THE USE OF HORIZONTAL AND INCLINED BARS AS SHEAR REINFORCEMENT

Í

NOOR AZLINA BT ABDUL HAMID

UNIVERSITE TERNOLOGE MALAYSIA

PERPUSTAKAAN UTHM *3000001866851* CN189178

UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN STATUS TESIS				
	JUDUL: <u>THE USE OF HORIZONTAL AND INCLINED BARS AS SHEAR</u> REINFORCEMENT			
	SESI PENGAJIAN : <u>2005-2006</u>			
Saya :	NOOR AZLINA BT ABDUL HAMID			
	(HURUF BESAR)			
	rkan tesis -(PSM /Sarjana/ Dekter Falcafak)* ini disimpan di Perpustakaan gi Malaysia dengan syarat-syarat kegunaan seperti berikut:			
	ah hakmilik Universiti Teknologi Malaysia. Ian Universiti Teknologi Malaysia dibenarkan membuat salinan untuk			
tujuan pen	gajian sahaja.			
	an dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara engajian tinggi.			
4. **Sila tand				
	SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
	TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
	TIDAK TERHAD			
	h Commi			
₹/₩7	ANTL. Mint Sm			
(TANDÁTANO	GAN PENULIS) (TANDATANGAN PENYELIA)			
Alamat Tetap: <u>181-A, LORONG F</u>				
RIMBA TERJUN, 82000 PONTIAN,				
JOHOR DARUL T	AKZIM.			
	Tarikh: 17 NOVEMBER 2005 Tarikh : <u>17 NOVEMBER 2005</u>			
CATATAN *	Potong yang tidak berkenaan.			
CATATAN: *				
	berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini			
	perlu dikelaskan sebagai SULIT atau TERHAD.			
υ				
-	penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau			

٠

.

Laporan Projck Sarjana Muda (PSM).

" I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure) "

> Signature Name of Supervisor Date

:

:

:

PMDR RAMLI ABDULLAH

17-11-2005

THE USE OF HORIZONTAL AND INCLINED BARS AS SHEAR REINFORCEMENT

NOOR AZLINA BT ABDUL HAMID

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

FACULTY OF CIVIL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

NOV, 2005

I declare that this thesis entitled "*The use of horizontal and inclined bars as shear reinforcement*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	€/W ^l ·
Name	:	NOOR AZLINA BT ABDUL HAMID
Date		17-11-2005

To mama and papa, Thanks for your support My dream has come true just because of you

To my beloved husband, Thanks for your understanding and support

ACKNOWLEDGEMENT

In preparing this thesis, I am very thankful to many people, which have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my supervisor, P.M Dr. Ramli Abdullah for their guidance, advices and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

I am also very thankful to Makmal Kejuruteraan Awam, Universiti Teknologi Malaysia (UTM) for their cooperation, guidance and advices. Without their cooperation, this project would not successfully complete as I wished. I hope our friendship with all staff in laboratory would not last and our cooperation could be continued in the future.

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Lastly, I am grateful to all my family members and my dear husband for their support and motivation. Thank you....

ABSTRACT

Shear failure in beams are caused by diagonal cracks near the support. Any form of effectively anchored reinforcement that intersects these cracks will be able to resist the shear stress to a certain extent. This project presents the results of an experimental investigation on six reinforced concrete beams in which their structural behaviour in shear were studied. All the beams were cast with the same grade of concrete, and provided with identical amount of main reinforcement. In order to investigate the contribution of the additional horizontal and independent bent-up bars to the shear carrying capacity of the beam, two specimens each were provided with horizontal longitudinal bars and bent-up bars in the high shear region. Two different quantities of additional bars in each of these cases were adopted. The fifth specimen was provided with sufficient amount of shear reinforcement in terms of vertical links, while the other one was cast without any shear reinforcement to serve as control specimens. The performances of the beams in resisting shear in the form of deflection, cracking, strain in the shear reinforcement and ultimate load were investigated. The results show that the shear capacities of the beams with additional horizontal and independent bent-up bars larger than 1.2% of their cross-sectional area are higher than that of the conventionally designed beam with vertical links. It may therefore be suggested that these types of shear reinforcement be used to ease the congestion of links near the supports.

ABSTRAK

Kegagalan ricih dalam rasuk adalah disebabkan oleh keretakan condong yang berlaku berdekatan dengan penyokong. Sebarang bentuk tetulang tambatan yang melintasi keretakan ini berkeupayaan untuk menghalang ricih pada suatu takat yang tertentu. Kajian ini memaparkan keputusan dari ujikaji makmal yang telah dijalankan ke atas enam rasuk konkrit bertetulang dimana kelakunannya terhadap ricih telah dikaji. Semua sampel rasuk dibina dengan kekuatan gred konkrit yang sama, dan menggunakan bilangan dan jenis tetulang utama yang sama. Bagi mengkaji sumbangan atau kesan bar ufuk tambahan dan bar yang dibengkok terhadap keupayaan menanggung ricih, dua sampel rasuk dimana setiap satunya disediakan bar ufuk tambahan dan bar yang dibengkok pada satah kegagalan ricih maksimum. Dua perbezaan kuantiti untuk setiap jenis tetulang tambahan disediakan. Spesimen yang kelima disediakan dengan bilangan tetulang ricih yang mencukupi dalam bentuk perangkai pugak, manakala satu lagi rasuk dibina tanpa menggunakan sebarang tetulang ricih dan bertindak sebagai rasuk kawalan. Kelakunan rasuk dalam menghalang ricih dikaji berdasarkan kepada nilai pesongan, keretakan, keterikan dan beban muktamad. Keputusan ujikaji menunjukkan bahawa rasuk yang menggunakan bar ufuk tambahan dan bar yang dibengkokkan sebagai tetulang ricih lebih daripada 1.2% daripada keratan rentas rasuk boleh menanggung keupayaan ricih lebih daripada rasuk yang menggunakan perangkai pugak. Oleh yang demikian, tetulang ricih jenis ini dicadangkan bagi memudahkan kerja-kerja pemasangan perangkai ricih yang disusun rapat berhampiran dengan penyokong rasuk.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	o pa
	DEDICATION	İli
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF PHOTOS	XV
	LIST OF SYMBOLS	xvii
	LIST OF APPENDICES	xix

CHAPTER 1	INTRODUCTION
	1.1 Objectives
	1.2. Grand of the starter

1.2	Scope of the study	5
	Scope of the stady	-

4

CHAPTER 2 LITERATURE REVIEW

2.1	Shear	6	
2.2	Shear stress variation in rectangular beams 7		
2.3	Shear stress variation in reinforced rectangular beams	9	
2.4	Shear failure in beams without shear reinforcement	10	
2.5	Types of shear failure	12	
2.6	Shear reinforcement in beams	14	
	2.6.1 Types of shear reinforcement	17	
	2.6.2 Shear resistance of a beam with vertical links	18	
	2.6.3 Shear resistance of a beam with bent-up bars	21	
2.7	Reinforced concrete beams	24	
	2.7.1 Stress-strain relations	24	
	2.7.1.1 Concrete	24	
	2.7.1.2 Steel	25	
	2.7.2 Design formulae for rectangular section	26	
	(BS 8110)		
2.8	Shear resistance in design calculation (BS 8110)	27	
2.9	Summary	29	

CHAPTER 3 EXPERIMENTAL INVESTIGATION

3.1	Introduction 41		
3.2	The model of shear reinforcement system		42
	3.2.1	Details of beam B1	42
	3.2.2	Details of beam B2	43
	3.2.3	Details of beam B3	43
	3.2.4	Details of beam B4	44
	3.2.5	Details of beam B5	45
	3.2.6	Details of beam B6	46
3.3	The m	naterials of reinforced concrete beam	46
	3.3.1	Concrete	46
	3.3.2	Steel reinforcement	49
	3.3.3	Mould	50
3.4	Manu	facture of specimens	51
3.5	Slump	o test	52
3.6	Comp	pression tests : cube test	53
3.7	Instru	mentation	54
3.8	Test procedure 55		

CHAPTER 4 TEST RESULTS

4.1	Bean	ı Bl	69
	4.1.1	Specimen behaviour during the test	70
	4.1.2	Test results	71
4.2	Beam	n B2	71
	4.2.1	Specimen behaviour during the test	72
	4.2.2	Test results	73
4.3	Beam	1 B3	73
	4.3.1	Specimen behaviour during the test	74
	4.3.2	Test results	75
4.4	Beam	B4	75
	4.4.1	Specimen behaviour during the test	76
	4.4.2	Test results	76
4.5	Beam	B5	77
	4.5.1	Specimen behaviour during the test	77
	4.5.2	Test results	78
4.6	Beam	B6	7 9
	4.6.1	Specimen behaviour during the test	79
	4.6.2	Test results	80

CHAPTER 5 A

5.1	Introduction	106
5.2	Analysis and discussion of test results	107
	5.2.1 Shear resistant	107
	5.2.2 Strain	110
	5.2.3 Deflection	111
5.3	Shear stress analysis	112
	5.3.1 Beam B1	112
	5.3.2 Beam B2	113
	5.3.3 Beam B3	113
	5.3.4 Beam B4	114
	5.3.5 Beam B5	115
	5.3.6 Beam B6	116

CHAPTER 6	CONCLUSION AND RECOMMENDATIONS		
	6.1 Conclusion	121	
	6.2 Recommendations	122	

REFERENCE	123
	124

BIBLIOGRAPHY

LIST OF TABLES

TABLE NO	TA	BL	Æ	N	0
-----------------	----	----	---	---	---

TITLE

3.1	Shear reinforcement system	57
3.2	Proportion of concrete mix design	57
4.1	Ultimate load of beams with various shear	81
	reinforcement system	
4.2	Deflection data for beam B1	82
4.3	Deflection data for beam B2	83
4.4	Deflection data for beam B3	84
4.5	Deflection data for beam B4	85
4.6	Deflection data for beam B5	87
4.7	Deflection data for beam B6	89
5.1	The difference in percentages of ultimate load	118
	compared to beam B2 as control specimen	
5.2	The difference of shear resistant between	118
	theory and test result	

LIST OF FIGURES

FIGURE NO.

•

TITLE

AA-Shear plane	31
Principal stresses in a beam	31
Shear	32
Distribution of shear stresses in rectangular beams	32
Shear stresses variation in reinforced rectangular	33
Beams	
Inclined cracks pattern	33
Failure due to a _v /d ratio	34
$a_{v}/d > 6$	34
$6 > a_v/d > 2$	35
$a_v/d < 2$	35
$a_v/d = 0$	36
Shear reinforcement	36
Types of shear reinforcement	37
Vertical links	37
Vertical links and the analogous truss	38
Bent-up bars system	38
Truss theory	39
Stress-strain curves for concrete	39
Stress-strain curves for steel reinforcement	40
Beam 1	58
	Shear Distribution of shear stresses in rectangular beams Shear stresses variation in reinforced rectangular Beams Inclined cracks pattern Failure due to a_v/d ratio $a_v/d > 6$ $6 > a_v/d > 2$ $a_v/d < 2$ $a_v/d = 0$ Shear reinforcement Types of shear reinforcement Vertical links Vertical links and the analogous truss Bent-up bars system Truss theory Stress-strain curves for concrete Stress-strain curves for steel reinforcement

3.1 (b)	Beam 2	58
3.1(c)	Beam 3	59
3.1 (d)	Beam 4	59
3.1 (e)	Beam 5	60
3.1 (f)	Beam 6	60
3.2	Concrete strength-day relationship	61
4.1	Load-deflection relationship for beam B1	91
4.2	Load-deflection relationship for beam B2	92
4.3	Load-deflection relationship for beam B3	93
4.4	Load-deflection relationship for beam B4	94
4.5	Load-deflection relationship for beam B5	95
4.6	Load-deflection relationship for beam B6	96
4.7	Load-deflection relationship for all beams	97
4.8	Load-strain relationship	98
5.1	Ultimate load-beam relationship	119
5.2	Maximum deflection-beam relationship	120

LIST OF PHOTOS

PHOTO NO.

TITLE

3.1	Beam without shear reinforcement (B1)	62
3.2	Beam with shear and nominal links in the form	62
	of vertical links (B2)	
3.3	Beam with nominal links and horizontal bars (B3)	63
3.4	Beam with nominal links and increased amount	63
	of horizontal bars (B4)	
3.5	Beam with nominal links and inclined (B5)	64
3.6	Beam with nominal links and increased amount	64
	of inclined bars (B6)	
3.7	Mechanical mixer	65
3.8	Machine for bent-up bar	65
3.9	Steel moulds	66
3.10	G-clamps	66
3.11	Steel moulds for cube concrete	67
3.12	Cube test	67
3.13	Test setup	68
4.1	Compression test of cube concrete	99
4.2 (a)	Beam B1 without shear reinforcement, failed in	100
	shear	
4.2 (b)	Shear cracks on beam B1	100
4.3 (a)	Beam B2 with vertical links, failed in shear	101

4.3 (b)	Shear cracks on Beam B2	101
4.4 (a)	Beam B3 with horizontal bar as shear	102
	reinforcement, failed in shear	
4.4 (b)	Shear cracks on beam B3	102
4.5 (a)	Beam B4 with an increased amount of	103
	horizontal bar as shear reinforcement, failed in	
	shear	
4.5 (b)	Shear cracks on beam B4	103
4.6 (a)	Beam B5 with independent inclined bar as shear	104
	reinforcement, failed in shear	
4.6 (b)	Shear cracks on beam B5	104
4.7 (a)	Beam B6 with an increased amount of independent	105
	inclined bar as shear reinforcement, failed in	
	flexure	
4.7 (b)	Crushing the concrete at the compression zone	105

LIST OF SYMBOLS

А	-	Area of a cross-section
As	-	Area of tension reinforcement
A _{sb}	-	Area of steel in bent-up bars
A _{s,prov}	-	Area of tension reinforcement provided
A _{s, req}	-	Area of tension reinforcement required
A _{sv}	-	Total cross-sectional area of links at the neutral axis
a_v	-	Shear span
b	-	Width of a section
$b_{\rm v}$	-	Breadth of member for shear resistance
c	-	Cover to reinforcement
d	-	Effective depth of tension reinforcement
\mathbf{f}_{cu}	-	Characteristic concrete cube strength at 28 days
f _s	-	Service stress in reinforcement
\mathbf{f}_{tt}	-	Design tensile stress in concrete at transfer
$\mathbf{f}_{\mathbf{y}}$	-	Characteristic strength of reinforcement
\mathbf{f}_{yb}	-	Characteristic strength of inclined bars
$\mathbf{f}_{\mathbf{yv}}$	-	Characteristic strength of link reinforcement
L	-	Effective span of a beam
M_{max}	-	Maximum bending moment
Sb	-	Spacing of bent-up bars
S _v	-	Spacing of links
V	-	Shear force at ultimate design load
V _b	-	Design ultimate shear resistance of bent-up bars
Vc	-	Design ultimate shear resistance of a concrete section

V	-	Shear stress
$v_{\rm b}$	-	Design shear stress resistance of bent-up bars
ve	-	Design ultimate shear stress resistance of a singly reinforced
		concrete beam
α	-	Angle between a bent-up bar and the axis of a beam
β	-	Bond coefficient
θ	-	Angle
ϕ	-	Bar diameter

.

LIST OF APPENDICES

APPENDIX

.

TITLE

Α	Analysis	126
В	Concrete mix design form	131

CHAPTER 1

INTRODUCTION

Reinforced concrete (RC) beams are the important structural elements that transmit the loads from slabs, walls, imposed loads etc. to columns. A beam must have an adequate safety margin against bending and shear stresses, so that it will perform effectively during its service life.

At the ultimate limit state, the combined effects of bending and shear may exceed the resistance capacity of the beam and causes tensile crack. Since the strength of concrete in tension is considerably lower than its strength in compression, design for shear is of major importance in concrete structures. However, shear failure is difficult to predict accurately. In spite of many decades of experimental research, it is not fully understood.

The behaviour of reinforced concrete beams at failure in shear is distinctly different from their behaviour in flexure, which may be more dangerous than flexure failure. They fail abruptly without sufficient advanced warning¹ and the diagonal cracks that develop are considerably wider than the flexural cracks.