money market account,

a stock and an inflation-linked bond while financing its investments by the pension plan’s

members contributions. We assume that the money market account and the stock are

specified as in the classical Black-Scholes model, see [4], while the inflation index I(t) will

be specified as a geometric Brownian motion , whose drift rate is determined from the

classical Fisher equation [9]. We will give a heuristic derivation of this in the following

section. For simplicity, we fix a time horizon [0, T ] which corresponds to the time period

spanning a specified plan member’s entry into the pension plan until the point when he

starts to receive the pension benefit. We furthermore assume that each plan member’s

contributions to the pension fund are defined as a percentage c of his salary Y (t), which we

assume is stochastic and follows a geometric Brownian motion. We allow a rather general

correlation structure between stock S(t), inflation index I(t) and salary Y (t). Obviously,

the problem of optimal management of pension funds has been dealt with before, both

in discrete and continuous time. Important contributions addressing the continuous time

framework are due to Blake et al. [3], Cairns ( [5], [6]) and Deelstra et al ( [7],[8] ). All of

these authors, except Delstra et al in [8], use stochastic dynamic programming in order to

solve the corresponding optimization problems. Being in line with [8], we use the so called

martingale approach, which we describe in section 4. None of the articles above considers

the feature of inflation and its consequences on pension fund management. Pension plan

management in the presence of inflation has been considered by Battocchio and Menoncin

[1] but these authors do not consider inflation linked bonds. Furthermore they use the

stochastic dynamic programming approach. The main innovation of our framework is that

we introduce inflation-linked bonds in our model and thereby give the insurance company

effective means in order to hedge the risk due to inflation.
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Our article is organized as follows. We give a heuristic derivation for the dynamics of

the inflation index based on the Fisher equation in Section 2. In Section 3, we set up the

mathematical framework of our model, while in section 4, we compute the optimal asset

allocation problem of the insurance company by solving analytically the corresponding

stochastic optimal control problem. In section 5, we consider some numerical examples

and discuss the qualitative behavior of the optimal investment strategy. We summarize

the main results in section 6.

2. Inflation as a stochastic process and the Fisher equation

We consider an inflation index such as the MUCPI ( Monetary Union Consumer Price

Index ) which is a measure of inflation, different from the monthly or yearly inflation rate,

which is often announced in the news, in particular at the end of the financial year or before

critical votes. In this section we will specify the dynamics of the inflation index I(t) based

on the well known Fisher equation. Fisher [9] gives a derivation based on macroeconomic

principles, which relates the nominal interest rate rN , the real interest rate rR and the

expected rate of inflation over the specific planning horizon in the following formula

rN − rR = Ẽ (i) (1)

Fisher’s original formulation does not include time dependency nor does it take into

account any consideration under which measure the equation above is satisfied. The

modern theory of arbitrage leads us to the assumption that the expectation in the Fisher

equation has to be satisfied under a risk neutral measure. It is not clear whether this risk

neutral measure is unique as the market is likely to be incomplete. We assume however

that one risk neutral measure is chosen and fixed for the remaining of this article. We

denote expectations under this measure with Ẽ. On the other side Fisher’s equation refers

to a rather static setup. This can however easily be adapted to a dynamic, but discrete

time framework. One way to do this is to define the relative inflation within the period
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[t, t+∆t] as measured by the inflation index via

i(t, t+∆t) =
I(t+∆t)− I(t)

I(t)
(2)

The Fisher equation would then translate into

rN (t)− rR(t) =
1

∆t
Ẽ ( i(t, t+∆t)| Ft)

where Ft denotes the information available at time t. One way to obtain a continuous

time inflation rate would now be to consider the limit i(t) = lim∆t→0
i(t,t+∆t)
∆t . Assuming

that I(t) is a stochastic process itself, it is not clear whether this limit exists and if so,

in what sense. In fact, if it would exist in the classical sense of standard calculus, an

immediate consequence would be, that the inflation index could be written as I(t) =

I(0) exp
(∫ t

0 i(s)ds
)

. Such a model has been discussed in [12] where it was assumed that

i(t) follows a mean reverting Ornstein-Uhlenbeck process. Assuming that i(t) is an Itô-

process in this case however has the consequence that I(t) is a finite first variation process.

This would lead us to severe mathematical problems. Though a systematic quantitative

analysis of the dynamic of the inflation index still needs to be carried out, we believe

that the inflation index rather behaves like a stock which in general is assumed to display

infinite first variation. One way to resolve this issue, is to assume that the process i(t)

is in fact the time derivative of an Itô process in the distributional sense which leads

us into the theory of white-noise and Malliavin calculus. We avoid this rather technical

and mathematical discussion and instead simply assume that the inflation index is an Itô

process of the following type

dI(t)

I(t)
= µ(t)dt+ σI(t)dW̃ (t) (3)

where W̃ is a Brownian motion under the chosen risk neutral measure. If we believe

that a Brownian motion setup is accurate and that the inflation index remains positive,

this is the most general form the inflation index may have. This equation suggests that

the relative growth of the inflation index dI(t)
I(t) consists of a drift part µ(t)dt and a part
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without trend σI(t)dW (t), which specifies the level of volatility. For simplicity we assume

here that the volatility σI(t) is constant in time and deterministic, a similar assumption

as in the Black-Scholes model. In the following we will relate heuristically the drift term

µ(t) to the Fisher equation. Based on equation (3) the relative inflation over the period

[t, t+∆t] can be approximated as follows

i(t, t+∆t) =
I(t+∆t)− I(t)

I(t)
≈ µ(t)∆t+ σI∆W̃ (t) (4)

Taking conditional expectation leads to

Ẽ (i(t, t+∆t)| Ft) ≈ µ(t) ·∆t (5)

and finally dividing by ∆t and taking the limit for ∆t → 0 we obtain from the Fisher

equation

rN (t)− rR(t) = lim
∆t→0

E (i(t, t+∆t)|Ft) = µ(t) (6)

Note that we obtained the limit only after taking expectation and that this argument

could be generalised by taking distributional derivatives. Nevertheless, we obtain for the

dynamic of the inflation index under the subjective measure, taking into account a market

price of inflation risk θI ,

dI(t)

I(t)
= (rN (t)− rR(t) + σIθI) dt+ σIdWI(t). (7)

We will use in the following discussion. Note that this form of the dynamics of the inflation

is also in line with the specification in Korn and Kruse [12] where the dynamics of the

inflation were derived in analogy to the Garman and Kohlhagen model for exchange rate

dynamics.

3. Management of pension funds with inflation-linked products

In this section we will setup the mathematical framework in which an insurance com-

pany is able to invest into a riskless money market account, a classical stock and an

inflation-linked bond, financing its investments from the contributions of plan members.



Optimal management and inflation protection for defined contribution pension plans 7

For this we assume that the inflation index I(t) follows the dynamic discussed in the

previous section and which is displayed in equation (7). Let us consider the inflation-

linked bond from Definition 1. Assuming that inflation is of the type discussed in the

previous section and that rN resp. rR are constants, a fair price for the inflation-linked

bond from above can be derived with a Black-Scholes like argument, see Korn and Kruse

[12]. This price B(t, I(t)) satisfies

B(t, I(t)) =
n∑

i=1

Ci
I(t)

I(t0)
e−rR(t−ti) + F

I(t)

I(t0)
e−rR(T−t) (8)

An application of the Itô formula to equation (8) shows that the price of the inflation-

linked bond and the inflation index are strongly related to each other

dB(t, I(t))

B(t, I(t))
= rRdt+

dI(t)

I(t)

= (rN + σIθI)dt+ σIdWI(t)

Under our assumption that the real interest rate is deterministic, we see that the inflation-

linked bond and the inflation index, assuming it would represent a financial asset itself,

are financially equivalent in the sense that they can perfectly replicate each other. In

addition to the inflation linked bond, we assume that the insurance company has the

opportunity to invest in a riskless money market account S0(t) offering a deterministic

interest rate which coincides with the nominal interest rate, i.e.

dS0(t)

S0(t)
= rNdt (9)

with S0(0) = 1 and a stock S(t), which we allow to be correlated to the inflation index

and which follows the dynamic

dS(t)

S(t)
= bdt+ σ1SdWI(t) + σ

2
SdWS(t) (10)

where b and σS = (σ
1
S , σ

2
S)

> are assumed to be a constants, whileW(t) = (WI(t),WS(t))
>

is a two dimensional Brownian motion. Unlike in Battocchio/Menoncin [1], where the

stock price is viewed as an inflation forecaster, we have considered the stock price as a
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variable following the inflation index. We will study this relationship in more detail later

on in this discussion. Our insurance company therefore faces a market which consists

of one riskless assets and two risky asset, all of whom are tradeable. We assume that

σI 6= 0 6= σ2S . Then the volatility matrix

σ :=




σI 0

σ1S σ2S



 (11)

corresponding to the two risky assets satisfies det(σ) = σI ·σ
2
S 6= 0. The market is therefore

complete and there exists a unique market price of risk θ satisfying θ = σ−1(α − rN1)

where 1 = (1, 1)T , α = (rN + σIθI , b)
T . An elementary computation shows that

θ :=




θ1

θ2



 =




θI

b−rN−θIσ
1
S

σ2
S



 (12)

In a defined contribution (DC) pension plan, the contributions payable by both employee

and employer, are defined, which in most cases corresponds to a fixed percentage of the

salary. Here we assume the salary of a pension plan member follows the dynamics:

dY (t)

Y (t)
= (rN − rR + κ)dt+ σ

1
Y dWI(t) + σ

2
Y dWS(t) (13)

with Y (0) = y, where κ and σY = (σ
1
Y , σ

2
Y )

> are constants. The particular form of the

drift term has been chosen so that the growth rate of the salary consists of two parts, the

first one rN −rR adjusting the workers’ salary for inflation and the second one κ adjusting

for economic growth and an increase in welfare.

In the presence of two independent Brownian motions WI and WS in our model and

three stochastic key-variables I(t), S(t) and Y (t) it is possible to express any one of them

by a combination of the other times a deterministic function. We will outline this thought

in the following. Let us define the cross correlation matrices

ΣI,Y =




σI σ1Y

0 σ2Y



 , ΣS,I =




σ1S σI

σ2S 0



 , ΣS,Y =




σ1S σ1Y

σ2S σ2Y
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and the cross correlation cofactors

l1 = −

∣
∣ΣI,Y

∣
∣

|ΣS,I |
= −

σ2Y
σ2S

l2 =

∣
∣ΣS,Y

∣
∣

|ΣS,I |
=

∣
∣ΣS,Y

∣
∣

σ2S · σI
.

Furthermore define the constant l0 as

l0 =

(

rN − rR + κ−
1

2

((
σ1Y
)2
+
(
σ2Y
)2
))

−

(

b−
1

2

((
σ1S
)2
+
(
σ2S
)2
)

l1

)

−

(

rN − rR + θIσI −
1

2
σ2I

)

l2

We then have the following proposition:

Proposition 1. The normalized market variables Y (t)/Y (0),S(t)/S(0) and I(t)/I(0) are

related via the following equation

Y (t)

Y (0)
= el0t

(
S(t)

S(0)

)l1
(
I(t)

I(0)

)l2

. (14)

Equation (14) is obviously equivalent to the following equation

I(t)

I(0)
= e

−
l0
l2
t

(
S(t)

S(0)

)−
l1
l2

(
Y (t)

Y (0)

) 1
l2

. (15)

This equation represents inflation as a function of the stock price and the salary. One

might as well think of a stock index as something which partly measures the state of

production of the economy and the salary process as a measure for how much the economy

spends for production. One may use this structural identity in order to calibrate the

model and adapt the model parameters such that the constants l0, l1 and l2 and Equation

(15) become compatible with market data. We omit this statistical aspect here. Let us

also note, that alternative to our derivation of the dynamic of the inflation index one

may instead start with a structural relationship as expressed by equation (15) and then

relate the parameters l0,l1 and l2 to make the inflation index compatible with the Fisher
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equation.

Let us come back to the insurance companies investment problem. For simplicity we

assume that there is only one member in the pension plan. Alternatively we may think of

aggregate variables and a representative plan member. If the initial value of this member’s

pension account is x > 0, the contribution rate (i.e. the percentage of the member’s

salary) is c > 0, and 1 − π1(t) − π2(t), π1(t), π2(t) are the proportions of the pension

fund invested in the riskless bond, the inflation-linked bond and the stock respectively.

Then the corresponding portfolio process, which we denote by X(t), is governed by the

following equation

dX(t) = X(t)[rNdt+ π
T (t)σ(θdt+ dW(t))] + cY (t)dt (16)

with X(0) = x where σ and θ are given by equation (11), (12) respectively, while π(t) =

(π1(t), π2(t))
T is called the portfolio. Note that the contributions are assumed to be

invested continuously over time. For the insurance company’s decision how to invest

the plan member’s contributions optimally, the expectation of the plan member’s future

contribution plays an important part. We therefore define

Definition 2. The discounted expected future contribution process is defined as

D(t) = E
[∫ T

t

H(s)

H(t)
cY (s)ds

∣
∣
∣
∣
Ft

]

(17)

where Ft represents the filtration generated by the Brownian motion W(t) and

H(t) := e−rN t−
1
2
‖θ‖2t−θ>W(t) (18)

is the discount factor which adjusts for nominal interest rate and market price of risk. We

set d = D(0)

Definition 3. The pension fund value process is defined as

P (t) = X(t) +D(t) (19)

where X(t) and D(t) satisfy equation (16), (17) respectively.
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Equation (19) should be interpreted as follows : The value of the pension fund of a DC

plan, at time t, is equal to:

• the value of the portfolio X(t) plus

• the discounted expected value of future contributions to the plan.

The expected value of future contributions has the disadvantage that it is not directly

observable and it is not clear whether the insurance company is likely to base its investment

decision on the process D(t). An alternative, which is observable, is the salary process

Y (t). The following proposition shows that the processes D(t) and Y (t) are strongly

linked and differ merely by a deterministic function. It also characterizes the distribution

of D(t).

Proposition 2. The expected future contributions process D(t) and the salary process

Y (t) are related via the equation

D(t) =
1

β

(

eβ(T−t) − 1
)

c · Y (t) (20)

with β = κ− rR− < σY , θ >. In particular the distribution of the expected future income

D(t) is log-normal, but expectation and variance change with time, both reaching 0 at the

end of the planning horizon T

Proof. By definition we have

D(t) = E
(∫ T

t

H(s)

H(t)
cY (s)ds

∣
∣
∣
∣
Ft

)

= c · Y (t)E
(∫ T

t

H(s)

H(t)

Y (s)

Y (t)
ds

∣
∣
∣
∣
Ft

)

Both processes H(·) and Y (·) are geometric Brownian motions and therefore it follows

easily that H(s)
H(t)

Y (s)
Y (t) is independent of Ft. The conditional expectation therefore collapses

to an unconditional expectation and we obtain

D(t) = c · Y (t) · g(t, T )
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with the deterministic function g(t, T ) which according to the Markovian setup of our

model can be computed as

g(t, T ) = E
(∫ T−t

0
H(u)

Y (u)

Y (0)
du

)

Noting

H(u)
Y (u)

Y (0)
= e(κ−rR)ue(σY −θ)>W(u)− 1

2(‖θ‖
2+‖σY ‖2)u

= eβue(σY −θ)>W(u)− 1
2(‖σY −θ‖2)u (21)

we obtain

E(H(u)
Y (u)

Y (0)
) = eβu

Integration over time gives

g(t, T ) = E
(∫ T−t

0
H(u) ·

Y (u)

Y (0)
du

)

=

∫ T−t

0
E(H(u)

Y (u)

Y (0)
)du

=

∫ T−t

0
eβudu =

1

β

(

eβ(T−t) − 1
)

which is the desired result. Given the relationship between D(t) and Y (t) the second

statement now follows immediately from our assumption that the salary process is a

geometric Brownian motion.

We will later make use of the martingale method to find the optimal investment strategy

for the insurance company. In order to do this it will be essential that the pension fund

value process is a martingale, when discounted with the state price process H(·).

Proposition 3. The discounted pension fund process H(·)P (·) is a martingale.

Proof. By definition of D(t) we find that

H(t)D(t) +

∫ t

0
H(s)cY (s)ds = E

[∫ T

0
H(s)cY (s)ds

∣
∣
∣
∣
Ft

]

(22)

which is a Martingale with respect to the Brownian filtration Ft. It follows from the

martingale representation theorem (see [11], page 71) that there exists a progressively



Optimal management and inflation protection for defined contribution pension plans 13

measurable process ψ(·), with E
[∫ T

0 ‖ψ(t)‖
2dt
]

<∞ such that

d (H(t)D(t)) +H(t)cY (t)dt = ψT (t)dW (t) a.s. (23)

which is obviously the same as

d (H(t)D(t)) = −H(t)cY (t)dt+ ψT (t)dW (t) a.s. (24)

Applying the Itô product rule to H(t)X(t), we get

d (H(t)X(t)) = H(t)X(t)
(
πT (t)σ − θT

)
dW (t) +H(t)cY (t)dt

and therefore obtain

d (H(t)P (t)) = d (H(t)X(t)) + d (H(t)D(t)) (25)

=
[
H(t)X(t)

(
πT (t)σ − θT

)
+ ψT (t)

]
dW (t) (26)

which shows that H(·)P (·) is a martingale.

The process ψ(·) obtained in the previous proposition as the integrand in the martingale

representation theorem will play a significant role in the identification of the optimal

investment strategy later and it is therefore necessary to compute it in a more explicit

way.

Proposition 4. The process ψ(·) from equation (23) takes the following form

ψ(t) = cy
1

β

(

eβT − eβt
)

M(t)(σY − θ) (27)

with β as defined in Proposition 2 and M(t) := e(σY −θ)TW (t)− 1
2
‖σY −θ‖2t. Furthermore we

have

H(t)D(t) = cy
1

β

(

eβT − eβt
)

M(t) (28)

Proof. Equations (20) and (21) imply

H(t)D(t) = c

(∫ T−t

0
eβudu

)

H(t)Y (t) (29)

H(t)Y (t) = yeβtM(t) (30)
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Substituting equation (30) in the right side of equation (29) leads to

H(t)D(t) = cy

(∫ T−t

0
eβudu

)

eβtM(t)

= cy

(∫ T

t

eβudu

)

M(t) = cy
1

β

(

eβT − eβt
)

M(t)

which proves the second statement of the proposition. Now, taking differential in equation

(29) leads to

d(H(t)D(t)) = −cyeβtM(t)dt+ cy
1

β

(

eβT − eβt
)

dM(t)

= cy

(

−eβtM(t)dt+
1

β

(

eβT − eβt
)

M(t)(σY − θ)
>dW(t)

)

= −H(t)cY (t)dt+ cy
1

β

(

eβT − eβt
)

M(t)(σY − θ)
>dW(t)

where the last equation was obtained by substituting equation (30) again. The first

statement now follows from comparing the last expression with (24) and the uniqueness

of this representation.

4. Optimal management of the pension fund

Our objective is to maximize the expected utility of the pension fund at a member’s

retirement age T . We therefore have to solve the following optimization problem:

max
π(·)∈A

E[U(P (T ))] subject to

E[H(T )P (T )] = x+ d > 0

where, x− = max{0,−x}, U is as utility function and A denotes the class of admissi-

ble portfolio strategies π(·), i.e. those satisfying that π(t) is Ft measurable for all t,
∫ T

0

∥
∥π(t)>σ

∥
∥2 dt <∞ P − a.s. and E [U−(P (T ))] <∞ ( see for example [11], page 206 ).

In this article we choose as U the constant relative risk aversion (CRRA) utility function

U(x) =
xγ

γ
, γ ∈ (−∞, 1)\{0}. (31)
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This utility function is very popular as it often allows to derive closed form solutions

of associated stochastic optimal control problems. Nevertheless the following discussion

caries over to other utility functions. In particular, similar results could be obtained for

an exponential utility function instead of CRRA. The method we use in order to solve the

stochastic optimal control problem above is the so called martingale method. Certainly

the economic literature is dominated by the stochastic dynamic programming approach,

which has the advantage that it identifies the optimal strategy automatically as a function

of the underlying observables, which is sometimes called feedback form. On the other

side, it often turns out that the corresponding Hamilton-Jacobi-Bellman equation, which

in general is a second order non-liner partial differential equation, does not admit a closed

form solution. Our approach based on the martingale method and Proposition 3 leads us

to a closed form solution of the optimal investment problem of the insurance company.

For a general discussion of the martingale method in stochastic optimal control see [11]

chapter 5. The key feature of the martingale method is that the dynamic optimization

problem is decomposed into a a static optimization problem and a hedging problem. The

static optimization problem in our case is the following

max
B

E[U(B))] subject to (32)

E[H(T )B] = x+ d > 0 (33)

where B is an FT measurable random variable. The Lagrangian of this problem is given

by

L(B, λ) := E [U(B)− λ (H(T )B − x− d)] (34)

where, λ is the Lagrangian multiplier. Equating the derivatives of the Lagrangian L with

respect to B and λ respectively to zero, we obtain:

∂L

∂B
= E

[
U ′ (B)− λH(T )

]
= 0 (35)

∂L

∂λ
= [H(T )B]− x− d = 0 (36)
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Equation (35) is obviously solved by B∗ = (U ′)−1 (λH(T )). For our choice of CRRA

utility function we have (U ′)−1 (x) = x
1

γ−1 . This leads us to

B∗ = λ
1

γ−1 (H(T ))
1

γ−1 (37)

while the Lagrange multiplier λ is determined by the constraint

E
[

λ
1

γ−1 (H(T ))
γ

γ−1

]

= x+ d

which is satisfied by setting

λ
1

γ−1 =
x+ d

E
[

(H(T ))
γ

γ−1

] (38)

Substitution of (38) in (37) gives us the optimal terminal pension fund value via the

following formula

B∗ = (x+ d)
(H(T ))

1
γ−1

E
[

(H(T ))
γ

γ−1

] (39)

From Proposition 3 it follows that the value process of the optimal pension plan satisfies

H(t)P ∗(t) = E [H(T )B∗| Ft] = (x+ d)
E
[

(H(T ))
γ

γ−1

∣
∣
∣Ft

]

E
[

(H(T ))
γ

γ−1

] (40)

A theoretical justification for this heuristic use of the Lagrangian can be found in [11],

chapter 5.

Lemma 1. Introducing the martingale Z(t) = e
− γ

γ−1
θ>W(t)− 1

2

(
γ

γ−1

)2
‖θ‖2t

we obtain

H(t)P ∗(t) = (x+ d)Z(t) (41)

Proof. A straightforward computation shows that

H(t)
γ

γ−1 = e
−rN t

γ
γ−1

+ 1
2

γ

(γ−1)2
‖θ‖2t

· Z(t)

which shows that H(t) can be written as H(t) = f(t) ·Z(t) with a deterministic function

f(·) and a martingale Z(·). Now we obtain

E[(H(T ))
γ

γ−1 |Ft]

E[(H(T ))
γ

γ−1 ]
=

E[f(T )Z(T )|Ft]
E[f(T )Z(T )]

=
f(T )E[Z(T )|Ft]
f(T )E[Z(T )]

=
Z(t)

Z(0)
= Z(t).

The statement now follows from equation (40)



Optimal management and inflation protection for defined contribution pension plans 17

Note that Lemma 1 does not provide a new proof that H(·)P ∗(·) is a martingale which

would make Proposition 3 obsolete. The martingale property of H(·)P ∗(·) was already

used in equation (40) on which the proof of the lemma depends. Nevertheless, using the

fact that

dZ(t) = Z(t)
γ

1− γ
θ>dW(t) (42)

we also obtain

d (H(t)P ∗(t)) =
γ

1− γ
(x+ d)Z(t)θTdW(t)

=
γ

1− γ
H(t)P ∗(t)θT

︸ ︷︷ ︸

:=ρT (t)

dW(t) (43)

with ρ(·) being a martingale as well. From this we obtain an expression for the optimal

portfolio for the insurance company.

Proposition 5. The optimal portfolio process of the dynamic optimization problem (32),(33)

is given by

π∗(t) = (σ−1)T
(
ρ(t)− ψ(t)

H(t)X∗(t)
+ θ

)

(44)

for X∗(t) > 0 and 0 otherwise. Here ρ(·) and ψ(·) are given by

ρ(t) =
γ

1− γ
H(t)P ∗(t)θ

ψ(t) = H(t)D(t)(σY − θ)

and X∗(t) is the wealth process, corresponding to the optimal portfolio π∗(t), which can

be derived from the optimal pension fund process

H(t)X∗(t) = H(t)P ∗(t)−H(t)D(t)

Proof. A comparison of the dW(t) term in (43) and (26) leads to

H(t)X∗(t)
(

π∗>(t)σ − θ>
)

+ ψ>(t) = ρ>(t)
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which implies that

π∗>(t)σ =
ρ>(t)− ψ>(t)

H(t)X∗(t)
+ θ>

and from which the statement follows by transposition and multiplication with (σ−1)>.

It is certainly up to discussion in how explicit the formula for the obtained optimal

investment strategy in terms of observable variables really is. Substituting ρ(t), ψ(t) and

H(t)X∗(t), the optimal portfolio process can be rewritten as

π∗(t) = (σ−1)T

(
1
1−γP

∗(t)θ −D(t)σY

P ∗(t)−D(t)

)

(45)

This formula depends on the optimal pension fund value, which consists of the optimal

pension fund level X∗(t) and the expected future contributions D(t). The first one is

observable, while the second one in a way reflects the expectation of the insurance company

on the future contribution of their plan members. The insurance company may have a

clear idea about what the expected future contributions of the plan members will be and

in this sense it is reasonable to express the optimal strategy in terms of D(t). Nevertheless

we will give a description of the optimal investment strategy in terms of the asset price

S(t) and the current salary of the plan member Y (t) and alternatively in terms of S(t)

and the level of the inflation index I(t) later on in our discussion.

Remark 1. The optimal investment strategy given in the Proposition 5 can be decom-

posed into two parts:

• part A solves the classical optimal investment problem with initial investment x+d

• part B hedges the future contribution stream, whose present value d has been

invested while setting up the pension fund

In mathematical terms we have

π∗(t) =
1

1− γ
(σ−1)T θ

︸ ︷︷ ︸

=A

+
H(t)D(t)

H(t)P ∗(t)−H(t)D(t)
(σ−1)T

(
θ

1− γ
− σY

)

︸ ︷︷ ︸

=B

(46)
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for X(t) > 0 and 0 otherwise. In particular, at the initial date t = 0, we have

π∗(0) =
1

1− γ
(σ−1)T θ +

d

x
(σ−1)T

(
θ

1− γ
− σY

)

for x > 0 (47)

The utility obtained by following the optimal investment strategy is computed in the

next proposition.

Proposition 6. The optimal expected utility obtainable by the insurance company is given

by

E
[
1

γ
(B∗)γ

]

=
(x+ d)γ

γ
e
γ(rN+

1
2(1−γ)

‖θ‖2)T
(48)

with d = cy 1
β
(eβT − 1) and β as defined in Proposition 2.

Proof. We have that

E[U(B∗)] = E

[

(x+ d)γ

γ

(

(H(T ))
1

γ−1

E[(H(T ))
γ

γ−1 ]

)γ]

=
(x+ d)γ

γ

(

E
[

(H(T ))
γ

γ−1

])1−γ

On the other side, we showed in the proof of Lemma 1 that E
[

(H(T ))
γ

γ−1

]

= f(T ) with

f(T ) = e
−rNT

γ
γ−1

+ 1
2

γ

(γ−1)2
‖θ‖2T

. Taking the 1− γ-th power gives the desired result.

Let us now express the optimal portfolio strategy computed in Proposition 5 in terms

of the primary observable variables S(t), Y (t) and I(t). The discussion concluding Propo-

sition 1 showed that in order to do this, it is enough to express the terms P ∗(t) and D(t)

in terms of t, S(t) and Y (t). In Proposition 5 we already demonstrated how to obtain

D(t) from Y (t). A tedious but straightforward computation shows that

H(t) = em0t

(
S(t)

S(0)

)m1
(
Y (t)

Y (0)

)m2

where m1 and m2 are given as follows :

m1 = −
σ1Y
(
b− rN − θIσ

1
S

)
− θIσ

2
Sσ
2
Y

σ2S |Σ
S,Y |

(49)

m2 =
σ1S (b− rN )− θI‖σS‖

2

|ΣS,Y |
(50)
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while m0 is of the following type

m0 := n1rN + n2θI + n3‖θ‖
2 + n4b (51)

with constants ni determined below

n1 = 4σ1S
(
κ− rR − σ

2
Sσ
2
Y − b− rN − 2‖σY ‖

2
)
+ θI‖σS‖

2 + σ1Y

(
(
σ2S
)2
+
1

4
− b

)

n2 = (1− 4b) < σS , σY > +
(
4 (κ− rR)− 2‖σY ‖

2
)
< σS ,1 >

n3 = 2σ2S
∣
∣ΣS,Y

∣
∣

n4 = σ1Y (4b− 1) + σ
1
S

(
2‖σY ‖

2 − 4 (κ− rR)
)

Let us now determine P ∗(t) in terms of t,S(t) and Y (t). It follows from equation (41) in

Lemma 1 and the concluding equation that

H(t) · P ∗(t) = (x+ d) · e
rN t

γ
γ−1

− 1
2

γ

(γ−1)2
‖θ‖2t

·H(t)
γ

γ−1

Division by H(t) and expressing H(t) in terms of t,S(t) and Y (t) allows us to write

P ∗(t) = (x+ d) · e

(
m0
γ−1

+q
)

t
(
S(t)

S(0)

) m1
γ−1
(
Y (t)

Y (0)

) m2
γ−1

(52)

where q is defined by

q = rN
γ

γ − 1
−
1

2

γ

(γ − 1)2
‖θ‖2. (53)

We now obtain the following form of the optimal investment strategy in feedback form,

i.e. π∗(t) = π∗(t, S(t), Y (t)) with

π∗(t, S, Y ) = F1(t, S, Y ) ·
1

1− γ

(
σ−1

)>
θ + F2(t, S, Y )

1

1− γ

(
σ−1

)>
σY (54)

with

F1(t, S;Y ) =
1

1− c
x+d ·

1
β

(
eβ(T−t) − 1

)
e
−
(
m0
γ−1

+q
)

t (S
s

)−
m1
γ−1

(
Y
y

)1−
m2
γ−1

F2(t, S, Y ) =
(γ − 1)c · 1

β

(
eβ(T−t) − 1

)

(x+ d)e

(
m0
γ−1

+q
)

t (S
s

) m1
γ−1

(
Y
y

) m2
γ−1

−1
− c · 1

β

(
eβ(T−t) − 1

)
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with s = S(0) and y = Y (0) denoting the initial stock price and the initial salary. This

representation also shows that the optimal investment strategy is a linear combination

of two strategies. The first one 1
1−γ

(
σ−1

)>
θ is the optimal self financing investment

strategy, i.e. without exterior financing from the stream of contributions, while the second

one 1
1−γ

(
σ−1

)>
σY is the optimal strategy in a fictitious market with two assets that have

a market price of risk as specified by the volatility of the contribution stream.

Let us alternatively express the optimal strategy in terms of S(t) and I(t). This is not

very difficult, as we already know from equation (14) that

Y (t)

Y (0)
= el0t

(
S(t)

S(0)

)l1
(
I(t)

I(0)

)l2

By simple substitution of this expression in the functions F1 and F2 we obtain the optimal

strategy in feedback form π∗(t) = π∗(t, S(t), I(t)) with

π∗(t, S, I) = G1(t, S, I) ·
1

1− γ

(
σ−1

)>
θ +G2(t, S, I)

1

1− γ

(
σ−1

)>
σY (55)

with

G1(t, S, I) =
1

1− c
x+d ·

1
β

(
eβ(T−t) − 1

)
e
−
(
m0+m2l0

γ−1
+q−l0

)

t (S
s

)l1−
m1+m2l1

γ−1
(
I
i

)l2−
m2l2
γ−1

G2(t, S, I) =
(γ − 1)c · 1

β

(
eβ(T−t) − 1

)

(x+ d)e

(
m0+m2l0

γ−1
+q−l0

)

t (S
s

)m1+m2l1
γ−1

−l1 ( I
i

)m2l2
γ−1

−l2
− c · 1

β

(
eβ(T−t) − 1

)

A similar remark concerning the decomposition of the portfolio into two parts as pointed

out before holds. This last representation allows the insurance company to dynamically

change its portfolio, depending on the values of the stock and the current level of inflation.

We consider this representation as the most natural one. We will give a quantitative

analysis of these strategies in the next section.

5. Numerical Example

For our numerical example we use the following parameters which are displayed in

table 1. One may argue with the exact quantities of the volatility parameters, but we
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Symbol Text reference/interpretation Numerical value

γ parameter for risk aversion 0.5

µ expected stock return 0.06

rN nominal interest rate 0.03

rR real interest rate 0.015

κ expected growth of economy 0.03

σI volatility of inflation index 0.2

(σ1S , σ
2
S)

> volatility of stock (0.1, 1)>

(σ1Y , σ
2
Y )

> volatility of stock (0.01, 0.5)>

θI market price of inflation risk 0.3

c contribution rate 0.14

Table 1: Parameters for numerical experiment.

did not find a thorough quantitative analysis in the literature. The parameters chosen,

display our assumption that the salary process is more correlated to the stock than it

is to the inflation index. In fact our model already contains a compensation in salary

for inflation by the choice of the drift term of the salary process. In Figures 1.-3. we

display the optimal strategy as a function of S and I, which we assume to be normalized.

The scales must therefore be understood as relative scales. Figures 1. and 2. show

that on a large parameter range including S ∈ [0.5, 1.5] and I ∈ [0.5, 1] the optimal

strategy is approximately equal to the static strategy π∗ = (−2, 3, 0)>, which for the

chosen parameters coincides with the Merton strategy, without inflation linked bond and

income stream. This of course is also displayed in Figure 3. as in the latter parameter

range, investment into the inflation linked bond appears to be rather unattractive. For

inflation indices higher then 1, Figure 3. shows that short selling of inflation linked bonds

becomes very attractive for the insurance company. Figure 2 also shows that in times of

high inflation, the proposition of the wealth invested in the stock depends significantly on

the stock price and is in fact higher for low stock prices, then for high stock prices.
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6. Conclusion

We consider the case where an insurance company, which is selling inflation-linked

pension products is managing a portfolio consisting of positions in a money market

account, an ordinary stock and an inflation-linked bond. With the position in the latter

derivative, the insurance company is able to hedge some of the risk associated to its

inflation-linked pension products. We compute the optimal asset allocation rule where

the criterion is optimal expected utility from terminal wealth, given that the insurance

company receives a continuous but stochastic income stream, the contributions of the

pension plan member. By means of the martingale method from stochastic optimal

control we are able to find a closed form expression for this asset allocation rule, which

we represent in various feedback forms. Of course, for our analysis to go through we

have to assume that our plan member survives until the time horizon T . As however, we

consider our member only as a representative member and not as a physical individual,

this assumption causes no problems.We also provide a numerical example which illustrates
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quantitative and qualitative features of this rule.
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