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                                                                 Riassunto 
 

La "congettura di Poincaré" afferma che: “Ogni 3-varietà semplicemente connessa chiusa (ossia 

compatta e senza bordi) ed orientabile è omeomorfa a una sfera tridimensionale”. (In topologia, un 

omeomorfismo è una corrispondenza biunivoca fra due spazi topologici che ne preserva la 

topologia. In altre parole, è una funzione tra due spazi topologici con la proprietà di essere continua, 

invertibile e di avere l’inversa continua. Due spazi omeomorfi godono delle stesse proprietà 

topologiche (separabilità, connessione, compattezza…). Informalmente, due spazi sono omeomorfi 

se possono essere deformati l’uno nell’altro senza “strappi”, “sovrapposizioni” o “incollature”). 

 Detto con termini diversi, la congettura dice che la sfera è l'unica varietà tridimensionale "senza 

buchi", cioè dove qualsiasi cammino chiuso può essere contratto fino a diventare un punto. Il padre 

dell'enunciato è il matematico francese Henri Poincaré. La Congettura che prende il suo nome 

nacque nel 1904, mentre lo studioso stava lavorando ai fondamenti di quella che poi sarà chiamata 

topologia algebrica. L'enunciato di Poincaré tenta di dimostrare che la sfera è il più semplice campo 

in cui un qualsiasi cammino chiuso possa essere contratto fino a diventare un punto (ogni varietà 

chiusa n dimensionale omotopicamente equivalente alla n-sfera è omeomorfa alla n-sfera. In 

topologia, due funzioni continue da uno spazio topologico ad un altro sono dette “omotope”, se una 

delle due può essere “deformata con continuità” nell’altra e tale trasformazione è detta “omotopia” 

fra le due funzioni).  

Dato che la sfera è la più semplice delle superfici bidimensionali, Poincaré, nel 1904, ipotizzò che 

così fosse anche in dimensione superiore, congetturando che la tri-sfera è l'unica superficie 

tridimensionale chiusa (e orientabile, per essere precisi) sulla quale tutte le curve chiuse sono 

deformabili l'una nell'altra. Una formulazione della congettura di Poincaré a n dimensioni è la 

seguente: Ogni varietà chiusa n dimensionale omotopicamente equivalente alla n-sfera è 

omeomorfa alla n-sfera. Questa definizione è equivalente alla congettura di Poincaré nel caso n=3. 

Le difficoltà maggiori sorgono per le dimensioni n = 3 e n = 4. I matematici cinesi Zhu Xiping e 

Cao Huaidong, seguendo la strada indicata dal matematico russo G. Perelman, hanno trovato la 

soluzione di questo grande enigma delle scienze esatte. La congettura di Poincaré avrebbe 

ripercussioni sulle possibili topologie della teoria delle stringhe e delle varie altre teorie della 

gravitazione quantistica. Alcune teorie della fisica moderna si formalizzano, infatti, mediante 

strutture geometriche aventi un numero di dimensioni maggiore di tre: la relatività einsteiniana 

prevede uno spazio-tempo quadridimensionale, mentre la più recente teoria delle stringhe ipotizza 

l'esistenza di dieci dimensioni fisiche, sei delle quali «compattificate» in iperspazi minuscoli con 

una geometria e una topologia molto intricate.  
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Nella presente tesi vengono evidenziate le connessioni matematiche ottenute tra la Congettura di 

Poincarè, la Congettura di Geometrizzazione di Thurston, la Teoria di Stringa ed alcuni settori della 

Teoria dei Numeri. 

Vengono prima descritti alcuni fondamentali risultati matematici inerenti la Congettura di Poincarè, 

ottenuti dal matematico russo G. Perelman e sviluppati dai matematici cinesi Huai-Dong Cao e Xi-

Ping Zhu, le cui dimostrazioni possono essere considerate come le conseguenze finali della teoria 

del flusso di Ricci di Hamilton-Perelman. A questi concetti seguiranno quelli riguardanti la Teoria 

di Stringa, precisamente, la 3D stringy-gravity per comprendere la congettura di Thurston, i buchi 

neri tri-dimensionali in teoria di stringa, ed infine l’azione effettiva di una D2-brana frazionaria e 

quella al contorno di una D3-brana frazionaria  

Concluderemo, inoltre, evidenziando le correlazioni ottenute tra alcune equazioni inerenti le 

Congetture di Poincarè e di Thurston e (i) i settori prima menzionati inerenti la Teoria di Stringa, 

(ii) alcune formule che riguardano la Teoria dei Numeri, precisamente, π  e la Costante di Legendre 

“c”, ed, infine, (iii) il modello di Palumbo applicato alla Teoria di Stringa. 

 

 

1. Poincarè and Geometrization conjectures. [1] 

 

A Riemannian metric ijg  is called Einstein if  ijij gR λ=   for some constant λ . A smooth manifold 

M with an Einstein metric is called an Einstein manifold. If the initial metric is Ricci flat, so that 

0=ijR , than any Ricci flat metric is a stationary solution of the Ricci flow. This happens, for 

example, on a flat torus or on any K3-surface with a Calabi-Yau metric. 

The equation     0=∇∇+ fR jiij ,     or      02 =∇+ fRic ,  (1.1)   is the steady gradient Ricci 

soliton equation. The equation for a homothetic Ricci soliton (expanding Ricci soliton) is 

 

                                               022 =−∇+∇+ ij

k

ijk

k

jikij gVgVgR λ ,  (1.2) 

 

or for a homothetic gradient Ricci soliton, 

 

                                                         0=−∇∇+ ijjiij gfR λ ,  (1.3) 

 

where λ  is the homothetic constant. For 0>λ  the soliton is shrinking, for 0<λ  it is expanding. 

The case 0=λ  is a steady Ricci soliton, the case V = 0 (or f being a constant function) is an 

Einstein metric. The Ricci flow on a Kahler manifold is called the Kahler-Ricci flow. A Ricci 

soliton to the Kahler-Ricci flow is called a Kahler-Ricci soliton. 

 

PROPOSITION A. 

 

On a compact n-dimensional manifold M, a gradient steady or expanding Ricci soliton is 

necessarily an Einstein metric. 

Let ijg  be a complete steady gradient Ricci soliton on a manifold M so that  

 

                                                                   0=∇∇+ fR jiij . 

 

Taking the trace, we get                             0=∆+ fR .  (1.4) 

 

Now, for the equation                       0=∇+∇−∇ fRRR lijklikjjki , 

 taking the trace on j and k, and using the contracted second Bianchi identity 
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                                                               RR iijj ∇=∇
2

1
,  (1.5) 

 

we get     02 =∇−∇ fRR jiji .  Then          ( ) ( ) 02
2

=+∇∇∇=+∇∇ ijjiji RffRf . 

Therefore 

                                                                  CfR =∇+
2

,  (1.6) 

 

for some constant C. Taking the difference of (1.4) and (1.6), we get  

 

                                                              Cff −=∇−∆
2

.  (1.7) 

 

Then, by integrating (1.7) we obtain 

 

                                                                  ∫ =∇
M

dVf 0
2

. 

 

Therefore  f  is a constant and ijg  is Ricci flat. 

We assume M is a compact n-dimensional manifold and consider the following functional 

 

                                              ( ) ( )∫
−∇+=

M

f

ij dVefRfgF
2

,   (1.8) 

 

of Perelman defined on the space of Riemannian metrics, and smooth functions on M. Here R is the 

scalar curvature of ijg .  

 

LEMMA 1. (Perelman). 

 

If ijij vg =δ  and hf =δ  are variations of ijg  and f  respectively, then the first variation of F  is 

given by 

                     ( ) ( ) ( )∫
−









+∇−∆








−+∇∇+−=

M

f

jiijijij dVeRffh
v

fRvhvF
2

2
2

,δ  

 

where ij

ij
vgv = . 

 

PROPOSITION 1. (Perelman). 

 

Let )(tg ij  and )(tf  evolve according to the coupled flow 

                                         ij

ij
R

t

g
2−=

∂

∂
,   

                                          Rff
t

f
−∇+∆−=

∂

∂ 2
.  Then 

                                             ( ) ( )( ) ∫
−∇∇+=

M

f

jiijij dVefRtftgF
dt

d 2

2,  
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and ∫
−

M

f
dVe  is constant. In particular ( ) ( )( )tftgF ij ,  is non-decreasing in time and the 

monotonicity is strict unless we are on a steady gradient soliton. 

 

PROPOSITION 2. 

 

On a compact manifold, a steady or expanding breather is necessarily an Einstein metric. 

 

Now, we introduce the following important functional, also due to Perelman, 

 

                          ( ) ( )[ ]( )∫
−−

−+∇+=
M

f
n

ij dVenffRfgW 2
2

4,, πτττ   (1.9) 

 

where ijg  is a Riemannian metric, f is a smooth function on M, and τ  is a positive scale parameter. 

The functional W is invariant under simultaneous scaling of τ  and ijg , and invariant under 

diffeomorphism. Namely, for any positive number “a” and any diffeomorphism ϕ  

 

                                       ( ) ( )ττϕϕ ,,,, fgWafgaW ijij =∗∗ .  (1.10) 

 

Similar to Lemma 1, we have the following first variation formula for W. 

 

LEMMA 2. (Perelman). 

 

If ,ijij gv δ=    fh δ= ,   and  δτη = , then 

 

      ( ) ( )∫ +







−∇∇+−= −−

M

f
n

ijjiijijij dVegfRvhvW 24
2

1
,, πτ

τ
τηδ  

( )[ ]( ) ( )∫ ∫
−−−−









−∇++−−+∇−∆+








−−+

M M

f
n

f
n

dVe
n

fRdVenfffR
n

h
v

2
2

2
2

4
2

412
22

πτ
τ

ηπττη
τ

. 

 

Here ij

ij
vgv =  as before. 

The following result is analogous to Proposition 1. 

 

 

PROPOSITION 3. 

 

If ( )tg ij ,  ( )tf   and  ( )tτ  evolve according to the system 

 

                                                            ij

ij
R

t

g
2−=

∂

∂
, 

                                                            
τ2

2 n
Rff

t

f
+−∇+∆−=

∂

∂
, 

                                                            1−=
∂

∂

t

τ
, 

 

then we have the identity 
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                         ( ) ( ) ( )( ) ( )∫
−−

−∇∇+=
M

f
n

ijjiijij dVegfRttftgW
dt

d
2

2

4
2

1
2,, πτ

τ
ττ  

 

and ( )∫
−−

M

f
n

dVe24πτ  is constant. In particular  ( ) ( ) ( )( )ttftgW ij τ,,  is non-decreasing in time and 

the monotonicity is strict unless we are on a shrinking gradient soliton. 

Now we set 

                    ( ) ( ) ( )
( ) 











=∈= ∫
−∞

M

f

nijij dVeMCffgWg 1
4

1
,,,inf,

2/πτ
ττµ   (1.11) 

 

and                  ( ) ( ) ( )
( ) 











=>∈= ∫
−∞ 1

4

1
,0,,,inf

2/
dVeMCffgWgv

f

nij
πτ

ττ .  (1.12) 

 

Note that if we let 2/f
eu

−= , then the functional W can be expressed as 

 

                       ( ) ( )[ ]( )∫
−

−−∇+=
M

n

ij dVnuuuuRufgW 2
22222 4log4,, πτττ  

 

and the constraint ( )∫ =−−

M

f
n

dVe 14 2πτ  becomes ( )∫ =
−

M

n

dVu 14 2
2 πτ . Thus ( )τµ ,ijg  corresponds to 

the best constant of a logarithmic Sobolev inequality. Since the non-quadratic term is sub-critical, it 

is rather straightforward to show that 

 

              ( )[ ]( ) ( )








=−−+∇ ∫∫
−−

M

nn

M
dVudVnuuuRuu 144log4inf 2

2
2

22222
πτπττ  

 

is achieved by some nonnegative function ( )MHu 1∈  which satisfies the Euler-Lagrange equation 

 

                                 ( ) ( )ugnuuuRuu ij τµτ ,log24 =−−+∆− .  

 

Then, for the (1.11), we have 

 

   ( ) ( ) ( )
( )

udVeMCffgWnuuuRuu
M

f

nij












=∈=−−+∆− ∫
−∞ 1

4

1
,,,inflog24

2/πτ
ττ .  (1.13) 

 

Now we relating the quantity H (or v) and the W-functional of Perelman defined in (1.9). Observe 

that v happens to be the integrand of the W-functional, 

 

                                                            ( )( ) ∫=
M

ij vdVftgW τ,, . 

 

Hence, when M is compact, 

 

                          ∫ ∫ ≤−∇+−=







+

∂

∂
=

M M
udVgfRicdVRvvW

d

d
0

2

1
2

2

2

τ
τ

ττ
, 
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or equivalently, 

 

                       ( ) ( ) ( )( )
( )∫

−−∇∇+=
M

f

nijjiijij dVegfRttftgW
dt

d
2/

2

4

1

2

1
2,,

πττ
ττ , 

 

which is the same as stated in Proposition 3.    

We now use the Ricci-flatness of the metric g~ to interpret the Bishop-Gromov relative volume 

comparison theorem which will motivate another monotonicity formula for the Ricci flow. 

Consider a metric ball in ( )gM ~,
~

 centred at some point ( ) Msp
~

0,, ∈ . Note that the metric of the 

sphere N
S  at 0=τ  degenerates and it shrinks to a point. Then the shortest geodesic ( )τγ  between 

( )0,,sp  and an arbitrary point ( ) Msq
~

,, ∈τ  is always orthogonal to the N
S  fibre. The length of 

( )τγ  can be computed as  

 

            ( )
( )

( )( )∫ ∫ 









+++=+








+

−τ τ

τ
ττγττττγ

τ0 0

2

3
22

2

1
2

2
NOdR

N
NdR

N

ijij gg
&& . 

 

Thus a shortest geodesic should minimize 

 

                                                      ( ) ( )( )∫ +=
τ

ττγτγ
0

2
dRL

ijg
& . 

 

Let ),( τqL  denote the corresponding minimum. We claim that a metric sphere ( )τNS
M

2~  in M
~

 

of radius τN2  centred at ( )0,,sp  is )( 1−NO -close to the hypersurface { }ττ = . Indeed, if 

( )( )xsx τ,',  lies on the metric sphere ( )τNS
M

2~ , then the distance between ( )( )xsx τ,',  and ( )0,,sp  

is 

                               ( ) ( )( ) 









++=

−
2

3

,
2

1
22 NOxxL

N
xNN τττ  

 

which can be written as 

                              ( ) ( )( ) ( ) ( )12,
2

1 −− =+−=− NONOxxL
N

x τττ . 

 

This shows that the metric sphere ( )τNS
M

2~  is ( )−−1NO close to the hypersurface { }ττ = . Thus, 

we have 

                    ( )( ) ( ) ( ) ( )∫ 







+−≈ −

M
M

N

N

N

M
dVNOxL

N
NNSVol 2

2~ ,
2

1
22 ττωτ  

                                              ( ) ( ) ( )∫ 







+−≈ −

M
M

N

N

N

dVNoxL
N

N 1
2 ,

2

1
2 ττω , 

 

where Nω  is the volume of the standard N-dimensional sphere. Now the volume of Euclidean 

sphere of radius τN2  in 1++NnR  is 

                                            ( )( ) ( ) Nn

nN

R
NNSVol Nn +

+

=++ ωττ 2221 . 
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Thus we have 

                      
( )( )

( )( ) ( ) ( ) M
M

nn

R

M dVxLNconst
NSVol

NSVol

Nn 







−⋅⋅≈ ∫
−−

++

τ
τ

τ
τ

τ
,

2

1
exp

2

2
22

~

1

. 

 

Since the Ricci curvature of M
~

 is zero (modulo 1−
N ), the Bishop-Gromov volume comparison 

theorem suggests that the integral 

 

                                             ( ) ( ) ( )∫








−=
−

∆

M
M

n

dVxLV τ
τ

τπτ ,
2

1
exp4

~
2 , 

 

which we will call Perelman’s reduced volume, should be non-increasing in τ . 

Now the Li-Yau-Perelman distance ( )τ,qll =  is defined by    ( ) ( ) τττ 2/,, qLql = .  We thus 

have the following  

 

LEMMA 3.  

 

For the Li-Yau-Perelman distance ( )τ,ql  defined above, we have  

 

KR
ll

2/32

1

τττ
++−=

∂

∂
,  (1.14)    K

l
Rl

2/3

2 1

ττ
−+−=∇ ,  (1.15)    K

n
Rl

2/32

1

2 ττ
−+−≤∆ , (1.16) 

 

in the sense of distributions. Moreover, the equality in (1.16) holds if and only if we are on a 

gradient shrinking soliton.  

 

COROLLARY 3.1 

 

Let ( ) 0, ≥ττijg , be a family of metrics evolving by the Ricci flow ijij Rg 2=
∂

∂

τ
 on a compact n-

dimensional manifold M. Fix a point p in M and let ( )τ,ql  be the Li-Yau-Perelman distance from 

( )0,p . Then for all τ , 

                                                               ( ){ }
2

,min
n

Mqql ≤∈τ . 

 

As consequence of Lemma 3, we obtain 

 

         0
2

2
≥+−∇+∆−

∂

∂

ττ

n
Rll

l
,    or equivalently   ( ) ( ) 0exp4 2 ≤





−








+∆−

∂

∂ −
lR

n

τπ
τ

. 

 

If M is compact, we define Perelman’s reduced volume by 

 

                                          ( ) ( ) ( )[ ] ( )qdVqlV
M

n

ττπττ ∫ −=
−

,exp4
~

2 , 

 

where τdV  denotes the volume element with respect to the metric ( )τijg . Note that Perelman’s 

reduced volume resembles the expression in Huisken’s monotonicity formula for the mean 

curvature flow. It follows that 
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( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )∫∫ ≤







−+








−

∂

∂
=−

−−−

M

nn

M

n

qdVqlRqlqdVql
d

d
ττ ττπττπ

τ
ττπ

τ
,exp4,exp4,exp4 222

                                      ( ) ( )( ) ( )∫ =







−∆≤

−

M

n

qdVql 0,exp4 2 τττπ . 

 

This says that if M is compact, then Perelman’s reduced volume ( )τV
~

 in nonincreasing in τ ; 

moreover, the monotonicity is strict unless we are on a gradient shrinking soliton.  

 

THEOREM 1 (Perelman’s Jacobian comparison theorem). 

 

Let ( )τijg  be a family of complete solutions to the Ricci flow ijij Rg 2=
∂

∂

τ
 on a manifold M with 

bounded curvature. Let [ ] M→τγ ,0:  be a shortest L-geodesic starting from a fixed point p. Then 

Perelman’s reduced volume element   ( ) ( )( ) ( )ττπτ Jl
n

−
−

exp4 2  is nonincreasing in τ  along γ . 

 

THEOREM 2 (Monotonicity of Perelman’s reduced volume). 

 

Let ijg  be a family of complete metrics evolving by the Ricci flow ijij Rg 2=
∂

∂

τ
 on a manifold M 

with bounded curvature. Fix a point p in M and let ( )τ,ql  be the reduced distance from ( )0,p . Then 

(i) Perelman’s reduced volume    ( ) ( ) ( )( ) ( )∫ −=
−

M

n

qdVqlV ττπττ ,exp4
~

2   is finite and nonincreasing 

in τ ; (ii) the monotonicity is strict unless we are on a gradient shrinking soliton. 

 

Now, we have  

                                   ( ) 1lim 2

0
=

−

→ +
ττ

τ
J

n

,  (1.17)    and      ( ) 2
0 vl = .  (1.18) 

 

Combining (1.17) and (1.18) with Theorem 1, we get 

 

                ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) =−≤−= ∫ ∫ =

−−
dvJlqdVqlV

M MT

nn

p
0

22 exp4,exp4
~

ττ ττπττπττ  

                        ( ) ( )∫ +∞<−=
−

nR

n

dvv
2

2 exp4π  . (1.18a) 

 

This proves that Perelman’s reduced volume is always finite and hence well defined.  

 

THEOREM 3 (No local collapsing theorem I).  

 

Given any metric ijg  on an n-dimensional compact manifold M. Let ( )tg ij  be the solution to the 

Ricci flow on [ )T,0 , with +∞<T , starting at ijg . Then there exist positive constants κ  and 0ρ  

such that for any [ )Tt ,00 ∈  and any point Mx ∈0 , the solution ( )tg ij  is κ -noncollapsed at ),( 00 tx  

on all scales less than 0ρ .  
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We have that for k large enough,   ( ) 22 2
~

n

kkkk rV εε ≤ . (Step 1) 

 

We estimate the integral of ( )2~
kkk rV ε  as follows, 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )∫ ∫













 −≤

+−=−=
−

−

−

−

M L rtkk

n

kkrtkk

n

kkkkk

k
rk

k
v

kkkkkk

qdVrqlrqdVrqlrrV
2

2/1

4

1

22
exp

2
2

22
2

22 ,exp4,exp4
~

ε
ε

εε
επεεπεε

             ( ) ( )( ) ( )∫













 −≤

−

−
−+

2

2/1

4

1

2
exp\

2
2

2 ,exp4
k

rk

k
v

kkkLM rtkk

n

kk qdVrqlr
ε

ε

ε
επε .                                (1.19) 

 

The second term on the right hand side of (3.19) can be estimated as follows 

 

( ) ( )( ) ( ) ( ) ( )( ) ( )
( )

∫ ∫






 −≤

−









>

=

−

−

−
−≤−

2

2/1

4

1 2/1

2

exp\

4

1

0
2

2
2

2 exp4,exp4

kk

k
v k

kkk

rLM
v

n

rtkk

n

kk dvIlqdVrqlr

ε ε

τε

ε

ττπτεπε   

                                 ( ) ( )∫








>

−

−

≤−=
2/1

4

1

2
2

2 exp4

kv

n

k

n

dvv

ε

επ ,  (1.20) 

 

for k sufficiently large. Combining (1.19)-(1.20), we have the relation of Step 1. 

We next have that (Step 2) 

 

                                     ( ) ( ) ( )( ) ( )∫ >−=
−

M
k

n

kkk CqdVtqlttV ',exp4
~

0
2π  (1.20a) 

 

for all k, where 'C  is some positive constant independent of k. It suffices to show the Li-Yau-

Perelman distance ( )ktl ,⋅  is uniformly bounded from above on M. Combining Step 1 with Step 2, 

and using the monotonicity of ( )τkV
~

, we get      ( ) ( ) 02
~~

' 22 →≤≤<
n

kkkkkk rVtVC εε   as    ∞→k . 

 

DEFINITION 1 

 

A solution ( )txg ij ,  to the Ricci flow on the manifold M, where either M is compact or at each time t 

the metric ( )tg ij ,⋅  is complete and has bounded curvature, is called a singularity model if it is not 

flat  and of one of the following three types:  

Type I:  The solution exists for ( )Ω∞−∈ ,t  for some constant Ω  with +∞<Ω<0  and 

( )tRm −ΩΩ≤ /   everywhere with equality somewhere at t = 0; 

Type II: The solution exists for ( )+∞∞−∈ ,t  and   1≤Rm   everywhere with equality somewhere at 

t = 0; 

Type III: The solution exists for ( )+∞−∈ ,At  for some constant A with +∞<< A0  and  

( )tAARm +≤ /  everywhere with equality somewhere at t = 0. 

 

We state a result of Sesum on compact Type I singularity models. Recall that Perelman’s functional 

W is given by 
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                                   ( ) ( ) ( )[ ]∫
−−

−++∇=
M

g

f
n

dVenfRffgW
2

24,, τπττ  

 

with the function f satisfying the constraint         ( )∫ =−−

M
g

f
n

dVe 14 2πτ . 

Furthermore, we have also that 

 

                           ( )( ) ( )( ) ( )( ) ( )








=−−= ∫
−−

M
tg

f
n

dVetTtTftgWtg 14,,inf 2πµ . 

 

As shown by Natasa Sesum, Type I assumption guarantees the boundedness of ( )( )tgµ , while the 

compactness assumption of the rescaling limit guarantees the existence of the limit for the 

minimizing functions ( )tf ,⋅ . Therefore we have 

 

THEOREM 4 (Sesum). 

 

Let ( )( )tgM ij,  be a Type I singularity model obtained as a rescaling limit of a Type I maximal 

solution. Suppose M is compact: then ( )( )tgM ij,  must be a gradient shrinking Ricci soliton. 

 

THEOREM 5 (Long-time existence theorem proposed by Perelman). 

 

For any fixed constant 0>ε , there exist nonincreasing (continuous) positive functions ( )tδ
~

 and 

( )tr~ , defined on [ )+∞,0 , such that for an arbitrarily given (continuous) positive function ( )tδ  with 

( ) ( )tt δδ
~

≤  on [ )+∞,0 , and arbitrarily given a compact orientable normalized three-manifold as 

initial data, the Ricci flow with surgery has a solution with the following properties: either 

(i) it is defined on a finite interval [ )T,0  and obtained by evolving the Ricci flow and by 

performing a finite number of cutoff surgeries, with each δ -cutoff at a time ( )Tt ,0∈  

having ( )tδδ = , so that the solution becomes extinct at the finite time T, and the initial 

manifold is diffeomorphic to a connected sum of a finite copies of 
12

SS ×  and Γ/3
S  

(the metric quotients of round three-sphere); or 

(ii) it is defined on [ )+∞,0  and obtained by evolving the Ricci flow and by performing at 

most countably many cutoff surgeries, with each δ -cutoff at a time [ )+∞∈ ,0t  having 

( )tδδ = , so that the pinching assumption and the canonical neighbourhood assumption 

(with accuracy ε ) with ( )trr ~=  are satisfied, and there exist at most a finite number of 

surgeries on every finite time interval. 

 

The famous Poincarè conjecture states that every compact three-manifold with trivial fundamental 

group is diffeomorphic to 3
S . Let M be a compact three-manifold with trivial fundamental group. 

In particular, the three-manifold M is orientable. Arbitrarily given a Riemannian metric on M, by 

scaling we may assume the metric is normalized. With this normalized metric as initial data, we 

consider the solution to the Ricci flow with surgery. If one can show the solution becomes extinct in 

finite time, it will follow from Theorem 5 (i) that the three-manifold M is diffeomorphic to the 

three-sphere 3
S . Such finite extinction time result was first proposed by Perelman, and, recently, 

Colding-Minicozzi has published a proof to it. The combination of Theorem 5 (i) and Colding-

Minicozzi’s finite extinction result, gives a complete proof of the Poincarè conjecture. 

Now, we have: 
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THEOREM 6 (Perelman). 

 

For any 0>ε  and  +∞<≤ A1 , one can find ( ) 0, >= εκκ A , ( ) +∞<ε,1 AK , ( ) +∞<= ε,22 AKK  

and ( ) 0, >= εArr  such that for any +∞<0t  there exists ( ) 00 >= tAA δδ  (depending also on ε ), 

nonincreasing in 0t , with the following property. Suppose we have a solution, constructed by 

Theorem 5 with the nonincreasing (continuous) positive functions ( )tδ
~

 and ( )tr~ , to the Ricci flow 

with δ -cutoff surgeries on time interval [ ]T,0  and with a compact orientable normalized three-

manifold as initial data, where each δ -cutoff at a time t satisfies ( ) ( )tt δδδ
~

≤=  on [ ]T,0  and 

( ) At δδδ ≤=  on 







0

0 ,
2

t
t

; assume that the solution is defined on the whole parabolic 

neighbourhood ( ) ( ) ( ) [ ]{ }0

2

0000

2

0000 ,,,,,,, trttrxBxtxrrtxP t −∈∈=−
∆

, 0

2

02 tr < , and satisfies 
2

0

−≤ rRm  

on ( )2

0000 ,,, rrtxP − , and ( )( ) 3

0

1

00 ,
00

rArxBVol tt

−≥ . Then 

(i) the solution is κ -noncollapsed on all scales less than 0r  in the ball ( )00 ,
0

ArxBt ; 

(ii) every point ( )00 ,
0

ArxBx t∈  with ( ) 2

010, −≥ rKtxR  has a canonical neighbourhood B, with 

( ) ( )σσ 2,,
00

xBBxB tt ⊂⊂  for some ( ) ( )0
2

1

1 ,0 txRC
−

<< εσ , which is either a strong ε -

neck or an ε -cap; 

(iii) if 00 trr ≤  then 
2

02

−≤ rKR  in ( )00 ,
0

ArxBt . 

Here ( )ε1C  is the positive constant in the canonical neighbourhood assumption. 

 

Now, we have that every shortest L-geodesic from ( )0,tx  to the ball ( )00 ,2
00

rxB
rt −

 is necessarily 

admissible. By combining with the assumption that ( )( ) 3

0

1

00 ,
00

rArxBVol tt

−≥ , we conclude that 

Perelman’s reduced volume of the ball ( )00 ,2
00

rxB
rt −

 satisfies the estimate 

 

          ( )( ) ( ) ( )( ) ( ) ( )
( )∫

−

≥−=
−

−

−
002

00

2
00

2
00

2
0 ,

2

0
2

3
2

000 ,exp4,
~

rxB rtrtr
rt

AcqdVrqlrrxBV π   (1.21) 

 

for some positive constant ( )Ac  depending only on A. The union of all shortest L-geodesics from 

( )0,tx  to the ball ( )00 ,2
00

rxB
rt −

, defined by ( ) ( )( ){ tytyrxCB
rt

,,, 002
00

=
−

 lies in a shortest L-geodesic 

from ( )0,tx  to a point in ( )}00 ,2
00

rxB
rt −

, forms a cone-like subset in space-time with vertex ( )0,tx . 

Denote by ( )tB  the intersection of the cone-like subset ( )00 ,2
00

rxCB
rt −

 with the time-slice at t. 

Perelman’s reduced volume of the subset ( )tB  is given by 

 

                             ( )( ) ( )( ) ( )( ) ( )
( )∫ −−−=

−

−
tB

ttt qdVttqltttBV 0
2

3

0 ,exp4
~

0
π . 

 

Since the cone-like subset ( )00 ,2
00

rxCB
rt −

 lies entirely in the region unaffected by surgery, we can 

apply Perelman’s Jacobian comparison Theorem 1 and the estimate (1.21) to conclude that 
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                                       ( )( ) ( )( ) ( )AcrxBVtBV
rtrtt ≥≥

−− 00 ,
~~

2
00

2
00

  (1.22) 

 

for all [ ]0

2

00 ,trtt −∈ .  Consider ( )2

0

~
ξρ−tB , the subset at the time-slice { }2

0 ξρ−= tt  where every 

point can be connected to ( )0,tx  by an admissible shortest L-geodesic. Perelman’s reduced volume 

of ( )2

0

~
ξρ−tB  is given by 

 

             ( )( ) ( ) ( )( ) ( )
( )

=−=− ∫ − −

−

2
0

2
0

2 ~
22

3
22

0 ,exp4
~~

ξρ ξρξρ
ξρπξρξρ

tB t
qdVqltBV  

                                       ( ) ( )( ) ( )
( ) ( )∫


















−

≤

∩− −

−
+−=

2

2

1

4

1

2
0

2
0exp

~
22

3
2 ,exp4

ξρξρ ξρ

ξ

ξρπξρ

v

LtB t
qdVql  

                                       ( ) ( )( ) ( )
( ) ( )∫


















−

≤

− −

−
−+

2

2

1

4

1

2
0

2
0exp\

~
22

3
2 ,exp4

ξρξρ ξρ

ξ

ξρπξρ

v

LtB t
qdVql .  (1.23) 

 

Note that the whole region ( )2

0 ,,, ρρ −txP  is unaffected by surgery because ( )0
~

2

1
tr

η
ρ ≥  and 

( ) 0,
2

~,~,, 0
00 >
















εδ

t
rtrtL  is sufficiently small. Then, there is a universal positive constant 0ξ  such 

that when 00 ξξ ≤< , there holds    ( ) ( )ρξρ
ξ

,exp
0

2

1

2

4

1
xBL t

v

⊂













≤
−

 and the first term on right hand 

side of (1.23) can be estimated by 

 

                ( ) ( )( ) ( ) ( )
( ) ( )∫


















−

≤

∩−

−

−

−
≤−

2

2

1

4

1

2
0

2
0exp

~
2

3

2

3
2

2

3
2 4,exp4

ξρξρ

ξ

ξρ

ξ

ξπξρπξρ

v

LtB

C

t
eqdVql   (1.24) 

 

for some universal constant C; while the second term on right hand side of (1.23) can be estimated 

by 

 

  ( ) ( )( ) ( ) ( ) ( )
( ) ( )∫ ∫


















−

≤

−
−













>

−

−

−
−≤−

2

2

1

4

1

2
0

2

1
2

0exp\
~

4

1

2
2

3
22

3
2 exp4,exp4

ξρξρ ξξρ

ξ

πξρπξρ

v

LtB vt
dvvqdVql .  (1.25) 

 

Since ( ) ( )2

0

2

0

~
ξρξρ −⊂− tBtB , the combination of (1.22)-(1.25) bounds ξ  from below by a 

positive constant depending only on A. This proves the statement (i). 

 

 

2. Ricci flow on compact four-manifolds with positive isotropic curvature. [2] 

 

Let 4M  be a compact four-manifold with no essential incompressible space-form and with a metric 

ijg  of positive isotropic curvature. 
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THEOREM 2.1 

 

There exists a positive constant 0κ  with the following property. Suppose we have a four-

dimensional (compact or noncompact) ancient κ -solution with restricted isotropic curvature 

pinching for some 0>κ . Then either the solution is 0κ -noncollapsed for all scales, or it is a metric 

quotient of the round cylinder 
3

SR× . 

 

Let ( ),,txg ij  4
Mx ∈  and ( ]0,∞−∈t , be an ancient κ -solution with restricted isotropic curvature 

pinching for some 0>κ . For arbitrary point ( ) ( ]0,, 4

0 ∞−×∈ Mtp , we define that  tt −= 0τ , for  

0tt < ,  ( ) ( )( ) ( )
( )

( ) [ ] ( ) ( ){ }∫ ==→+−=
−

τ
τγγτγγγ

τ
τ

0

42

0 ,0,0:,inf
2

1
,

0

qpwithMdssstsRsql
stgij

& , 

and                                  ( ) ( ) ( )( ) ( )∫ −

−
−=

4 0
,exp4

~ 2

M
t qdVqlV ττπττ ,  

 

where 
( )stgij −

⋅⋅
0

 is the norm with respect to the metric ( )stg ij −0  and τ−0t
dV  is the volume element 

with respect to the metric ( )τ−0tg ij . Here, l  is called the reduced distance and ( )τV
~

 is called the 

reduced volume. For any 1≥A , one can find ( ) +∞<= ABB  such that for every 1>τ  there holds 

 

                                            ( ) Bql <τ,  and ( ) BtqR ≤−ττ 0,   (2.1) 

 

whenever τττ A≤≤
2

1
 and  τ

τ
τ Aqqd

t
≤















− 2

,2

2
0

. 

Considering the reduced volume ( )τV
~

 of the ancient κ -solution, we have from Perelman’s 

Jacobian comparison theorem that 

 

                           ( ) ( ) ( )∫ ∫ =≤=
−−

−
−−

4 4

2

0
144

~ 22

M MT

X

t

l

p

dXedVeV ππττ τ . 

 

Now, we denote by ( )( )4

1

1,
00

pBVol tt=ε . For any 4
MTv p∈ , we have that one can find a L-geodesic 

( )τγ , starting at p, with ( ) v=+→
τγτ

τ
&

0
lim , which satisfies the following L-geodesic equation 

 

                                         ( ) ( ) 0,2
2

1
=⋅+∇− γττγτ

τ
&& RicR

d

d
.  (2.2) 

 

By integrating the L-geodesic equation we see that as ετ ≤  with the property that ( ) ( )1,
0

pBt∈σγ  

for ( ]τσ ,0∈ , there holds 

 

                                                ( ) ( )1+≤− vCv ετγτ &   (2.3) 

 

for some universal positive constant C. 
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Now, for 4
MTv p∈  with 2

1

4

1 −

≤ εv  and for ετ ≤  with the property that ( ) ( )1,
0

pBt∈σγ  for 

( ]τσ ,0∈ , we have 

                                       ( )( ) ( )∫ ∫ =<≤
−τ τ

σ

σ
εσσγτγ

0 0

2

1

1
2

1
,

0

d
dpd t

& . 

 

This shows                            ( ) ( )1,
4

1
exp

0

2

1

pBvL t⊂








≤
−

εε   (2.4) 

 

where ( )( )ε⋅expL  denotes the exponential map of the L distance with parameter ε . We decompose 

the reduced volume ( )εV
~

 as 

 

      ( ) ( ) ( )
( )

( ) ( )
( )∫ ∫ ∫












≤
−

−













≤
−

−
− − −+≤−=

4 2

1

02

1

40

4

1
exp

2

4

1
exp\

2
exp4exp4

~

M vL
t

vLM
t dVldVlV

εε εεεε πεπεε   (2.5) 

 

The first term on right hand side of (2.5) can be estimated by 

 

( ) ( ) ( ) ( )
( )( )∫ ∫













≤

−

−

−
− ≤−≤−

εε

ε
ε πεπε

2

1

0
00

4

1
exp 1,

242
exp4exp4

vL pB
tt

t

dVledVl  

                                                        ( ) ( )( ) ( ) 224224 41,4
00

επεπ εε −−−
=≤ epBVole tt .  (2.6) 

 

where we used (2.4) and the equivalence of the evolving metric over ( )1,
0

pBt .    

While the second term on the right hand side of (2.5) can be estimated as follows 

 

   ( ) ( ) ( ) ( ) ( )
( )∫ ∫












≤












>
=

−

−

−
− − −≤−

εε ε τε τπτπε
2

1

4 2

1

0

4

1
exp\

4

1 0

22
exp4exp4

vLM v
t dvJldVl   (2.7) 

 

by Perelman’s Jacobian comparison theorem, where ( )τJ  is the Jacobian of the L-exponential map. 

To evaluate ( )τ,⋅l  at 0=τ , we use (2.3) again to get 

                               ( ) ( )( )∫ →+=⋅
τ

γ
τ

τ
0

22

2

1
, vdssRsl & ,    as    +→ 0τ ,     thus 

                                                                     ( ) 2
0, vl =⋅ .  (2.8) 

Hence by combining (2.7)-(2.8) we have 

 

       ( ) ( ) ( ) ( )
( )∫ ∫












≤












>

−

−

−
− − <−≤−

εε εε εππε
2

1

4 2

1

0

4

1
exp\

4

1
2222

exp4exp4
vLM v

t dvvdVl .  (2.9) 

 

By summing up (2.5), (2.6) and (2.9), we obtain 

 

                                                                 ( ) 22
~

εε <V .  (2.10) 

 

Now, by the estimates (2.1) and the 0'κ -noncollapsing of the shrinking soliton, we get 
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( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )
( )( )∫ ∫

−

≥−≥−= −

−

−

−

M qB
tkktkkk

kkkt
kk

qdVqlqdVqlV
ττ ττ

τ

βττπττπτ
,

2

2

2

2

0
00

2,exp242,exp242
~

 

for some universal positive constant β . By applying the monotonicity of the reduced volume and 

(2.10), we deduce that 

                                                        ( ) ( ) 22
~

2
~

εετβ <≤≤ VV k . 

 

This proves                                       ( )( ) 01, 000
>≥ κpBVol tt  

 

for some universal positive constant 0κ . 

 

LEMMA 2.1 

 

Given 
100

1
0 << ε ,  εδ <<0  and  +∞<< T0 , there exists a radius δσ<< h0 , depending only on 

( )Tr,δ  and the pinching assumption, such that if we have a solution to the Ricci flow with surgery, 

with a compact four-manifold ( )( )xgM ij,4
 with no essential incompressible space form and with 

positive isotropic curvature as initial data, defined on [ )T,0 , going singular at the time T, satisfies 

the a priori assumptions and has only a finite number of surgery times on [ )T,0 , then for each point 

x with ( ) ( ) hxRxh ≤=
−

2

1

 in an ε -horn of ( )
ijg,Ω  with boundary in σΩ , the neighbourhood 

( )( ) ( ) ( ){ }xhxydistyxhxB
ijgT

11 ,, −− ≤Ω∈= δδ  is a strong δ -neck (i.e., 

( ) ( )( ) ( )[ ]{ }TxhTtxhxByty T ,,,, 21 −∈∈ −δ  is, after scaling with factor ( )xh 2− , δ -close (in 
[ ]1−δ

C  

topology) to the corresponding subset of the evolving standard round cylinder RS ×3
 over the time 

interval [ ]0,1−  with scalar curvature 1 at the time zero). 

 

PROPOSITION 2.1 

 

Given a compact four-manifold with positive isotropic curvature and no essential incompressible 

space form and given 0>ε , there exist decreasing sequences 0~ >> jrε , 0>jκ , 

{ } ,0
~

,,min 0

2 >> jδδδε  ,...,2,1=j  with the following property. Define a positive function ( )tδ
~

 on 

[ )+∞,0  by ( )
jt δδ

~~
=  when ( )[ )22 ,1 εε jjt −∈ . Suppose we have a solution to the Ricci flow with 

surgery, with the given four-manifold as initial datum defined on the time interval [ )T,0  and with a 

finite number of δ -cutoff surgeries such that any δ -cutoff surgery at a time ( )Tt ,0∈  with ( )tδδ =  

satisfies ( ) ( )tt δδ
~

0 ≤< . Then on each the time interval ( )[ ] [ )Tjj ,0,1 22
Iεε− , the solution satisfies 

the jκ -noncollapsing condition on all scales less than ε  and the canonical neighbourhood 

assumption (with accuracy ε ) with jrr ~= . 

 

LEMMA 2.2 

 

For a given compact four-manifold with positive isotropic curvature and no essential 

incompressible space form and given 0>ε , suppose we have constructed the sequences, satisfying 

the above proposition for lj ≤≤1 .  Then there exists 0>κ , such that for any r, ε<< r0 , one can 
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find δ
~

 with { }δδεδ ,,min
~

0 0

2<< , which depends on r, ε  and may also depend on the already 

constructed sequences, with the following property. Suppose we have a solution, with the given 

four-manifold as initial data, to the Ricci flow with surgery defined on a time interval [ ]T,0  with 

( ) 22 1 εε +<≤ lTl  such that the assumptions and conclusions of Proposition 2.1 hold on [ )2,0 εl , the 

canonical neighbourhood assumption (with accuracy ε ) with r holds on [ ]Tl ,2ε , and each ( )tδ -

cutoff surgery in the time interval ( )[ ]Tlt ,1 2ε−∈  has ( ) δδ
~

0 << t . Then the solution is κ -

noncollapsed on [ ]T,0  for all scales less than ε .  

 

CLAIM 2.1 

 

For any +∞<L  one can find ( ) 0,~,,
~~

>= εδδ lrrL  with the following property. Suppose that we 

have a curve γ , parametrized by [ ],, 00 tTt ∈  ( ) 00

21 tTl <≤− ε , such that ( ) 00 xt =γ , 0T  is a surgery 

time and ( )0Tγ  lies in a 4h-collar of the middle three-sphere of a δ -neck with the radius h obtained 

in Lemma 2.1, where the δ -cutoff surgery was taken. Suppose also each ( )tδ -cutoff surgery in the 

time interval ( )[ ]Tlt ,1 2ε−∈  has ( ) δδ
~

0 << t . The we have an estimate 

 

                          ( )( ) ( )
( )

( )∫
−

−
≥−+−−

00

00

2

000 ,
Tt

tg
LdtttR

ij

ττγττγτ
τ

& ,  (2.11) 

 

where [ ]000 ,0 Tttt −∈−=τ . 

 

Now choose L = 100 in (2.11), then it follows from Claim 2.1 that there exists 0
~

>δ , depending on 

r and lr
~ , such that as each δ -cutoff surgery at the time interval ( )[ ]Tlt ,1 2ε−∈  has δδ

~
< , every 

barely admissible curve γ  with endpoints ( )00 ,tx  and ( )tx, , where ( )[ )0

2 ,1 tlt ε−∈ , has 

 

                                 ( ) ( )( ) ( )
( )

( )∫
−

−
≥+−=

tt

tg
dtRL

ij

0

00

2

0 100, ττγττγτγ
τ

& , 

 

which implies the reduced distance from ( )00 ,tx  to ( )tx,  satisfies       125 −≥ εl .  (2.12) 

We also observe that, there exists a minimizing curve γ  of ( )( )2

0min 1 ε−− ltl , defined on 

( )[ ]2

0 1,0 ετ −−∈ lt  with ( ) 00 x=γ , such that  

                                                          ( ) ( ) εεγ 10222 <⋅≤L .  (2.13) 

 

Now we want to get a lower bound for the reduced volume of a ball around x  of radius about lr
~  at 

some time-slice slightly before t . Since the solution satisfies the canonical neighbourhood 

assumption on the time interval ( )[ )22 ,1 εε ll − , it follows that 

 

                                                              ( ) 2~400, −≤ lrtxR   (2.14) 
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for those ( ) 







−∈ −− 211 ~

64

1
,~

16

1
,,, ll rrtxPtx ηη  for which the solution is defined. Thus by combining 

(2.13) and (2.14), the reduced distance from ( )00 ,tx  to each point of the ball 






 −

− − l
rt

rxB
l

~

16

1
, 1

~

64

1 21
η

η
 

is uniformly bounded by some universal constant. 

We want to get a lower bound estimate for the volume of the ball ( )00 ,
0

rxBt . The reduced distance 

from ( )00 ,tx  to each point of the ball 






 −

− − l
rt

rxB
l

~

16

1
, 1

~

64

1 21
η

η
 is uniformly bounded by some universal 

constant. We may assume 0>ε  is very small. Then it follows from (2.12) that the points in the ball 








 −

− − l
rt

rxB
l

~

16

1
, 1

~

64

1 21
η

η
 can be connected to ( )00 ,tx  by shortest L- geodesics, and all of these L- 

geodesics are admissible. The union of all shortest L- geodesics from ( )00 ,tx  to the ball 








 −

− − l
rt

rxB
l

~

16

1
, 1

~

64

1 21
η

η
 denoted by 







 −

− − l
rt

rxCB
l

~

16

1
, 1

~

64

1 21
η

η
, forms a cone-like subset in space-time 

with the vertex ( )00 ,tx . Denote B(t) by the intersection of 






 −

− − l
rt

rxCB
l

~

16

1
, 1

~

64

1 21
η

η
 with the time-

slice at t. The reduced volume of the subset B(t) is defined by 

 

                              ( )( ) ( )( ) ( )( ) ( )
( )∫ −−−=

−

−
tB

ttt qdVttqltttBV 0

2

0 ,exp4
~

0
π . 

 

Since the cone-like subset 






 −

− − l
rt

rxCB
l

~

16

1
, 1

~

64

1 21
η

η
 lies entirely in the region unaffected by surgery, 

we can apply Perelman’s Jacobian comparison to conclude that 

 

                   ( )( ) ( )lll
rtrtt

tt rcrxBVtBV
ll

~,~

16

1
,

~~ 1

~

64

1~

64

1 2121
0

0
κη

ηη
≥

















≥ −

−+−
− −−

  (2.15) 

 

for all 





−∈ −

0

21 ,~

64

1
trtt lη , where ( )ll rc ~,κ  is some positive constant depending only on lκ  and lr

~ . 

Denote by ( )( )4

1

000

1

0 ,
00

rxBlVr tt

−=ξ .  Our purpose is to give a positive lower bound for ξ . We may 

assume 
4

1
<ξ , thus 21

0

2

0
~

64

1
0 lrttr

−+−<< ηξ . Furthermore, we denote by ( )2

00

~
rtB ξ−  the subset of 

the points at the time-slice { }2

00 rtt ξ−=  where every point can be connected to ( )00 ,tx  by an 

admissible shortest L- geodesic. Clearly ( ) ( )2

00

2

00

~
rtBrtB ξξ −⊂− . Since rr

η2

1
0 ≥  and 

( )εδδ ,~,
~~

lrr=  sufficiently small, the region ( )2

0000 ,,, rrtxP −  is unaffected by surgery. Then by the 

exactly same argument as deriving (2.4), we see that there exists a universal positive constant 0ξ  

such that as 00 ξξ ≤< , there holds 

 

                                                ( ) ( )00

2

0

4

1
,exp

0
2

1 rxBrL t

v

⊂













≤
−

ξ
ξ

.  (2.16) 
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The reduced volume ( )2

00

~
rtB ξ−  is given by  

 

                       ( )( ) ( ) ( )( ) ( )
( )∫ − −

−
=−=−

2
00

2
00

2
0

~
2

0

22

0

2

00 ,exp4
~~

rtB rtr
qdVrqlrrtBV

ξ ξξ
ξπξξ  

                           ( ) ( )( ) ( )
( ) ( )∫


















−

≤

∩− −

−
+−=

2
0

2

1

4

1

2
00

2
00exp

~
2

0

22

0 ,exp4
rLrtB rt

v

qdVrqlr
ξξ ξ

ξ

ξπξ  

                           ( ) ( )( ) ( )
( ) ( )∫


















−

≤

− −

−
−+

2
0

2

1

4

1

2
00

2
00exp\

~
2

0

22

0 ,exp4
rLrtB rt

v

qdVrqlr
ξξ ξ

ξ

ξπξ .  (2.17) 

 

By (2.16), the first term on the right hand side of (2.17) can be estimated by 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )∫ ∫


















−

≤

∩−

−−

−

−
≤−≤−

2
0

2

1

4

1

2
00 000

0
2

00exp
~

,

22422

0

42

0

22

0 4exp4,exp4
rLrtB rxB

trt

v

t

eqdVlreqdVrqlr
ξξ

ξξ

ξ

ξ

ξππξξπξ

                                                                                                                         (2.18) 

 

And the second term on the right hand side of (2.17) can be estimated by 

 

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )∫ ∫


















−

≤

−
−













>
=

−

−

−
=−≤−

2
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2

1

4

1

2
00

2

1
2

00exp\
~

4

1 0

22

0

22

0 exp4,exp4
rLrtB vrt

v

dvJlqdVrqlr
ξξ ξ τξ

ξ

τπτξπξ  

                                             ( ) ( )∫












>

−
− −=

2

1

4

1

22
exp4

ξ
π

v
dvv ,  (2.19) 

 

by using Perelman’s Jacobian comparison theorem. Hence the combination of (2.15), (2.17), (2.18) 

and (2.19) bounds ξ  from blow by a positive constant depending only on lκ  and lr
~ . 

 

3. A string inspired 3D Euclidean field theory as the starting point for a modified Ricci flow  

            analysis of the Thurston Conjecture. [3] 

 

The potential importance of a 3D uniformization theorem is evident, particularly in the context of 

(super)membrane physics or three-dimensional quantum gravity where one should be able to 

perform path-integral quantization via a similar procedure to that in two dimensions. 

In three dimensions there is only a conjecture due to W.P. Thurston. This conjecture states that a 

three-manifold with a given topology has a canonical decomposition into “simple three-manifold”, 

each of which admits one, and only one, of eight homogeneous geometries: 
1212333 ,,,, SHSSESH ×× . 

Of the Thurston spaces, only 33 ,SE  and 3H  are solutions of Einstein gravity with an appropriate 

cosmological constant term. In search of a single theory from which all eight of the Thurston 

geometries arise, we turn to the low-energy limit of three-dimensional string theory, which has a 

metric µνg , dilaton φ , Abelian 2-form potential ( )2B  with field strength ( ) ( )23 dBH =  and a 

“constant” term in the level of the original sigma model. This theory has many more solutions than 

the constant curvature geometries. In fact, it has propagating modes. If the dilaton is set to a 

constant value, then for a given sign for the coupling of the 2H  term, the only solutions have either 

constant, non-negative or non-positive metrics. The value of the cosmological constant is given by a 
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constant of integration. We therefore modify the above 3D stringy theory by appending to it a U(1) 

gauge field with potential 1-form A and field strength F which couple as a “Maxwell-Chern-Simons 

theory”. The corresponding action is given by: 

 

     ∫ +







−−∇++−= −

νρµ
µνρµν

µν
µνρ

µνρ
φ ε

εε
φχ FA

e
FFHHRegxdS FH

2212
4

223 ,  (3.1) 

 

where the last term is the Abelian Chern-Simons term for the one-form potential ( )1A , and 

( ) ( )12 dAF = . The Wess-Zumino field µνB  is a 2-form potential whose field strength [ ]νρµµνρ BH ∂= . 

Hence, in 3D, the field strength is proportional to the LeviCivita tensor: 

 

                                                           ( ) µνρµνρ ηxHH = ,  (3.2)  

 

where H(x) is a scalar field. The equations of motion for the “Wess-Zumino field” µνB  are 

 

                                              ( )( ) 0: 2 =∇= − µνρφ
µ

νρ ηxHeH .  (3.3) 

 

It easy to see that the latter implies that H(x) = c = constant. Without loss of generality, this result 

can be substituted into the remaining equations of motion. The result is: 

 

                       0
2

2: 42 =−−∇∇+= νρ
ρ

µµν
φ

νµµνµν ε
ε

φ FFgecRE F
H ;                        (3.4) 

                                               ( ) 0
2

: 2 =−∇= −
νρ

µνρµνφ
ν

µ ηε F
e

FeJ F ;                        (3.5) 

                               ( ) µν
µνφ εε

φφχ FFecgRD FH

22
44: 422

−−∇−∆++−= .           (3.6) 

 

We will look for solutions with 0=φ . In this case, by taking appropriate linear combinations of the 

trace of (3.4) and (3.6) one obtains constraints on the Ricci scalar and electromagnetic field 

strengths. In particular, the Ricci scalar and the square of the field strength must both be constant: 

 

                     χ
ε

2
2

2 +−= cR H   (3.7)                          ( )22 cFF HF εχεµν
µν −=   (3.8) 

 

Now we define a vector field dual to the Maxwell field strength: 

 

                                                       νρ
µνρµ η Fv

2

1
:= ,  (3.9) 

 

where   g/: µνρµνρ εη =  is the completely skewsymmetric Levi-Civita tensor. Then the Maxwell-

Chern-Simons equation (with the modified Ricci flow)  
( )
( ) µνµνµν

χ
g

MV

M
Rg

2

22 +−=& , where 

( ) ∫=
2

2

2 :
M

gxdMV   is the volume of 2D manifold 2M , becomes 

                                                           µ
ρν

µνρηε evvF =∇ .  (3.10) 
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If we multiply by µαβη  (contracting on µ ) and use the property  

 

                                                 ρ
α

ν
β

ρ
β

ν
αµαβ

µνρ δδδδηη −= ,  (3.11) 

 

we get                                  [ ] αβ
µ

µαβηε
βα

eFvevF ==∇2 .  (3.12) 

 

Now since [ ]βααβ AF ∂= 2 , it follows that locally there exists a smooth function σ  such that 

 

                                                            σε µµµ ∇+= eAv F .  (3.13) 

 

From the eq. (3.8) it follows immediately that: 

 

                                           ( )22

2

1
cFFv HF εχεµν

µν −== .  (3.14) 

 

Then, the gravitational equations now take the simple form: 

 

                           ( ) 0
2

22 =−−−= νµµνµνµνµν ε
ε

vvgvgcRE F
H .  (3.15) 

 

We will use the vector field µ
v  to specify a local coordinate system in which the metric takes a 

particularly simple form. Choose the coordinate system { }yxx ,, 21  so that 

 

                                                                µ

µ

v
y

=








∂

∂
.  (3.16) 

 

We will denote the dependence of a function f on the j
x  by  f(x). Then from the constancy of µv  it 

follows that                                                   2

33 vg = ,  (3.17) 

where 2
v  is the constant given by (3.14). 

Without loss of generality we can write the metric as 

 

                                        ( ) ( )( )222 , i

i

ji

ij dxxadyvdxdxyxhds ++= ,  (3.18) 

 

where the “2D metric” ijh  depends on all the coordinates yxx ,, 21 . However, iA  depend only on 

the j
x . This follows from the requirement that µ

v  is tangent to a family of geodesics. The form of 

the metric (3.18) suggests that µ
v  is a Killing vector for the full metric. Indeed a straightforward 

calculation shows that the i, j components of the Killing equation on µ
v  

 

                                                                ijijji hvv &=∇+∇   (3.19) 

 

where we have defined the quantity yijij hh ,:=& . We have yet to impose the condition 0=∇ µ
µv  

which is equivalent to 

                                                                  0=ij

ij
hh & ,  (3.20) 
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where i, j,… indices are lowered and raised by ijh  and its inverse matrix ij
h . This means of course 

that   ( )
ijhh det=   is independent of y. Thence, we have effectively solved the Maxwell-Chern-

Simons equations. The only remaining field equations are the Einstein equations (3.15), which in 

terms of the h “metric” reduce to 

 

                                  ( ) 0
24

1
: 422

2

=+−+−= vec
v

hhE Hij

ij

yy ε&& ;  (3.21)       

                ( ) 0
22

1

2

1
: 422

2

=+−+





+∂−∇= iHjk

jk

i
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iyj

j

ijiy avec
v

hhahahE ε&&&& ;  (3.22)   

( ) ( ) ( ) 0
2

12: 422
2

2 =+−







−+−−∇+∇+= vecaah

v
vhaahaahhREh Hji

ij

F

ki

ik

ki

iki

ki

kij

ij εε&&&& .  (3.23) 

 

Now we will describe the flow suggested by our three dimensional gravity theory. The idea is that 

the right side of the flow has as its zeroes the solutions of the equations of motion eqs. (3.4) to eqs. 

(3.6): 

                      















−−+∇∇+−= νρ

ρ
µ

ρτ
νµρτνµµνµν ε

ε
φ FFHHRg F

H

4
22& ;  (3.24) 

                                                ( )ρ
µν

φ
ρµν HeB

2−∇=& ;  (3.25) 

                                                 ( ) νρ
νρ
µ

ν
µ

φ
νµ η

ε
F

e
FeA F

2

2 +∇= −& ;  (3.26) 

                                     ( ) 222

212
44 FHgR FH εε

φφχφ −−∇−∆++−=& .  (3.27) 

 

If the manifold has the topology of a Seifert bundle η  over an orbifold Y, we specify 

( ) ( )ηχχε eeYH ==+= ,,1 . If it is not a Seifert bundle then 1−=Hε . 

Once the parameters (and hence topology) are specified, one begins with an arbitrary configuration 

of metric, dilaton field, 2-form potential µνB  and U(1) potential µA  as initial conditions for the flow 

equations (3.24-3.27). If the flow is to be useful then in the case where the flow is non-singular, the 

metric should reach the appropriate Thurston geometry. Only the Ricci-Hamilton flow of locally 

homogeneous geometries converges to the fixed points for the case of locally homogeneous and 

isotropic geometries. We shall consider a few of the details for the flow of an initial geometry 

which is locally 12 EH × . Thus the metric, U(1) gauge field and dilaton are of the form: 

 

          ( ) ( )( ) ( ) 22

22

2

112

1

2
2

dytEdxtDdxtD
x

l
ds ++= ;    ( ) 








= 0,,0

1x

l
tAAµ ;   ( )tφφ = .  (3.28) 

 

From the flow of the metric, we find first that the factor E(t) must be constant, and hence can be 

absorbed by rescaling the y-coordinate. Second, it turns out that for any value of the flow parameter 

t, there must be a constant α  such that ( ) ( )tDtD 12 α= . The constant α can be absorbed by rescaling 

2x . Third, the function A(t) in the gauge potential is frozen by its flow to be a constant A(t) = a. 

Finally, we calculate  

                                       
( )

( )
( ) ( )( )

( ) ( )( )2

1

2

1

2

1111

2
2:

atDtD

atDtD

t

tD

d

dD

−+

−
−==

φφ &

&
.  (3.29) 
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The solution is 

                                       ( ) ( )












 +−+−=

+ 212

11101 log
2

1 a
aDDDD φφ .  (3.30) 

 

Hence we find that 2

1 aD → , in the limit ∞→φ . Similar behaviour occurs for the case of the 

locally homogeneous flow of 12
ES × .  

The above calculation suggests that the dilaton field φ , “normalizes” the flow and can in some 

sense be considered as the physical flow parameter. If we had solved the locally homogeneous 

flows for φ,, 21 DD  in terms of t, we would have found that the first two do not converge to a finite 

value as ∞→t . Instead, the fields flow to their fixed points as −∞→t . In the usual Ricci flow, the 

locally homogeneous and isotropic geometries do not converge to their global “round” form in the 

limit ∞→t . To accomplish this, the flow is normalized by adding to it a term µνrg3/2 , where r is 

the average value of the Ricci scalar over the manifold. These considerations suggest the idea that 

occurrence of singularities in the flow of the metric is tracked by the flow of the dilaton field, 

instead of the rather arbitrary parameter t. 

The stringy gravity flow described in this section, is a promising approach to proving the Thurston 

Geometrization Conjecture. Now we conclude with the following observations: 

- It is quite closely related to the Ricci flow and its various modifications considered by 

Hamilton, Perelman and others. Hence the recent progress made by Perelman in resolving 

the analytical properties of these flows will almost certainly apply to the flow described 

here. 

 

- The parameters that appear in the flow are determined by the topology of the 3-manifold. 

This makes it easier to “input” the 3-manifold into the flow at the beginning. 

 

- All the Thurston geometries are fixed points of the flow. Hence we can follow non-singular 

flows directly to the Thurston geometries.  

 

- The dilaton field in the flow seems to track the singularities in the flow. This should 

streamline the procedure of performing surgery on the manifolds in regions where these 

singularities occur. 

 

Furthermore, we believe that underlying the stringy flow is a quantum field theoretic understanding 

of the Thurston Geometrization Conjecture. In particular, if the stringy gravity on the 3-manifolds 

are the bulk theory, then the sigma model whose RG flow is the stringy gravity equations of motion 

is its holographical dual theory.      

 

4. The three dimensional charged black string solution. [4] 

 

We take the following form of anti-de Sitter space: 

 

                                   222
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
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
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−

.  (4.1) 

 

If we identify πϕϕ 2ˆˆ += , (4.1) describes a black hole. 

Now we choose two constants −+ rr ,  and introduce the following new coordinates ( ) ϕ−+ −= rltrt /ˆ , 

( ) ( )2//ˆ ltrlr −+ −= ϕϕ ,  ( ) ( )222222 /ˆ
−+− −−= rrrrlr . Then the metric (4.1) becomes 
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where the constants M and J are related to ±r  by 

 

                                                   
2

22

l

rr
M −+ +

=             
l

rr
J −+=

2
.  (4.3) 

 

Identifying ϕ  with πϕ 2+ , yields a two parameter family of black holes. 

We now turn to string theory. We consider the black holes in the context of the low energy 

approximation, and then consider the exact conformal field theory. In three dimensions, the low 

energy string action is 

 

                          ( )∫ 





−∇++−= − µνρ

µνρ
φ φ HHR

k
egxdS

12

1
4

4 223 .  (4.4) 

 

The equations of motion which follow from this action are 

 

                    0
4

1
2 =−∇∇+ λσ

νµλσνµµν φ HHR ,  (4.5a)    ( ) 02 =∇ −
µνρ

φµ
He ,  (4.5b) 

                                        ( ) 0
12

14
44 222 =−++∇−∇ HR

k
φφ .  (4.5c) 

 

If we assume 0=φ , then (4.5b) yields ( ) µνρµνρ εlH /2=  where l  is a constant with dimensions of 

length. Substituting this form of H into (4.5a) yields 

 

                                                                  µνµν g
l

R
2

2
−=   (4.6) 

 

which is exactly Einstein’s equation with a negative cosmological constant. The dilaton equation 

(4.5c) will also be satisfied provided 2
lk = . Thus every solution to three dimensional general 

relativity with negative cosmological constant, is a solution to low energy string theory with 

( ) µνρµνρ εφ lH /2,0 ==  and 2
lk = . In particular, the two parameter family of black holes (4.2) is a 

solution with  
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where dBH = . We now consider the dual of this solution. Given a solution ( )φµνµν ,, Bg  that is 

independent of one coordinate, say x , then ( )φµνµν
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and βα ,  run over all directions except x . Applying this transformation to the ϕ  translational 

symmetry of the black hole solution (4.2) (4.7) yields  
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To better understand this solution, we diagonalize the metric. Let 
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Then the solution becomes 

 

2

22
1

21

2
2

22

ˆ4

ˆ

ˆ
1

ˆ
1ˆ

ˆ
1ˆ

ˆ
1

~

r

rdl

r

Q

r
xd

r

Q
td

r
sd

−−










Μ
−







 Μ
−+









Μ
−+







 Μ
−−= ,   lr̂ln

2

1
−=φ ,   

r

Q
B

tx ˆ
ˆˆ

=   (4.11) 

 

where lr /2

+=Μ  and 2/JQ = . This is precisely the three dimensional charged black string 

solution. 

 

5. On the effective action of a probe fractional D2-brane and on the boundary action of a 

fractional D3-brane on 2

2 / ZC  orbifold. [5] [6] 

 

We have the following solution describing N fractional D2-branes transverse to a 2

2 / ZC  orbifold: 
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We will show the world-volume theory of a probe fractional D2-brane placed in the background 

(5.1) at some finite distance r in the transverse space { }543 ,, xxx .  

Let us start from the world-volume action for a single fractional D2-brane which, in the Einstein 

frame, is given by: 
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where we have chosen the static gauge, hats denote pullbacks onto the brane world-volume and the 

fields 3C  and 1C  are given by: 
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Thence, from (5.2), we obtain: 
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We regard the coordinates { }543 ,, xxx  transverse to the probe brane as Higgs fields of the dual 

gauge theory: i

s

i
lx Φ= 22π . We also define polar coordinates ( )ϕθµ ,,  in the moduli space of the 

iΦ , so that the resulting energy / radius relation is given by µπ 22 slr = . Expanding the world-

volume action for slowly varying world-volume fields and keeping only up to quadratic terms in 

their derivatives we easily see that position dependent terms cancel, and we are left with the 

following effective action: 
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When b = 0, the effective tension of the probe vanishes and this means that in this case an enhançon 

mechanism is taking place at the radius: 
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Substituting in (5.4) the expression of b in terms of µ , we obtain: 
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The moduli space of the gauge theory can be explored by means of a probe fractional D2-brane. 

One notices that if the enhançon radius is ( )MNlgr sse −= 2 , the resulting affective action (5.6) gets 

modified as follows: 

 

            
( ) ( ) ( ) ( )( )[ ]∫ +









+∂+∂+∂×






 −
−−= 2222223

4

1
sin

2

1

2

2
1

4
F

l

MNg
xd

g

l
S

s

s

s

s
probe ϕθθµµ

µπ
   

                        ( )∫ ∂−− βγα
αβγ ϕθε

π
FMNxd cos2

16

1 3 .  (5.7) 

 

The boundary action for a fractional D3-brane of type I on the orbifold 2

2 / ZC  is: 
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We can see how the scale and chiral anomalies are realized in supergravity and we consider the 

Dirac-Born-Infeld action and the Wess-Zumino term for a stack of IN  fractional D3-branes given 
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by eq. (5.8). Turning on a gauge field on the world-volume of the branes and expanding the 

boundary action in the supergravity background up to quadratic terms in the derivatives one gets: 
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where for simplicity we dropped the index I of the gauge fields and the metric G is the pull-back to 

the brane world-volume. 

 

6. Mathematical connections between some relations concerning the Poincaré Conjecture, 

String Theory and some sectors of Number Theory. [7] [8] 

 

a. Mathematical connections with string theory. 

 

Now we take the equations (1.18a), (1.20), (1.20a) and (1.25), regarding the Poincaré and 

Geometrization Conjectures. We have that these equations can be related with the eq. (3.1) 

concerning the modified 3D stringy gravity, with the eq. (4.4) concerning the low energy string 

action in the context of the three dimensional black holes and also with the eq. (5.7) concerning the 

effective action of a probe fractional D2-brane. 

Furthermore, we have also that the eqs. (3.1) and (4.4) can be connected with Palumbo-Nardelli 

model, concerning the fundamental correlation between bosonic string action and supersymmetric 

string action 

Hence, if we take, for example, the eqs. (1.25), (3.1), (4.4) and (5.7) we obtain the following 

interesting connections:  
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Now we take the eq. (2.19) regarding the Ricci flow on compact four-manifolds with positive 

isotropic curvature. We note that this equation can be related with the eq. (5.9) concerning the 
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boundary action of a fractional D3-brane on 2

2 / ZC  orbifold. Also the eq. (5.9) can be connected 

with Palumbo-Nardelli model. Hence, we have the following connections: 
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b. Mathematical connection with Number Theory. 

 

With regard the mathematical connection with Number Theory, we have obtained some interesting 

relations between the equations concerning Poincarè Conjecture and Riemann zeta function, ,π  φ  

and  Φ , hence, with the Ramanujan’s modular function and Ramanujan’s modular equations 

concerning the approximations to π .  

With regard the Riemann zeta function, we take the eq. (4.11) 
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Now, we take the Lemma 3 of Goldston-Montgomery theorem. Let ( ) 0≥tf  a continuous function 
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With regard the connections between Poincaré Conjecture, Ramanujan’s modular function and 

Ramanujan’s modular equations, we know that: 
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The equation (6.6) is the Rogers-Ramanujan identity for continued fractions related to the modular 

functions, thence, to the Ramanujan modular functions. 

Modular functions are a subclass of the more general modular forms. An example of a modular 

function is the Dedekind eta function, given by the infinite product 
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Like other modular forms, this function is defined over the domain of complex numbers iyxz +=  

where x and y are real and y > 0. For complex numbers, i is the square root of  -1, i.e. 1−=i . In 

the function, “e” is the Euler’s number (2,71828…) and π  is pi (3,14159265359…). 

The Dedekind eta function is defined as 
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Then the modular discriminant ( ) ( )24
zz η=∆  is a modular form of weight 12. A celebrated 

conjecture of Ramanujan asserted that the pq  coefficient for any prime p has absolute value 

.2 2/11p≤  This was settled by Pierre Deligne as a result of his work on the Weil conjectures. 

Ramanujan’s function τ  is defined by the expansion 
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which is valid for each complex number x such that 1<x .  

The Ramanujan’s function τ  is related with the Rogers-Ramanujan identity (6.6). Also the 

Ramanujan’s modular equations are related with the Ramanujan’s function τ . Indeed, we have the 

following expressions: 
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We note easily that the pure number 24 represent the modes of Ramanujan function and, in the 

expressions (6.11), (6.13) is very fundamental and it is connected with π . It is interesting note also  

that the numbers 2, 3, 5, 7, 11 and 13 are prime numbers. 

With regard the connection obtained with Poincaré Conjectures, if we take the eq. (1.25), we have 

the following expressions that are related with φπ ,  and Φ : 
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Furthermore, these equations are related to the eq. (6.1), thence to the some equations concerning 

the string theory and to the Palumbo-Nardelli model. 

 

 

 

 

                                                              Conclusions. 

 

There exist an important connection between modular functions and string theory. Closed strings 

can be viewed as a set of loops arrayed on the manifold of space-time. The study of how simple 

loops behave under deformations is known as homology, and is intensely studied in K-theory. 

Imagine, for example, a Green’s function defined on a manifold: it can be thought of defining a 

measure-preserving flow on the manifold. As the loops flow along the manifold, they trace out 

cylinders which sometimes merge and join, and sometimes split apart. Places where two cylinders 

join are known as pairs of pants. Riemann surfaces of negative curvature can be formed by stitching 

together pairs of pants. Thus, the natural setting for a string theory of closed loops is a Riemann 

surface. 

Modular functions are used in the mathematical analysis of Riemann surfaces. Riemann surface 

theory is relevant to describing the behaviour of strings as they move through space-time. When 

strings move they maintain a kind symmetry called “conformal invariance”.  

Conformal invariance (also called “scale invariance”) is related to the fact that points on the surface 

of a string’s world sheet need not be evaluated in a particular order. As long as all points on the 

surface are taken into account in any consistent way, the physics should not change. Equations of 

how strings must behave when moving involve the Ramanujan function that is also related at some 

equations regarding the Poincaré Conjecture, as we can see easily in the present work. 

When a string moves in space-time by splitting and recombining, a large number of mathematical 

identities must be satisfied. These are the identities of Ramanujan’s modular function (and the 

related equations of Poincaré Conjecture). The KSV (Kikkawa-Sakita-Virasoro) loop diagrams of 

interacting strings can be described using modular functions. 

The “Ramanujan function”, an elliptic modular function that satisfies the “conformal symmetry”, 

has 24 “modes” that correspond to the physical vibrations of a bosonic string. 

When the Ramanujan function is generalized, 24 is replaced by 8 (8 + 2 = 10), hence, has 8 

“modes” that correspond to the physical vibrations of a superstring. 
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