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ABSTRACT 
 

A power transformer is a static piece of apparatus with two or more windings which, by 

electromagnetic induction, transforms a system of alternating voltage and current into another 

system of voltage and current usually of different values and at same frequency for the purpose 

of transmitting electrical power. 

The hot spot temperature depends on instantaneous load and ambient temperature, 

winding design and also cooling model. There are two possible methods for hotspot temperature 

determination. The first method is to measure the hot spot temperature using a fiber optic, and 

other is to calculation the hotspot temperature using transformer thermal models. It was noticed 

that the hot spot temperature rise over top oil temperature due to load changes is a function 

depending on time as well as the transformer loading (overshoot time dependent function). It has 

also been noticed that the top oil temperature time constant is shorter than the time constant 

suggested by the present IEC loading guide, especially in cases where the oil is guided through 

the windings in a zigzag pattern for the ONAN and ONAF cooling modes. This results in winding 

hottest spot temperatures higher than those predicted by the loading guides during transient states 

after the load current increases, before the corresponding steady states have been reached. 

This thesis presents more accurate temperature calculation methods taking into account 

the findings mentioned above. The models are based on heat transfer theory, application of the 

lumped capacitance method, the thermal-electrical analogy and definition of nonlinear thermal 

resistances at different locations within a power transformer. The methods presented in this 

thesis take into account all oil physical   parameters change and loss variation with temperature. 

In addition, the proposed equations are used to estimate the equivalent thermal capacitances of 

the transformer oil for different transformer designs and winding-oil circulations. The models are 

validated using experimental results, which have been obtained from the normal heat run test 

performed by the transformer manufacturer at varying load current on a 250-MVA-ONAF-

cooled unit, a 400-MVA-ONAF-cooled unit and a 2500-KVA-ONAN-cooled unit. The results 

are also compared with the IEC 60076-7:2005 loading guide method. 

 

Keywords: power transformers, hot spot temperature, top oil temperature, non-linear thermal    
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ABSTRAK 
 
 
 

Transformator daya  adalah sebagai apparatus yang tidak bergerak dengan dua atau lebih gulungan 

melalui aruhan electromagnetic mengubah viltan and arus yang ada dalam system kepada system yang 

lain dengan frekuansinya sama dengan voltan dan arus yang biasanya nilai-nilai berbeza, dengan ini 

bertujuan untuk penghantaran tenaga eletrik. 

Suhu panas transfomator daya ini adalah bergantung pada beban sekitar dan suhu alam, reka 

bentuk dan juga model pendindingan. Dua kaedah yang mungkin untuk menentukan suhu panasnya. 

Kaedah pertama adalah mengukur suhu panasnya dengan menggunakan serat optic. Selain itu, mengira 

suhu panasnya dengan menggunakan terma model transfomator. Didapati bahawa suhu panasnya akan 

meningkat lebih daripada suhu minyak kerana perubahan beban merupakan fungsi yang bergantung pada 

waktu apabila pembebanan transfor ( masa yang melebihi bergantung pada fungsi ). Didapati juga bahawa 

masa malar yang diperlu oleh suhu minyak adalah lebih pendik daripada masa malar yang dicadangkan 

oleh panduan IEC, terutamannya dalam kes di mana minyak yang dipandu melalui gulungan dalam pola 

zigzag ONAN and ONAF mod pendindingan. Hal ini demikian bahawa suhu yang tertinggi kaji lilitan 

tempat adalah tinggi daripada semua yang diramalkan dalam panduan tersebut, manakala keadaan 

transiens selepas kenaikan bebean arus sebelum Negara-negara sepadan telah tercapai. 

Tesis ini mengajikan cara pengiraan suhu yang lebih tepat dengan mempertimbang cara-cara yang 

disebut di atas. Model tersebut berdasarkan pada teori penukaran haba, aplikasa kaedah lumped 

capacitance, analogi terma-kuasa dan definisi pertahanan terma nonlinier di lokasi yang berbeza dalam 

sebuah transfomator kuasa. Kedah yang dikaji dalam tesis juga mengambil kira semua perubahan fizikal 

parameter miyak dan kehilangan veriasi dengan suhu. Selain itu, persamaan yanh dicadangkan diguna 

untuk penganggaran capacitance terma serta untuk desain transformator yang lain dan peredaran berliku 

minyak. Model diaktifkan menggunakan hasil eksperimen, yang telah diperolehi daripada uji coba panas 

biasa dilakukan oleh pengeluar transformer di pelbagai arus beban pada unit 250-MVA-ONAF pendingin, 

unit 400-MVA-ONAF-disejukkan dan 2500 -KVA-Onan-cooled unit. Hasilnya juga dibandingkan 

dengan kaedah 60076-7:2005 panduan loading IEC.  

 

Kata Kunci: kuasa transformator, suhu  panas, suhu minyak atas, non-linear terma  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Overview 

          

Power transformers represent the largest portion of capital investment in transmission 

and distribution substations. In addition, power transformer outages have a considerable 

economic impact on the operation of an electrical network since the power transformers 

are one of the most expensive components in an electricity system (Susa, 2005). 

Therefore knowing their condition is essential to meet the goals of maximizing return on 

investment and lowering the total cost associated with transformer operation. One of the 

most important parameters governing a transformer’s life expectancy is the hot-spot 

temperature value. 

 

The transformer winding hot spot temperature is one of the most critical 

parameters in determining the life of transformer insulation, since the highest ageing rate 

occurs at the hottest point which experiences the maximum temperature. The hotspot 

temperature depends on instantaneous load and ambient temperature, winding design 

 and also cooling model. The hot spot temperature is normally located at the top of the 

winding. The hotspot temperature has to be blow the allowable limit value in order for 
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the transformer to have a normal life expectancy. This is why there are many interests to 

know the hotspot temperature of transformer especially during actual operation 

conditions in which the load and ambient temperature vary with time. 

 

The classical approach has been to consider the hot-spot temperature as the sum 

of the ambient temperature, the top-oil temperature rise in tank, and the hot-spot-to-top-

oil (in tank) temperature gradient. There are two possible methods for hotspot 

temperature determination. The first method is to measure the hotspot temperature using 

a fiber optic temperature sensors positioned at the predicted hotspot of the windings. The 

thermal sensors, attached to the end optical fiber, are usually placed between the 

insulated conductor and spacer, and their signals via optical fibre transmitted out of the 

tank. However due to the cost which may be difficult to justify in terms of cost for every 

new transformer. It is not practical for retro-fitting the existing transformers. The main 

difficulty with direct measurement technique is how to accurately locate the hotspot and 

possible the sensors.  

 

            Another method to identify the hotspot temperature is by using transformer 

thermal model or calculation method. The calculation of the internal transformer 

temperature (Hotspot temperature) is a very complicated and difficult task. However, 

engineers made simplifying assumptions in the generally accepted methods for 

calculating the temperature of power transformers as reported in the IEEE and IEC 

standards (IEEE Standard C57.19, 1995 and IEC Standard, 354: 1991). The thermal 

model of the power transformer is the more accurate methods to calculation the 

transformer hot spot temperature is using thermal electrical analogy based on heat 

transfer theory.  

 

 

 

 

 

1.2 Statement of the Problem 
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The commonly used models for hotspot temperature calculations are described in the 

international standards; IEC 354:1991 loading guide (IEC, 1991) and IEEE Std. C57.91-

1995 loading guide (IEEE, 1995). 

 

These models are in the form of simple mathematical equations and were 

developed by simplifying the fundamental heat transfer equations and combining them 

with simplified transformer loss calculations. According to the loading guides, the hot 

spot temperature is calculated as the sum of the ambient temperature, the top oil 

temperature rise in tank, and the hot spot to top oil (in tank) temperature gradient. One 

assumption has been made in developing these thermal models are the variation in the 

oil viscosity with temperature can be neglected. 

 

However, when fiber optic probes were taken into use to record local hot spots in 

windings and oil ducts, it was noticed that the hot-spot temperature rise over top oil 

temperature due to load changes is a function depending on time as well as the 

transformer loading (overshoot time dependent function). It has also been noticed that 

the top-oil temperature time constant is shorter than the time constant suggested by the 

present IEC loading guide, especially in cases where the oil is guided through the 

windings in a zigzag pattern for the ONAN and ONAF cooling modes. This results in 

winding hottest spot temperatures higher than those predicted by the loading guides 

during transient states after the load current increases, before the corresponding steady 

states have been reached. The foregoing thermal phenomena will directly cause the 

transient winding hottest spot temperatures to reach higher values than those predicted 

by the present IEC and IEEE loading guides for oil-immersed power transformers. 

Therefore it is important to have a thermal model to consider this transient state so that 

the hotspot temperature can be calculated with more accurate. 

 

 

 

1.3 Objectives of the research 
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The main objectives of this research are listed as follows: 

 

1. To study a transformer thermal model using thermal electric analogy 

method that improves the prediction of hotspot temperatures for the 

power transformer. 

2. To introduce of all oil physical parameters change and loss variation with 

temperature. 

3. To do a comparison between the derived thermal model and the 

international standard models. 

 

 

 

 

1.4 Scope of the Research 

 

The scope of the research work is to study the physical background for power 

transformer thermal model using thermal electrical analogy based on heat transfer 

theory, to allow capacity monitoring using data obtained from the normal heat run test 

performed by the transformer manufacturer. The mathematical model was developed 

using the MATLAB software package. 

 

 

 

 

 

 

 

1.5   Outline of the research  
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The remainder of this is organized as follows:  

        . Chapter 2: literature review  

In this chapter, an intensive literature review thermal model of the power transformer 

using thermal electrical analogy based on heat transfer theory. This chapter also presents 

the simple thermal diagram used to describe the thermal performance of a transformer 

and the hotspot temperature of winding where the severest ageing process would occur 

and also presents transformer losses.  Different cooling modes available in are also 

discussed.  

 

        . Chapter 3: Methodology  

In this chapter the mathematical equation derivation for transformer oil thermal 

characteristics and also for transformer thermal model using thermal-electric analogy are 

explained. The last part of this chapter the derived thermal model is established in 

Simulink/Matlab software. 

 

   . Chapter 4: Results and Analysis  

In this chapter the hot spot temperature and top oil temperature have been simulated 

using SIMULINK model which consider all oil physical parameters change and loss 

variation with temperature, The simulations are done  for three different transformer 

units and two different tank types (i.e., tanks with and without external cooling) during 

different load tests. The comparison of hot spot temperature and top oil temperature 

between the derived thermal model and the IEC thermal model are done in this chapter.  

 

       

 . Chapter 5: Conclusion and recommendation   
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This chapter gives conclusions of this thesis research and recommendations for future 

study. 



 

                                                             

 

 

 

CHAPTER 2 

 

 

 

LITRATURE REVIEW 

 

 

2.1 Introduction 

 

The hotspot temperature represents the most important factor in determining the life of 

transformer insulation, since the highest ageing rate occurs at the hottest point which 

experiences the maximum temperature. The hotspot temperature has to be below the 

allowable limit value in order for the transformer to have a normal life expectancy. This 

is why there are many interests to know the hotspot temperature of transformer 

especially during actual operation conditions in which the load and ambient temperature 

vary with time. 

 

The hotspot temperature depends on instantaneous load and ambient 

temperature, winding design and also cooling model. There are two possible methods 

for hotspot temperature determination. The first method is to measure the hotspot 

temperature using a fiber optic, and other is to calculation the hotspot temperature using 

transformer thermal models. This project presents the thermal electrical analogy to 

calculation hot spot temperature. 

 

 

 



8 
 

 

2.2 Transformer Thermal Diagram 

 

A basic thermal model for power transformers is given in Figure 2.1, where it is 

assumed that the change in the oil temperature inside and along the winding is linearly 

increasing from bottom to top.  The increase in the winding temperature from bottom to 

top is linear with a constant temperature difference (g).  At the winding top the hot spot 

temperature is higher than the average temperature (g) rise of the winding.  The 

difference in the temperature between the hot spot and the oil at the top of the winding 

is defined as (H.g), where H is a hot spot factor. It may be varied from 1.1 to 1.5, 

depending on short circuit impedance, winding design and transformer size. (Ahmed, 

2009). 

 

 
Figure 2.1: Transformer Thermal Diagram 
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2.3   Transformer Losses 

During transformer operation losses are generated and these losses can be categorized 

into no load losses and load losses as shown in Figure 2.2. 

 

Figure 2.2: Transformer Losses (Kulkani, 2004) 

 

The no load losses, sometimes referred as core loss or iron, are the losses that are caused 

by the variation of variation flux in core steel materials. This is related to contain two 

main components, hysteresis loss and eddy current loss. This is related to the magnetic 

induction and hence the applied voltage. No-load losses are roughly constant and exist 

whenever the transformer is energized. 

The load losses, often called copper loss, consist of I2R loss, stray loss and eddy 

current loss. The I2R loss is due to load current in the winding conductors whereas the 

stray loss occurs in various transformer parts such as in the core clamps, metallic 

structural parts, connections, tap changers, tank walls and bushings due to eddy current 

induced by leakage fields. The eddy current loss is due to the currents induced by the  
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alternating leakage flux impinging on the conductors. These losses are related to the 

current and hence they are roughly proportional to the load square. 

All these losses cause heating in the corresponding parts of transformer and this 

heat must be taken away to avoid high temperature which will cause deterioration of 

insulation. The winding made of copper can hold their mechanical strength up to several 

hundred degrees Celsius without deterioration and the transformer oil dose not 

significantly degrade blow 140 Co (Heathcote, 1998), however this is not case foe the 

paper insulation. The paper insulation deterioration rapidly if its temperature is more 

than 90 Co (Heathcote, 1998). Therefore we can say that one of the most important 

components determining the transformer life is the paper. 

Since  the temperature distribution is not uniform in a transformer , the part that 

is operating at the highest temperature will usually be considered in estimating 

transformer insulation life since it will  undergo the greatest deterioration . This 

temperature is referred as hotspot temperature adds it depends on the ambient 

temperature, loading condition, transformer winding design and also cooling system. 

 

 

2 .4   Transformer cooling system 

 

The heat produced in a transformer must be dissipated to an external cooling medium in 

order to keep the temperature in a specified limit. If transformer insulation is 

experienced higher temperature than the allowed value for a long time, it will cause 

rapid degradation of insulation and hence severely affect the transformer life. 

In oil immersed transformer, the heat is transferred from the active parts (core, winding 

and structural components) to the external cooling medium by the oil. The heat from the 

active parts is transferred by the process of oil circulation. The process of transferring 

heat from involves three different heat transfer mechanisms which are conduction, 
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convection and radiation (Kulkani, 2004). The conduction process involves the heat 

transfer between the solid parts, whereas the convection process involves the heat 

transfer between a solid surface to a liquid or vice versa. The heat transfer by radiation 

is between solid or liquid to the surrounding ambient temperature. 

The most important heat transfer mechanism in an oil immersed transformer is 

through the convection. The convection process occurs between transformer winding 

and oil. It is always neglected in thermal calculation because of low surface temperature 

and small area available on a transformer for radiation process to occur. Four common 

types of cooling arrangement have been used in the industry and they will be explained 

in more details. 

 

 

2.4.1 Cooling Arrangement  

 

2.4.1.1   Natural Cooling of Oil and Air (ONAN) 

 

The simple and most common cooling type used in the practice is ONAN. ONAN refers 

to Oil Natural Air Natural. The ONAN cooling is achieved when the oil flow through 

the transformer winding is driven by pressure difference between the tank oil and the 

cooler oil. This pressure difference is due to a temperature difference between the oil 

temperature in the tank and the oil temperature in the radiators. This natural circulation 

of oil sometimes has been referred as a “thermo siphon” effect. The ONAN design is 

shown in Figure 2.3.and arrows in the figure show the oil flow direction in the 

transformer.  

 

The term siphon effect occurs when the heat generated in transformer core and 

winding are dissipated to surrounding oil mainly through the convection process. The 
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density of the oil is inversely proportional to the temperature and is proportional to the 

pressure and height.  As the oil temperature increases, its density reduces. The oil 

becomes light and due to buoyancy effect it moves upwards towards the top of the tank. 

Its place is taken by the cool oil from bottom which has a higher density. As the oil 

enters the cooler, the heat is dissipated along colder surfaces of the cooler, at the same 

time oil increases its density. The oil then flows downwards through the cooler and 

enters the bottom of transformer tank from the inlet thus the continuous oil circulation 

occurs. 

 

The oil velocity in this natural circulation is relatively slow throughout the 

transformer and radiators. For this reason, ONAN transformers have large temperature 

difference between top oil and the bottom oil.  They also have relatively large 

temperature difference between the winding temperature and the oil temperature. 

 

 

 
            Figure 2.3: ONAN cooling diagram (Heathcote, 1998) and (Kulkani, 2004) 
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This ONAN cooling mode is normally used for smaller rating transformer 

(distribution transformer). The ONAN cooling mode has a few advantages. They are 

(Kulkani, 2004): 

 

- It requires less maintenance and more reliable as no cooler controls are 

involved. 

- It is useful when low noise transformers are needed. The low noise level is 

easier achieve when the transformer are without the fans. 

- No cooler loss due to malfunction of the fans and pumps.  

 

 

 

2.4.1.2   Natural cooling of oil and force air (ONAF)  

 

One way to increase the oil circulation rate is by improving the efficiency of the 

external heat dissipation. This can be done by using the fans to blow air onto the cooling 

surfaces of radiators. The forced air from the fans takes away the heat from the radiators 

(cooling) at a faster rate than natural air hence gives a better cooling rate. This leads to a 

lower average oil temperature (MO) hence increases the capability of the transformer to 

operate at a higher load. This type of cooling is termed as ONAF (Oil Natural and Air 

Forced) as shown in figure 2.4. The introduction of the fans to the radiators improves 

the cooling characteristics of the radiators thereby reducing the number of radiators 

required to achieve the same amount of cooling. This also leads to smaller overall 

dimensions of the transformer/cooling design. 
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Figure 2.4: ONAF cooling diagram (Heathcote, 1998) and (Kulkani, 2004) 

 

In the ONAF cooling mode the oil circulates through the core and winding as the 

same as in the ONAN cooling mode. The flow rate inside the winding under ONAN and 

ONAF cooling arrangement is controlled by the themosiphon effect. Normally this flow 

rate is relatively low. Because of this, the heat dissipating of oil is low. The heat 

capacity can be expressed as  

 

)( inoutP TTmCQ −=                                                                                                       (2.1) 

 

   Where Q is heat flow in W, m is mass flow rate in Kg/s, Cp is specific heat in 

J/ (Kg CO), and temperature Tout (top oil temperature) and Tin (bottom oil temperature) 

are in Co. 
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2.4.1.3   Force Cooling of Oil and Force Air (OFAF) 

 

One way to improve the heat dissipation capability is to increase the value of mass flow 

rate; m and this can be done by using a pump to circulate the oil. Moreover to increase 

heat transfer rate, fans have to be always operating at the radiators. This improves the 

heat transfer to the radiators (cooling) and reduces considerably the temperature 

difference between the top and bottom of the radiators hence lower the oil temperature 

rise in the top parts of the transformer. This type of cooling is called OFAF (Oil Forced 

and Air Forced) as shown in Figure 2.5. 

 

Figure 2.5: OFAF cooling diagram (Heathcote, 1998) and (Kulkani, 2004) 

 

Even through the oil is pumped from the radiators to the transformer tank, the oil 

in the winding tends to circulate at a velocity closer to the natural oil circulation modes, 

since most of the oil circulation by the pumps flows in the tank outside of the winding, 

due to the fact that oil tends to flow in the least resistance path which is the bulk oil 
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space between the winding barriers and to the tank.  Therefore the oil temperature rise at 

the top of the winding may be higher than the measured top oil temperature rise. 

 

 

2.4.1.4   Force and Directed Cooling of Oil and Force Air (ODAF) 

 

Figure 2.6. Shows a group of conductors surrounded by vertical and horizontal cooling 

ducts. The heat generated in each conductor must be transferred to the oil to keep the 

temperature within the limits. The heat flow in the horizontal direction from a central 

conductor is limited by the similar temperature conductors on either side of it. Therefore 

the heat can transferred via vertical directions. 

 

 

Figure 2.6: Cross section of a disc or helical winding showing heat flow paths 

(AREVA, 2008) 

 

Naturally the oil tends to rise when it become hot. The vertical ducts provide a 

natural circulation path for this hot oil. This causes the oil flow through the horizontal 

ducts is much less than that in the vertical ducts and hence poor heat transfer between 

the conductors and the oil in the horizontal ducts. However the discs depend on the 

horizontal oil ducts for their cooling. This is the reason why directing the oil through the 

winding using block washer to occasionally block the vertical ducts is so important in 
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achieving effective heat transfers from the conductors. The oil flow between the discs 

for a typical directed oil design is shown in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Oil flow in a directed flow winding (Heathcote, 1998) 

 

The transformer with directed forced cooling is called ODAF (Oil Directed Air 

Forced). Atypical arrangement is detailed in Figure 2.8. Where the pumps are used to 

move the oil into the transformer and block washer are used to direct the oil flows inside 

the winding. The OD design will result in lower winding gradients than the ON and OF. 

It also reduces the top oil temperature rise of the winding and therefore the hotspot rise 

is much reduced compared to the ON and OF cooling mode. 

 

As seen in Figure 2.8, block washer are often added alternately on the inner and 

outer diameters of the winding. The block washer will direct the oil to flow in horizontal 

ducts between the discs in order to improve conductor-oil heat transfer.    
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                Figure 2.8: ODAF cooling diagram (Heathcote, 1998) and (Kulkani, 2004) 

 

 

2.5   Transformer thermal models 

 

A thermal model of a power transformer in the form of an equivalent circuit based on 

the fundamentals of heat transfer theory has been suggested by Swift in (Swift, 2001). 

The proposed thermal model was established to determine the hot spot temperature. The 

top oil temperature was calculated from the air-to-oil model. The top oil temperature 

becomes the ambient temperature for the winding to oil model. 

 

Based on this approach a model which considers the non-linear thermal oil 

resistance has been introduced by Susa (Susa, 2005). The oil viscosity changes and loss 

variation with temperature were included in the method. The model was shown to be 

valid for different transformer units. 
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2.5.1 Background 

 

In order to analyses the temperature conditions inside a transformer, the analogy 

between thermal and electrical processes is briefly reviewed below, (Susa, 2004) and 

(Swift, 2001). 

A thermal process can be defined by the energy balance equation: 

 
 

dt
R

dCdtq
th

amb
th ×

−
+×=×

θθθ                                                                               (2-2)
  

 
where: 

q is the heat generation, 

Cth is the thermal capacitance, 

θ is temperature, 

Rth is the thermal resistance, 

θamb is the ambient temperature. 

 
The equation may be rewritten as follows: 

 
 
 

                                                                                                                      
(2-3) 

 
th

amb
th Rdt

dCq θθθ −
+×=

Now, if we define a simple electrical RC circuit, as given by Figure.2.10, we can write a 

similar equation based on both the first Kirchoff’s law and Ohm’s law: 

 
                                                                                                                                      
(2.4) 

 
el

el R
u

dt
duCi +×=

where: i is the electrical current,  is the electrical capacitance,  is the electrical 

resistance and u is the electrical voltage. 
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Figure 2.9: An electrical RC circuit 
 

 

Simply, by comparing equations (2.3) and (2.4) we obtain the analogy between 

electrical and thermal processes, Table 2.1. 

 

 
Table 2.1: Thermal-electrical analogy 
Thermal Electrical 

Generated heat q Current i 

Temperature θ Voltage u 

Resistance Resistance 

Capacitance  Capacitance  
 
 

The analogous thermal circuit for the electrical circuit, Figure 2.9, is given in Figure 

2.10. 
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Figure 2.10: The analogous thermal circuit 

 

 

 

2.5.2 The non-linear thermal resistance 
 
 
The nonlinear oil thermal resistance,  ( K)/W, according to heat transfer 

theory    [(Incropera, 1996) - (King, 1932)], [(Rice, 1923) - (Rice, 1931)] and [(Susa, 

2004) - (Swift, 2001)] is given in the following equation: 

 

                                                                                                  
(2.5) 
 
where: 

  is the heat transfer coefficient, 

A  is the area, 

is the oil temperature gradient, 

 is the heat generated by the corresponding losses. 
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Hence, the nonlinear thermal resistance is inversely proportional to the heat transfer 

coefficient, whose dependence on temperature is explained in the text to follow. 

Based on heat transfer theory, the natural convection oil flow around vertical, inclined 

and horizontal plates and cylinders can be described by the following empirical 

correlation,[( Incropera, 1996) - (King, 1932)], [(Rice, 1923) - (Rice, 1931)]: 

 

                                                                                                    (2.6) 

 

where C and n are empirical constants dependent on whether the oil circulation is 

laminar or turbulent. The basic values are given in Table 2.2, (Incropera, 1996). 

 

Table2.2: Empirical values for constants C and n 
 
The oil circulation C N 

laminar 0.59 0.25

turbulent 0.10 0.33

 
 
The Nusselt number ( ) Prandtle number ( ) and Grashof number ( ) are described 

in the following equations, [(Incropera, 1996) - (King, 1932)], [(Rice, 1923) - (Rice, 

1931)]: 

 

=              (2.7) 

                 (2.8) 

            
 (2.9) 

 

where: 

L  is the characteristic dimension, length, width or diameter, 

g  is the gravitational constant , 
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k  is the oil thermal conductivity,  

is the oil density, 

is the oil thermal expansion coefficient, 

is the specific heat of oil, 

is the oil viscosity, 

is the oil temperature gradient, (K). 

 

The transformer oil has thermal characteristics strongly dependent on temperature as 

presented in Table 2.3, where oil viscosity dependency on temperature is most 

pronounced, (Grubb, 1981) and (Pierce, 1992). 

 

Table 2.3: Thermal characteristics of transformer oil 

 

Temperature 

  

 

Density 

ρ, kg/m3

 

Specific heat 

 Ws/(kg ) 

 

Thermal 

conductivity 

k, 

W/(m  

C0efficient 

thermal 

cubic 

expansion 

β,1/  

 

Viscosity 

μ, kg/(ms) 

-15 896.885 1900 0.1262 8.6ҳ10-4 0.0694 

-5 890.295 1940 0.1247 8.6ҳ10-4 0.0463 

5 883.705 1980 0.1232 8.6ҳ10-4 0.0318 

15 877.115 2020 0.1217 8.6ҳ10-4 0.0224 

25 870.525 2060 0.1201 8.6ҳ10-4 0.0162 

35 863.935 2100 0.1186 8.6ҳ10-4 0.0119 

45 857.345 2140 0.1171 8.6ҳ10-4 0.0089 

55 850.755 2180 0.1156 8.6ҳ10-4 0.0068 

65 844.165 2220 0.1140 8.6ҳ10-4 0.0053 

75 837.575 2260 0.1125 8.6ҳ10-4 0.0042 

85 830.985 2300 0.1110 8.6ҳ10-4 0.0033 

100 821.100 2360 0.1087 8.6ҳ10-4 0.0024 
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By substituting (2.7), (2.8) and (2.9) in (2.6) the following expression is obtained: 

 

 =C        

 (2.10) 

 

The variation of viscosity with temperature is much higher than the variation of other 

transformer oil physical parameters, Table 2.3, (Blume, 1951) ,(Blume, 1938) ,(Grubb, 

1981),(Karsai, 1987) and (Pierce, 1992) Therefore, all oil physical parameters except 

the viscosity in (2.10) will be replaced by a constant and (2.10) will be solved for the 

heat transfer coefficient, h, as follows: 

 

          (2.11) 

 

where  is assumed to be a constant, expressed as: 

 

     (2.12) 

 

and  is the viscosity, kg(ms) The viscosity dependence on temperature is given by the 

following equation, : 

 

            
 (2.13) 

 

An example of oil viscosity variation with temperature, compared with the other 

physical properties of transformer oil, is shown in Figure 2.11. 
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