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Riassunto

La "congettura di Poincaré" afferma che: “Ogni 3-varieta semplicemente connessa chiusa (ossia
compatta e senza bordi) ed orientabile € omeomorfa a una sfera tridimensionale”. (In topologia, un
omeomorfismo ¢ una corrispondenza biunivoca fra due spazi topologici che ne preserva la
topologia. In altre parole, ¢ una funzione tra due spazi topologici con la proprieta di essere continua,
invertibile e di avere I'inversa continua. Due spazi omeomorfi godono delle stesse proprieta
topologiche (separabilita, connessione, compattezza...). Informalmente, due spazi sono omeomorfi
se possono essere deformati I’uno nell’altro senza “strappi”, “sovrapposizioni” o “incollature”).
Detto con termini diversi, la congettura dice che la sfera ¢ 1'unica varieta tridimensionale "senza
buchi", cio¢ dove qualsiasi cammino chiuso puo essere contratto fino a diventare un punto. Il padre
dell'enunciato ¢ il matematico francese Henri Poincaré. La Congettura che prende il suo nome
nacque nel 1904, mentre lo studioso stava lavorando ai fondamenti di quella che poi sara chiamata
topologia algebrica. L'enunciato di Poincaré tenta di dimostrare che la sfera ¢ il piu semplice campo
in cui un qualsiasi cammino chiuso possa essere contratto fino a diventare un punto (ogni varieta
chiusa n dimensionale omotopicamente equivalente alla n-sfera ¢ omeomorfa alla n-sfera. In
topologia, due funzioni continue da uno spazio topologico ad un altro sono dette “omotope”, se una
delle due puo essere “deformata con continuita” nell’altra e tale trasformazione ¢ detta “omotopia”
fra le due funzioni).

Dato che la sfera ¢ la piu semplice delle superfici bidimensionali, Poincaré, nel 1904, ipotizzd che
cosi fosse anche in dimensione superiore, congetturando che la tri-sfera ¢ l'unica superficie
tridimensionale chiusa (e orientabile, per essere precisi) sulla quale tutte le curve chiuse sono
deformabili 1'una nell'altra. Una formulazione della congettura di Poincaré a n dimensioni ¢ la
seguente: Ogni varieta chiusa n dimensionale omotopicamente equivalente alla n-sfera ¢
omeomorfa alla n-sfera. Questa definizione ¢ equivalente alla congettura di Poincaré nel caso n=3.
Le difficolta maggiori sorgono per le dimensioni n = 3 e n = 4. | matematici cinesi Zhu Xiping e
Cao Huaidong, seguendo la strada indicata dal matematico russo G. Perelman, hanno trovato la
soluzione di questo grande enigma delle scienze esatte. La congettura di Poincaré avrebbe
ripercussioni sulle possibili topologie della teoria delle stringhe e delle varie altre teorie della
gravitazione quantistica. Alcune teorie della fisica moderna si formalizzano, infatti, mediante
strutture geometriche aventi un numero di dimensioni maggiore di tre: la relativita einsteiniana
prevede uno spazio-tempo quadridimensionale, mentre la piu recente teoria delle stringhe ipotizza
l'esistenza di dieci dimensioni fisiche, sei delle quali «compattificate» in iperspazi minuscoli con
una geometria e una topologia molto intricate.
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Nella presente tesi vengono evidenziate le connessioni matematiche ottenute tra la Congettura di
Poincare, la Congettura di Geometrizzazione di Thurston, la Teoria di Stringa ed alcuni settori della
Teoria dei Numeri.

Vengono prima descritti alcuni fondamentali risultati matematici inerenti la Congettura di Poincare,
ottenuti dal matematico russo G. Perelman e sviluppati dai matematici cinesi Huai-Dong Cao e Xi-
Ping Zhu, le cui dimostrazioni possono essere considerate come le conseguenze finali della teoria
del flusso di Ricci di Hamilton-Perelman. A questi concetti seguiranno quelli riguardanti la Teoria
di Stringa, precisamente, la 3D stringy-gravity per comprendere la congettura di Thurston, i buchi
neri tri-dimensionali in teoria di stringa, ed infine 1’azione effettiva di una D2-brana frazionaria e
quella al contorno di una D3-brana frazionaria

Concluderemo, inoltre, evidenziando le correlazioni ottenute tra alcune equazioni inerenti le
Congetture di Poincare e di Thurston e (i) i settori prima menzionati inerenti la Teoria di Stringa,
(i1) alcune formule che riguardano la Teoria dei Numeri, precisamente, 7 e la Costante di Legendre
“c”, ed, infine, (iii) il modello di Palumbo applicato alla Teoria di Stringa.

1. Poincar¢ and Geometrization conjectures. [1]

A Riemannian metric g, is called Einstein if R, =Ag, for some constant 4. A smooth manifold

M with an Einstein metric is called an Einstein manifold. If the initial metric is Ricci flat, so that
R; =0, than any Ricci flat metric is a stationary solution of the Ricci flow. This happens, for

example, on a flat torus or on any K3-surface with a Calabi-Yau metric.
The equation R, +V.V.f=0, or Ric+V?*f =0, (1.1) is the steady gradient Ricci

soliton equation. The equation for a homothetic Ricci soliton (expanding Ricci soliton) is
2R, +8,V .V +g,VV"-24g.=0, (12)
or for a homothetic gradient Ricci soliton,
R, +V.V . f-1g,=0, (1.3)

where A is the homothetic constant. For 4 >0 the soliton is shrinking, for 4 <0 it is expanding.
The case A=0 is a steady Ricci soliton, the case V = 0 (or f being a constant function) is an
Einstein metric. The Ricci flow on a Kahler manifold is called the Kahler-Ricci flow. A Ricci
soliton to the Kahler-Ricci flow is called a Kahler-Ricci soliton.

PROPOSITION A.

On a compact n-dimensional manifold M, a gradient steady or expanding Ricci soliton is
necessarily an Einstein metric.
Let g, be a complete steady gradient Ricci soliton on a manifold M so that

R;+V,V,f=0.
Taking the trace, we get R+Af=0. (1.4)
Now, for the equation V.R, =V R, +R;,V,f=0,

taking the trace on j and k, and using the contracted second Bianchi identity
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V R =LV.R, (15)

JUE

weget V.R-2RV,f=0.Then  V,(vf'+R)=2v f(V,V f+R,)=0.
Therefore
R+|Vf|'=C, (1.6)

for some constant C. Taking the difference of (1.4) and (1.6), we get
A =Vf[ =—C. (1.7)
Then, by integrating (1.7) we obtain

2
[ [vffav=o0.

Therefore f is a constant and g is Ricci flat.

We assume M is a compact n-dimensional manifold and consider the following functional
2 _r
Fle;. f)= I, R+vr k7 av (1.8)

of Perelman defined on the space of Riemannian metrics, and smooth functions on M. Here R is the
scalar curvature of g, .

LEMMA 1. (Perelman).

If &g, =v; and & =h are variations of g; and f respectively, then the first variation of F is
given by

oF (v, n)=| {— v, (R, +V.V, f)+(§—hj(2Af—|Vf|2 +R)}e_f dv
where v = g”vU .

PROPOSITION 1. (Perelman).

Let g, (1) and f(t) evolve according to the coupled flow

%:_21{.

ot v

%:_Af+|Vf|2—R. Then
d 2
= Fley ) FO)=2f R +V9 1 e av



and I Me_f dV is constant. In particular F (g,.j(t), f (t)) is non-decreasing in time and the

monotonicity is strict unless we are on a steady gradient soliton.
PROPOSITION 2.
On a compact manifold, a steady or expanding breather is necessarily an Einstein metric.

Now, we introduce the following important functional, also due to Perelman,

Wlg,.f.7)= [, [T(R+|Vf|2)+ f—n](4m)‘§e-f dv (1.9)

where g, is a Riemannian metric, f is a smooth function on M, and 7 is a positive scale parameter.
The functional W is invariant under simultaneous scaling of 7 and g, and invariant under

diffeomorphism. Namely, for any positive number “a” and any diffeomorphism ¢

Wlag's,.@' f.at)=Wlg,.f.7). (1.10)
Similar to Lemma 1, we have the following first variation formula for W.
LEMMA 2. (Perelman).

Ifv,=0,;, h=&, and 1n=20t, then
1 N
&V(vii,h,ﬂ)sz—wii[RU +V1.ij—2—z_giij(47n) e dV +

+f (%—h—%nj[T(R +2uf Vi )+ £ Cn—f4mr)re av + [ n(R +|vr[ —%)(4757)_; eldv .

Here v=g"v, as before.
The following result is analogous to Proposition 1.

PROPOSITION 3.

If g; (t), f(t) and t(r) evolve according to the system

dg .
% _ g
ot /

I  __ 2 p
= Af +|Vf| R+2T
0T
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then we have the identity
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(4zz) 2e av

Lyp(g, (). £612)=], 21

dt

1
Rij +Vivjf_ggij

and .[M (47[1')_§e_f dV is constant. In particular W(gi,. (t), f (t),T(t)) is non-decreasing in time and

the monotonicity is strict unless we are on a shrinking gradient soliton.
Now we set

fec (M),

e‘fa’Vzl} (1.11)

1
(orey

:U(gzjj’f): inf{W(gzj’f’T

fec=(M)r>0,

and v(glj):inf{W(g,f,T e‘de:l}. (1.12)

1
(oo

-f12

Note that if we let u=e¢ , then the functional W can be expressed as

W(g,.j,f,T)z J-M [Z'(Ru2 +4|Vu|2)—u2 logu2 —nu2k47n')_§ dv

and the constraint J-M (4752')_2 e’dV =1 becomes .[M u’ (4752')_2 dV =1. Thus ,Ll(gii,f) corresponds to

the best constant of a logarithmic Sobolev inequality. Since the non-quadratic term is sub-critical, it
is rather straightforward to show that

inf{ [, [T(4|Vu|2 +Ru? )— u*logu® —nu’ ](47zr)‘§ dV‘ [ w (47z) 2V = 1}

is achieved by some nonnegative function ue H'(M ) which satisfies the Euler-Lagrange equation
7(—4Au+ Ru)—2ulogu —nu = ,u(g[j,f)u .

Then, for the (1.11), we have

fec (M),

1
oy

7(—4Au+ Ru)-2ulogu —nu =inf{W(g[j,f,T

e‘dezl}u. (1.13)

Now we relating the quantity H (or v) and the W-functional of Perelman defined in (1.9). Observe
that v happens to be the integrand of the W-functional,

Wlg, ). f.7)=[vav.

Hence, when M is compact,

2

udV <0,

Ric+V2f—ig
2T

%W = jM (%v+ RvjdV = —2rjM



or equivalently,

2

1 1
2o gii (47[T)n/2

Ly(g, (). (00e0)=] 27

” R, 4V, f~

which is the same as stated in Proposition 3.
We now use the Ricci-flatness of the metric g to interpret the Bishop-Gromov relative volume

comparison theorem which will motivate another monotonicity formula for the Ricci flow.

Consider a metric ball in (M 8 ) centred at some point (p,s,0)e M . Note that the metric of the
sphere S" at 7=0 degenerates and it shrinks to a point. Then the shortest geodesic (z) between
(p,5,0) and an arbitrary point (¢,5,7)e M is always orthogonal to the S" fibre. The length of
¥(r) can be computed as

[ et =7 Rl o] |

Thus a shortest geodesic should minimize
L(;/)zLTx/;(R+|7(r)|; )dr.

Let L(g,7) denote the corresponding minimum. We claim that a metric sphere S (\/ 2NT ) in M

of radius +V2N7 centred at (p,s,0) is O(N™'")-close to the hypersurface {r=7}. Indeed, if
(x,s',7(x)) lies on the metric sphere S i (\/ 2N 2_'), then the distance between (x,s',z(x)) and (p,s,0)

18

V2NT =/2N7(x) +

\/zl_NL(x,f(x))+0(N_zj

which can be written as

Je) -7 = —%L(x,f(x))+0(N‘2)= o(n").

This shows that the metric sphere S (\/ZN T ) is O(N _1)— close to the hypersurface {r=7}. Thus,
we have

2N

volls,, 2Nz )= N ) o, | (\/% L r)ro(n )devM

N

~(2N): @, [ (ﬁ L i)+l )j v,

2N

where @, 1is the volume of the standard N-dimensional sphere. Now the volume of Euclidean
sphere of radius ¥2N7 in R"""' is
N+n

Vol(SRMH (\/ 2NT ))= 2NT) 2 @,,,.



Thus we have ( ( ))
VollSgWaINT)) i s [ () [t
Volls ()N L @ e v

Since the Ricci curvature of M is zero (modulo N7'), the Bishop-Gromov volume comparison
theorem suggests that the integral

T(e)2] (are) exp{_%L(x,f)}de ,

N3

which we will call Perelman’s reduced volume, should be non-increasing in 7 .
Now the Li-Yau-Perelman distance [ =[(q,7) is defined by  {(q,7)=L(q,7)/2J7T . We thus
have the following

LEMMA 3.

For the Li-Yau-Perelman distance 1(q,7) defined above, we have

ol l 1 2
— =——4+R+——K, (1.14) VI =—R+—-
of T 2732 (1.14) | | T

Ko (115 AlS-R+—————5 K, (1.16)

in the sense of distributions. Moreover, the equality in (1.16) holds if and only if we are on a
gradient shrinking soliton.

COROLLARY 3.1

Let g[j(f),TZO, be a family of metrics evolving by the Ricci flow %gij =2R; on a compact n-

dimensional manifold M. Fix a point p in M and let | (q,f) be the Li-Yau-Perelman distance from
(p,O). Then for all 7,

min{l(q,rlq € M}S % .

As consequence of Lemma 3, we obtain

a—l_ —-Al+ |Vl|2 -R +i_ >0, orequivalently (i_ -A+ Rj[(4m_')_z exp(—l)} <0.
o7 27 oT

If M is compact, we define Perelman’s reduced volume by

P(e)= (4re) s expltlq. V. (g).

where dV_ denotes the volume element with respect to the metric gij(T). Note that Perelman’s

reduced volume resembles the expression in Huisken’s monotonicity formula for the mean
curvature flow. It follows that



[ me et tlg v o)< | 2 (am2) S x| Rl S expl-1l ) v o)<

<[ A((m)-’; exp(-z(q,f))jdv, (4)=0.

This says that if M is compact, then Perelman’s reduced volume V(zr) in nonincreasing in 7 ;
moreover, the monotonicity is strict unless we are on a gradient shrinking soliton.

THEOREM 1 (Perelman’s Jacobian comparison theorem).

Let g, (T) be a family of complete solutions to the Ricci flow aig"f' =2R; on a manifold M with
‘ z. ‘
bounded curvature. Let ¥: [0,‘7']—) M be a shortest L-geodesic starting from a fixed point p. Then

Perelman’s reduced volume element (4752')_3 exp(=1(z))J (¢) is nonincreasing in © along .

THEOREM 2 (Monotonicity of Perelman’s reduced volume).

Let g, be a family of complete metrics evolving by the Ricci flow %g[j =2R; on a manifold M
with bounded curvature. Fix a point p in M and let 1(q,7) be the reduced distance from (p,0). Then
(i) Perelman’s reduced volume ‘7(1') = IM (477) 2 exp(~1(¢.7))dV.(q) is finite and nonincreasing
in 7 ; (ii) the monotonicity is strict unless we are on a gradient shrinking soliton.

Now, we have

limf_gJ(f)zl, (1.17) and  10)=][". (1.18)

7—0"
Combining (1.17) and (1.18) with Theorem 1, we get

~

\% (T) = .[M (4752')_2 exp(— [ (q,T))dVT (q) < .[T y (4752')_2 exp(— l (Z'))J (T)' rodv =

P

_n 2
= (475) 2.[R" exp(—|v| )dv <+oo . (1.18a)
This proves that Perelman’s reduced volume is always finite and hence well defined.
THEOREM 3 (No local collapsing theorem I).

Given any metric g; on an n-dimensional compact manifold M. Let g, (t) be the solution to the
Ricci flow on [O,T), with T <+, starting at g,;. Then there exist positive constants k and p,
such that for any t, e [O,T) and any point x,€ M , the solution g, (t) is & -noncollapsed at (x9,2,)

on all scales less than p,,.



n

We have that for k large enough, V. (g,77)<2¢2. (Step 1)

We estimate the integral of V, (g, ) as follows,

n n
~

Vi (gk r ): IM (47[‘9/( r )_E exp(— l(q’ &1; ))dv,k_gk,kz (‘1) = Lexp - (47[‘9/( r )_E eXP(_ l(‘]’gk r ))dv,k_gk,kz (4)+
pref

[v[s=e
4

e (47,22 expl-ilg.,r7 Jav, . (). (1.19)

vgig—l/zl(gk’kzj
{‘ o J

The second term on the right hand side of (3.19) can be estimated as follows

n

j (47[‘9/( r )_E eXP(_ ! ((] E T ))dv,k et (q)< j(47l’2’)_§ exp(-1(z))I (T] o dv

M\LexP{\v\%sk‘”z[L(g"rkz) {‘V‘>i€l;”2}

=(z)> | exp(—|v|2)de€§, (1.20)

{‘v‘>i€;1/2}

for k sufficiently large. Combining (1.19)-(1.20), we have the relation of Step 1.
We next have that (Step 2)

~

V(e )=(4m,) 2 exp(-t{g.t,)av, (g)>C" (1.20a)

for all k, where C' is some positive constant independent of k. It suffices to show the Li-Yau-
Perelman distance / (-,tk) is uniformly bounded from above on M. Combining Step 1 with Step 2,

~ ~

and using the monotonicity of \7k (r),weget C'<V.(t,)<V, (€k r )S 28,? —0 as k—>oo.
DEFINITION 1

A solution g, (x,7) to the Ricci flow on the manifold M, where either M is compact or at each time t
the metric g, (,¢) is complete and has bounded curvature, is called a singularity model if it is not

flat and of one of the following three types:
Type I: The solution exists for re(—o,Q) for some constant Q with 0<Q <400 and

|Rm| <Q/ (Q —t) everywhere with equality somewhere at t = 0;

Type II: The solution exists for ¢ € (—oo,400) and |Rm| <1 everywhere with equality somewhere at
t=0;

Type III: The solution exists for fe(—A,<4o) for some constant A with 0< A<+ and
|Rm| < A/(A+1) everywhere with equality somewhere at t = 0.

We state a result of Sesum on compact Type I singularity models. Recall that Perelman’s functional
W is given by



W(g, f.7)= jM (477) 2 [rQVfF + R)+ f- n]e_deg

with the function f satisfying the constraint IM (47[1)_§e‘f av, =1.

Furthermore, we have also that
) =int W el 1.7 o} ot =02 av, =1}

As shown by Natasa Sesum, Type I assumption guarantees the boundedness of (g(r)), while the
compactness assumption of the rescaling limit guarantees the existence of the limit for the
minimizing functions f(-,¢). Therefore we have

THEOREM 4 (Sesum).

Let (M '8 (t)) be a Type I singularity model obtained as a rescaling limit of a Type I maximal
solution. Suppose M is compact: then (M '8 (I)) must be a gradient shrinking Ricci soliton.

THEOREM 5 (Long-time existence theorem proposed by Perelman).

For any fixed constant € >0, there exist nonincreasing (continuous) positive functions 5 (t) and
7(t), defined on [0,+<><>), such that for an arbitrarily given (continuous) positive function 5(t) with
S(r)< ) (t) on [0,+00), and arbitrarily given a compact orientable normalized three-manifold as
initial data, the Ricci flow with surgery has a solution with the following properties: either
(i) it is defined on a finite interval [O,T) and obtained by evolving the Ricci flow and by
performing a finite number of cutoff surgeries, with each o -cutoff at a time te (O,T)
having 8=95(t), so that the solution becomes extinct at the finite time T, and the initial
manifold is diffeomorphic to a connected sum of a finite copies of S*xS' and S*IT
(the metric quotients of round three-sphere); or
(i) it is defined on [0,+<><>) and obtained by evolving the Ricci flow and by performing at
most countably many cutoff surgeries, with each O -cutoff at a time te€ [0,+00) having
o= 5(t), so that the pinching assumption and the canonical neighbourhood assumption
(with accuracy € ) with r = F(t) are satisfied, and there exist at most a finite number of
surgeries on every finite time interval.

The famous Poincare conjecture states that every compact three-manifold with trivial fundamental

group is diffeomorphic to S°. Let M be a compact three-manifold with trivial fundamental group.
In particular, the three-manifold M is orientable. Arbitrarily given a Riemannian metric on M, by
scaling we may assume the metric is normalized. With this normalized metric as initial data, we
consider the solution to the Ricci flow with surgery. If one can show the solution becomes extinct in
finite time, it will follow from Theorem 5 (i) that the three-manifold M is diffeomorphic to the
three-sphere S”. Such finite extinction time result was first proposed by Perelman, and, recently,
Colding-Minicozzi has published a proof to it. The combination of Theorem 5 (i) and Colding-
Minicozzi’s finite extinction result, gives a complete proof of the Poincare conjecture.

Now, we have:
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THEOREM 6 (Perelman).

For any £€>0 and 1< A<+oo, one can find k=x{(A,&)>0, KI(A,8)<+00, K,= KZ(A,8)<+oo
and 7 =7(A,€)>0 such that for any t, <+eo there exists 8, =0,(t,)>0 (depending also on €),
nonincreasing in t,, with the following property. Suppose we have a solution, constructed by

Theorem 5 with the nonincreasing (continuous) positive functions ) (t) and 7(t), to the Ricci flow
with O -cutoff surgeries on time interval [O,T] and with a compact orientable normalized three-

manifold as initial data, where each & -cutoff at a time t satisfies §=05(t)<6(t) on [0,T] and

8=6()<s, on {t—o,to}; assume that the solution is defined on the whole parabolic
2

neighbourhood P(xo,to,ro,—r02 )i{(x,tlxe B, (xo,ro )te [to — 1t ]} 21} <t,, and satisfies |Rm| <r’
on P(xo,to,ro,—roz), and Vol, (B (x,,7, ))2 A™'r). Then

Ty

(i) the solution is K -noncollapsed on all scales less than r, in the ball B, (x,,Ar, );

(ii)  every point x€ B, (x,,Ar,) with R(x,t,)> K,r,* has a canonical neighbourhood B, with
1
B, (x,c)cBc B, (x,ZO') for some 0<o<C, (S)R 2 (x,t0 ), which is either a strong & -

neck or an & -cap;
(iii) i 1, SFAt, then RSK,r” in B, (x,,Ar).

Here C, (6‘) is the positive constant in the canonical neighbourhood assumption.

Now, we have that every shortest L-geodesic from (x,to) to the ball B (xo,ro) is necessarily

2
—ry

admissible. By combining with the assumption that Vol (B (xo,ro))z A™'r’, we conclude that

Ty

Perelman’s reduced volume of the ball B, _, (x,.7,) satisfies the estimate
0~ "o

3

(4m;) 2 expl-tlg.ry v, _.(a)2c(a) (121)

Ve (Bro—rs (.1 )): jB (t0)
for some positive constant ¢(A) depending only on A. The union of all shortest L-geodesics from
(x,to) to the ball B,O_ro2 (xo,ro), defined by CB,O_rO2 (xo,ro):{(y,t)|(y,t) lies in a shortest L-geodesic

from (x,to) to a point in Bto_ (xy,7, )}, forms a cone-like subset in space-time with vertex (x,to).

0
Denote by B(r) the intersection of the cone-like subset CB, (x,,7,) with the time-slice at t.
-

Ibz

Perelman’s reduced volume of the subset B(r) is given by

3

V- (B@)=[, (@xle, ~1)> exp(=(g.t,~1)aV, (q).

Since the cone-like subset CBIO_ (xo,ro) lies entirely in the region unaffected by surgery, we can

Ibz

apply Perelman’s Jacobian comparison Theorem 1 and the estimate (1.21) to conclude that

11
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(xy.1))2c(4) (1.22)

(B(t)=V.(B_.

to—t 72

for all re|t, —r2,z,]. Consider Blr, —&p?), the subset at the time-slice {t=1,—&p>} where every

point can be connected to (x, to) by an admissible shortest L-geodesic. Perelman’s reduced volume

of E(to —fpz) is given by

- 3

7. (Bl,—¢p%))= [y, o 407 ) 2 expl-tlq.50? v, (0)=

= J-g(,o_fpz)ﬁmp | (gpz)(47£§,02 )2 exp(-i(g.&0° ))dVTO_ i (q)+

J<te 2
‘\‘545

3

’ Ié(rofpmexp[ ll(gpz)(“”fpz J2expl-tlg.60° v, .. (a). (123)

M%ﬁ J

Note that the whole region P(x,to, ,0,—,02) is unaffected by surgery because pzzi?(to) and
n

= ~ ~ 1 . .. . . ..
1) (L, ty, T (t0 ),r(;oj,ej >0 is sufficiently small. Then, there is a universal positive constant &, such

1

1.—

< E 2
sk

that when 0<¢& <&, there holds  Lexp { }(f g )C B, (x,p) and the first term on right hand

side of (1.23) can be estimated by

3 3 3

IE(WZM[ oo expl-tlg. 807 v, ()< e ldn) g (124
vste 2
Il

for some universal constant C; while the second term on right hand side of (1.23) can be estimated
by

ll(fﬂz)(47[§p2)_; eXp(_l(q’fpz))dV,o_gpz (q)< (475)_2.[{ 1 —;}CXP(_|V|2)4V- (1.25)

J-E(To—fﬂzhexpjﬂléz M>Z§
< J

1

Since B(tO ~-&p? )C E(to ~&p? ), the combination of (1.22)-(1.25) bounds ¢ from below by a
positive constant depending only on A. This proves the statement (i).

2. Ricci flow on compact four-manifolds with positive isotropic curvature. [2]

Let M* be a compact four-manifold with no essential incompressible space-form and with a metric
g,; of positive isotropic curvature.

12



THEOREM 2.1

There exists a positive constant k, with the following property. Suppose we have a four-

dimensional (compact or noncompact) ancient K -solution with restricted isotropic curvature
pinching for some k >0. Then either the solution is K,-noncollapsed for all scales, or it is a metric

quotient of the round cylinder RxS”.

Let g,.j(x,t), xe M* and 1€ (—o0,0], be an ancient x -solution with restricted isotropic curvature

pinching for some x>0 . For arbitrary point ( p.ty)e M*x(—oo, 0], we define that 7= t,—t, for

t<tr,  Ig0) mf{[ (ROt )+ 7Y HislysD0.e1 b with )= p. o) =),
and V(z)=| (4mc)” exp(-1(g.7 ))dv,o_,( ),
- is the norm with respect to the metric gl.j(t0 —5) and dv, _, is the volume element

with respect to the metric g, (to —7). Here, [ is called the reduced distance and \7(2') is called the

reduced volume. For any A>1, one can find B = B(A)<+co such that for every 7 >1 there holds

I(g.7)< B and R(q.t,—7)<B (2.1)

ty——

whenever %fSTSAT' and d’ {q,q(%DSAf.
2

Considering the reduced volume \7(2') of the ancient x-solution, we have from Perelman’s
Jacobian comparison theorem that

V(c)=[ (4zc) e av, , < L,w (4z)?e ™ ax =1.

1
Now, we denote by &£ =Vol, (BTO ( p,l))i. For any ve T M *, we have that one can find a L-geodesic
¥(r), starting at p, with lim__ . \/;7(2') =v, which satisfies the following L-geodesic equation

%(ﬁy)—%\/?VR+2Ric(\/;7,-)= 0. (22)

By integrating the L-geodesic equation we see that as 7 <& with the property that ¥(c)e B, (p.1)
for o€ (O,T], there holds

Neie)-v]<celv+1) 23)

for some universal positive constant C.
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1

Now, for ve T ,M * with |v|Si€_2 and for 7<e with the property that ¥(o)e B, (p,1) for

o€ (0,1'], we have

d, (p. /7)) j|7(ada< e j

1
This shows Lexp{|v| < %8 2 }(8) CB, (p.1) (2.4)

where Lexp(-)(€) denotes the exponential map of the L distance with parameter £. We decompose

the reduced volume \7(8) as

Vie)= IM4(4ﬂ'€)‘2 exp(-1)av, , < Lexp{vs g-;}(€)+ IMmexp{vsigi}(g) (47€)” exp(=1)dV, , (2.5)

The first term on right hand side of (2.5) can be estimated by
' -2 . < 4 ) _ <
jLexp{vSis_z}(E)(él-ﬂ-g) exp( l)dV e S€ IB,O(p.l)(4ﬂ€) exp( l)thO <

<e*(4z) Vol (B, (p))=e*(47)"e>. (2.6)

where we used (2.4) and the equivalence of the evolving metric over B, (p.1).
While the second term on the right hand side of (2.5) can be estimated as follows

IM4\Lexp{v£i€;}(8)(4E€) eXp ro—s — { ;} 472’.7’. CXP(—Z)J(T)I T:Odv (27)

by Perelman’s Jacobian comparison theorem, where J(7) is the Jacobian of the L-exponential map.
To evaluate {(-,7) at 7 =0, we use (2.3) again to get

:ﬁ j;ﬁ(R+|7(s)|2)dH|v2

1(,0)=)". 2.8)

, as 7—0", thus

Hence by combining (2.7)-(2.8) we have

IM““"{M%;}<s>(4”€)_2 expl-1)dV, . <(47)” ﬂw;gi}e"p Epfhv<er. 29)

By summing up (2.5), (2.6) and (2.9), we obtain
V(e)<2e2. (2.10)

Now, by the estimates (2.1) and the &, -noncollapsing of the shrinking soliton, we get

14



V(2r)=| (4r(27,))" exp(-1(g.22, )V, ., (a)= |

Biy-s la(0)7 )(47[(217‘ ))_2 exp(-! (q’zz'k ))dvro—zn (q)=p

for some universal positive constant . By applying the monotonicity of the reduced volume and
(2.10), we deduce that

B<V(2r,)<V(e)< 26,
This proves Vol, (B,O ( p,l))z K, >0

for some universal positive constant k.

LEMMA 2.1

Given 0<e< % 0<o0<ée and 0<T <+oo, there exists a radius 0 <h < 00, depending only on

8,r(T) and the pinching assumption, such that if we have a solution to the Ricci flow with surgery,
with a compact four-manifold (M ‘ g (x)) with no essential incompressible space form and with

positive isotropic curvature as initial data, defined on [O,T), going singular at the time T, satisfies

the a priori assumptions and has only a finite number of surgery times on [O,T), then for each point
1

X with h(x)zﬁi(x)éh in an &-horn of (Q,g,.j) with boundary in Q_, the neighbourhood

B, (x, 5"1h(x)) = {y € Q‘distglj (y,x)< §_lh(x)} is a strong 0 -neck (ie.,
{(y,the B, (x, 5‘1h(x)),te [T —hz(x),T]} is, after scaling with factor h™(x), & -close (in C[‘rl]

topology) to the corresponding subset of the evolving standard round cylinder S® xR over the time
interval [— 1,0] with scalar curvature 1 at the time zero).

PROPOSITION 2.1

Given a compact four-manifold with positive isotropic curvature and no essential incompressible
space form and given €>0, there exist decreasing sequences €>7,>0, Kk;>0,

min{82,§0,3}> Sj >0, j=12,.., with the following property. Define a positive function S(t) on
[0,+<><>) by S(I)zgj when te [(j—l)gz,jez). Suppose we have a solution to the Ricci flow with

surgery, with the given four-manifold as initial datum defined on the time interval [O,T) and with a
finite number of & -cutoff surgeries such that any & -cutoff surgery at a time te (0,T) with & =(t)
satisfies 0< 8(r)< 5 (t). Then on each the time interval [( j=1)e?, jez]ﬂ [O,T), the solution satisfies
the k;-noncollapsing condition on all scales less than € and the canonical neighbourhood

assumption (with accuracy &) with r =7,

LEMMA 2.2

For a given compact four-manifold with positive isotropic curvature and no essential
incompressible space form and given &€ >0, suppose we have constructed the sequences, satisfying
the above proposition for 1< j<I. Then there exists k >0, such that for any r, 0<r < ¢, one can
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find 8 with 0< 6 < min{ez,é'o,g }, which depends on r, € and may also depend on the already

constructed sequences, with the following property. Suppose we have a solution, with the given
four-manifold as initial data, to the Ricci flow with surgery defined on a time interval [O,T] with

le* <T < (l + 1)82 such that the assumptions and conclusions of Proposition 2.1 hold on [0,182 ) the
canonical neighbourhood assumption (with accuracy & ) with r holds on [lez,T], and each 5(t)—

cutoff surgery in the time interval te [(l—l)ez,T] has O<5(t)<g. Then the solution is K -
noncollapsed on [O,T] for all scales less than €.

CLAIM 2.1

For any L <+ one can find 5=0 (L, r,ﬁ,€)>0 with the following property. Suppose that we
have a curve y, parametrized by te [To,to | ((-1e*< T, <t,, such that ¥t,)=x,, T, is a surgery
time and 7/(T0) lies in a 4h-collar of the middle three-sphere of a 0 -neck with the radius h obtained
in Lemma 2.1, where the & -cutoff surgery was taken. Suppose also each 5(t) -cutoff surgery in the
time interval te [(l —1)e? ,T] has 0< ()< 8 . The we have an estimate

S TR
where T=t,—te [O,to _To]-

Now choose L = 100 in (2.11), then it follows from Claim 2.1 that there exists d >0, depending on
r and 7, such that as each ¢ -cutoff surgery at the time interval € [(l —I)SZ,T] has <& , every

barely admissible curve ¥ with endpoints (xo,to) and (x,t), where te [(l —l)ez,to), has

L)= [ VelR(A, ~2) 4o, 2100,

which implies the reduced distance from (x,,7,) to (x,) satisfies [>25¢7". (2.12)
We also observe that, there exists a minimizing curve Y of [ (to—(l—l)ez), defined on
re 0,7, —(1—-1)e?| with #(0)=x,, such that

L(y)<2-(2v2e)<10e . (2.13)

Now we want to get a lower bound for the reduced volume of a ball around X of radius about 7, at

some time-slice slightly before 7. Since the solution satisfies the canonical neighbourhood
assumption on the time interval [(l —1)e?,1€? ), it follows that

R(x,t)< 40077 (2.14)
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for those (x,t)e P()_c,t_ ,%7]‘171,—6—1477_17,2j for which the solution is defined. Thus by combining

(2.13) and (2.14), the reduced distance from (xo,to) to each point of the ball B, _M(’_C’%U_l?/j
T‘a'l h
is uniformly bounded by some universal constant.

We want to get a lower bound estimate for the volume of the ball B, (x,,7,). The reduced distance

from (x,.z,) to each point of the ball B | o (f,%q‘lﬁj is uniformly bounded by some universal
i

constant. We may assume € >0 is very small. Then it follows from (2.12) that the points in the ball

- . .
) M(x,gn‘lrlj can be connected to (x,,z,) by shortest L- geodesics, and all of these L-
= n

geodesics are admissible. The union of all shortest L- geodesics from (x,,z,) to the ball

. M()_c,%f]_l?,j denoted by CB. |,

_ ) 1~2
=11 1 /i
6477 1 n

_ 1 . ) ) )
(x,gn lr,j, forms a cone-like subset in space-time
64 !

with the vertex (xo,to). Denote B(t) by the intersection of CB | _
i—
64

()_c,iﬂ_l?lj with the time-
16
slice at t. The reduced volume of the subset B(t) is defined by

V. (B@)=], (@, =) exp(~1(q.1, ~1))av,(q).

. . _ 1 ). . . )
Since the cone-like subset CB_ | _M[ x’En 7 j lies entirely in the region unaffected by surgery,

t—n"'F;
ol "

we can apply Perelman’s Jacobian comparison to conclude that

~

7 BT [Bl ()‘c,in‘l?;jjzc(x,i;) 215
0 1 "—57771712 16

< “12
—t+—n"'F
0 6477 i

N ~\ - .. . ~
for all te [t ~i" '72.,1, |, where c¢(k;,7) is some positive constant depending only on &, and 7 .

1
Denote by &= ro_lvoltn (Bto (x,,7, ))Z Our purpose is to give a positive lower bound for &. We may

assume & < %, thus 0< & <t,—1 +é7}‘17§2. Furthermore, we denote by B(r, — &) the subset of

the points at the time-slice {t:to —froz} where every point can be connected to (x,,7,) by an

admissible shortest L- geodesic. Clearly B, —&7)c Blr,—&2). Since r,> Zir and
n

6=0 (r,?,,s) sufficiently small, the region P(xo,to,ro,—roz) is unaffected by surgery. Then by the
exactly same argument as deriving (2.4), we see that there exists a universal positive constant &,
such that as 0< & <&, there holds

Lexp{ l}(froz)c B, (x4,7,). (2.16)

1
<& 2
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The reduced volume E(to — froz) is given by

VBl -2 ))=[), .m0 ) exl-tlg. & v, ()=
=, 4z ) expl-tlg. & v, . (a)+

B(to—froz )ﬁLEXP[ 1(5’"0

Ws g [

-
N\—

s ) expl-tlg. g Jav, . (q). @17)

[‘ \'SlfiJ(&O

By (2.16), the first term on the right hand side of (2.17) can be estimated by

+|
E(’o -&5 %LCXP

Xo ”0

fioireen o4 ) explotlg v, (q)se [ (aagi ) expl-t)av, (q)se* (4x)
{M%ﬁ}
(2.18)

And the second term on the right hand side of (2.17) can be estimated by

J-E(rogrg)\Lexp[ ’J( 02)(47[§r02 )_2 exp( (CI &y ))d o (Cl)<j{ ‘>1 }(4752') exp(—l)J(T)|T:0dv:

:(4ﬂ)-2j{ 1 }exp( b kv, 2.19)

g 2

by using Perelman’s Jacobian comparison theorem. Hence the combination of (2.15), (2.17), (2.18)
and (2.19) bounds ¢ from blow by a positive constant depending only on «; and 7 .

3. A string inspired 3D Euclidean field theory as the starting point for a modified Ricci flow
analysis of the Thurston Conjecture. [3]

The potential importance of a 3D uniformization theorem is evident, particularly in the context of
(super)membrane physics or three-dimensional quantum gravity where one should be able to
perform path-integral quantization via a similar procedure to that in two dimensions.

In three dimensions there is only a conjecture due to W.P. Thurston. This conjecture states that a
three-manifold with a given topology has a canonical decomposition into “simple three-manifold”,
each of which admits one, and only one, of eight homogeneous geometries:
H’,S* E’,S*xS' H*xS".

Of the Thurston spaces, only E’,S* and H” are solutions of Einstein gravity with an appropriate
cosmological constant term. In search of a single theory from which all eight of the Thurston
geometries arise, we turn to the low-energy limit of three-dimensional string theory, which has a
metric g,,, dilaton ¢, Abelian 2-form potential B,y with field strength H; =dB, and a

“constant” term in the level of the original sigma model. This theory has many more solutions than
the constant curvature geometries. In fact, it has propagating modes. If the dilaton is set to a

constant value, then for a given sign for the coupling of the H* term, the only solutions have either
constant, non-negative or non-positive metrics. The value of the cosmological constant is given by a
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constant of integration. We therefore modify the above 3D stringy theory by appending to it a U(1)
gauge field with potential 1-form A and field strength F which couple as a “Maxwell-Chern-Simons
theory”. The corresponding action is given by:

3.1

vp

_ 2 £ Vi £ v e v
S=[d’x|ge 2‘f’(—;(+1e+4|v¢| — oy Hu " == F, F j+§8””AﬂF

where the last term is the Abelian Chern-Simons term for the one-form potential A(l), and

F, =dA,. The Wess-Zumino field B, is a 2-form potential whose field strength H ,,, =d;,B

vl *
Hence, in 3D, the field strength is proportional to the LeviCivita tensor:

H,,=H(x)7,,. 3.2)

where H(x) is a scalar field. The equations of motion for the “Wess-Zumino field” B, are

H” =V (eH(x)p"")=0. (3.3)

It easy to see that the latter implies that H(x) = ¢ = constant. Without loss of generality, this result
can be substituted into the remaining equations of motion. The result is:

E, =R, +2VﬂVV¢—%Hc2e4"’gW —¢,FfF, =0; 3.4)
_ €

J*=e,V (e F* )—Enﬂvap =0; (3.5)

D;:-;g+R(g)+4A¢—4|V¢|2—%cze‘“ﬁ—%Fﬂ“Fﬂv. (3.6)

We will look for solutions with ¢ =0. In this case, by taking appropriate linear combinations of the

trace of (3.4) and (3.6) one obtains constraints on the Ricci scalar and electromagnetic field
strengths. In particular, the Ricci scalar and the square of the field strength must both be constant:

R:_%chzg 3.7) F*F, =2¢(y-¢€,c*) (3.8)

Now we define a vector field dual to the Maxwell field strength:

Ve :=%77‘””F (3.9)

vp °

where n“” =¢g""” /\/E is the completely skewsymmetric Levi-Civita tensor. Then the Maxwell-
xM,)

v(m,)

Chern-Simons equation (with the modified Ricci flow) g, =-2R,, + 8. » Where

V(M,)= IMZ d’x.g is the volume of 2D manifold M, becomes

eV v, =ev® . (3.10)
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If we multiply by 7,5 (contracting on ) and use the property
NN ey = 0405 — 0567, (3.11)

we get 26,V , 1= €MV =eFz. (3.12)

aVp

Now since Faﬁ = 28[ E it follows that locally there exists a smooth function ¢ such that

(ZA/)‘
v, =€.eA, +V 0. (3.13)

From the eq. (3.8) it follows immediately that:

p? :%F“”F#V =¢,(y-¢€,c?). 3.14)

Then, the gravitational equations now take the simple form:

E,=R, —%’czgﬂv —&; (vzgﬂv —v#vv)zo. (3.15)

We will use the vector field v* to specify a local coordinate system in which the metric takes a
particularly simple form. Choose the coordinate system {xl,xz, y} so that

y7i
(81] =v*. (3.16)
y

We will denote the dependence of a function f on the x’ by f(x). Then from the constancy of v o it
follows that g =v>, 3.17)

where v* is the constant given by (3.14).
Without loss of generality we can write the metric as

ds® = h; (x, y)dx'dx’ +v2(dy+al. (x)alx")2 , (3.18)

where the ‘“2D metric” hl:,. depends on all the coordinates x',x?, y. However, A, depend only on

the x’. This follows from the requirement that v* is tangent to a family of geodesics. The form of
the metric (3.18) suggests that v* is a Killing vector for the full metric. Indeed a straightforward
calculation shows that the i, j components of the Killing equation on v*

Vo, +V.y,=h, (3.19)
where we have defined the quantity kl.j =h, ,. We have yet to impose the condition V v*=0
which is equivalent to

h'h; =0, (3.20)
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where i, j,... indices are lowered and raised by hl.j and its inverse matrix 4’ . This means of course
that & :det(hl:,.) is independent of y. Thence, we have effectively solved the Maxwell-Chern-

Simons equations. The only remaining field equations are the Einstein equations (3.15), which in
terms of the h “metric” reduce to

1 'l" ; Vz
E ;:—thhij+?(—8ch+ezv4):0; (3.21)

yy

2

E, :=%[ijz/ —ajayh,‘f +%aikjkkjk}+%(—€ch +e2v4)a,. =0; (3.22)

2

WE, =R(h)+V,(i¥a,)+aVi¥ —a,ah" —2e,0° +(1—%hijaia‘i}(— £,c>+e™v')=0. (3.23)

Now we will describe the flow suggested by our three dimensional gravity theory. The idea is that
the right side of the flow has as its zeroes the solutions of the equations of motion egs. (3.4) to egs.
(3.6):

€ v
8 :_Q{R#V +2Vﬂvv¢+(—THHWHV” —eFFﬂf’vaﬂ; (3.24)

» — -2¢ .
B, =V (e*H?,); (325
eE, neF

A, =Vv(e’2¢FﬂV)+ L, (3.26)

d=—y+R(g)+4A¢p— 4|V¢| ;HZ 2FF2. (3.27)

If the manifold has the topology of a Seifert bundle 7 over an orbifold Y, we specify
g, =+l xy= 2(Y),e=e(n). If it is not a Seifert bundle then &g, =—1.

Once the parameters (and hence topology) are specified, one begins with an arbitrary configuration
of metric, dilaton field, 2-form potential B L and U(1) potential A ., as initial conditions for the flow

equations (3.24-3.27). If the flow is to be useful then in the case where the flow is non-singular, the
metric should reach the appropriate Thurston geometry. Only the Ricci-Hamilton flow of locally
homogeneous geometries converges to the fixed points for the case of locally homogeneous and
isotropic geometries. We shall consider a few of the details for the flow of an initial geometry

which is locally H>x E'. Thus the metric, U(1) gauge field and dilaton are of the form:

ds’ :Z—ZZ(Dl (t)dx? +D, ()2 )+ E(t)dy*; A, :{O,A(t)L,O} o=9(r). (3.28)

X X1

From the flow of the metric, we find first that the factor E(t) must be constant, and hence can be
absorbed by rescaling the y-coordinate. Second, it turns out that for any value of the flow parameter
t, there must be a constant & such that D, (t)=aD, (t). The constant & can be absorbed by rescaling
x, . Third, the function A(t) in the gauge potential is frozen by its flow to be a constant A(t) = a.
Finally, we calculate

dD, _ D1(t) - ( —a’

dg " (i) (D ()+2D() a’)

. (3.29)
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The solution is

#(D,)=g, —%{Dl + log[Dl (D, +a?)™ }} . (3.30)

Hence we find that D, —a’, in the limit ¢ — co. Similar behaviour occurs for the case of the

locally homogeneous flow of S*XE".

The above calculation suggests that the dilaton field ¢, “normalizes” the flow and can in some
sense be considered as the physical flow parameter. If we had solved the locally homogeneous
flows for D,,D,,¢ in terms of t, we would have found that the first two do not converge to a finite

value as t — o . Instead, the fields flow to their fixed points as t — —co . In the usual Ricci flow, the
locally homogeneous and isotropic geometries do not converge to their global “round” form in the
limit 7 — oo To accomplish this, the flow is normalized by adding to it a term 2/3rg ,,, where r is

the average value of the Ricci scalar over the manifold. These considerations suggest the idea that
occurrence of singularities in the flow of the metric is tracked by the flow of the dilaton field,
instead of the rather arbitrary parameter t.

The stringy gravity flow described in this section, is a promising approach to proving the Thurston
Geometrization Conjecture. Now we conclude with the following observations:

- It is quite closely related to the Ricci flow and its various modifications considered by
Hamilton, Perelman and others. Hence the recent progress made by Perelman in resolving
the analytical properties of these flows will almost certainly apply to the flow described
here.

- The parameters that appear in the flow are determined by the topology of the 3-manifold.
This makes it easier to “input” the 3-manifold into the flow at the beginning.

- All the Thurston geometries are fixed points of the flow. Hence we can follow non-singular
flows directly to the Thurston geometries.

- The dilaton field in the flow seems to track the singularities in the flow. This should
streamline the procedure of performing surgery on the manifolds in regions where these
singularities occur.

Furthermore, we believe that underlying the stringy flow is a quantum field theoretic understanding
of the Thurston Geometrization Conjecture. In particular, if the stringy gravity on the 3-manifolds
are the bulk theory, then the sigma model whose RG flow is the stringy gravity equations of motion
is its holographical dual theory.

4. The three dimensional charged black string solution. [4]

We take the following form of anti-de Sitter space:
A A _1
2 _ 7? ~2 7 A2 A2 342
ds® = l_l_2 dt~ + 1—2—1 ar +r d¢ . 4.1

If we identify ¢ =@ +27, (4.1) describes a black hole.
Now we choose two constants r,,r and introduce the following new coordinates f= (r+t/ [ )—r_(o,

¢=(r.o/1)—(rt11?), #>=01>(r>=r2)/(r> = #2). Then the metric (4.1) becomes

+
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2 2 2 \!
ds’ :(M —;—2}1:2 —Jdtdp+r’dg’ +U—2—M +%) dr’, (4.2)
r

where the constants M and J are related to r, by

B rl+r’ 7= 2r.r

M
I’ !

. (4.3)

Identifying ¢ with ¢+ 27, yields a two parameter family of black holes.

We now turn to string theory. We consider the black holes in the context of the low energy
approximation, and then consider the exact conformal field theory. In three dimensions, the low
energy string action is

S = jd%,/— ge_2¢[%+R +4(Vg) —éHWpH’””} . (4.4)
The equations of motion which follow from this action are

=0, (4.5b)

1 . i}
Rﬂv+2VﬂVv¢_ZHMGHj =0, 452 V“(e™H, )

4V29-4(Vg) +%+R—éH2 =0. (4.50)

=(2/1 )swp where [ is a constant with dimensions of

If we assume ¢ =0, then (4.5b) yields H ,,,
length. Substituting this form of H into (4.5a) yields

2

yns :_l_zgyv

R (4.6)

which is exactly Einstein’s equation with a negative cosmological constant. The dilaton equation

(4.5¢c) will also be satisfied provided k=1>. Thus every solution to three dimensional general
relativity with negative cosmological constant, is a solution to low energy string theory with

¢=0,H,, = (2/1 )eﬂvp and k=[". In particular, the two parameter family of black holes (4.2) is a

solution with

B,="—, ¢=0 4.7

where H =dB. We now consider the dual of this solution. Given a solution (g W,Bﬂv,qﬁ) that is

independent of one coordinate, say x, then (g W,E W,a ) is also a solution where

gxle/gxx’ gxa:Bxa/gxx’ gaﬁ:g(lﬁ_(gxagxﬁ_Bx(ZBxﬁ)/gxx’ Exa:gx(l/gxx’

~

~ 1
By =By =28,14Bs. /80> @ =¢—Elngm (4.8)
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and a,f run over all directions except x. Applying this transformation to the ¢ translational
symmetry of the black hole solution (4.2) (4.7) yields

- J 2 1 2 7Y - J
ds*=| M —— |dt* +Zdtd + ~d¢* +| —-M+-—| dr*, B,=———, ¢=—Inr. (49
> ( 4r) [ 14 ¢ (l 4r] : ~ 2r? / r. @9

To better understand this solution, we diagonalize the metric. Let

l(fc—f) _rli-rrs

m ¢_m’ r* =If. (4.10)

=
Then the solution becomes

) -1 2\ 12 5a2
S i e T (e L B T
r Mr r Mr 4r 2

where M =7/l and Q=J/2. This is precisely the three dimensional charged black string
solution.

(4.11)

\:)llQ

5. On the effective action of a probe fractional D2-brane and on the boundary action of a
fractional D3-brane on C*/Z, orbifold. [5] [6]

We have the following solution describing N fractional D2-branes transverse to a C*/Z, orbifold:

ds* = H;*n,,dx dx” + H3*(8,dx'dx’ + 8, dx"dx* ), (5.1a)  e®=HY*, (5.1b)
C, =(H;' —1)ax’ Adx' ndx®, (5.1c) A =-4g 7I’Ncos@dp, (5.1d)

p o 2a,) [1_2gSlSN
2 r

J. (5.1e)

We will show the world-volume theory of a probe fractional D2-brane placed in the background
(5.1) at some finite distance r in the transverse space {x3 xtxd }

Let us start from the world-volume action for a single fractional D2-brane which, in the Einstein
frame, is given by:

ng:—%jd3xe_¢’4\/—dethaﬁ+e 202 F a/,,JLH; 2]+%IM3(C3+2ﬂifC1AF), (5.2)

ZZ‘Y

where we have chosen the static gauge, hats denote pullbacks onto the brane world-volume and the
fields C, and C, are given by:

b A b b A
C.=c| 1+ +——= -1, (5.3a) C,=c|1+ + =—2g I Ncos@dp.
’ 3[ ZfrzlfJ 271} 27} G G 1[ Zﬂ'zlfJ 27°1} 8 i

(5.3b)

Thence, from (5.2), we obtain:
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St =- J’d xe™"* [~ det|G,; + e 271 F, aﬁ]LHZ; J+

—j K 212—1)+27df(—2gslchosl9d¢)/\F}. (5.3¢)

We regard the coordinates {x3,x4,x5} transverse to the probe brane as Higgs fields of the dual
gauge theory: x' =271"®". We also define polar coordinates (1£,0,9) in the moduli space of the

®', so that the resulting energy / radius relation is given by r=27’x. Expanding the world-

volume action for slowly varying world-volume fields and keeping only up to quadratic terms in
their derivatives we easily see that position dependent terms cancel, and we are left with the
following effective action:

b
i’

: [ 1 . 1 N P
Sl = —4;’5 J-d3x 5 {5[(8;1)2 +,uz((80)2 +sin” 0(8(0)2) +ZF2}—gjd3xcos 6“9 ,F 5,

(5.4)
When b = 0, the effective tension of the probe vanishes and this means that in this case an enhancon
mechanism is taking place at the radius:

r,=2glN. (5.5)

Substituting in (5.4) the expression of b in terms of 4, we obtain:

fo—
SDZ__

g N 1 2 2 2 .2 2 1 2} N 3 op;
x| 1—22— [ =|0u) +u°\(00)" +sin” (0 +—F°——|d’xcos ™79 ,¢F ,, .
15 o o0y s daP )L |- o,
(5.6)

The moduli space of the gauge theory can be explored by means of a probe fractional D2-brane.

One notices that if the enhangon radius is 7, = g [ (2N —M ), the resulting affective action (5.6) gets
modified as follows:

L N-m)] (1 , i
Sprohe :_4;S Id3x|:1_gé(T“u)i|x{E[(a;u)2 +luz((ae)2 +Sln2 6(a¢)2) +ZF2}+
1 3 b
__167£~[d x(2N — M )cos O 9 ,0F,, . (5.7)

The boundary action for a fractional D3-brane of type I on the orbifold C*/Z, is:

St == jd x\/m{u ZFb} j{q(nﬁg j EQ;FA}

o rb

We can see how the scale and chiral anomalies are realized in supergravity and we consider the
Dirac-Born-Infeld action and the Wess-Zumino term for a stack of N, fractional D3-branes given

25



by eq. (5.8). Turning on a gauge field on the world-volume of the branes and expanding the
boundary action in the supergravity background up to quadratic terms in the derivatives one gets:

1 1 1 3~
Sl = |d*xJ-detGe ’G* G —F. F° [ 1+——Y F/b' |+
gauge 167_[gb 4 uvs po 27[204/' ; 1

+

1 1 &~ 1 <& ~
d'x| Co| 14=——> F/b' |[+——) F/c' |F3,F™ , (5.9
647Z'gs-[ { { 27z2a',zz:‘ ! J 27[205',22:‘ ! } w ©9)
where for simplicity we dropped the index I of the gauge fields and the metric G is the pull-back to

the brane world-volume.

6. Mathematical connections between some relations concerning the Poincaré Conjecture,
String Theory and some sectors of Number Theory. [7] [8]

a. Mathematical connections with string theory.

Now we take the equations (1.18a), (1.20), (1.20a) and (1.25), regarding the Poincaré and
Geometrization Conjectures. We have that these equations can be related with the eq. (3.1)
concerning the modified 3D stringy gravity, with the eq. (4.4) concerning the low energy string
action in the context of the three dimensional black holes and also with the eq. (5.7) concerning the
effective action of a probe fractional D2-brane.

Furthermore, we have also that the eqgs. (3.1) and (4.4) can be connected with Palumbo-Nardelli
model, concerning the fundamental correlation between bosonic string action and supersymmetric
string action

Hence, if we take, for example, the eqgs. (1.25), (3.1), (4.4) and (5.7) we obtain the following
interesting connections:

(a780°) > expl-tla. 607 v, - (a)< (47) j{wi{;}exp(—w by =

J<te 2
‘\‘545

'[E(fo—fﬂz )\LCXP[ ! J(f/’z
= jd3x\/§e_2¢(—;(+R+4|V¢|2 —%HWHWP —%”FWF”VJ+§€”V”A#FVP =
:Id3x,/—ge_2¢[%+R+4(V¢)z —éHWpH”VP}:

l g.2N-M)]| [1 2 ) ) 1 }
——\d’x 12— Ix— ()" + 1*\(06)" +sin” B(0p)” )|+—F* t +
Ta LR L M OOV CORCE)

1 o
—Ejd%c(ZN—M)CosHS 719, Fjy, =

oo - 2
= [ jdlox(_c)”ze-z“’[m4aﬂcpa”q>—%\H3\2 —;—E’)TQQFZF)}:

= ‘J‘d%x\/g{‘i—lg”pg”"Tr(Gme )f(¢)—%g””3,,¢8v¢} . (6.1

Now we take the eq. (2.19) regarding the Ricci flow on compact four-manifolds with positive
isotropic curvature. We note that this equation can be related with the eq. (5.9) concerning the
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boundary action of a fractional D3-brane on C?*/Z, orbifold. Also the eq. (5.9) can be connected
with Palumbo-Nardelli model. Hence, we have the following connections:

[u y ZJ(&O

jé(to_grg)LexP (4”&0) exp(-1(q.& Jav i (Q)<I{ 52}(47[2') exp(-1)J (7)) ,_ydv =

=(4rx)? j{ }exp( W’ )dv:>

V> f

= —16# d*x\—-detGe*G"G" iF;’VF;{ ZF b }
g

3

3 ~ . . . ~
jd4X|:CO(1+ﬁZFIiblj+m2FIlCl:|F;VFaﬂv =

i=1

647[g

)2 -Z‘{R+4a CI)&”(ID——‘H‘ - lOT QF| )}

10

= ‘I d 2675\@ {‘L—lg 8" Tr(G 1y G o ) f (¢)—Eg””8ﬂ¢8v¢} . (6.2)

b. Mathematical connection with Number Theory.

With regard the mathematical connection with Number Theory, we have obtained some interesting
relations between the equations concerning Poincar¢ Conjecture and Riemann zeta function, 7, ¢

and <&, hence, with the Ramanujan’s modular function and Ramanujan’s modular equations

concerning the approximations to 7.
With regard the Riemann zeta function, we take the eq. (4.11)

) -1 2N\t 2 a0
dszz—(1—¥jdf2+ -2 d22+(1—¥j g l‘f’; . p=—tnil. B, =
7 M7 P M7 47 2 "

Now, we take the Lemma 3 of Goldston-Montgomery theorem. Let f(r)>0 a continuous function

defined on [0,+oo) so that f(r)<<log®(r+2). If I(k):T(Sinkuj f(u)duz(%+8'(k)}klog%,

0 u

- (6.3)

ﬂ)l(@

T
then jf t)dt =1+ &) 1ogT , (6.4)
0

1 .
<k SFlong. If now we take the expression

with |€'| small if |€(k)|£€ uniformly for
T'logT

o= —%ln 7l , and the equation (6.4), we have the following interesting connection:

T

=| f()dr=(1+&)TlogT = —%lnrl: J’d XAl—ge 2¢[k+R+4(V¢) —%H H”"”}

o'—.

= [d’x|ge” 2‘”( FHR+4VY — TLH , H ;FWF”VJ+§8”VPA”FVP. (6.5)
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With regard the connections between Poincaré Conjecture, Ramanujan’s modular function and
Ramanujan’s modular equations, we know that:

\/§+1]:\/§—1:R(q)+ \/g
2 2 1+3+J_ ( I 3(=1) dtj
2 \/_ mms
and 75:2[\/54_1)— 3 (\E—lJ:

2 2%.5

0,618033=1/<I>=1/( (6.6)

3
—2&——>—| R(q)+
75| Rla)

NG
(67
3445 ©7

)

The equation (6.6) is the Rogers-Ramanujan identity for continued fractions related to the modular
functions, thence, to the Ramanujan modular functions.

Modular functions are a subclass of the more general modular forms. An example of a modular
function is the Dedekind eta function, given by the infinite product

mz /12

e (1-¢*™). (6.8)

s

1

3
I

Like other modular forms, this function is defined over the domain of complex numbers z = x+iy

where x and y are real and y > 0. For complex numbers, i is the square root of -1, i.e. i=+/—1.1In
the function, “e” is the Euler’s number (2,71828...) and 7 is pi (3,14159265359...).
The Dedekind eta function is defined as

)=¢"*Tl-4"), g=¢. (69)

n=l

Then the modular discriminant A(z)=7(z)** is a modular form of weight 12. A celebrated
conjecture of Ramanujan asserted that the g” coefficient for any prime p has absolute value

<2p'""?. This was settled by Pierre Deligne as a result of his work on the Weil conjectures.
Ramanujan’s function 7 is defined by the expansion

=2 =3 el (6.10)

which is valid for each complex number x such that |x| <l.

The Ramanujan’s function 7 is related with the Rogers-Ramanujan identity (6.6). Also the
Ramanujan’s modular equations are related with the Ramanujan’s function 7 . Indeed, we have the
following expressions:
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24 log \/{Mj+\/(wj , (6.11) thence

N _ 4 4 )
= rhi42) _, (6.12) and
| \/(10+1h/§j \/(10+7\/§j
ogl || ——— |+, ]| ——=
4 4
12 [@+5)B+413)] . 24 [++5)-B+413)
V4 e g{ R }—27[—\/130 log{ NG }, (6.13) thence
27{J130)
2++/5) 3+\/ﬁ
24 - bedsh ] 6.14)
N

We note easily that the pure number 24 represent the modes of Ramanujan function and, in the
expressions (6.11), (6.13) is very fundamental and it is connected with 7. It is interesting note also
that the numbers 2, 3, 5, 7, 11 and 13 are prime numbers.

With regard the connection obtained with Poincaré Conjectures, if we take the eq. (1.25), we have
the following expressions that are related with 7z,¢ and ®:

3

4mgp® 2 expl-ilg.5o* v, ()< () j{ 1 f}exp( M v =

J-E(to—fpzﬁexr’ (&)
)
1\ \< ¢ 2

|
N | w

B _i \/g 2
_.[E(ro—épz)\Lexp _ll(s‘ﬂz) 42 22.5 R(Q)—i_ 3+\/§ 1 4 fs(_t) dt -
{Mng 2[ 1+ 2 eXp 75J-0 f tl/S W
3 J5
expl-tlg.£0* v, .(q)< {4 20———| R(q)+ -
1-&0” 22 .5 1+3+\/§GXP(15.[:]{_(;,I5) fxl/tsj

j{ et }exp( v )dv (6.15)
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\v\%{ﬂ{

IE (t-&0* Meexp {

_ 24 104112 104742 ) E .
B '[E(’ofﬂz)\LeXP{ _ll(’fpz) 4 \/m log \/( 4 j + \/(Tj é:p CXp(—l(q, é:p ))dvto_gpz (Q) <

Ivlsg¢ 2
3
2
24 10+11v2 10+7+2 9
<4 —1 — |+ | — 1expl- . (6.16
iz J( ; ]J[ i ] fosetoolbf - 616

Furthermore, these equations are related to the eq. (6.1), thence to the some equations concerning
the string theory and to the Palumbo-Nardelli model.

Conclusions.

There exist an important connection between modular functions and string theory. Closed strings
can be viewed as a set of loops arrayed on the manifold of space-time. The study of how simple
loops behave under deformations is known as homology, and is intensely studied in K-theory.
Imagine, for example, a Green’s function defined on a manifold: it can be thought of defining a
measure-preserving flow on the manifold. As the loops flow along the manifold, they trace out
cylinders which sometimes merge and join, and sometimes split apart. Places where two cylinders
join are known as pairs of pants. Riemann surfaces of negative curvature can be formed by stitching
together pairs of pants. Thus, the natural setting for a string theory of closed loops is a Riemann
surface.

Modular functions are used in the mathematical analysis of Riemann surfaces. Riemann surface
theory is relevant to describing the behaviour of strings as they move through space-time. When
strings move they maintain a kind symmetry called “conformal invariance”.

Conformal invariance (also called “scale invariance”) is related to the fact that points on the surface
of a string’s world sheet need not be evaluated in a particular order. As long as all points on the
surface are taken into account in any consistent way, the physics should not change. Equations of
how strings must behave when moving involve the Ramanujan function that is also related at some
equations regarding the Poincaré Conjecture, as we can see easily in the present work.

When a string moves in space-time by splitting and recombining, a large number of mathematical
identities must be satisfied. These are the identities of Ramanujan’s modular function (and the
related equations of Poincaré Conjecture). The KSV (Kikkawa-Sakita-Virasoro) loop diagrams of
interacting strings can be described using modular functions.

The “Ramanujan function”, an elliptic modular function that satisfies the “conformal symmetry”,
has 24 “modes” that correspond to the physical vibrations of a bosonic string.

When the Ramanujan function is generalized, 24 is replaced by 8 (8 + 2 = 10), hence, has 8
“modes” that correspond to the physical vibrations of a superstring.
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