
UHiM
UNIVERSITI SAINS MALAYSIA

Laporan Akhir Projek Penyelidikan
Jangka Pendek

The Design and Implementation of the
VRPML Support Environment

by
Dr. Kamal Zuhairi Zamli
Dr. Nor Ashidi Mat Isa

2006

304.PELECT.6035127

Final Report

Signature of Team Member

d~:rrA'hidl Mat I,a)

PPKEE

304.PELECT.6035127

Final Report

31 October, 2006

1.0

Dr Kamal Zuhairi zamli

USM Short Term Grants-
The Design anc:llmplementation of the

VRPML Support Environment

Version:

Document status:

Date:

Document identifier:

Author

PPKEE

(Dr Kamal Zuhairi Zam/i)

.............~ .

Signature of Project Leader

Period: 1 November 2004 - 31
2006

-I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Background

Abstract

Software processes relate to the sequences of steps that must be performed by software
engineers in order to pursue the goals of software engineering. In order to have an accurate
representation and implementation of what the actual steps are, software processes may be
modeled and enacted by a process modeling language (PML) and its process support system
(called the Process Centered Environments i.e. PSEE). Although there has been much fruitful
research into PMLs, their adoption by industry has not been widespread. Furthermore, no
single PML and PSEE have assumed dominance and accepted as the de facto standard. For
these reasons, research into PMLs and PSEEs are still necessary.

This project captures the design of the process support environment for a new process
modeling language, called the Virtual Reality Process Modeling Language (VRPML). In doing
so, this project identifies the main components of the VRPML process support environments
as well as implements the working prototypes. Our experience highlights some lesson learned
and offers insights into the design of next-generation PMLs and PSEEs.

Keywords: Process Modelling Language, VRPML, Software Engineering

For Bahasa Malaysia Abstract, see Appendix A.

Introduction

A software process can be defined as sequences of steps that must be followed by software
engineers to pursue the goal of software engineering. In order to allow a better control of a
particular software process, a model of that process (called a process model) can be created
using a process modelling language (PML) making the process explicit and open to
examination.

Through enactment (or execution) of the process model, automation, guidance, and
enforcement of the policy embedded in a particular process model can be usefully achieved.
Because of the aforementioned benefits, a PML and its process support environment (termed
the Process Centered Environment (PSEE) could form an important feature of future software
engineering environments. For these reasons, research into PMLs and PSEEs are still
necessary.

This research aims to design and implement the heterogeneous process support environment
for the Virtual Reality Modelling Language (VRPML), a visual PML developed elsewhere as
part of the author's PhD work. The aim of this research is to investigate the suitable support
mechanism as well as the suitable runtime environment to realize some of the main novel
features of VRPML, that is, in terms of the integration with a virtual environment, the support for
dynamic creation and allocation of resources as well as the support for enactment in a
distributed environment.

The objectives of this project are:

1. To identify the main requirements for the VRPML process support
environment.

2. To build a heterogeneous prototype runtime support system.
3. To utilize an object-oriented analysis and design techniques using the

Unified Modelling Language (UML) for designing the VRPML support
environment

4. To evaluate VRPML and its supporting environment under the real software
engineering settings.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Project Members

The project members for this project are:
1. Dr Kamal Zuhairi bin Zamli (Project Leader)
2. Dr Nor Ashidi Mat Isa
3. Siti Norbaya Azizan (RA for two months)
4. Iza Sazanita Isa (RA for two months)

Progress

The duration of the project is 2 years beginning 1 November, 2004 till 31 October, 2006.
Referring to Figure 1, this project has now been completed.

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 1: Project Flowchart

I 4

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PHASE I: Requirement elicitation
In this phase, the requirements for the VRPML support system will be
identified based on existing systems. Using these requirements, the main
components of the support system will be decided.

PHASE II: Design and implementation of each of the components
Based on the decision in phase I, the design and implementation of each of
the components will be considered utilising the object-oriented analysis and
design tools based on the UML. Here, the use case diagrams, sequence
diagrams, collaboration diagrams, class diagrams, activity diagrams, and
component diagrams will be developed for each components. Further more,
the overall design and implementation will undergo a number of iterations
until all of the components are sucessfully completed.

PHASE III: Unit testing and integration of the components
In this phase, a number of test cases will be identified for each components.
Unit testing will then be administered to ensure that each component
behaves properly as expected. Once unit testing has been completed, the
components will be integrated into the overall system.

PHASE IV: Integration testing and experimentations
In phase IV, integration testing and evaluations will be performed.
Oppurtunities for optimization will also be considered here. Finally, the
overall system will be testing as to whether or not the main novel features of
VRPML can be supported particularly in terms of the support for integration
with a virtual environment, the support for dynamic creation and allocation of
resources as well as the support for enactment in a distributed environment

PROJECT SCHEDULE

PROJECT PERIOD: 1Nov 2004 - 31 October 2006

2004 2005 2006

N D J F M A M J J A S 0 N D J F M A M J J A S 0
0 E A E A P A U U U E C 0 E A E A P A U U U E C

Task V C N B R R y N L G P T V C N B R R Y N L G P T

Research activities:

PHASE I : Requirement Elicitation

PHASE II : Design and Implementations of components

PHASE III : UnitTesting and Integration of components

PHASE IV : Integration Testing, Experimentations and Documentation

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Current Project Outputs - Publications

These publications are enclosed in the appendix B.

Conference Publications

1. Kamal Z. Zamli, and Nor Ashidi Mat Isa, "The Computational Model for a Flow-based
Visual Language", in the proceedings of the AlDIS International Conference in Applied
Computing 2005, Algarve, Portugal, pp.217-224, Feb 22-25,2005.

2. Kamal Z. Zamli, Nor Ashidi Mat Isa, Ahmad Nazri Ali, "Coordinating Business Processes
Using a PML", in the proceedings of the International Conference on Information
Integration and Web-based Applications and Services, (IIWAS 2005), pp 445-455. Sept
19-21, 2005, Kuala Lumpur, published by Austrian Computer Society

3. Kamal Z. Zamli, Nor Ashidi Mat Isa, Norazlina Khamis, "Implementing Executable Graph
Based Visual Language in a Distributed Environment ", in the proceedings of the IEEE
International Conference on Computing and Informatics 2006.

Local Journal Publications

1. Kamal Z. Zamli and Nor Ashidi Mat Isa, "A Survey and Analysis of Process Modeling
Languages", in the Malaysian Joumal of Computing Science (ISSN No: 0127-9084) Vol.
17, No 2, December 2004, pp. 68-89.

2. Kamal Z. Zamli and Nor Ashidi Mat Isa, "Modeling and Enacting Software Processes: The
How and Why Questions", Technical Journal PPKEE (ISSN No: 1594-6153), Vol. 10,
December 2004, pp 19-27.

3. Kamal Z. Zamli, Nor Ashidi Mat Isa, and Norazlina Khamis, "The Design and
Implementation of the VRPML Support Environment", in the Malaysian Joumal of
Computer Science (ISSN No: 0127-9084), Vol. 18, No 1, June 2005, pp. 57-69.

4. Kamal Z. Zamli and Nor Ashidi Mat Isa, "Enacting the waterfall software development
model", accepted for publication in Jumal Teknologi UTM (Siri D) , Vol. 43, Dec 2005, pp.
125-142.

International Journal Publications

1. Kamal Z. Zamli, and Nor Ashidi Mat Isa, ''The Applicability ofVRPML for Supporting
Distributed Software Engineering Teams", accepted for publication in the Intemational
Journal of the Computer, The Internet and Management (IJCIM) (will be in print for
September!! December 2006 issue)

Under Review

1. Kamal Z. Zamli, Nor Ashidi Mat Isa, "Addressing Race Condition Problems in a Graph
Based Visual Language", submitted for publication.

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Current Project Outputs - Training

Training

Two RAs have been exposed to software process research, as a subset of software engineering.
One of the RAs, Siti Norbaya Azizan, is now pursuing MSc by research in the area under the
supervision of Dr Kamal Zuhairi Zamli.

Two MSc students have been using our prototype as a case study for testing the Software Fault
Injection Tool (SFIT) (Refer to appendix D).

7

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Abstrak

Proses pembangunan penslan berkait rapat dengan turutan langkah yang mesti
dilakukan oleh jurutera perisian untuk memenuhi matlamat kejuruteraan perisian.
Untuk menghasilkan proses yang tepat dan lengkap, proses pembangunan perisian
boleh dimodel dan dilari menggunakan bahasa pennodelan (PML) dengan dibantu
oleh sistem proses bantuan (PSEE). Walaupun terdapat banyak penyelidikan untuk
menghasilkan bahasa permodelan PML dan system proses bantuan PSEE, adaptasi
diperingkat industri masih kurang. Selain itu, tiada satu pun PML yang diterimapakai
sebagai standard. Oleh yang demikian, penyelidikan dalam penghasilan PML dan
PSEE masih lagi diperlukan.

Projek ini bertujuan untuk merekabentuk sistem proses bantuan (PSEE) untuk bahasa
pennodelan VRPML. Projek ini telah berjaya mengenalpasti komponen untuk
VRPML dan mengimplementasi prototaip yang diperlukan. Pengalaman menjayakan
projek ini dapat memberi gambaran dan sumbangan kepada rekabentuk PML dan
PSEE pada masa akan datang.

Abstract

Software processes relate to the sequences of steps that must be performed by software
engineers in order to pursue the goals of software engineering. In order to have an
accurate representation and implementation of what the actual steps are, software
processes may be modeled and enacted by a process modeling language (PML) and its
process support system (called the Process Centered Environments i.e. PSEE). Although
there has been much fruitful research into PMLs, their adoption by industry has not been
widespread. Furthermore, no single PML and PSEE have assumed dominance and
accepted as the de facto standard. For these reasons, research into PMLs and PSEEs are
still necessary.

This project captures the design of the process support environment for a new process
modeling language, called the Virtual Reality Process Modeling Language (VRPML). In
doing so, this project identifies the main components of the VRPML process support
environments as well as implements the working prototypes. Our experience highlights
some lesson learned and offers insights into the design of next-generation PMLs and
PSEEs.

I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

rl
[I

[I
[I
[I
II
[I

II
I
I
I

(I
I

LARIAN MODEL AIR TERJUN MENGGUNAKAN VRPML

Kamal Zuhairi Zamli and Nor Ashidi Mat-Isa

Pusat Pengajian Kejuruteraan Elektrik dan Elektronik,
Universiti Sains Malaysia, Kampus Kejuruteraan,

14300 Nibong Tebal, Pulau Pinang, Malaysia
Tel: 604-5937788 ext 6079, Fax: 604-5941023

E-mail:{eekamal.ashidi}@eng.usm.my

ABSTRAK

Artikel ini menggariskan penggunaan bahasa visual yang barn, Bahasa Perrnodelan Proses
Realiti Maya (VRPML), untuk spesifikasi proses pembangunan perisian. Secara khususnya,
artike! ini membincangkan penggunaan VRPML dalam proses perrnodelan dan larian model air
terjun. Matlamat utama kertas kerja ini adalah untuk mengkaji sarna ada VRPML mempunyai
notasi yang mencukupi untuk tujuan perrnodelan dan larian proses pembangunan perisian.

Kata kunci: Process Pembangunan Perisian, Kejuruteraan Perisian, Bahasa Perrnodelan Proses,
VRPML

""""':':"""~"1
;.:.'-::~-;::.:;;;g:,

,-'
r~
itL'1

'.'.;'
'.t

):1

II

~

tl
11'

fl
II
II
\1
II
i

1
1
11
\1
(I

I
II
t

(I

11
II
11

~

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL

Kamal Zuhairi Zamli and Nor Ashidi Mat-Isa

School ofElectrical and Electronic Engineering,
Universiti Sains Malaysia, Engineering Campus,

14300 Nibong Tebal, Pulau Pinang, Malaysia
Tel: 604-5937788 ext 6079, Fax: 604-5941023

E-mail:{eekamal.ashidi}@eng.usm.my

ABSTRACT

This paper describes the use of a new visual language, called the Virtual Reality Process
Modeling Language (VRPML), in order to specify a software process. In particular, this paper
demonstrates the use of VRPML to model and enact (i.e. execute) the waterfall software
development model. The main aim of this paper is, therefore, to investigate whether VRPML
provides a sufficiently rich notation to enable the modeling and enacting ofsoftware processes.

Key words: Software Process, Software Engineering, Process Modeling Languages, VRPML

1.0 INTRODUCTION

A software process can be defined as sequences of steps that must be followed by software engineers to
pursue the goals of software engineering. In order to allow a better control of a particular software process,
a model of that process (tenned a process model) can be created using a process modeling language (PML)
making the process explicit and open to examination. Furthennore, through enactment (or execution) of the
process model, automation, guidance, and enforcement of the policy embedded in a particular process
model can be usefully achieved.

While there has been much fruitful research into PMLs (see [19] for a recent survey), their adoption by
industry has not been widespread [5]. While the reasons for this lack of success may be many and varied,
our research identified two areas in which PMLs may have been deficient: human dimension issues; and
support for addressing management and resource issues that might arise dynamically when a PML is being
enacted [18]. Furthennore, no single existing PML has emerged as the de facto standard for supporting the
modeling and enacting of software processes. These reasons suggest that research into PMLs is still
necessary.

This paper describes our assessment of a new visual PML, called the Virtual Reality Process Modeling
Language (VRPML) [14-20] developed as part of our on-going research. The main design objectives for
VRPMLwere:

• To develop an expressive, executable, and easy to use visual PML
• To address some of the perceived deficiencies in existing PMLs particularly in terms of the support for

dynamic creation and assignment of tasks and resources, as well as the support for the awareness and
visualization issues.

Although VRPML has been successfully employed to model and enact the standard benchmark problem in
software engineering (e. the ISPW-6 problem) involving the software change request [7], the author felt
that such experience may be insufficient to evaluate VRPML completely. One reason is that the ISPW-6
problem is perhaps too specific to the software change request process.

A more general case study process, particularly involving the software processes for a complete software
development model is required. These processes must be explicit and well-defined in terms of their inputs
and outputs. Arguably, if one could use an existing definition of a development model in which activities
and their inputs and outputs have already been well-defined, more effort can be concentrated on the
modeling and enacting issues and less on defining the stages (and activities). Because the waterfall
software development model seems to fit well into this category, it will be used here. The focus of this

"\.

L
r
[

L
r

f

paper is, therefore, to explore the expressiveness of the VRPML notation for supporting the modeling and
enacting of a complete software development model.

This paper will be organized as follows. Section 2 gives an overview of VRPML. Section 3 describes the
waterfall software development model. Section 4 presents the waterfall model expressed in VRPML.
Section 5 presents some of the lesson learnt from the experiences. Finally, section 6 presents our
conclusion.

2.0 OVERVIEW OF VRPML

VRPML is a control-flow based visual PML for supporting the modeling and enacting of software
processes. In VRPML, software processes are generically modeled. Resources (in terms of software
engineers, artifacts and tools) can be dynamically assigned and customized for specific projects from a
generic model.

:~

I
;i~

...'

I
I
I
I
I
I
I

ModiryCode

~ DsgnEngr

ModifyTestPlans

~ QAEngr

D

ModifyUnitTestPackage

D ~ QAEngr, ,

I
I
I
I
I

l

ModifyCode

~ DsgnEngr

Fig. 1: Excerpt of the VRPML Graph

I
I
I
I
I
I
I

I
I
I
I
I
I
tl
I
(I

(I

[I

(I

I
11
II
il

'Software processes are specified in VRPML as graphs, by interconnecting nodes from top to bottom using
arcs that carry run-time control-flow signals. The complete description of the syntax and semantics of
VRPML can be found in [16].

As an illustration, Figure I presents an excerpt of the VRPML solution to the ISPW-6 problem. Similar to
JIL [11] and Little JIL [13], software processes in VRPML are described using process step abstractions,
which represent the most atomic representation of a software process (i.e. the actual activity that software
engineers are expected to perform). These activities are represented as nodes, called activity nodes (shown
as small ovals with stick figures).

As depicted in Figure 1, VRPML supports many different kinds of activity nodes. They include: general­
purpose activity nodes (shown as individual small ovals with stick figures); multi-instance activity nodes
(shown as overlapping small ovals with stick figures); and meeting activity node (shown as small and
shaded overlapping ovals with stick figures). Both multi-instance activity nodes and meeting activity nodes
have associated depths, indicating the actual number of engineers involved (and also the number of
identical activities in the case of multi-instance activity).

The firing of activity nodes is controlled by the arrival of a control flow signal. In VRPML, an initial
control flow signal is always be generated from a start node (a white circle enclosing a small black circle).
A s top node (a white circle enclosing a nother white circle) does not generate any control flow signals.
Control flow signals may also be generated at the completion of a node, often from special completion
events called transitions (shown as small white circles with a capital letter, attached to an activity node) or
decomposable transitions (small black circles with a capital letter). Decomposable transitions enable
automation scripts or sub-graphs to be specified (and executed if selected) as post-conditions before
allowing transition to generate a control flow signal. The sub-graph associated with the decomposable
transition representing Done (labeled D) for the activity node called Modify Code is given in Figure 2.

•

Fig. 2: Sub-graph for Decomposable Transition labeled D in Modify Code

When Check Compilation fails, the assigned software engineer can select the transition R (for re-do). As a
result, a control-flow signal will be generated to re-enact its parent node (i.e. Modify Code) through a re­
enabled node (shown as two white circles enclosing black circle). Otherwise, if the compilation is
successful, the assigned engineer can select the transition D (for Done). In this case, the control-flow signal
will be generated and propagated back to the main graph to enable the subsequent connected node.

In VRPML, activity nodes can also be enacted in parallel using combinations of language elements called
merger and replicator nodes (shown as trapezoidal boxes with arrows inside). To improve readability, a set
ofVRPML nodes can be grouped together and replaced by a macro node (shown as dotted line ovals), with
the macro expansion appearing on a separate graph. For example, referring to Figure 1, Test Unit is a
macro node. The macro expansion ofTest Unit is given in Figure 3.

L
r

I

V

I
~~\·'··,.

I
I

I
I------<0

F dbackForCodeAndTeslP kage

~ OsgnEn~r

Test

~ DsgnEngr

o

o
Feedb ackF orT estP ack ag

~ DsgnEngr

Fe adb ackF orC ad e

o ~ OsgnEngr I
Fig. 3: Macro Expansion for Test Unit

For every activity node, VRPML provides a separate workspace, the concept borrowed from ADELE­
TEMPO [2], APEL [3] and MERLIN [6]. Figure 4 depicts the sample workspace for the activity node
called Review Meeting in Figure 1. A workspace typically gives a work context of an activity as it hosts
resources needed for enacting the activity: transitions, artifacts (shown as overlapping two overlapping
documents with arrows for depicting access rights), communication tools (shown as a microphone, and an
envelope), and any task descriptions (shown as a question mark). Effectively, when an activity is
undertaken, the workspace is mapped into a virtual room, transitions into buttons, and artifacts,
communication tools (i.e. for synchronous and asynchronous forms of communications) and task
description into objects which can be manipulated by software engineers to complete the particular task at
hand.

I
I
I
I

OutcomeNotification

EmililTool

Comm lJn ication Tool I
I
I

Fig. 4. Sample Workspace for Activity Node Review Meeting

As part of its enactment model, VRPML relies on its resource exception handling mechanism. In VRPML,
resources include roles assignment, artifacts and tools (including communication tools) in a workspace as
well as the depths of multi-instance activity nodes and meeting activity nodes. Depending on the needs of a
particular software development project, these resources can either be allocated during graph instantiation
or dynamically during graph enactment.

3.0 OVERVIEW OF THE WATERFALL DEVELOPMENT MODEL

I
I
I

The earliest form of the software processes based on the waterfall model was introduced by Royce (1970).
Since then, many variants from the original waterfall model have been proposed. One of its variants [4] is
shown in Figure 5.

I
I
I
I

Fig. 5: The Waterfall Model

Among the characteristics of the waterfall model are:

In 0 rder to support the modeling and enacting 0 f software processes implementing the waterfall model,
each stage of the model must be precisely defined in detail. Building on the work by Sommerville [12] and
the waterfall model given earlier, Table 1 in the next page summarizes the possible activities along with
their inputs and outputs. It must be stressed that this is only one of the possible list of activities as there are
a numberof variations to the waterfall model.

The model is divided into a number of separate stages from system feasibility to maintenance.
Each stage has a clearly delineated activity which is performed in a linear and sequential manner.
Each stage is also independent that is, there is no overlap amongst stages.
Feedback is usually provided to the preceding stage.
The completion of a stage is determined by a review either formally or informally and conducted at the
end of each stage so that development can proceed to the next stage. This is important because the
output of the current stage often becomes the input of the next stage.

•
•
•

•

•

[I
[I
[I
II
II
[I
tl
II
II

I
I
I
I
[I
II

:1
rl
II
II
II

l_

r

Waterfall
Activities Inputs Outputs

Stages
Analyse and Define Requirements Customer Requirements Draft Feasibility Study

System Draft Requirement Documents
Feasibility

Review System Feasibility
Draft Feasibility Study Feasibility Study
Draft Requirement Documents Requirement Documents

Prepare Functional Specification Requirement Documents Draft Functional Specification

Prepare Acceptance Test Plan Requirement Documents Draft Acceptance Test Plan

Requirements Prepare Draft User Manual Draft Functional Specification Draft Preliminary User Manual
Specification Draft Functional Specification Functional Specification

Review Specification Draft Acceptance Test Plan Acceptance Test Plan
Draft Preliminarv User Manual Preliminarv User Manual

Prepare Architectural Specification Requirement Documents Draft Architectural Specification
Functional Specification

Preliminary Prepare System Test Plan Requirement Documents Draft System Test Plan
Design Functional Specification

Review Preliminary Design Draft Architectural Specification Architectural Specification
Draft System Test Plan System Test Plan

Prepare Interface Specification
Functional Specification
Architectural Specification Draft Interface Specification
Requirement Documents
Functional Specification

Prepare Integration Test Plan Architectural Specification Draft Integration Test Plan
Requirement Documents

Functional Specification

Prepare Design Specification Architectural Specification Draft Design Specification
Detailed Draft Interface Specification

Design Requirement Documents
Functional Specification

Prepare Unit Test Plan Architectural Specification Draft Unit Test Plan
Draft Interface Specification
Requirement Documents

Draft Interface Specification Interface Specification
Review Detailed Design Draft Design Specification Design Specification

Draft Integration Test Plan Integration Test Plan
Draft Unit Test Plan Unit Test Plan

Perform Coding
Requirement Documents Draft Program Code
Desion Soecification

Module Coding
PerformUnit and Module Testing Unit Test Plan Draft Unit Test Report

and Testing Draft -Program Code

Review Coding and Testing Draft Program Code Program Code
-Draft Unit Test Report Unit Test Report

Perform Integration Testing Integration Test Plan Draft Integration Test Report
Proaram Code

System
PreliminaryUs-er-Manual -0

Integration
Prepare Final User Manual Functional_Specification Draft User Manual

Program Code

Draft Integration-Test Report Integration-Test Report - ~- .0

Review Integration Testing
Draft User Manual User Manual

Perform System Testing
System Test Plan

System Acceptance Test Plan Draft System Test Report

Testing Program Code
Program Code

Review System User Manual Final Release
Draft System Test Report

Table 1: Waterfall Model Activities, Inputs, and Outputs

Referring to Table 1, the sunnnary of activities involved in each stage of the waterfall model raises a
number of issues. Firstly, the roles associated with each defined activity have not been identified. In this
case, it is assumed that all of the software engineers involved have the required skills to perform the
activities assigned to them. Hence, the role for each activity will be simply software engineers.

Secondly, although the ordering 0 f activities in each stage has not been defined, they can be indirectly
inferred from their input dependencies. In fact, activities in a stage can also be enacted in parallel when
they are independent, that is, they do not require any input from each other. This will be reflected in the
VRPML solution given belowo

LI
rI
II
~
[I
[I
[I
[I
[I

{I
[I
[I
[I
II
I

{I
II
I

r
l
II
(I
!I

Finally, in order to highlight only the key aspects ofVRPML, only a partial solution of the waterfall model
from Table 1 will be presented here. The complete solution can be found in Zarnli [17].

4.0 VRPML SOLUTION OF THE WATERFALL DEVELOPMENT MODEL

The main graph of the VRPML solution for the software processes based on the waterfall model is given in
Figure 6 consisting of 7 macros namely: System Feasibility; Requirements Specification; Preliminary
Design; Detailed Design; Module Coding and Testing; System Integration; and System Testing.

Fig. 6: Main VRPML Graph for the Waterfall Model

To further illustrate the VRPML notation, one of the macros, called Detailed Design, is shown in Figure 7.
The presence of macros related to other stages in the Figure is merely to give focus and context to the
expansion.

[I

cr-------

I
I

I

I

I
I

I
I
I

I
I

I

I

I

I

IPrep arelntegratio
TestPlan

SW Engr

o

P

~/------ -,

(/ Module Coding and"\

\ Testing I~

" -\------//
/----------- ,

/ ,
/ \

System Integration ~
\ /, /

"-~-- - -::.:.:::._---'"
/ ,

/ \
System Testing I

"-----6--- /

Prepare Interface
.Q Specification

A SWEngr

o

Fig. 7: Macro Expansion for Detailed Design

The macro expansion for Detailed Design consists of four multi-instance activity nodes (Prepare Interface
Specification, Prepare Integration Test Plan, Prepare Design Specification, and Prepare Unit Test Plan) and I

I

l I

@Jt lTI
Fun ctio na IS pecifie atia n

0lt

§It

0lt

Fun ctio n aIS p ecific atio n

@J~t
Dra flU nitT eslP Ian

0lt

Req uirem eotO 0 cum en ts

oraftlo tegration Te stP ran

Requirem entDocum ants

Workspace for Prepare Integration Test
Pia n

oramo terface S pe citle a tio " Arc h ita tiu fa IS pe cine alia n

OraftUnit-TestPlan

Workspace for Prepare Unit Test Plan

C·ommuriication Tool

0lt

@Jt WJ
Fun ctian aIS pacifica tion

Fun ctian alS pacifica tic n

0lt
DraJtln)erf<fceS.:pe cinea Iic n

0lt

ofa UO esign $.pecifica 00 n

Workspace for Prepare Design
Specification

@Jlt
Em aillool

Workspace for Prepare Interface
Specification

Ora ftlnt.sgrationTestP la."

0lt
Requirem en to acum en ts

0l~t
OraftD e sign S pecificatio n

0lt
orafUnterface S pacification ArchitecturalS pecificatio n

ofa ftlnterface S pecWe atia n

@It
Requirem e ntoacum e nts

@It
Arch ita ctu ra IS pecifica tio n

Workspace for Review Detailed Design

Although not shown in this paper (see [17]), all of the macros given in Figure 6 expand into a combination
of multi-instance activity nodes and meeting activity nodes cOlmected by arcs. The reason for using muIti­
instance activity nodes and meeting activity nodes is to demonstrate that VRPML supports the dynamic
creation of tasks, that is, no prior assumption is made when constructing the model in terms of how many
engineers have to be assigned to any of the activities represented by these nodes.

Fig. 8: Workspaces for Detailed Design

one meeting node (Review Detailed Design). Because Prepare Interface Specification and Prepare
Integration Test Plan are independent of each other, they can be enacted in parallel. However, Prepare
Design Specification and Prepare Unit Test Plan can only be enacted after Prepare Interface Specification
has been completed. This is because both Prepare Design Specification and Prepare Unit Test Plan require
an artifact from Prepare Interface Specification, called the Interface Specification, as one of their inputs
(see Table 1). Actually, once Prepare Interface Specification has been completed, both Prepare Design
Specification and Prepare Unit Test P Ian can be enacted in parallel. Lastly, Review Detailed Design is
enacted when all the above activities have been completed.

In terms of transitions, Prepare Interface Specification, Prepare Integration Test Plan, Prepare Design
Specification and Prepare Unit Test Plan each have only one defined transition for Done (labeled D) to
allow their completion. However, Review Detailed Design has three defmed transitions: Redo (labeled R)
in order to allow loop back to the previous activities; Passed (labeled P) in order to move to ·the next stage;
and Feedback (labeled F) in order to permit feedback to the previous stage.

In terms of workspaces, they can be straightforwardly defined by analyzing the inputs for each activity as
described in Table 1. As an illustration, Figure 8 depicts all the respective workspaces for Detailed Design.

II
rI
il
[I
{I

II
\1
\1
i,1
\1
\1
\1
\1
II
I

\1
(I
II
\1
\1
\1

q
11-1

I
.~"

..
:.j

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Transition
Signals

Compiler

Runtime Interpreter

Roadmap and
r-__....l-_R_e.:...:s-,-o-.:,urce Tuples

VRPML Graph

Resource
Exception and
Rectification

Activities and
Resource

Assignments

• •

Databases

•

Transition
Signals

Resource Manager

Graph Editor

Communication Repository Layer

Resource
Queries

Resource
Exception

Activities and
Resource

Assignments

•
•

•

Workspace
Manager

Runtime Client

Fig. 9: VRPML Support System

Workspace
Manager

• Graph Editor - allows the VRPML graphs to be specified.
• Compiler - compiles the VRPML graphs into an immediate format for enactment.
• Runtime Interpreter - interprets the compiled VRPML graph.
• Communication Repository Layer - allows communication between the runtime interpreter,

runtime client, and workspace manager.
• Resource Manager - queries the databases for artifacts.
• Process Centered Envirorunent (PSEE) - encapsulates three main sub-components: the runtime

client, the to-do-list manager, and the workspace manager. The runtime client retrieves activities
and resource assigrunents from the communication repository layer. The to-do-list manager
manages the activities assigned to a particular software engineer whist the workspace manager
manages activity workspace in a virtual envirorunent, manages activity transition, and forward
queries to the resource manager.

To-do-Iist Manager

To-do-Iist Manager

PSEE

Runtime Client

Project Manager

PSEE

.--__-L..__---, - ---.

Software Engineers

The main components of the VRPML support system consist of:

As far as enactment is concerned, the VRPML support system is responsible to allow the process model to
be enacted. The overall structure of the VRPML support system is shown in Figure 9.

L

r

I
I
II
fl
II
\1
II
II
II
il

)1

:1
(I
fl
II
il

The complete description of the VRPML support system, however, is beyond the scope of the paper.
Interested readers are referred to Zarnli [17].

Fig. 10: Snapshot of the engineer's to-do-Iist

Actil,litytlaPlf .. tlodify Test Plans,S,
Actil,lityType .. General Purpose,
Role" QAEngr,
AssignedEngineer = Kamal,
Artefact = Current Test Plans, Path/UrI for Current Test Plans, Read/Write, Path/UUl for tool,
Artefact = Req Change, Path/UrI for Req. Change, Read, Path/UrI for tool,
Transition = 0, Transition Done, Han-Decomposable,S,
Description = Modify Test Plans descriptions.

Fig. 10: Snapshot of resource allocation activity

5.0 DISCUSSION

The fact that VRPML provides a sound solution to the waterfall development model as well as its
enactment gives an encouraging indication of the expressiveness of VRPML. This can be further supported
from the fact that the VRPML solution itself can be arranged like the waterfall development model. The
ability of VRPML to support such arrangement may be useful to facilitate process understanding. In fact,
similar arrangement may not be possible in other visual PMLs such as Slang [1], Promenade [8], and APEL
[3].

Although the UML activity diagram [10] is non-enactable, it can be compared to VRPML in terms of its
graph representation. Figure 11 depicts an example of a software process expressed using the UML activity
diagram.

Fig. 11: Example of the UML Activity Diagram

r
Project Manager

Schedule and
Assign Tasks

Review Team

I
I
I
I
I
I
I
I

Design Engineer Test Team QA Engineer

I
I
I
I
I
I
I
I
I
I
I

Modify Unit
ITest Package

I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I
I
I
I
I
I
I
I

The UML activity diagram representation of a software process is simple and intuitive. Nonetheless, while
the UML activity diagram can be used to express activities in a software process, it lacks features to
express the individual role, resources, work contexts, and the completion of activities. Furthermore, UML
activity diagrams do not have a well-defined executable semantics (i.e. as in VRPML). A known
experience of using UML as a PML can be seen in the design of PROMENADE [8]. Here, the authors of
PROMENADE dismiss the use of activity diagram as a PML, as PROMENADE mainly relies on class
diagrams and object constraint language for supporting the modeling and enacting of software processes.
Furthermore, in doing so, the authors of PROMENADE extensively extend the UML meta-models, hence,
affecting the standardization ofUML. For these reasons, we believe that UML is not particularly suitable as
aPML.

Referring to the VRPML solution to the waterfall development model discussed in the previous section,
multi-instance and meeting activity nodes were sufficient to construct that process model. Thus, at a glance,
removing the general purpose activity node from the VRPML notation seems beneficial to reduce the
language complexity. Nevertheless, eliminating the general purpose activity node from the notation can be
disadvantageous. As far as readability of a VRPML graph is concerned, it can be difficult to distinguish
whether an activity will be solely performed by one person or collaboratively by more than one person

I
I
I
I
I
I
I

~

~
[I
II
fl
\1
II
[I
II

:l'",~; -

II
II
[I
rl
[I
II
~

II
11,

[18]. Therefore, it is suggested that both general purpose activity nodes and multi-instance activity nodes
are kept as part of the notation.

Concerning enactment, the fact that VRPML can produce an enactable model is helpful to facilitate
coordination of activities involved in a particular development cycle. In addition, the support for enactment
in VRPML can also be helpful for the following reasons:
• It provides guidance through the steps to be taken. Such guidance is particularly useful for junior

software engineers.
• It can enforce strict procedures and policies. Enforcement of strict procedures is sometimes important

in cases su ch as developing critical systems where human lives depend on a piece of so ftware. An
example of such a system would be a car auto-cruise control system. In this case, the software
development team in charge of developing such a system may require its defined steps to be followed
precisely. For example, evolution of the software in such a system must be strictly controlled. Ad hoc
changes must not be permitted because such changes may introduce bugs which may not be tested and
accounted for. Such bugs could be dangerous especially if they affect the mechanism to control the
speed of the car in auto-cruise.

• It permits the automation of tasks. In software engineering, there are many tasks which can benefit
from automation. For example, although tasks such as compiling and linking source codes look simple,
they can be painstakingly dull especially if the source codes are very large and involving multiple
modules. Such mundane tasks, if automated, can relieve software engineers from tedious routine work
(and reduce potential human errors), and consequently, improve software engineer's productivity.

6.0 CONCLUSION

In conclusion, this paper has demonstrated the use of the VRPML for modeling and enacting of software
pf()cesses. As for future work, we are planning to use VRPML to model a more realistic software process
Jl}'oIJleJffi such.a,sthe spiral and the extreme programming model.

'!f't,c,,;iJ},!:1; ;;-;15}/i; .-,,,.

The work undertaken in this research is partially funded by the USM Short Term Grants - "The Design and
Implementation of the VRPML Runtime Environment".

REFERENCES

[1] Bandinelli, S., Fuggetta, A., Ghezzi, C, and Lavazza, L. 1994. SPADE: An Environment for Software
Process Analysis, Design and Enactment. In Finkelstein, A., Kramer, J. and Nuseibeh, B. (Eds.),
Software Process Modelling and Technology, Research Studies Press, Taunton, England: 223-247.

[2] Belkhatir, N., Estublier, J., and Melo, W. 1994. ADELE-TEMPO: An Environment to Support
Process Modelling and Enaction. In Finkelstein, A., Kramer, J. and Nuseibeh, B. (Eds.), Software
Process Modelling and Technology, Research Studies Press, Taunton, England: 187-122.

[3] Darni, S., Estublier, J., and Arniour, M. 1998. APEL: A Graphical Yet Executable Formalism for
Process Modeling". Automated Software Engineering, 5(1):61-96.

[4] DeBellis, M., and Haapala, C 1995. User-Centric Software Engineering. IEEE Expert, February
1995: 34-41.

[5] Jaccheri, M.J., Conradi, R., and Drynes, B.H.. Software Process Technology and Software
Organisations. Proceedings. of the 7th European Workshop on Software Process (EWSPT 2000),
Kaprun, Austria, 2000, Springer: 96-108.

[

l
I

l

l

[6] Junkermann, G., Peuschel, B., Schafer, W., and Wolf, S. 1994. MERLIN: Supporting Cooperation in
Software Development Through a Knowledge-Based Environment. In Finkelstein, A., Kramer, J. and
Nuseibeh, B. (Eds.), Software Process Modelling and Technology, Research Studies Press, Taunton,
England: 103-129.

[7] Kellner, M.L, Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, LJ., Penedo, M.H., and
Rombach, H.D. 1990. Software Process Modeling Example Problem. Proceedings of the 6th
International. Software Process Workshop, Hakodate, Japan, IEEE CS Press.

[8] Ribo, J.M., and Franch, X. 2000. PROMENADE: A PML Intended to Enhance Standarization,
Expressiveness and Modularity in Software Process Modelling. Research Report LSI-34-R.,
Llenguatges I Sistemes Informatics, Politechnical of Catalonia, Spain.

[9] Royce, W.W. 1970. Managing the Development of Large Software Systems Proceedings ofI EEE
WESCON: 1-9.

[10] Rumbaugh, J., Jacobson, Land Booch, G. 1999. The UML Reference Manual. Addison Wesley.

[11] Sutton, S. Jr., and Oster.weil, L.J. 1997. The Design of a Next-Generation Process Language.
Proceedings ofthe Joint 6th European Software Engineering Conference and the 5th ACM SIGSOFT
Symposium on the Foundation ofSoftware Engineering, Lecture Notes in Computer Science Volume
1301, Springer: 142-158.

[12] Sommerville, I. 2001 Software Engineering (Sixth Edition). Addison Wesley.

[13] Wise., A. 1998. Little TIL 1.0 Language Report - Technical Report 98-24, Department of Computer
Science, University of Massachusetts, at Amherst, USA.

[14] Zamli, K.Z. and Lee, P.A. 2001. Taxonomy of Process Modeling Languages, Proceedings of the
ACS/IEEE International Conference. on Computer Systems and Applications, Beirut, Lebanon IEEE
CS Press: 435-437.

[15] Zamli, K.Z. 2001.Process Modeling Languages: A Literature Review. Malaysia Journal of Computer
Science 14,2: 26-37~.

[16] Zamli, K.Z. and Lee, P.A. 2002. Exploiting a Virtual Environment in a Visual PML. Proceedings of
the 4th International Conference on Product Focused Software Process Improvements (PROFES02) ,
In Oivo, M. and Komi-Sirvio, S. (Eds.). Lecture Notes in Computer Science Volume 2559,
Rovaniemi, Finland, Springer: 49-62.

[17] Zamli, K.Z. 2003. Supporting Software Processes for Distributed Software Engineering Teams. PhD
Thesis, School of Computing Science, University of Newcastle upon Tyne, United Kingdom

[18] Zamli, K.Z. and Lee, P.A. 2003. Modeling and Enacting Software Processes Using VRPML.
Proceedings of the 10th IEEE Asia-Pacific Conference on Software Engineering, Chiang Mai,
Thailand, IEEE CS Press: 243-252.

[19] Zamli, K.Z., and N.A. Mat Isa 2004. A Survey and Analysis of Process Modeling Languages.
Malaysia Journal of Computer Science 17,2: 68-89.

[20] Zamli, K.Z., and N.A. Mat Isa. 2005. The Computational Model for a flow-based PML. Proceedings
ofthe AlDIS International Conference on Applied Computing 2005, Algarve, Portugal, pp. 217-224.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

­
[I
(I
(I
il
i

II
rl
I
:1
:1

I
·11
i

rl
I

.11
.1

il
t

{I

II
[I

fl,

COORDINATING BUSINESS PROCESSES USING A PML

Kamal Zuhairi Zamli, Nor Ashidi Mat Isa, Ahmad Nazri Ali
School of Electrical and Electronics

USM Engineering Campus
14300 Nibong Tebal, Penang, Malaysia

Abstract
Software processes relate to the sequences ofsteps that must be performed by software engineers in
order to pursue the goal ofsoftware engineering. In order to have an accurate representation and
implementation ofwhat the actual steps are, software processes may be modeled and enacted by a
process modeling language (PML).

In this paper, we investigate the use ofa PML in a different scope, that is, to model a general form
ofprocesses involving workflow activities (termed business process). In doing so, we have adopted
a new visual PML, called VRPML, developed as part ofour on-going research. Our work is based
on the hypothesis which suggests that business p rocesses and software p rocesses are similar in
nature, thus, a PML may also be applicable to support business process activities.

1. Introduction

Software development is a process 0 f change, refinement, transformation 0 r addition to existing
software product. In order to ensure a quality software product, it is often necessary to observe and
control the processes that are used to produce that software product. Based on the aforementioned
premise, much research has been conducted in the field of software engineering to develop ways of
controlling software processes. One active area of research in the area is on the development of
process modeling languages (PML). With a PML, a model of the process can be developed (termed
process mode£). Through enactment (i.e. execution) of the process model, coordination, automation,
guidance, and enforcement of policies embedded in the model can be achieved to support the
activities of software engineers developing a software product.

Although a natural language can be used for defining a software process, it exhibits a number of
difficulties. In general, the description of software process using a natural language is often
imprecise, ambiguous, inconsistent and open to user interpretation. Typically, such characteristics
may lead to discrepancies in the software process undertaken by software engineers - for example,
what is performed may not be what is required in the description of the software process (i.e. as
illustrated in Figure 1). With a PML such discrepancies may be alleviated.

445

~
natural language

description.

?•

I
I
I
I
I
I
I
I
I
II
I
I
I
I

Programmers

~
Referred to as manual Software Development

Policy

(
evelopment policy

expressed in a natural
language

The Managements

Figure 1. Problem with a natural language description

In this paper, we investigate the use of a PML to model a general form 0 f processes involving
workflow activities (termed business process). In doing so, we have adopted a new visual PML,
called VRPML, developed as part of our on-going research [8-13]. Our work is based on the
hypothesis which suggests that business processes and software processes are similar in nature,
thus, a PML may also be applicable to support business process activities.

This paper is organized as follows. Section 2 gives an overview of VRPML. Section 3 discusses the
case study problem used in this paper. Section 4 discusses some of the lessons learned. Finally,
section 5 presents the conclusions of the paper.

2. Overview of VRPML

VRPML is a control-flow based visual PML for supporting the modeling and enacting of software
processes. In VRPML, software processes are generically modeled. Resources (in terms of software
engineers, artifacts and tools) can be dynamically assigned and customized for specific projects
from a generic model.

446

r

r

ModifyCode

~ DsgnEngr

ModifyUnitTestP ackage

~ QAEngr 0

ModifyCode

~ DsgnEngr

o

ModifyU nitTestPackage

o ~ QAEngr

ModifyCode

DsgnEngr

I
I
I
I
I
I
I
I
I
I
I
I

l

L

Figure 2. -Excerpt from-the VRPML Graph -for the ISPW-6 Problem

Software processes are specified in VRPML as graphs, by interconnecting nodes from top to bottom
using arcs that carry run-time control-flow signals. The complete description of the syntax and
semantics ofVRPML can be found in [10].

As an illustration, Figure 2 presents an excerpt of the VRPML graphs expressing the lSPW-6
problem [4]. Similar to Little JlL [5-7], software processes in VRPML are described using process
step a bstractions, which represent t he most a tomic representation of a software process (i.e. the
actual activity that software engineers are expected to perform). These activities are represented as
nodes, called activity nodes (shown as small ovals with stick figures).

As depicted in Figure 2, VRPML supports many different kinds of activity nodes. They include:
general-purpose activity nodes (shown as individual small ovals with stick figures); multi-instance
activity nodes (shown as overlapping small ovals with stick figures); and meeting activity node
(shown as small and shaded overlapping ovals with stick figures). Both multi-instance activity
nodes and meeting activity nodes have associated depths, indicating the actual number of engineers
involved (and also the number of identical activities in the case of multi-instance activity).

447

I
I
I
I
I
I
I
I

JI
[I

[I

[I

(I
II
II
I

The firing 0 f activity nodes is controlled by the arrival of a control flow signal. In VRPML, an
initial control flow signal is always be generated from a start node (a white circle enclosing a small
black circle). A stop node (a white circle enclosing another white circle) does not generate any
control flow signals. Control flow signals may also be generated at the completion of a node, often
from special completion events called transitions (shown as small white circles with a capital letter,
attached to an activity node) or decomposable transitions (small black circles with a capital letter).
Decomposable transitions enable automation scripts or sub-graphs to be specified (and executed if
selected) as post-conditions before allowing transition to generate a control flow signal. The sub­
graph associated with the decomposable transition representing Done (labeled D) for the activity
node called Modify Code is given in Figure 3.

•

448

Figure 4. Macro Expansion for Test Unit in Figure 1

Figure 3. Sub-graph for Decomposable Transition labeled D in Modify Code

/Test

J DsgnEngr

!~,
Iv--- if DsgnEngr)

~/

In VRPML, activity nodes can also be enacted in parallel using combinations of language elements
called merger and replicator nodes (shown as trapezoidal boxes with arrows inside). To improve
readability, a set of VRPML nodes can be grouped together and replaced by a macro node (shown
as dotted line ovals), with the macro expansion appearing on a separate graph. For example,
referring to Figure 2, Test Unit is a macro node. The macro expansion of Test Unit is given in
Figure 4.

When Check Compilation fails, the assigned software engineer can select the transition R (for re­
do). A s a result, a control-flow signal w ill be generated tor e-enact its parent n ode (i.e. Modify
Code) through a re-enabled node (shown as two white circles enclosing black circle). Otherwise, if
the compilation is successful, the assigned engineer can select the transition D (for Done). In this
case, the control-flow signal will be generated and propagated back to the main graph to enable the
subsequent connected node. .

il
[I

II
[I

[I

II
I

,I
II

II
I

II
[I

[
I

[

For every activity node, VRPML provides a separate workspace. Figure 5 depicts the sample
workspace for the activity node called Review Meeting in Figure 2. A workspace typically gives a
work context of an activity as it hosts resources needed for enacting the activity: transitions, artifacts
(shown as overlapping two overlapping documents with arrows for depicting access rights),
communication tools (shown as a micropnone, and an envelope), and any task descriptions (shown
as a question mark). Effectively, when an activity is undertaken, the workspace is mapped into a
virtual room, transitions into buttons, and artifacts, communication tools and task description into
objects which can be manipulated by software engineers to complete the particular task at hand.
This mapping is based on Doppke's task-centered mapping described in [3].

I
I
I
I

ErTlailT661 I

I
I

CommunicationTool

F

RequirementChange

Outc6meN6tification

§Jt
ModifiedDesign DesignReviewFeedback

Figure 5. Sample Workspace for Activity Node Review Meeting from Figure 1 I
As part of its enactment model, VRPML relies on its resource exception handling mechanism. In­
VRPML, resources include roles assignment,.artifacts and tools (including communication tools) in
a workspace as well as the depths of multi~instance activity nodes and meeting activity nodes.
Depending on the needs of a particular software development project, these resources can either be - ­
allocated during graph instantiation or dynamically during graph enactmenL~-The VRPML's
enactment modeLis summarized in Figure 6. -- - -

I
I

I
I

I

I
I
I

Engineer selects any of
the possible transitions

Resource·ex ception
raised

Process step is
terminated

Figure 6. VRPML Enactment Model

Resources needed for the­
process step are successfully

acquired

Process step is
terminated

Resource
ex ception rectified

Engineer undertakes the
process step

l

l
L

449 I
I

[I
[I

II

[I

II

il
II
,I
il
i

II

II

II
II
(

il
il
II
II
[I

II

[I

Upon the arrival of the control-flow signal, an activity node will be enabled. Here, the VRPML
interpreter attempts to acquire resources that the activity node needs. If resources are successfully
acquired, the VRPML interpreter then instantiates the activity corresponding to that activity node. If
for any reason VRPML fails to acquire the resources, enactment will be blocked until such
resources are made available (e.g. an engineer has not been assigned to the activity). In this way, the
VRPML's resource exception handling mechanism is similar to blocking primitives (e.g. in, read)
in Linda [5]. Once enactment is blocked, the VRPML interpreter automatically produces an activity
for the administrator (e.g. process engineer) to rectify the resource exception or completely
terminate the current activity. If that activity is terminated, the administrator may optionally
terminate the overall enactment of the particular VRPML graph in question or manually re-enact
connecting nodes by providing the necessary control-flow signals that they need to fire. If the
resource exception is rectified, normal enactment of the particular VRPML graph can be resumed
resulting in the activity being assigned to the appropriate software engineer. When that engineer
selects that particular activity, a workspace for that activity will appear as a virtual room with
artifacts, transitions and communication tools as objects which software engineer can manipulate to
complete t he task. Finally, the a ctivity completes when the software engineer selects 0 ne 0 f t he
possible transitions (e.g. passed, failed, done, or aborted).

3. Case Study Problem

In order to investigate the expressiveness of the VRPML notation to model and enact general
workflow activities, we partially present in Figure 7, 8, 9, and 10 a trip planning problem, modeled
in VRPML. The planning a trip problem is based 0 n the 0 ne presented in [2] and its extension
discussed in [6-7].

Briefly, the trip planning problem involves four people: the traveler, a travel agent, and two
secretaries. The problem involves making an airline reservation, trying United first, and USAir. If
(after making the plane reservation) the traveler has gone over budget and a Saturday stay over was
not included, these dates should be changed. Another attempt should be made to include a Saturday
stay 0 ver. After t he a irEne reservation ism ade a nd travel dates and times are set, car and hotel
reservation should also be made. The hotel reservation may be made at either a Days Inn, or if the
budget is not tight, a Hyatt, whilst the car reservation be made with either Avis or Hertz.

450

[

•

l'.-.~

1\·\·;···1

1
1
1
I

---- -----
/' "'.... Perform Hotel
\..... Reservation

Perform Car
Reservation

D}--____

Cancel AJI Bookings

X Traveller I

l

Figure 7. Main VRPML Graph for Planning a Trip Problem

The VRPML graph expressing the planning a trip problem can be seen in Figure 7. Here, the plane
booking activities are implemented using decomposable transition labeled D (for Done) of the
activity Reserve a Plane. The sub-graph associated with that transition is given in Figure 8.

•

Figure 8. Sub-graph for Decomposable Transition labeled D in Reserve Plane

Here, the activity Try United Airlines is started when its parent activity (i.e. Reserve Plane)
completes. Here, the travel agent may decide to choose transition D if the booking is within budget
for the selected date and time. Otherwise, the traveler may select the transition 0 (for Over budget)
in order to start the Try USAir activity. If the Try USAir is started, the travel agent may again select
the transition D if the booking is within budget. Otherwise, the travel agent must select the
transition 0 in order to re-enable its parent activity (see the semantics of re-enable node in Section
2). In this case, the parent activity (Reserve Plane) permits the travel agent to re-select the date and
time for the plane reservation.

Concerning the activities involving hotel reservation and car reservation, they are performed in
parallel (see Figure 7). Because both activities consist of a number of sub-activities, they are

451

I
I
I
I
I
I
I
I
I
I
I
I

I

II
[I
I
\

II
rl
II
II
II
,I
II
:1
i

:1
I
I

II
il
:1

il
l

II
II
I

l

abstracted using macro nodes Perform Hotel Reservation and Perform Car Reservation respectively.
The macro expansion for Perform Hotel Reservation activity is given in Figure 9.

---~---

Figure 9. Macro Expansion for Perform Hotel Reservation

In this case, when the Reserve Hotel activity is started, the secretary may decide to select either
Days Inn or Hyatt. The assumption in the planning a trip problem is that Hyatts always depletes
more of the traveller's budget than Days Inn [7]. Thus, if the secretary chooses to select Hyatt and
the booking is over budget, the secretary must select the transition R in order to re-enable the
Reserve Hotel activity. In the Reserve Hotel activity, the secretary may now choose Days Inn
instead. Once reservation is completed, Complete Reservation activity will be started. Complete
Reservation activity completes when the secretary selects the transition D (for Done).

Next, the macro expansion for Perform Car Reservation activity is given in Figure 10.

-- ---
---- ---.-/ ---/' "-

Perform r ""-
"-

l~eservation \
\I

\ J

\ /
\ /

"- /

""- Complete ResefVation /'
"- ..:£: Secretary .-/

--- ./

--- --
Figure 10. Macro Expansion for Perform Car Reservation

Unlike Reserve Hotel activity, Reserve Car activity does not put constraints on the car reservation.
It is up to the secretary to choose either Avis or Hertz. Similar to the Reserve Hotel activity,
Complete Reservation activity will be started when the secretary has completed the car reservation.
The Complete Reservation activity finishes when the secretary selects the transition D (for Done).

452

I
I
I
I
I

I

I
I
I

I
I

I

I
I

I

I
I

I
I

Car Reservation

AvisReservation

CarAndHotelReservation

--.. Sequential
__ Try

-0-- Choice

= Parallel

!C:. NotTightBudget

{

453

HyattReservation

HotelReservation

Figure 11. Excerpt from the Little JIL solution

PlaneReservation

Our earlier work indicates that VRPML can be successfully adopted to model and enact a number
of case study problems involving software processes including the ISPW-6 [4] and the variation of
the waterfall development model [1]. Here, the fact that VRPML can model and enact a general
business process problem (i.e. planning a trip) gives further indication of the expressiveness of the
VRPML notation. Nevertheless, since planning a trip problem is a rather small problem, it might be
difficult to generalize the applicability of VRPML to any general business process. In fact, we felt
that more experiences will be needed before the true value ofVRPML can be established.

4. Discussion

As far as data flows are concerned, they can be straightforwardly express in each of the workspaces
of each activity. Because the focus of this paper is on coordination of activities, data flow issues
will not be discussed further here.

Going back to Figure 7, when the car and hotel reservation have been successfully made, Verify
Booking activity will be enabled. While the booking may not be over budget, the traveler may still
choose to cancel all booking if the Saturday stay over is not included in the itinerary. To cancel, he
may choose the transition A (for Abort) of the Verify Booking activity t.o initiate the Cancel All
Bookings activity. Once completed (i.e. after the traveler chooses transition D of the Cancel All
Bookings activity), the Reserve Plane activity will be re-enabled. In this case, hotel and car
bookings activities may be re-started for different dates and time to ensure a Saturday stay over is
included in the itinerary or the overall hotel and car booking activities may be completely
terminated.

For comparison purposes, Figure 11 reproduces the partial Little JIL solution [7] to planning a trip
problem. While Little JIL provides a rich set of notations for hiodeling of processes, it might be
difficult at a glance to make sense out of Little JIL representation. One reason is that process
activities are structured as a tree structure making it difficult to follow the sequimcing -of a.ctivities.
In VRPML, -process models areexpressedasgtaphs resembling flowcharts. As such, process
models expressed in VRPML should be straightforwardto comprehend.

1

I

I

L

[I

~

[I
rl
II
I

II
II
[I
il
I

il
II
11
,I

I
tl
II
II
II
11
II

Concerning modularity, VRPML permits the use of a macro node in order to improve the graph
complexity. JIL, on the other hand, does not provide such a feature. For this reason, readability of
the process model expressed in Little JIL might be significantly affected if a process involved large
number of activities.

As far as our experience with PML is concerned, we believe that software processes and workflow
activities (i.e. business processes) share many characteristics. In fact, there is an active and parallel
research area looking into workflow languages a s opposed toP MLs. In 0 rder to understand the
differences between a PML and a workflow language, consider the analogy of a fighter plane and a
commercial plane. While both a fighter plane and a commercial plane can be used to transport
passengers from one location to another, a fighter plane might not be able to provide a comfortable
journey a s it is not well equipped with such a task. Similarly, a commercial p lane can not a Iso
function a s a fighter p lane. While a n ad h oc modification can be introduced in the commercial
plane to function as a fighter plane (e.g. by adding missile launching capabilities), it might not be as
good as the fighter plane itself in terms ofperformance.

Observing from a different perspective, one can always develop a general purpose plane (i.e. as a
fighter and commercial plane). However, it is expected that the design of such a plane might be
inefficient and bulky as it includes significant functionalities that are not always in use depending
on where the plane is deployed (i.e. either as a commercial plane or a fighter plane). As the analogy
illustrates, it seems appropriate that the scope of coverage of PMLs and workflow languages be kept
separate. Nevertheless, while the requirements of PMLs and workflow languages might be domain
specific and context dependent, synergies and experiences from either domain might still be useful
for the betterment of both.

5. Conclusion

This paper has demonstrated the use ofVRPML in a different domain that it is design for, that is, to
model and enact workflow activities involving planning a trip problem. While VRPML appears to
have sufficiently rich notations to model such a problem, we felt that more experimentation will be
needed to establish its suitability as a workflow language. For this reason, research into the
applicability ofVRPML as a workflow language is still worthwhile.

Acknowledgement

The work undertaken in this research is sponsored by the USM Short Term Grants - "The Design
and Implementation of the VRPML Runtime Environment".

7. References

[1] DE BELLIS, M., HAAPALA, C.,. "User-Centric Software Engineering" IEEE Expert, February 1995, pp. 34-41.

[2] BERTINO, E., JAJODlA, S., MANCINI, L., and RAY, 1., "Multiform Transactional Model for Workflow
Management". In Proc. of the NSF Workshop on Workflow and Process Automation in Information Systems, May
1996.

[3] DOPPKE, lC., HEIMBIGNER, D., WOLF, A.L, "Software Process Modeling and Execution within Virtual
Environments". ACM Transactions on Software Engineering and Methodology, 7 (1), 1998, pp. 1-40.

454

r

l

t

l
L

[4] KELLNER, M.L, F IELER, P .H., FINKELSTEIN, A., KATAYAMA, T., OSTERWEIL, L.J., PENEDO, M.H.,
ROMBACH, B.D., "Software Process Modeling Example Problem". In Proc. of the 6th IntI. Software Process
Workshop, Hakodate, Hokkaido, Japan, October 1990), IEEE Computer Society Press.

[5] WISE, A., "Little JI L I .0 Language Report - Technical Report UM-CS-1998-024", Dept. ofComputer Science,
Univ. of Massachusetts at Amherst, April 1998.

[6] WISE, A., LERNER, B.S., MCCALL, EX, OSTERWEIL, L.J., SUTTON JR, S.M., "Specifying Coordination in
Processes Using Little-JIL - Technical Report UM-CS-1999-071 ", Dept. of Computer Science, Univ. of
Massachusetts, Amherst, November 1999.

[7] WISE, A., CASS, G., LERNER B.S., MCCALL, EX, OSTERWEIL, L.J., SUTTON JR., S.M., , "Using Little-JIL
to Coordinate Agents in Software Engineering ", In Proc. ofthe Automated Software Engineering Conf. (ASE 2000),
Grenoble, France, pp. 155-163, September 2000, IEEE CS Press.

[8] ZAMLI, K.Z., LEE, P.A., "Taxonomy of Process Modeling Languages". In Proc. of the ACSIIEEE IntI. Con! on
Computer Systems and Applications, pp. 435-437, 2001. IEEE CS Press.

[9] ZAMLI, K.Z., "Process Modeling Languages: A Literature Review". Malaysian Journal of Computer Science, 14
(2), December 2002, pp. 26-37.

[lO]ZAMLI, K.Z., LEE, P.A., "Exploiting a Virtual Environment in a Visual PML". In Proc. of the 4th Int!. Conf. on
Product Focused Software Process Improvements (PROFES02), pp. 49-62, No. 2559, LNCS, Rovaniemi, Finland,
December 2002, Springer.

[11]ZAMLI, K.Z., LEE, P.A., "Modeling and Enacting Software Processes Using VRPML". In Proc. ofthe 10th IEEE
Asia-Pacific Conf. on Software Engineering, pp. 243-252, December 2003, IEEE CS Press.

[12]ZAMLI, K.Z., MAT ISA, N.A.,"A Survey and Analysis of Process Modeling Languages". Malaysian Journal of
Computer Science, 17(2), December 2004, pp. 68-89.

[13]ZAMLI, K.Z., MAT ISA, N.A., "The Computational Model for a Flow-based Visual Languages". In Proc. of
AlDIS IntI. Con! in Applied Computing 2005, Algarve, Portugal, pp.217-224..

455

.•.·'}"~;.\..·.I..
'I{~

. ~.\'

1
I.
1
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

Kamal Zuhairi Zamli, Nor Ashidi Mat Isa

The Applicability of VRPML for Supporting Distributed Software Engineering Teams

Software Engineering Research Group
School ofElectrical and Electronic Engineering,
Universiti Sains Malaysia, Engineering Campus,

14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Tel: 604-5937788 ext 6079, Fax: 604-5941023,

E-mail: {eekamal.ashidi@eng.usm.my}

A software process can be viewed as a partially
ordered set of activities that must undertaken by
software engineers to manage, develop, maintain and
evolve software systems. To allow better control of a
particular software process, a model of that process
(called a process model) can be created using a PML
making the process explicit and open to examination.
Through enactment (or execution) of the process
model, automation, guidance and enforcement of the
policy embedded in a particular process model can be
usefully achieved.

Similar analogies can be applied in the case of
software engineering. To produce quality software, it is
also necessary to place emphasis on the processes by
which the software is produced. In software
engineering, these processes are usually called
software processes.

Although there has been much fruitful research into
PMLs, their adoption by industry has not been
widespread [5]. While the reasons for this lack of
success may be many and varied, our earlier work [12­
16] identified two areas in which PMLs may have been
deficient: human dimension issues in terms of the
support for awareness and visualization as well as the
support for addressing management and resource
issues that might arise dynamically when a process
model is being enacted. In order to address some of
these issues, a new visual PML called Virtual Reality
Process Modeling Language (VRPML) has been
developed and evaluated [14-16]. VRPML serves as a
research vehicle for addressing our main research
hypothesis that a PML, which exploits a virtual
environment, is useful to support software processes
for distributed software engineering teams.

This paper is organized as follows. Section 2 gives
highlights the main syntax and semantics of VRPML.
Section 3 demonstrates the main features of VRPML
through the experimental setup. Section 4 discusses the
evaluation of VRPML in the context of supporting

1. Introduction

Keyword: Process Modeling Languages, Software
Process, Software Engineering

This paper evaluates the applicability of a new
visual process modelling language (PML), called the
Virtual Reality Process Modelling Language
(VRPML), for supporting the modelling and enacting
of software processes in a distributed environment.
VRPML serves as a research vehicle to address our
main research hypothesis which suggests that a visual
PML which exploits a virtual environment is useful for
supporting software processes for distributed software
engineering teams.

Abstract

Engineering as a discipline relates to the creative
application of mathematical and scientific principles to
devise and implement solutions to problems in our
everyday lives in an economic and timely fashion. To
provide a quality solution, it is not usually sufficient to
focus only on the final product. Often, it is also
necessary to consider the processes involve in
producing that product [8, 9]. For example, consider an
assembly of a car. From the customer's perspective, it
is the final product that matters (i.e. a quality car).
From an engineering perspective, such quality could
not be achieved if some of the processes (e.g. assembly
lines) are faulty. Although additional rework can fix
the problems caused by the faulty assembly lines, this
tends to raise the overall costs because it deals only
with symptoms of the problem. In contrast, going to
the cause of the problem and improving the process
(e.g. the faulty assembly lines) avoids the introduction
of quality defects in the first place and leads to better
results with lower costs. As this example illustrates, it
is through the processes that engineers can observe and
improve quality, control productions costs and possibly
reduce the time to market their products.

[I
[I

2. Overview of VRPML

Figure 1. Excerpt from the VRPML Graph for
the ISPW-6 Problem

As depicted in Figure 1, VRPML supports many
different kinds of activity nodes. They include:
general-purpose activity nodes (shown as individual
small ovals with stick figures); multi-instance activity
nodes (shown as overlapping small ovals with stick
figures); and meeting activity node (shown as small
and shaded overlapping ovals with stick figures). Both
multi-instance activity nodes and meeting activity
nodes have associated depths, indicating the actual
number of engineers involved (and also the number of
identical activities in the case of multi-instance
activity).

As an illustration, Figure I presents an excerpt of
the VRPML solution to a benchmark process, i.e. the
ISPW-6 problem [7]. Similar to JIL [10] and Little JIL
[11], software processes in VRPML are described
using process step abstractions, which represent the
most atomic representation of a software process (i.e.
the actual activity that software engineers are expected
to perform). These activities are represented as nodes,
called activity nodes (shown as small ovals with stick
figures).

using arcs that carry run-time control-flow signals. The
complete description of the syntax and semantics of
VRPML can be found in [14].

The firing of activity nodes is controlled by the
arrival of a control flow signal. In VRPML, an initial
control flow signal is always be generated from a start
node (a white circle enclosing a small black circle). A
stop node (a white circle enclosing another white
circle) does not generate any control flow signals.
Control flow signals may also be generated at the
completion of a node, often from special completion
events called transitions (shown as small white circles
with a capital letter, attached to an activity node) or
decomposable transitions (small black circles with a
capital letter). Decomposable transitions enable
automation scripts or sub-graphs to be specified (and
executed if selected) as post-conditions before
allowing transition to generate a control flow signal.
The sub-graph associated with the decomposable
transition representing Done (labeled D) for the
activity node called Modify Code is given in Figure 2.

In VRPML, software processes are generically
modeled. Resources (in terms of software engineers,
atiifacts and tools) can be dynamica.1ly assigned and
customized for specific projects from a generic model.

•

distributed software engineering. teams. Section 5
outlines the conclusion of the paper.

VRPML is a control-flow based visual PML for
supporting the modeling and enacting of software
processes. The main novel features ofVRPML are:
• It considers virtual environments as a fundamental

constituent, manipulatable as part of the
construction of the process model (i.e. via features
in the language) as well as being part of the
runtime environment.

• It supports dynamic allocation of resources
through its enactment model [14-16].

vm..tGq:h
fcrlhel'fWG
Patlan

I
I
I

I
I
I
I

[I

[I

[I

II
I

II

II

I
Software processes are specified in· VRPML as

graphs, by interconnecting nodes from top to bottom

1
I

I

ModifiedDesign D.esignReviewFeedback

Figure 4 depicts the sample workspace for the activity
node called Review Meeting in Figure 1. A workspace
typically gives a work context of an activity as it hosts
resources needed for enacting the activity: transitions,
artifacts (shown as overlapping two overlapping
documents with arrows for depicting access rights),
communication tools (shown as a microphone, and an
envelope), and any task descriptions (shown as a
question mark). Effectively, when an activity is
undertaken, the workspace is mapped into a virtual
room, transitions into buttons, and artifacts,
communication tools (i.e. for synchronous and
asynchronous forms of communications) and task
description into objects which can be manipulated by
software engineers to complete the particular task at
hand. This mapping is based on Doppke's task­
centered mapping described in [3].

I

I

I

I

I

I

I

1

1

CommunicalionTool

EmailTool

F

RequirementChange

OutcomeNolification

In V RPML, activity nodes c an a Iso bee nacted in
parallel using combinations of language elements
called merger and replicator nodes (shown as
trapezoidal boxes with arrows inside).

•

Figure 2. Sub-graph for Decomposable Transition
labeled D in Modify Code

When Check Compilation fails, the assigned
software engineer can select the transition R (for re­
do). As a result, a control-flow signal will be generated
to re-enact its parent node (i.e. Modify Code) through a
re-enabled node (shown as two white circles enclosing
black circle). Otherwise, if the compilation is
successful, the assigned engineer can select the
transition D (for Done). In this case, the control-flow
signal will be generated and propagated back to the
main graph to enable the subsequent connected node.

To improve readability, a set of VRPML nodes can
be grouped together and replaced by a macro node
(shown as dotted line ovals), with the macro expansion
appearing ona separate graph. For example, referring
to Figure 1, Test Unit is a macro node. The macro
expansion ofTest Unit isgiven ill Figure 3.

Figure 3. Macro Expansion for Test Unit in Figure 1

For every activity node, VRPML provides a
separate workspace, the concept borrowed from
ADELE-TEMPO [1], APEL [2] and MERLIN [6].

Figure 4. Sample Workspace for Activity Node
Review Meeting from Figure 1

As part of its enactment model, VRPML relies on
its resource exception handling mechanism. In
VRPML, resources include roles assigIll11ent, artifacts
and tools (including communication tools) in a
workspace as well as the depths of multi"instance
activity n odes and meeting activity n odes. Depending
on the needs of a particular software development
project, these resources can either be allocated during
graph instantiation or dynamically during graph
enactment.

Upon the arrival of the control-flow signal, an
activity node will be enabled. Here, the VRPML
interpreter attempts to acquire resources that the
activity node needs. If resources are successfully
acquired, the VRPML interpreter then instantiates the
activity corresponding to that activity node. If for any
reason VRPML fails to acquire the resources,
enactment will be blocked until such resources are
made available (e.g. an engineer has not been assigned
to the activity). In this way, the VRPML's resource
exception handling mechanism is similar to blocking
primitives (e.g. in, read) in Linda [4]. Once enactment

I
I·
I'
I
I
I
I
I
I

l I

is blocked, the VRPML interpreter automatically
produces an activity for the administrator (e.g. process
engineer) to rectify the resource exception or
completely terminate the current activity. If that
activity is terminated, the administrator may optionally
terminate the overall enactment of the particular
VRPML graph in question or manually re-enact
connecting nodes b y providing the necessary c ontrol­
flow signals that they need to fire. If the resource
exception is rectified, normal enactment of the
particular VRPML graph can be resumed resulting in
the activity being assigned to the appropriate software
engineer. When that engineer selects that particular
activity, a workspace for that activity will appear as a
virtual room with artifacts, transitions and
communication tools as objects which software
engineer can manipulate to complete the task. Finally,
the activity completes when the software engineer
selects one of the possible transitions (e.g. passed,

Project Manager

PSEE

Runtime Client

failed, done, or aborted).

3. Demonstration

The main aim of this section is to demonstrate that
faithful enactment of the process model expressed in
VRPML can be achieved. Considering this aim, the
objectives are:

• To demonstrate that enactment of the process
model expressed in VRPML can be achieved in
a distributed environment

• To demonstrate that dynamic creation of tasks
and allocation of resources can be supported by
exploiting the enactment model

• To demonstrate that integration with a virtual
environment is possible at the PML enactment
level. Thus, awareness and visualisation issues
can be supported.

Graph Editor

VRPML Graph

Transition
Signals

Compiler

Runtime Interpreter

Roadmap and
Resource Tuples.--__..J-__--,

Activities and
Resource

Assignments

Transition
Signals

Databases

• • • •

Resource Manager

Communication Repository Layer

Resource
Queries

Resource
Exception

Figure 5. The VRPML Support Environment

Activities and
Resource

Assignments

•

Workspace
Manager

•
•

To-do-list Manager

Runtime Client

To-do-Iist Manager

PSEE

Software Engineers

I
II
II
I

II
I

L I
I

•

•

I
I

I
I

I
I

I
I

I

I

I

I

I
I

I

I

ModifyTeslPlans

X QAEngr

o

• • •• • •

Figure 6. Partial Enactment of the ISPW-6 Problem

Partial VRPML
graph for the
ISPW-6 problem

Referring to Figure 6, enactment will be
demonstrated for the following activities: Modify
Design; Modify Test Plans; Review Design; and
Review Meeting. Furthermore, only resource allocation
via role assignment will be considered.

Enactment starts when t he start node p mduces the
necessary control-flow signal. In tum, this control-flow
signal will cause the replicator node to produce two
more control-flow signals. Upon receiving these two
control-flow signals, the interpreter queries the
resources assignments for Modify Design, and Modify
Test Plans in order to put them in the communication
repository layer. Modify Design has already been
assigned to Jon, but a resource exception will be
thrown for Modify Test Plans. As a result, Modify Test
Plans will be automatically assigned to the
administrator (i.e. Pete) so that the resource exception
can be rectified. Modify Design and Modify Test Plans
will appear on Jon's to-do-list and the administrator's
to-do-list respectively as soon as they made the request
to retrieve the activity in the communication repository

It is assumed that the above activities involve three
software engineers who will be taking on different
roles - they are: Kamal, Pete, and Jon. Kamal and Jon
will be taking the role of design engineers (abbreviated
as DsgnEngr). Pete will be taking the role of quality
assurance engineer (abbreviated as. QAEngr) and
administrator (or process engineer). Itis also assumed
that Modify Design is pre-assigned to Jon whilst
:rvI0dify Test Plans, Review Design, and- Review
Meeting are dynamically assigned. Finally, Kamal,
Pete, and Jon are physically isolated, that is, each of
them has access to their to-do-list from a separate
machine in a distributed environment.

•

•

•

•

•

•

Briefly, the main components of the complete
VRPML support environment are:

In order to implement VRPML, a number of
components for the support environment can be
identified. These components and their interactions are
shown earlier in Figure 5.

Graph Editor - allows the VRPML graphs to be
specified.

Compiler - compiles the VRPML graphs into an
immediate format for enactment.

Runtime Interpreter - interprets the compiled
VRPML graph.

Runtime Client - retrieve activities and resource
assignments from the communication repository
layer.

To-do-list Manager - manages the activities
assigned to a particular software engineer.

Workspace Manager manages actIVIty
workspace in a virtual environment, manages
activity transition, and forward queries to the
resource manager.

Communication Repository Layer - allows
communication between the runtime interpreter,
runtime client, and workspace manager.

Resource Manager - queries the databases for
artifacts.

A more detail description of the implementations
and functionalities of these components are beyond the
scope of this paper and are.discussed elsewhere in [1-6].
It must also be noted that the prototype VRPML
support environment in its current form is not suitable
to support the real-world software engineering
activities, and its sole purpose is to gain insights into
the actual enactment.

As far as the experimental setup is concerned, the
VRPML process model for the ISPW-6 problem was
adopted for enactment, although only partial enactment
will be demonstrated here.

f

I

l I

Once resource allocation has been completed,
Modify Test Plans will be put back into the
communication repository layer. This is achieved via
the administrator's to-do-list shown in Figure 9.
Ideally, the administrator's to-do-list would be no
different to an ordinary to-do-list, as the resource
update should be done automatically in the background
by the workspace manager. However, the
administrator's to-do-list GUI is tailored to allow the
resource update to be put back manually into the
communication repository layer through the update
button.

Figure 8. Resource Allocations for Modify Test
Plans

:AcliuityHaIll' ' lildily lISt Plans,S,
Rctiultylype ' General Purpose,
Role' qA£ngr,

[RssignedEnglneer ' KaRlI,
:Rrtefact' Current lest Plans, Path/UrI for Current lest Plans, Read/Write, Path/URl for tonI,
:Artefact, Req Change, Pdth/Url for Req. Change, Read, Path/UrI for tool,
Iransition ' 0, Iransition Done, Iiln·Demposable,5,
Description' lildlfy lest Plans descriptions,

can be opened in a virtual environment. As shown in
Figure 8 below, this experimental setup simply uses a
text editor to facilitate the updating of resources
assignment. Here, the assigned engineer has been
allocated to Kamal.

Figure 9. Administrator's To-Do-List
Once the resource allocation for Modify Test Plans

has been updated, Modify Test Plans is now assigned
to Kamal. Consequently, when Kamal makes the

In this case, the workspace defines transitions, tools,
and artifacts for performing the activity Modify
Design. Because the mapping of transitions, tools, and
artifacts in the workspace is straightforward, it will not
be discussed further here.

Figure 7. Workspace for Modify Design

When Jon selects and undertakes Modify Design
from his to-do-list, a workspace for Modify Design is
automatically opened in a virtual environment as
shown in Figure 7.

Figure 6. Jon's To-Do-List

layer. As an illustration, Figure 7 depicts Jon's to-do­
list.

However, the workspace for Modify Test Plans
requires further discussion to illustrate how the
rectification of resource exception achieves dynamic
allocations of resources. When the administrator
selects and undertakes Modify Test Plans from his to­
do-list, a workspace to rectify the resource exception

,',

LI

rI
II
rl

il
II
fl
II
I

II
I

rl
II
II
II
I

·t~

I~

r I

Figure 10. Resource Allocations for Review Design

request to retrieve the activity from the communication
repository layer, Modify Test Plans will appear in
Kamal's to-do-list.

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

As far as the workspace is concerned, being a
meeting activity node, .Review Meeting' can· have a
different appearance as compared to other types of
activity nodes, again, to inculcate the sense of process
awareness. In terms 0 f t he transitions a ssociated with
Review Meeting, these are 0 nly accessible toP ete as
he is the moderator. Therefore, it is Pete who has the
final say of whether the modified design is endorsed or
rejected, and only one control-flow signal will be
generated as a result.

Being a meeting activity node, Review Meetingalso
has a n a'ssociated depth wliichc an b e manipulated in
order to allocate engineers dynamically based on the
needs of the activity. Using the allocation mechanism
des'cribed above,the administrator can assign Review
Meeting to Pete and Jon, with Pete being the
moderator. ..

As far as the completion of Review Design is
concerned, because it is a multi-instance activity node
assigned to Pete, Kamal, and Jon, all of them must
complete the review by selecting the Done transition in
their own separate workspaces. Only after all of the
done transitions have been selected can a new control­
flow signal be generated in the communication
repository layer to enable the subsequent activity
Review Meeting.

In order to inculcate the sense of process awareness,
the virtual environment representing workspaces for a
multi-instance activity node such as Review Design
has a different appearance to a workspace for a general
purpose activity node (see Figure 7) in terms of the
background of the workspace. .

Finally, upon recelvmg the control flow signal
generated above, the interpreter queries the resources
assignments for Review Meeting (see Figure 6). As no
resource allocations have been made, a resource
exception will be thrown causing Review Meeting to
be assigned to the administrator. Consequently, when
the administrator makes the request to retrieve the
activity from the communication repository layer,
Review Meeting will appear in his to-do-list.

If Pete decides to choose the Failed transition, the
interpreter reassigns Modify Design to Jon. Assuming
Jon is still part of the development team, Modify
Design will appear in Jon's to-do-list after he makes
the request to retrieve the activity from the
communication repository layer. Otherwise, the
resource exception will be thrown. After Jon completes
Modify Design, Review Design will now be reassigned
to Pete, Kamal, and Jon. After Pete, Jon, and Kamal

Going back to Jon, once he has completed Modify
Design and selects the done transition (simulated by
the Send button), another control-flow signal will be
generated in the communication repository layer. Upon
receiving this control-flow signal, the interpreter
queries the resources assignments for Review Design.
As no resource assignments have been made, a
resource exception will be thrown causing Review
Design to be assigned to the administrator. In tum,
when the administrator makes the request to retrieve
the a ctivity from the communication repository layer,
Review Design will appear in the administrator's to­
do-list. Similar to the case of Modify Test Plans
discussed earlier, in order to rectify this resource
exception there is a need to update the resource tuple
for Review Design. As Review Design is a multi­
instance activity node, it can be assigned to more than
one software engineer through changing its depth, as
illustrated in Figure 10.

By manipulating the Review Design's depth, the
number of software engineers required to review the
design (or how many Review Design activities are
created) can be tailored according to the current needs
of the project. In this example, Review Design is
assigned to three software engineers: Pete, Kamal, and
Jon. 0 nee resource allocation for Review Design has
been completed, it will be put back into the
communication repository layer through the
administrator's t o-do-list. As a result, Review Design
will appear in the to-do-list for Pete, Kamal, and Jon
when they make the requests to retrieve the activity
from the communication repository layer:

:ActMtyl!a~·Reuio.Oosign,\,

Activitylype • IIllti Instaoce,
Role'OsgoEngr,
AssignedEngiom -Ka""l,
AssignedEngio"r • Pete,
AssignedEngin.er • Joo,
Depth -3,
Rrtefact - Hodified Oesigo, Path/Uri for IIodifl'd O,sigo, Read, Patb/Urlfor tool,
Art,fact- R,q.Ch,og', Path/Uri for R'.q. Chango, Read, .r,th/Ur!.for tQol,
Transition'" 01 Transition Oolll', tlon-Decoltjlllsabl£'.7 J

1001' ~id,o Pho"" COMUnication, Path/Uri for tool,
Tool - Enail Prog,,", [""il, P,th/Url for tool,
Oescription • Reui,. descriptions;

I
I

[I
rI
[I
[I
[I
[I
II
fl
II
I

[I
[I
[I
)1
fl
I

II
f
l
II
II
II.
II

complete Review Design, Review Meeting will be
reassigned to Pete and Jon. This "looping" sequence of
activities will continue until Pete, being the moderator,
selects the Passed transition after completing Review
Meeting.

Overall, the experiment has successfully achieved
its objective of demonstrating enactment in a
distributed environment of a process model expressed
in VRPML. Furthermore, the experiment has also
demonstrated the VRPML support for the dynamic
allocation of resources as well as highlighted the
possible support for visualization and awareness issues.
Hence, it is believed that this experiment has
demonstrated that VRPML can be used in practice to
express a process model and support its enactment.

4. Discussion

In line with the main research hypothesis discussed
earlier, this section debates the applicability of
VRPML for supporting distributed software
engineering teams. In doing so, this section identifies
some of the difficulties associated with distributed
software processes, and analyses whether or not the
features provided m VRPML addresses those
difficulties.

Due to the lack of face-to-face contact, coordination
of activities involved in a software process is often
difficult when the development teams are not
physically collocated. T he fact t hat V RPML su pports
the construction of the process model as well as its
enactment in a distributed environment is helpful in
this situation. One reason is that the coordination of
activities can be fully automated through enactment.

Another common problem arising from the lack of
face-to-face contact relates to communication
breakdown amongst the team members. Generally,
communication breakdown has a negative effect on the
developed software, resulting in bugs and unnecessary
rework. As a consequence, the probability of
development project success can be significantly
reduced. Although not fully implemented in the current
prototype, the support for awareness in VRPML may
be helpful to address some of these issues. This is
because through awareness, group cohesion may be
improved, and hence encourage informal
communication amongst team members.

Nevertheless, communication amongst team
members can often be difficult when the development
teams are distributed in multiple sites. Asynchronous
communication tools (e.g. email tools) address this

issue to a certain degree, but do not allow software
engineers to hold the rich discussions possible when
they are physically collocated. Thus, the feature of
VRPML that permits the specification of synchronous
communication tools (e.g. a tele-conferencing
program) as part of the workspace definition can be
helpful to address this issue. Furthermore, VRPML
also provides a special node for virtual meetings. The
support for virtual meetings is beneficial since
meetings are an important characteristic of software
engineering. Additionally, when development teams
are distributed over multiple sites, virtual meetings
could help reduce costs if a meeting would otherwise
have to be held face-to-face.

In the context of distributed software engineering
teams affected by both geographical and temporal
distribution, collaboration on a shared activity can also
be difficult to achieve. This is because there may be
only a small window of overlap in term of times when
the t earn members c an work together. I n some cases,
there could also be absolutely no window of overlap at
all. The fact that VRPML permits dynamic allocation
of resources might be convenient to address some of
the above issues. One reason is that the assignment of
engineers as resources to a shared activity can be made
dynamically not only based on the availability of
engineers but also depending on whether or not there is
a temporal overlap for team members to collaborate.

5. Conclusion

As has been shown, some of the features of
VRPML can be usefully exploited to address some of
the problems associated with distributed software
processes. Therefore, it can be concluded that VRPML
is useful for supporting software processes for
distributed software engineering teams.

Acknowledgement

The work undertaken in this research is partially
funded by the USM Short Term Grants - "The Design
and Implementation of the VRPML Runtime
Environment" .

References

[1] N. Belkhatir, 1. Estublier, and W. Melo. ADELE­
TEMPO: An Environment to Support Process
Modelling and Enaction. in Nuseibeh, B. ed.
Software Process Modelling and Technology,
Research Studies Press, Taunton, England, 1994,
187-222.

f'

[2] S. Dami, J. Estublier, and M. Amiour. "APEL: A
Graphical Yet Executable Formalism for Process
Modeling". Automated Software Engineering, 5
(1), 1998,61-96.

[3] J.e. Doppke, D. Heimbigner, and A.L. Wolf.
"Software Process Modeling and Execution
within Virtual Environments". ACM Transactions
on Software Engineering and Methodology, 7 (1),
1-40.

[4] D. Gelernter. "Generative Communication in
Linda". ACM Transactions on Programming
Languages and Systems, 7 (1), 1985, pp. 80-112.

[5] M.L. Jaccheri, R. Conradi, and B.H Drynes.
Software Process Technology and Software
Organisations. in Proc. of the 7th European
Workshop on Software Process (EWSPT 2000),
Kaprun, Austria, February 2000, Lecture Notes in
Computer Science Volume 1780, Springer, 96­
108.

[6] G. Junkermann, B. Peuschel, W. Schafer, and S.
Wolf. MERLIN: Supporting Cooperation in
Software Development Through a Knowledge­
Based Environment. in A. Finkelstein, J. Kramer,
and B. Nuseibeh, eds.. Software Process
Modelling and Technology, Research Studies
Press, Taunton, England, 1994, 103-129.

[7] M.l. Kellner, P.H. Feiler, A. Finkelstein, T.
Katayama, L.J. Osterweil, M.H. Penedo, and H.D.
Rombach. "Software Process Modeling Example
Problem". In Proc. of the 6th Int!. Software
Process Workshop, Hakodate, Hokkaido, Japan,
October 1990. IEEE CS Press.

[8] LJ. Osterweil. Software Processes are software
too, revisited. In Proc. of the 19th IEEE IntI:
Con! on SoftwareF;ngineering~ Bostoll, USA,
1997, IEERCS Press, 540-548.

[9] L.J. Osterweil. Software Processes are software
too. In Proc. of the 9th IEEE Int!. Can! on
Software Engineering, Monterey, USA, 1987,
IEEE CS Press, 2-13.

[10] S. Sutton Jr., and L.J. Osterweil. The Design of a
Next-Generation Process Language. in Proc. of
the Joint 6th European Software Engineering
Conference and the 5th ACM SIGSOFT
Symposium on the Foundation of Software
Engineering, (1997), Lecture Notes in Computer
Science Volume 1301, Springer, 142-158.

[11] A. Wise. "Little JIL 1.0 Language Report ­
Technical Report 98-24", Dept. of Computer
Science, Univ. of Massachusetts at Amherst,
April 1998.

[12] K.Z. Zarnli and P.A. Lee. "Taxonomy of Process
Modeling Languages". In Proc. of the ACS/IEEE
Int!. Con! on Computer .Systems and

Applications, Lebanon, 2001, IEEE CS Press,
435-437.

[13] K.Z. Zarnli. "Process Modeling Languages: A
Literature Review". Malaysia Journal of
Computer Science 14,2 (December 2001)

[14] K.Z. Zarnli and P.A. Lee. "Exploiting a Virtual
Environment in a Visual PML". In Proc. ofthe
4th Inti. Con! on Product Focused Software
Process Improvements (PROFES02), Lecture
Notes in Computer Science Volume 2559,
Rovaniemi, Finland, 2002, Springer, 49-62.

[15] K.z. Zarnli and PA Lee. "Modeling and
Enacting Software Processes Using VRPML". In
Proc. of the 10th IEEE Asia-Pacific Con! on
Software Engineering, Chiang Mai, Thailand,
December 2003, IEEE CS Press, 243-252.

[16] K.Z. Zarnli. "Supporting Software Processes for
Distributed Software Engineering Teams",
School of Computing Science, Univ. of
Newcastle upon Tyne, PhD Thesis, October
2003.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ABSTRACT

THE COMPUTATIONAL MODEL FOR A FLOW-BASED
VISUALPML

Nor Ashidi Mat Isa
School ofElectrical and Electronics

USM Engineering Campus, 14300 Nibong Tebal
Pulau Pinang, Malaysia

Email: ashidi@eng.usm.my

Kamal Zuhairi Zamli
School ofElectrical and Electronics

USM Engineering Campus, 14300 Nibong Tebal
Pulau Pinang, Malaysia

Email: eekamal@eng.usm.my

IADlS International Conference on Applied Computing 2006ISBN: 972-99353-6-X@ AlDIS 2005

~

[I
[I
[I
[I
II
[I
I

I
:1
I

il
[I
II
[I
(I
[I
[I
II
II

This paper discusses the three possible computational models for a flow-based visual process modeling language (PML):
the data-flow model; the control-flow model; and the combined model. In doing so, the suitable computational model is
chosen, evaluated, and applied into the design of a new visual PML, called Virtual Reality Process Modeling Language
(VRPML), taking into accounts the need to support the modeling and enacting of software processes.

KEYWORDS

Software Engineering, Software Processes, Process Modeling Languages, Visual Languages

1. INTRODUCTION

Visual programming languages have been around for quite some time now. The basic idea behind a visual
programming language is that computer graphics (e.g. graphs consisting of icons, nodes, and arcs) are used
instead of a textual representation. In fact, the central argument for a visual programming language is based
on an observation that picture is better than text (i.e. a picture is worth a thousand words - (Whitley, 1997)).

While a visual programming language may not be able to provide a silver bullet to solve every problem
related to engineering a software system, a carefully chosen level of abstractions (e.g. by working at the same
level of abstraction as the problem domain) coupled with easy to understand notations may help alleviate the
low-level complexities offered by the textual counterpart. For this reason, visual programming language has
been considered as one of the important issues in the design of VRPML, a domain specific visual PML
developed as part of our on-going research (Zamli and Lee, 2001; Zamli, 2002; Zamli and Lee, 2002; Zamli
and Lee, 2003; Zamli and Mat Isa, 2004).

Motivated by a number of existing visual PMLs, for example, FUNSOFT Nets (Dami et aI, 1998),
Dynamic Task Nets (Heiman et aI, 1996), APEL (Dami et aI, 1998), EVPL (Grundy and Hosking, 1998),
PROMENADE (Ribo and Franch, 2000; Franch and Ribo, 2003), and Little IlL (Wise, 1998), a flow-based
visual language paradigm seems to be a suitable choice for VRPML. Based on this choice, this paper
discusses the three possible computational models for VRPML: the data-flow model; the control-flow model;
and the combined model. In doing so, the suitable computational model is chosen, evaluated, and applied into
the design of VRPML, taking into accounts the need to support the modeling and enacting of software
processes.

This paper is organized as follows. Section 2 gives an overview of flow-based visual languages. Section 3
debates the suitable computational model for a flow-based visual language such as VRPML. Section 4 gives

217

2. FLOW BASED VISUAL LANGUAGES

an overview of VRPML. Section 5 discusses the lessons learned. Finally, section 6 presents the conclusions
of the paper.

r
(

[

ISBN: 972-99353-6-X@ AIDIS 2005 IADIS International Conference on Applied Computing 2006

;}

I
.'

I
I
I

l
L

Normally, flow-based visual languages are based on directed graphs. Graphs typically consist of nodes, arcs
and sub-graphs. Nodes represent function or actions, arcs carry data or control-flow signals, and sub-graphs
provide abstraction and modularization. Operations in graphs follow a firing rule which defines the
conditions under which execution of node occurs.

In the control-flow based model, a visual program consists of nodes connected by arcs carrying control­
flow signals. Arcs depict the control-flow dependencies amongst connected nodes. The firing rule is based
solely on the availability of the control-flow signals on the node's input arcs - that is, data availability does
not play any part at all.

Conceptually, in the control-flow based model, every program can be thought of as having an instruction
counter and a globally addressable memory which holds programs and data objects whose contents are
updated by program instructions during execution (Ackerman, 1982). As far as a visual language associated
with the control-flow model is concerned, for simplicity, it may be viewed as supporting executable
flowcharts. .

In the data-flow based model, a visual program consists of nodes connected by arcs carrying data. Arcs
depict data dependencies amongst nodes. The firing rule is based on the availability of data on the node's
input a rcs, a nd may bedata-driven 0 r demand-driven. With a data-driven firing rule, a narc is used a s a
supply route to transmit data from the source node to the destination node. A destination node is executed as
soon as data is available on all input arcs. With a demand-driven firing rule, an arc is used as a demand route
to request data from the source node. A source node is executed only if there is a demand for its result. For
either firing rule, arcs are conduits for data. In tum, data on an arc is consumed by the executing node to
perform its computation (although some variations of the data-flow based model also allow an arc to retain
data).

According to (Agerwala and Arvind, 1982), the data-flow based model can bed istinguished from the
control-flow based model in that it has neither a globally addressable memory nor a single instruction
counter. As the data-flow based model possesses no global memory, the only data available to a node for its
operation is th~t froin its inputs. In addition, because of the lackofany shared data amongst nodes, there can
be no side effects (one node interfering with other node's data, potentially causing unexpected results).

As the data-flow firing rule depends solely on the availability. of data, nodes whose data is available can
potentially be executed in paralleL The sequencing of the-execution of nodes, for example in terms of the
assignment of rul1time proc~sses to processors, is_ determine_d solely at runtime by the runtime system. Thus,
a data-flow based model supports parallelism naturally.

Apart from the control-flow or the data-flow based models, one less popular paradigm is the
computational model based on both models. Here, there are two kinds of arcs with different semantics: the
data-flow and the control-flow arc. The firing rule for this paradigm can be complex because it is based on
the combination of both the data-flow and the control-flow signals. Furthermore, while the problem of arcs
crossing each other and resulting in a cluttered view is inherent in a flow based visual language based on
directed graphs, the fact that two arcs are used here means that the crossover problem can be even greater.
Generally, if there are too many arc crossovers, the overall program understanding m ay be compromised.
Therefore, the option of combining the control and data-flow models will not be considered as the
computational model for VRPML.

Having disregarded the option of adopting both the data-flow and the control-flow as the computational
model for VRPML, there are now only two choices of the computational model: the control-flow model; or
the data-flow based model. The selection of the suitable computational model for VRPML will be discussed
next.

3. DATA FLOW VERSUS CONTROL FLOW

218

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4. OVERVIEW OF VRPML

VRPML is a control-flow based visual PML for supporting the modeling and enacting of software processes.
The main novel features ofVRPML are:
• It considers virtual environments as a fundamental constituent, manipulatable as part of the construction

of the process model (i.e. via features in the language) as well as being part ofthe runtime environment.
• It supports dynamic allocation of resources through its enactment model.

In VRPML, software processes are generically modeled. Resources (in terms of software engineers,
artifacts and tools) can be dynamically assigned and customized for specific projects from a generic model.

Software processes are specified in VRPML as graphs, by interconnecting nodes from top to bottom
using arcs that carry run-time control-flow signals. The complete description of the syntax and semantics of
VRPML can be found in (Zamli and Lee, 2002).

As an illustration, Figure 1 presents an excerpt of the VRPML solution to a benchmark process, i.e. the
ISPW-6 problem (Kellner et ai, 1990). Similar to Little IlL (Wise, 1998), software processes in VRPML are
described using process step abstractions, which represent the most atomic representation of a software
process (i.e. the actual activity that software engineers are expected to perform). These activities are
represented as nodes, called activity nodes (shown as small ovals with stick figures).

As depicted in Figure 1, VRPML supports many different kinds of activity nodes. They include: general­
purpose activity nodes (shown as individual small ovals with stick figures); multi-instance activity nodes
(shown as overlapping small ovals with stick figures); and meeting activity node (shown as small and shaded

lADIS International Conference on Applied Computing 2006ISBN: 972-99353-6-X@ AlDIS 2005

In order to support the modeling and enacting of software processes, there is a need for VRPML to support
cyclic behavior. This need can be seen, for example, in the case where software design fails its review. In the
case of the control-flow model, only one control-flow signal is needed to enable the previous node regardless
of the number of data items required for that node. However, in the case of the data-flow based model, to
enable the previous node requires all the data for that node to be available. Thus, while both the control-flow
and the data-flow based model can address this need in a straightforward manner, it seems somewhat easier
in terms of implementation to use the control-flow rather than the data-flow model

In addition to being able to support cyclic behavior, there is also a need for VRPML to facilitate
reasoning about its execution semantics, hence making enactment of a software process traceable. It is useful
to be able to trace the enactment of the software process to facilitate process awareness and process
understanding which could lead to improved process support. Because the ordering and enactment of tasks in
the data-flow based model strictly depends on the availability of data at runtime, enactment of a software
process may be non-deterministic. Hence, it is difficult to reason about and to trace enactment in the data­
flow model compared to the control-flow model.

Because some activities in a software process need to be undertaken by more than one software engineer,
there is also a need for VRPML to support shared artifacts. For example, in the case of an activity such as
modify code, it may be that more than one software engineer is assigned to change the same source code at
the same time. Although both the control-flow and the data-flow based models can address this need, it
seems preferable to use the control-flow rather than the data-flow model. Because the data-flow model
inherently avoids the problem of side effects - that is, one node interfering with other node's data, there is a
need for copies of data to be replicated across nodes to enable shared data. In fact, this need may put an extra
burden for process engineers who construct the process model.

Finally, although the data-flow based model is helpful in the sense that parallelism can be achieved
automatically; such a feature may not be a major benefit for enacting software processes in VRPML. As far
as enactment of software processes are concerned, because software engineers are the "processors" which
perform the computation, it is desirable to have their assignments under human control (e.g. under the
discretion of the project manager). This is because software engineers have different skills which need to be
considered before task assignments can be made. Thus, in this respect, the data-flow based model has no
clear advantage over the control-flow based model.

While the data-flow based model has some merits, it is the control-flow based model that has been chosen
for VRPML. This choice will be reflected in the design ofVRPML discussed next.

I
I

rl

cl

·rI
II
rl
[I

fl
[I

r

l
I

219

.... :1.U
'-~

III
ISBN: 972-99353-6-X@ AIDIS 2005 IADIS International Conference on Applied Computing 2006 I

r
overlapping 0 vals with stick figures). Both multi-instance activity nodes a nd meeting a ctivity nodes have
associated depths, indicating the actual number of engineers involved (and also the number of identical
activities in the case of multi-instance activity).

I
I
I

Figure 1. Excerpt from the VRPML Graph for the ISPW-6 Problem

I
I

I
I
I

I
I

ModifyTestPlans

X QAEngr

o

ModifyU nitT estP ackage

X QAEngr
ModifyCode

X OsgnEngr

ModifyCode

X DsgnEngr

ModifyU nitT estP ackage

X QAEngr

The firing of activity. nodes is controlled by the arrival of a control flow signaL In VRPML, an initial.
control flow signal is always be generated from a start node (a white circle enclosing a small black circle). A
stop node (a white circle enclosing another white circle) does not generate any control flow signals. Control
flow signals may also be generated at the completion of a node, often from special completion events called
transitions (shown as small white circles with a capital letter, attached to an activity node) or decomposable
transitions (small black circles with a capital letter). Decomposable transitions enable automation scripts or
sub-graphs to be specified (and executed if selected) as post-conditions before allowing transition to generate
a control flow signal. The sub-graph associated with the decomposable transition representing Done (labeled
D) for the activity node called Modify Code is given in Figure 2.

•

I
I
I

Figure 2. Sub-graph for Decomposable Transition labeled D in Modify Code

I
I
I

220

I

r I

ModifiedDesign DeslgnReviewFeedback

CommunicationTool

IADIS International Conference on Applied Computing 2006

EmaiiTool

@Jt
Requirein en Ie hange

outcom eN olification

Figure 3. Macro Expansion for Test Unit in Figure I

ISBN: 972-99353-6-X@ AlDIS 2005

Figure 4. Sample Workspace for Activity Node Review Meeting from Figure I

For every activity node, VRPML provides a separate workspace. Figure 4 depicts the sample workspace
for the 'activity node called Review Meeting in Figure 1. A workspace typically gives a work context of an
activity as it hosts resources needed for enacting the activity: transitions, artifacts (shown as overlapping two
overlapping documents with arrows for depicting access rights), communication tools (shown as a
microphone, and an envelope), and any task descriptions (shown as a question mark). Effectively, when an
activity is undertaken, the workspace is mapped into a virtual room, transitions into buttons, and artifacts,
communication tools and task description into objects which can be manipulated by software engineers to
complete the particular task at hand. This mapping is based on Doppke's task-centered mapping described in
(Doppke et aI, 1998).

When Check Compilation fails, the assigned software engineer can select the transition R (for re-do). As
a result, a control-flow signal will be generated to re-enact its parent node (i.e. Modify Code) through a re­
enabled node (shown as two white circles enclosing black circle). Otherwise, if the compilation is successful,
the assigned engineer can select the transition D (for Done). In this case, the control-flow signal will be
generated and propagated back to the main graph to enable the subsequent Gonnected node.

In VRPML, activity nodes can also be enacted in parallel using combinations oflanguage elements called
merger and replicator nodes (shown as trapezoidal boxes with arrows inside). To improve readability, a set
of VRPML nodes can be grouped together and replaced by a macro node (shown as dotted line ovals), with
the macro expansion appearing on a separate graph. For example, referring to Figure I, Test Unit is a macro
node. The macro expansion of Test Unit is given in Figure 3.

I

II

[I
\

I

As part of its enactment model, VRPML relies on its resource exception handling mechanism. In
VRPML, resources include roles assignment, artifacts and tools (including communication tools) in a
workspace as well as the depths of multi-instance activity nodes and meeting activity nodes. Depending on
the needs of a particular software development project, these resources can either be allocated during graph
instantiation or dynamically during graph enactment. Upon the arrival of the control-flow signal, an activity
node will be enabled. Here, the VRPML interpreter attempts to acquire resources that the activity node

221

{I

[

r
ISBN: 972-99353-6-X@ AIDIS 2005 IADIS International Conference on Applied Computing 2006 1

r

needs. If resources are successfully acquired, the VRPML interpreter then instantiates the activity
corresponding to that activity node. If for any reason VRPML fails to acquire the resources, enactment will
be blocked until such resources are made available (e.g. an engineer has not been assigned to the activity). In
this way, the VRPML's resource exception handling mechanism is similar to blocking primitives (e.g. in,
read) in Linda (Gelernter, 1985). Once enactment is blocked, the VRPML interpreter automatically produces
an activity for the administrator (e.g. process engineer) to rectify the resource exception or completely
terminate the current activity. If that activity is terminated, the administrator may optionally terminate the
overall enactment of the particular VRPML graph in question or manually re-enact connecting nodes by
providing the necessary control-flow signals that they need to fire. If the resource exception is rectified,
normal enactment of the particular VRPML graph can be resumed resulting in the activity being assigned to
the appropriate software engineer. When that engineer selects that particular activitY,a workspace for that
activity will appear as a virtual room with artifacts, transitions and communication tools as objects which
software engineer can manipulate to complete the task. Finally, t he activity completes when the software
engineer selects one of the possible transitions (e.g. passed, failed, done, or aborted) regardless of the
outcome.

1
1
1
1
1

5. LESSONS LEARNED

I

I

1

1

1

1

1
1

1
I ..

-J.. ModOsn-....::::;;
ModDsn

SendM odO sn ToM C& M U TP

...,.Ri$MiI

• CurntDsn
-J.. WhyRedsn
l' ModOsn

Although the UML activity diagram (Rumbaugh et aI, 1999) is not a PML, it can be compared to VRPML.
The UML activity diagram representation of a software process is simple and intuitive. Nonetheless, while
the UML activity diagram can be used to express activities in a software process, it lacks features to express
the individual role, resources, work contexts, and the completion of activities. Furthermore, UML activity
diagrams do not have a well-defined executable semantics (i.e. as in VRPML). A known experience of using
UML as a· PML can be seen in the design 0 fPROMENADE (Ribo and Franch, 2000; Franch and Ribo,
2003). Here, the authors of PROMENADE dismiss the use of activity diagram as a PML, as PROMENADE
mainly relies on class diagrams and object constraint language for supporting the modeling and enacting of
software processes. Furthermore, in doing so, the authors ofP ROMENADEe.xtensively extend the UML
meta-models, hence, affecting the standardization of UML. For these reasons, we believe that UML is not
particularly suitable as a PML.

As far as the computationalmo·del is concerned, although a ·computational model based on ·control-flow·
was initially chosen .instead of a data-flow or a ·combined model, the author's experience· from developing
VRPML reveals the need to employ both control-flow and data-flow semantics in order to support the
modeling and·enacting of software processes.. This is because the concepts of control-flow and data-flow are
interrelated: the program control as well as the execution of an activity depends on the availability of data,
and the flow of data is often governed by some notiQuoLcontroL

While having control-flow firing rule at the graph level, theVRPML enactment model also reli·esort data
dependency semantics in order to enact a particular activity. Therefore, similar to Little IlL (Wise, 1998),
VRPML can also be viewed as a PML which adopts a combined model. As a comparison, Figure 5 depicts
excerpt of the Little JIL solution to the ISPW-6 problem.

G Agent: OsgnEngr "'-
-J.. WhyRedsn
<> ModOsn

Modify&Review Design

Vii:Z~-J.. WhyRedsn WhyRedsn e Agent: OsgnRvwTeam
l' ModOsn ~ -J.. ModOsn
N Taskcomp,."••~ .. dO:;;-----'" <> OsnRvwFdbk.

. . sn IVIO sn TaskCompletlon
ModlfyDeslgn ReviewOe n

r

Figure 5. Excerpt from Little IIL

1
222

I
I

6. CONCLUSION

In conclusion, this paper discussed the three possible computational models for a flow-based visual process
modeling language (PML): the data-flow model; the control-flow model; and the combined model. The
suitable computational model based on the control-flow model is chosen, applied, and evaluated into the
design of VRPML, and compared to other PMLs. In addition to highlighting lessons learned, this evaluation
can be useful as guidance for the design of next-generation visual PMLs.

Unlike Little IlL, the flow of data in VRPML does not appear directly as part of the process graphs (see
excerpt in Figure I and Figure 5). The fact that the flow of data does not appear directly as part of process
graphs is significant to reduce the visual complexity of the process models expressed in VRPML as
compared to Little IlL.

Furthermore, VRPML can also be compared to Little IlL in terms of the separation of concerns (Zamli
and Lee, 2003). Unlike VRPML, Little IlL depicts both the control-flow and the data-flow in the same view.
Although depicting both flows might be useful to give the overall context about a particular activity, a
counter a rgument suggests that it results in a cluttered view. In VRPML, control-flow and data-flow are
completely separated through the concept 0 fw orkspaces, essentially giving two different views about the
activities: the flow of activities and the individual activity's work context. The flow-of-activities view gives
the overall dependencies amongst different activities whilst the activity's work context view gives focus of
an activity in question. These views are advantageous to assist reasoning about a software process.

Demonstrated by the excerpt description ofthe ISPW-6 problem in shown in Figure I, software processes
tend to be imperative in nature. Therefore, the computational model based on control-flow at the graph level
appears to be appropriate to express such behavior.

As t he V RPML firing rule at t he graph level is based 0 n control-flow, t he author's experience in the
modeling 0 fa ctivities for t he I SPW-6 problem (discussed in (Zamli and Lee, 2003)) showed the need to
manually analyze the input. and output dependencies in order to properly sequence those activities. If
VRPML were purely based on the data-flow model, the sequencing of activities would be achieved
automatically based on the availability of data at runtime. In fact, parallelism among activities can be
opportunistically achieved in the same manner. Thus, in this respect, the pure data-flow model can be helpful
to facilitate the construction of process models as the process engineers need not be concerned about
parallelism.

Because activities specified in a process model are often performed by many engineers, there is a need for
a PML to address issues relating to artifact sharing. In VRPML, artifact sharing can be flexibly achieved in
the sense that activities could be tailored to deal with shared or copies of data. Obviously, there are pros and
cons for either choice. If the process engineer chooses to allocate resources based on shared data, VRPML
ensures that data consistency is maintained via access control mechanisms associated with artifacts.
However, the disadvantage of working with shared data is that parallelism may be restricted due to runtime
data "locking" imposed by access controls. If the process engineer chooses to allocate resources based on
copies of data (i.e. like most pure data-flow m odeIs would), parallelism m ay be maximized. Nonetheless,
there is a need to utilize a sp ecial tool su ch as the Concurrent Versions System (CVS, 2003) in 0 rder to
ensure that data consistency is maintained if changes to copies of data have to be merged together.

Overall, as the above discussion illustrates, the VRPML computational model usefully balances control­
flow firing rule and data dependency semantics without adding visual complexity to the language. For this
reason, t he V RPML computational model seems a ppropriate for supporting t he modeling and enacting 0 f
software processes.

IADIS International Conference on Applied Computing 2006ISBN: 972-99353-6-X@ AlDIS 2005

I

~

(I
II
[I

[I
[I
II
II
I

II
I

ACKNOWLEDGEMENT

This project has been undertaken under the generous funding of the USM Short Term Grants - "The Design
and Implementation of the VRPML Support Environment".

I
223

-----------~~----- ----_.-

224

CVS, 2003. Concurrent Versions System, http://www.cvshome.org.
Ackerman, W.B., 1982. Data Flow Languages. In IEEE Computer, pp 15-23.

Agerwala, T. and Arvind, 1982. Data Flow Languages. In IEEE Computer, pp 10-13.

Bandinelli S. et ai, 1994. SPADE: An Environment for Software Process Analysis, Design and Enactment. In A.
Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and Technology, pp. 223-247, Research
Studies Press, Taunton, England.

Dami S. et ai, 1998. APEL: A Graphical Yet Executable Formalism for Process Modelling. In Automated Software
Engineering, Vol. 5, No. I, pp. 61-96.

Doppke J.C. et ai, 1998. Software Process Modeling and Execution within Virtual Environments. In ACM Transactions
on Software Engineering and Methodology, Vol. 7, No.1, pp. 1-40.

Emmerich, W. and Como, V.G., 1991. FUNSOFT Nets: A Petri-Net based Software Process Modeling Language. Proc.
ofthe 6th Intl. Workshop on Software Specification and Design, Italy. pp. 175-184.

Gelernter, D., 1985. Generative Communication in Linda. In ACM Transactions on Programming Languages and
Systems, Vol. 7, No. I, pp. 80-112.

Grundy, J.e. and Hosking, J.G., 1998. Serendipity: Integrated Environment Support for Process Modeling, Enactment
and Work Coordination. In Automated Software Engineering, Vol 5, No. I, pp. 27-60.

Heiman P. et ai, 1996. DYNAMITE: Dynamic Task Nets for Software Process Management. Proc. ofthe 18th Intl. Con!
on Software Engineering, pp. 331-341.

Kellner M.1. et ai, 1990. Software Process Modeling Example Problem. Proc. ofthe 6th Intl. Software Process Workshop,
IEEE CS Press.

Ribo J.M. and Franch, X., 2000. PROMENADE: A PML Intended to Enhance Standarization, Expressiveness and
Modularity in Software Process Modelling. Research Report LSI-34-R., Llenguatges I Sistemes Informatics,
Politechnical of Catalonia, Spain.

Rumbaugh J. et ai, 1999, The UML User Guide. Addison Wesley.

Whitley, K.N., 1997. Visual Programming Languages and the Empirical Evidence For and Against. In Journal of Visual
Language and Computing, Vol. 8, No. I, pp. 109-142.

Wise, A., 1998. Little JIL 1.0 Language Report - Technical Report 98-24, Dept. of Computer Science, Univ. of
Massachusetts at Amherst.

Franch, X. and Ribo, J.M., 2003. A UML-Based Approach to Enhance Reuse within Process Technology. Froc. of the
9th European Workshopon Software Process Technology, LNCS Vol. 2786, Helsinki, Finland, pp.74-93.

Zarnli, K.z. and Lee, P.A., 2001. Taxonomy of Process Modeling Languages. Proc. of the ACSIIEEE Intl. Con! o-n­
Computer Systems and Applications, pp. 435-437, IEEE CS Press.

Zarnli, K.Z., 2002. Process Modeling Languages: A Literature Review.lnMalaysiim Journal ofComputer Science, Vol.
14, No.2, pp. 26-37.

Zarnli, K.Z. and Lee; P.A., 2002. txp-loitinga -Virtual Environment in a Visual PML. Proc.afthe 4th Inll. Con! on
Product Focused Software Process Improvements (PROFES02), LNCS Vol. 2559, Rovaniemi, Finland, pp.49-62.

Zarnli, K.Z. and Lee, P.A., 2003. Modeling and Enacting Software Processes Using VRPML. Froc. of the 10th IEEE
Asia-Pacific Can! on Software Engineering, Chiang Mai, Thailand, pp. 243-252.

Zarnli, K.Z. and Mat Isa, N.A., 2004. A Survey and Analysis of Process Modeling Languages. In Malaysian Journal of
Computer Science, Vol. 17, No.2, (forthcoming).

r

1

ISBN: 972-99353-6-X@ AlDIS 2005

REFERENCES

IADIS International Conference on Applied Computing 2006

I
~l

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

­
[I

­
[I

il
il
[I

[I

il
il
II
II
II
11
il
[I
)1
il
II
tl

Malaysian Journal a/Computer Science, Vol. 18 No. I, June 2005, pp. 57-69

THE DESIGN AND IMPLEMENTATION OF THE VRPML SUPPORT ENVIRONMENTS

1Kamal Zuhairi Zamli, 2Nor Ashidi Mat Isa and 3Norazlina Khamis

1,2Software Engineering Research Group,
School of Electrical and Electronics,

Universiti Sains Malaysia Engineering Campus,
14300 Nibong Tebal, Pulau Pinang, Malaysia

Tel: +604-5937788 ext 6079, Fax: +604-5941023
Email: {eekamal.ashidi}@eng.usm.my

3 Faculty of Computer Science and Information Technology,
Universiti Malaya,

50603 Lembah Pantai, Kuala Lumpur, Malaysia
Tel: +603-76976402, Fax: +603-79676339

Email: azlina@um.edu.my

ABSTRACT

Software processes relate to the sequences of steps that must be performed by software engineers in order to pursue
the goals of software engineering. In order to have an accurate representation and implementation of what the actual
steps are, software processes may be modeled and enacted by a process modeling language (PML) and its process
support system (called the Process Centered Environments i.e. PSEE). Although there has been much fruitful
research into PMLs, their adoption by industry has not been widespread. Furthermore, no single PML and PSEE
have assumed dominance and accepted as the de facto standard. For these reasons, research into PMLs and PSEEs
are still necessary.

This paper discusses the design of the process support environment for a new process modeling language, called the
Virtual Reality Process Modeling Language (VRPML). In doing so, this paper identifies the main components of the
VRPML process support environments as well as summarizes the current implementation prototypes... Our
experience highlights some lesson learned and offers insights into the design of next-generation PMLs and PSEEs.

Keywords: Process Modeling Languages, Process Centered Software Engineering Environments, Software
Engineering

1. Introduction

Engineering as a discipline relates to the creative application of mathematical and scientific principles to devise and
implement solutions to problems in our everyday lives in an economic and timely fashion. To provide a quality
solution, it is not usually sufficient to focus only on the final product. Often, it is also necessary to consider the
processes involve in producing that product. For example, consider an assembly of a car. From the customer's
perspective, it is the final product that matters (i.e. a quality car). From an engineering perspective, such quality
could not be achieved if some of the processes (e.g. assembly lines) are faulty. Although additional rework can fix
the problems caused by the faulty assembly lines, this tends to raise the overall costs because it deals only with
symptoms of the problem. In contrast, going to the cause of the problem and improving the process (e.g. the faulty
assembly lines) avoids the introduction of quality defects in the first place and leads to better results with lower
costs. As this example illustrates, it is through the processes that engineers can observe and improve quality, control
productions costs and possibly reduce the time to market their products.

Similar analogies can be applied in the case of software engineering. To produce quality software, it is also
necessary to place emphasis 0 n the processes by which the software is produced. In software engineering, these
processes are usually called software processes. Software processes relate to the sequences of steps that must be
performed by software engineers in order to pursue the goal of software engineering. In order to have an accurate
representation and implementation of what the actual steps are, software processes may be modeled and enacted by
a process modeling language (PML) and its process support system (called the Process Centered Environments i.e.

PSEE). Although there has been much fruitful research into PMLs and their corresponding PSEEs, their adoption
by industry has not been widespread [6]. Furthermore, no single PML and PSEE have assume dominance and
accepted as the de facto standard.

[
For these reasons, research into PMLs and PSEEs are still necessary. In this paper, we discuss our experiences
developing the support environments for the Virtual Reality Process Modeling Language (VRPML) [13-19]. We
also discusses how the environment can be used to realize some of the main novel features of VRPML, that is, in
terms of the integration with a virtual environment as well as the support for dynamic creation of tasks and
allocation of resources [15, 16].

Ii,

I
This paper is organized as follows. Section 2 gives an overview of VRPML. Section 3 summarises the main
components of the VRPML support environments. Section 4 discusses the experience using the support
environment. Section 5 discusses the prospect future work. Finally, section 6 presents the conclusion of the paper. I
2. Overview of VRPML

Software processes are specified in VRPML as graphs, by interconnecting nodes from top to bottom using arcs that
carry run-time control-flow signals. In VRPML, software processes are generically modeled. Resources (in terms of
software engineers, artifacts and tools) can be dynamically assigned and customized for specific projects from a
generic model. .

I

I
I
I
I

I
I
I
I
I
I

V~Graph

for the 1SFW-6
R-oblem

Figure 1. Excerpt from the VRPML Graph for the ISPW-6 Problem

I
I
I

il
t

II
il
II
il
il
'I(

!I
I

As an illustration, Figure 1 presents an excerpt of the VRPML solution to a benchmark process, i.e. the ISPW-6
problem [8]. Briefly, the ISPW-6 problem involves a software requirement change request occurring either towards
the end of the development phase or during the maintenance and enhancement phase of the software lifecycle. When
a software change request is received, the project manager assigns and schedules specific tasks to a number of
participating software engineers. These tasks includes: Modify Design; Review Design; Modify Code; Modify Test
Plans; Modify Unit Test Package; and Test Unit. Some tasks may be executed in parallel, while others have to be
executed in a sequential manner. In each task, there are defined roles, tools, source files, task ordering constraints,
and pre-conditions and post-conditions which must be respected by the software engineers to complete the task.

Similar to IlL [10] and Little IlL [12], software processes in VRPML are described using process step abstractions,
which represent the most atomic representation of a software process (i.e. the actual activity that software engineers
are expected to perform). These activities are represented as nodes, called activity nodes (shown as small ovals with
stick figures).

As depicted in Figure 1, VRPML supports many different kinds of activity nodes. They include: general-purpose
activity nodes (shown as individual small ovals with stick figures); multi-instance activity nodes (shown as
overlapping small ovals with stick figures); and meeting activity node (shown as small and shaded overlapping ovals
with stick figures). Both multi-instance activity nodes and meeting activity nodes have associated depths, indicating
the actual number of engineers involved (and also the number of identical activities in the case of multi-instance
activity).

The firing of activity nodes is controlled by the arrival of a control flow signal. In VRPML, an initial control flow
signal is always be generated from a start node (a white circle enclosing a small black circle). A stop node (a white
circle enclosing another white circle) does not generate any control flow signals. Control flow signals may also be
generated at the completion of a node, often from special completion events called transitions (shown as small white
circles with a capital letter, attached to an activity node) or decomposable transitions (small black circles with a
capital letter). Decomposable transitions enable automation scripts or sub-graphs to be specified (and executed if
selected) as post-conditions before allowing transition to generate a control flow signal. The sub-graph associated
with the decomposable transition representing Done (labeled D) for the activity node called Modify Code is given in
Figure 2.

Check Compilation

;9: SWEngr

R 0

Figure 2. Sub-graph for Decomposable Transition labeled D in Modify Code

When Check Compilation fails, the assigned software engineer can select the transition R (for re-do). As a result, a
control-flow signal will be generated to re-enact its parent node (i.e. Modify Code) through a re-enabled node
(shown as two white circles enclosing black circle). Otherwise, if the compilation is successful, the assigned
engineer can select the transition D (for Done). In this case, the control-flow signal will be generated and propagated
back to the main graph to enable the subsequent connected node.

In VRPML, activity nodes can also be enacted in parallel using combinations of language elements called merger
and replicator nodes (shown as trapezoidal boxes with arrows inside). To improve readability, a set of VRPML
nodes can be grouped together and replaced by a macro node (shown as dotted line ovals), with the macro expansion
appearing on a separate graph. For example, referring to Figure 1, Test Unit is a macro node. The macro expansion
ofTest Unit is givenin Figure 3.

[

r

FeedbackForCode

o~ DsgnEngr

Test

~ DsgnEngr

o

/

age

I
I
I
I
I
I

Figure 3. Macro Expansion for Test Unit in Figure 1

For every activity node, VRPML provides a separate workspace, the concept borrowed from ADELE-TEMPO [1],
APEL [3] and MERLIN [7]. Figure 4 depicts the sample workspace for the activity node called Review Meeting in
Figure 1. A workspace typically gives a work context of an activity as it hosts resources needed for enacting the
activity: transitions, artifacts (shown as overlapping two overlapping documents with arrows for depicting access
rights), communication tools (shown as a microphone, and an envelope), and any task descriptions (shown as a
question mark). Effectively, when an activity is undertaken, the workspace is mapped into a virtual room, transitions
into buttons, and artifacts, communication tools (i.e. for synchronous and asynchronous forms of communications)
and task description into objects which can be manipulated by software engineers to complete the particular task at
hand. This mapping is based on Doppke's task-centered mapping described in [4].

I
I
I
I

ModifiedDesign DesignReviewFeedback

EmailTool

OutcomeNotification

@jJt
RequirementChange

F

Communication Tool

ReviewMeeting

;ZDsgnEngr

p

@i-t

I
I
I

Figure 4. Sample Workspace for Activity Node Review Meeting from Figure 1

As part of its enactment model, VRPML relies on its resource exception handling mechanism. In VRPML, resources
include roles assignment, artifacts and tools (including communication tools) in a workspace as well as the depths of
multi-instance activity nodes and meeting activity nodes. Depending on the needs of a particular software
development project, these resources can either be allocated during graph instantiation or dynamically during graph
enactment. Upon the arrival of the control-flow signal, an activity node will be enabled. Here, the VRPML
interpreter attempts to acquire resources that the activity node needs. If resources are successfully acquired, the
VRPML interpreter then instantiates the activity corresponding to that activity node. If for any reason VRPML fails
to acquire the resources, enactment will be blocked until such resources are made available (e.g. an engineer has not
been assigned to the activity). In this way, the VRPML's resource exception handling mechanism is similar to
blocking primitives (e.g. in, read) in Linda [5]. Once enactment is blocked, the VRPML interpreter automatically
produces an activity for the a drninistrator (e.g. process engineer) to rectify the resource exception or completely
terminate the current activity. If that activity is terminated, the administrator may optionally terminate the overall
enactment of the particular VRPML graph in question or manually re-enact connecting nodes by providing the
necessary control-flow signals that they need to fire. If the resource exception is rectified, normal enactment of the

I
I
I
I
I
I
I

Transition
Signals

Compiler

Runtime Interpreter

Roadmap and
Resource Tuples

r----L------,

VRPML Graph

Resource
Exception and
Rectification

Activities and
Resource

Assignments

Transition
Signals

Databases

• • • •

Resource Manager

Graph Editor

Communication Repository Layer

Resource
Queries

Resource
Exception

Figure 5. The VRPML Support Environment

Activities and
Resource

Assignments

•
•

Workspace
Manager

Runtime Client

•

Runtime Client

To-do-Iist Manager

PSEE

To-do-list Manager

Project Manager

PSEE

• Graph Editor - allows the VRPML graphs to be specified.

• Compiler - compiles the VRPML graphs into an immediate format for enactment.

• Runtime Interpreter - interprets the compiled VRPML graph.

Software Engineers

particular VRPML graph can be resumed resulting in the activity being assigned to the appropriate software
engineer. When that engineer selects that particular activity, a workspace for that activity will appear as a virtual
room with artifacts, transitions and communication tools as objects which software engineer can manipulate to
complete the task. Finally, the activity completes when the software engineer selects one of the possible transitions
(e.g. passed, failed, done, or aborted).

3. The VRPML Support Environment

In order to implement VRPML, a number of components for the support environment can be identified. These
components and their interactions are shown in Figure 5.

Referring to Figure 5, the main components of the complete VRPML support environment are:

­
il
[I

­
il
fl
11
[I

,I

11
II
II
II
II
II
II
'I
i

II
I

[

•
•

Runtime Client - retrieve activities and resource assignments from the communication repository layer.

To-do-list Manager - manages the activities assigned to a particular software engineer.

I
I

[
• Workspace Manager - manages activity workspace in a virtual environment, manages activity transition, and

forward queries to the resource manager.

• Communication Repository Layer - allows communication between the runtime interpreter, runtime client,
and workspace manager.

• Resource Manager - queries the databases for artifacts.

The description of each of the components of the environment will be discussed next.

Graph Editor

Much like a programmer's editor in a textual programming language, the graph editor would allow VRPML graphs
to be drawn and changed. It would also allow browsing through graphs, and would support examination of every
level of the graph (for instance, by opening further graph-editor windows onto workspaces and macros) in order to
assist awareness issues (i.e. in terms of the readability of the VRPML graph). Although having a dedicated graph
editor for VRPML would be vital for a complete system, it warrants no further discussion because the technology of
graph editors is essentially already well-established. Consequently, the graph editor for VRPML has not been
developed, and VRPML graphs were drawn manually.

Compiler

A compiler would perform syntax checking and translate a VRPML graph into an intermediate format known to the
runtime interpreter. In this research work, tlle compiler for VRPML has not been developed and the compilation of
the VRPML graphs was performed manually. However, in order to ensure that a compiler could be written, research
into the information needed for enactment was felt to be necessary. In particular, an important consideration for
compiling VRPML is the information stored in the intermediate format. Clearly, the topology ofthe VRPML graph
in terms of the ordering and sequencing of activities together with their resource assignments (if any) needs to be
preserved.

One solution shown in Figure 6 is to produce a roadmap of how activities are interconnected and to generate the
resource assignments in all the workspaces separately as resource tuples.

Runtime Interpreter
'-------7':--------' Parse . ~ ~;::-

~- /'- /'

I
I
I
I
I
I
I
I
I
I
I

Figure 6. Compilation of the VRPML Graph

Roadmap Resource Tuples

I

r
L

A format for the roadmap and the resource tuples has been identified (described below) and used to facilitate the
hand-compilation of the VRPML graph, and hence permit enactment. To illustrate this technique, Figure 7 shows
an example graph to be compiled. I

I
I
I
I

Figure 7. Simple VRPML Graph

6

32

Acti"lyA \

J DsgnEngr)

D

The roadmap that is generated for the above VRPML graph is as follows (where the number shown on each arc is
the internally generated control-flow signal id which is allowed to flow through the arc):

I, Master 2)) Master} 3))
2, Administrator} Activity A})
3, Administrator} Activity C))
4, Administrator} Activity A))
5, Administrator} Meeting E))
6, Administrator} Activity D))
7, 8, Master} 9))
9, Master} Terminate))

A number of items in the roadmap need clarification and several terms in the roadmap need to be defined. "Master"
refers to the runtime interpreter itself whilst "Administrator" refers to the role in charge of rectifying resource
exceptions (e.g. when resource assignments are not specified or not available). The characters"] and) merely serve
as separators which are u sed by the runtime interpreter to parse the enabling control-flow signal id (shown as a
unique number for clarity), the defined activities and the target activity assignment (e.g. master or administrator).

Resource tuples must be generated for each activity defined in the graph. To illustrate the contents of a resource
tuple, assume that the workspace for activity A shown in Figure 8 is defined below:

v rl
{I
[I
rl
rl
11
fl
[I
[I
II
t

II
t l
II
II
I

I

I
I

[

I
I

EmaiiTool

r-
DesignDocument

RequirementGhange

SourceCode

Figure 8. Example Workspace

I
I
I

The resource tuple for activity A is generated as follows with keywords (shown in bold) used for clarity and human I
readability.

ActivityName = Activity A, 2,
ActivityType = General Purpose, I
Role = DsgnEngr
AssignedEngineer = Unspecified,
Artifact = Design Document, Path/UrI for Modified Design, Read, Path/UrI for tool, I
Artifact = Requirement Change, Path/UrI for Req. Change, Read, Path/UrI for tool,
Artifact = Source Code, Path/UrI for Source Code, Read/Write, Path/UrI for tool,
Tool = Email Program, Email, Path/UrI for tool,
Transition = D, Transition Done, Non-Decomposable, 5, I
Descriptions = Put the description ofthe activity here.

A resource tuple carries runtime information about the workspace consisting of: activity name and type; resource
assignments including access rights for artifacts; tool assignments; and the defined transitions as well as the id of l-
each control flow that will be generated if a particular transition is selected. ·One important aspectto observe in order
to generate the resource tupleisthat~theidofeach control-flow signal to be generated must be consistent with that
defined in the roadmap. For example, transition Done must generate the control-signalid 5 in order to enable I
activity B.

Using the roadmap and resource tuples, enactment can easily be achieved. In fact, by. adopting the Linda tuple..space
as the communication rep·osifory layer; enaCtment can be achieved in adistributed"envitonnieht. - I
Runtime Interpreter

Having considered the graph editor and the compiler, the next component is the runtime interpreter. Much of the
functionality has already been implied in the earlier discussion. The full list of the runtime interpreter's functions is
as follows:

parse, maintain, and interpret the runtime information held in the roadmap and the resource tuples

• check for the arrival of control-flow signals in the communication repository layer, and decide when activities
are able to fire

• interact with the resource manager to check for resource availability before enabling activities and return
exceptions accordingly

• detect the termination of enactment and shut down gracefully

Runtime Client

To support enactment in a distributed environment, there is the need to implement a runtime client which works on
behalf of the to-do-list manager (described below) in order to retrieve the activities and their resource allocations

I
I
I
I
I
I
I

rl
(I
[I

rl
[I
II
II
I
II
I

II
(I
[I
il

from the communication repository layer according to a software engineer's assignments. There are two types of
runtime client which can be considered. In the first type, the runtime client automatically retrieves activities and
their resource allocations as soon as they are assigned. In this case, there is a need for a dedicated channel which
maintains a connection between the runtime client and the communication repository layer at all times. In the second
type, the runtime client only retrieves activities and their resource allocations when there is an explicit request from
the software engineer. As far as this research work is concerned, both types are equally useful. However, the second
type has been chosen because it simplifies the implementation in the sense that there is no need to setup a dedicated
communication channel between the runtime client and the communication repository layer.

To-do-list Manager

In order to manage the assigned activities, there is also a need for a to-do-list manager. The full list of the to-do-list
manager's functions is as follows:

• create a to-do-list for a particular software engineer

• interact with the runtime client upon request to retrieve the assigned activities from the communication
repository layer

• provide an internal to-do-list queue to store the assigned activities received from the runtime client

• manage the graphical user interface (GUI) to allow a software engineer to select, browse, or undertake
activities from the to-do-list queue as well as retrieve the assigned activities from the communication
repository layer

• forward an activity and its resource allocations to the workspace manager (described below) when the activity
is selected to be undertaken

• provide an interface to quit the to-do-list

As an illustration, Figure 9 shows a s ample snapshot of the to-do-list GUI for a software engineer n arne Kamal
where the current activity in the to-do-list queue is Review Design. Five buttons are also shown: Retrieve the
activity; Perform the activity; Quit the to-do-list; Set; and Send. These buttons implement the functions described in
the bulleted list above with the exception of the Send button. The Send button will be described below when the
discussion on the workspace manager has been developed. It must be stressed that implementation efforts have
concentrated on functionality rather than the aesthetics of the interface.

Figure 9. The To-Do-List Graphical User Interface

Workspace Manager

The workspace manager generates and maintains each activity's workspace according to its work context, that is, in
terms of the artifacts and tools required to complete that activity. Maintaining work context is important to give the
software engineers a sense of awareness about the activity that they are currently undertaking.

[

l
[

[

l

l

At a first glance, generating and maintaining each activity's workspace according to its work context seems like a
difficult task. However, a closer look reveals that this can easily be achieved by the workspace manager parsing the
runtime information stored in the resource tuple. Using this runtime information, each activity's workspace can be
generated when it is enabled.

As far as the implementation is concerned, the chosen approach to generate the workspace for each activity in a
virtual environment was through the use of the Virtual Reality Modelling Language (VRML), a language for
specifying three dimensional scenes with rich sets of object primitives and events [11]. With VRML, the workspace
can be translated to a VRML scene, and the actual translation may be facilitated by a freely available
CyberVRML97 library package [9] integrated as part of the workspace manager itself. In this work, efforts have
been directed towards providing functionality and ignoring the aesthetics of the virtual environment.

Figure 10 below depicts the possible translation of the workspace and representation in a virtual environment for an
activity called Modify Design. Utilizing Doppke's task-centered mapping [4], the activity's workspace maps into a
virtual room with artifacts and tools corresponding fo objects in that virtual room. Artifacts are represented as
cylinders, and their access rights are distinguished by colours. Task descriptions are represented as help boxes.
Transitions are represented as spheres.

Figure 10. Sample Workspace in a Vjrtual Environment

Following a request from tpe software engineer, the workspace manager needs to interact with the resource manager
in 0 rder to query the databases f bra rtifacts and t 60ls in t he workspace to Ii erform t he activity: Because VRML
supports event handling, it would be possible for the software engineer to access the objects (e.g. artifacts, tools, and
transitions) in a scene, although this has not been investigated further as the objective here is to demonstrate that it is
feasible to support integration with a virtual environment at the PML enactment level.

However, the fact that in the prototype the representation of transitions in the virtual environment are not active
means that a mechanism is needed to simulate transitions and hence indicate the completion (or cancellation) of an
activity. Thus, a Send button and a message box are provided in the to-do-list GUI (see Figure 10) to achieve the
sending of a control flow signal to the conununication repository layer by the workspace manager.

Communication Repository Layer

The main function of the conununication repository layer is to act as an intermediate mailbox for keeping the
assigned activities and their resource tuples as well as the control-flow signals. There are three main components
which interact with the conununication repository layer: the runtime client to allow query of activity assignments
and their resource tuples; the runtime interpreter to allow assignment of activities and their resources allocations to
be made; and the workspace manager to allow the control-flow signals generated from transitions to be sent.

iii
?'i

I
I
I
I
I
I
I
I
I
I
I
I

··_··1

I
I
I
I
I
I
I

4. Discussion

Figure 11. The UML Class Diagram for the VRPML Support Environment

Resource Manager

In terms of implementation, the resoUrce manager can be straightforwardly realised by a database server with the
capability of accessing more than one database at a time in a distributed environment. Because the technology to
access the database server is well-established, it warrants no further discussions.

pies

«Controller»
VRPMLlnterpreter

implements ~;",e,"e"
«Utility» «Controller»

VRPMLConstant RoadmapManager

-v- ~ \
implements

«Boundary» «Boundary»
EngineerGUI AdministratorGUI

requests tu

interacts

\
«Controller» «Controller»

WorkspaceManager TupleSpaceOperator

requests tuples

Yqueries resources

«Controller»
ResQurceManager

check
database

I

As far as implementation is concerned, the distributed shared memory model based on the Linda tuple space seems
to be a suitable choice for the communication repository layer. The main reason for choosing the Linda tuple space
stemmed from the fact t hat the VRPML enactment model is based on Linda, the base 1anguage from which the
Linda tuple space is derived. In addition, Linda provides several pre-defined primitives which facilitate pattern
matching of tuples in the tuple space and they can be used to simplify the implementation. While there are many
Linda implementations available, Jada [2], the Linda implementation based on Java, has been chosen for this
research work. Jada permits the user to setup a client-server based Linda tuple space that uses Java Remote Method
Invocation. It is this tuple space that facilitates enactment in a distributed environment.

The last component that needs to be considered for supporting enactment is the resource manager. The main
function of the resource manager is to handle the queries received from the runtime interpreter and the workspace
manager. As discussed earlier, the queries received from the interpreter mainly involve checking for resource
allocation and availability before allowing that activity to be assigned. The queries received from the workspace
manager mainly involve requests to manipulate existing artifacts and tools or to create new artifacts. In addition to
handling queries, the resource manager a Iso enforces t he required access rights involving a rtifacts, and su pports
changes and updates of the shared artifacts by multiple software engineers.

A number of implementation issues relating to VRPML have been discussed in this paper. In particular, the main
components of the VRPML support environment have been identified. As far as implementation is concerned, a
working prototype has been developed (refer to [17]). Figure 11 summarized the overall class diagrams for the
VRPML support environments based on the Unified Modeling Language notation.

II
rI
[I

rl
[I
(I
[I
(I
[I
(I
[I

[I
II
(I
II
II
[I
II
&I
tI

r
[

l
(

[

L
l

Here, the VRPML interpreter class plays the role of interacting with all the roadmap generated by the compilation
process. In order to do so, VRPML interpreter class needs to interact with the roadmap manager class. The roadmap
manager class sequences the execution of the VRPML model based on the roadmap description. The exchange of
information on the roadmap execution (i.e. tuples within a distributed environment) is done through the tuple space
operator class which is responsible for managing the tuple operations on the communication layer. As their name
suggest, the engineer GUI class and the administrator GUI class provides interface to the users. The construction of
a virtual environment space for both the engineer's GUI and the administrator's GUI are done dynamically by the
workspace manager class based on the workspace description of the activity assigned to them. Finally, the resource
manager class is responsible for accessing databases for a particular task assigned to the engineers by the workspace
manager.

As part of the evaluation process on the VRPML support environment discussed above (i.e. in terms of whether or
not the environment is suitable for implementing the novel features of VRPML), an experiment has been
successfully conducted which demonstrated enactment in a distributed environment by utilising the ISPW-6
problem. The complete discussion on the experiment is, however, beyond the scope of this paper. Interested readers
are referred to our earlier work described in [16] and [17].

Given that the ISPW-6 problem has been formulated by experts in the field of software engineering, it should
contain different types of (subtle) process issues seen in the real world. Thus, the fact that the support environment
was able to assist and facilitate enactment is a positive indication of its applicability.

While the conversion from the VRPML graph to an intermediate format known to the interpreter is done manually
in the current prototype, the translation process is done as a compiler would have. No expert knowledge, that is
making use of information not available to the compiler, is applied during the translation process. Therefore, a
compiler support for VRPML is implementable. In fact, as far as an automated compiler is concerned, it is currently
under development along with the complete support environments.

5. Future Work

As the current implementation of VRPML is still ina prototype form, an obvious starting point for future w ork_
would be to complete the implementation. For example, implementingaautomatedcompiler-anda~'complete ----;
workspace manager would be a useful endeavour. .

A number of other research avenues could also heinvestigated. The fact that VRPML and itssuppotlehvironfuents
supports integration with a -virtual- environment opens up many possibilities for using visualization to provide
multiple views ofthe same process rilodel- from different· perspectives; and hence potentially improving-process
understanding. Instead of using a straightforward mapping of workspaces, that is, a workspace, artifacts, tools and
task descriptions map one-to-one to a virtual room and objects, other meaningful visualisations could also be
explored by defining or using other types of mapping. For example, artifact-centred mapping as defined by Doppke
et al [4] could be used where artifacts are represented as virtual rooms and their dependency relationships are
expressed as part of the arrangement of the rooms. If sub-products of the artifacts are defined then they are
represented as separate rooms connected to the parent product room either by exits or by containment, whilst tools
and task description can be defined as objects inside the room. Clearly, by manipulating the types of mapping used,
multiple views of the same process can be achieved. In turn, such views may enhance the support for awareness.

Another possible area of research is to find other ways of addressing awareness in VRPML, for example, supporting
user awareness by representing software engineers as avatars in the workspaces during enactment or using live
video. Using avatars or live video can perhaps improve the sense of realism and further encourage informal
communication as engineers can "see" each other. This is especially useful if the workspaces involve more than one
person, and the software engineering teams are physically distributed.

Although useful by giving focus on a particular activity, it is believed that workspaces defined by VRPML (see
Figure 11) give insufficient working context particularly about the overall activities, that is, in terms of how the
pieces fit together into the whole picture. In the current VRPML implementation, questions such as what the

I
1
1
1
1
1
1
1

-I

I
1
1
1
1
1
1

', ... ,

" :_-1.,

I
I
I
I,

t'
r'
(J,,
­
,I

II
II
[I,

previous task was, what t he next t ask is, a nd what needs to bed one to move a long cannot bee asily answered.
Therefore, it would be useful to find ways for VRPML to also give context of the overall activity, for example, by
giving the software engineers access to the enacted VRPML graph in the forms of animated flow of control during
enactment.

Finally, because a software development project often involves hard deadlines, another possibility for further work
is to investigate the inclusion of "timing" criteria as part of the VRML notation as well its runtime environment.
Perhaps, the t irning criteria could bee xploited a s part 0 f the workspace definitions, raising a n "alarm" when an
activity is due to be completed. As a result, the software engineers can be reminded about the deadlines of the
activities that they are undertaking.

6. Conclusion

Because of the potential benefits in terms of being able to provide automation, guidance and enforcement of
software engineering practices and policies, through modeling and enactment (i.e. execution), a PML and its PSEEs
could form an important feature of future software engineering environments. Moving toward a goal of a practicable
PML and PSEE, this paper has highlighted the main components of the VRPML support environments. The fact that
the VRPML support environments complement the VRPML novel features (e.g. in terms of supporting distributed
enactment within a virtual environm~nt) gives a positive indication of its applicability. As such, we believe that our
work offers valuable insights into the design of next-generation PMLs and PSEEs.

Acknowledgement

The work undertaken in this research is partially funded by the USM Short Term Grants - "The Design and
'Implementation of the VRPML Runtime Environment".

References

[1] N. Belkhatir, J. Estublier, and W. Melo. ADELE-TEMPO: An Environment to Support Process Modelling and
Enaction. in Nuseibeh, B. ed. Software Process Modelling and Technology, Research Studies Press, Taunton,
England, 1994, 187-222.

[2] P. Ciancarini, and D. Rossi. Jada: A Coordination Toolkit for Java - Technical Report UBLCS-96-15,
Department of Computer Science, University of Bologna, Italy, 1997.

[3] S. Dami, J. Estublier, and M. Amiour. "APEL: A Graphical Yet Executable Formalism for Process Modeling".
Automated Software Engineering, 5 (1),1998,61-96.

[4] J.e. Doppke, D. Heimbigner, and A.L. Wolf. "Software Process Modeling and Execution within Virtual
Environments". ACM Transactions on Software Engineering and Methodology, 7 (1), 1998, 1-40.

[5] D. Gelemter. "Generative Communication in Linda". ACM Transactions on Programming Languages and
Systems, 7 (1), 1985,80-112.

[6] MJ. Jaccheri, R. Comadi, B.H. Drynes, Software Process Technology and Software Organisations. In:
Comadi, R. (ed.): Proc. of 7th European Workshop on Software Process Technology (EWSPT 2000), Kaprun,
Austria, Springer-Verlag, 96-108

[7] G. Junkermann, B. Peuschel, W. Schafer, and S. Wolf. MERLIN: Supporting Cooperation in Software
Development Through a Knowledge-Based Environment. in A. Finkelstein, J. Kramer, and B. Nuseibeh, eds..
Software Process Modelling and Technology, Research Studies Press, Taunton, England, 1994, 103-129.

[8] M.l. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, LJ. Osterweil, M.H. Penedo, and H.D. Rombach.
"Software Process Modeling Example Problem". In Proc. of the 6th Int!' Software Process Workshop,
Hakodate, Hokkaido, Japan, October 1990, IEEE CS Press.

1
1
1
1
1
1
I
I
1
1
1
I
I
I
1
I
1
I
1
1

[9] S. Konno, CyberVRML97 - Virtual Reality Modelling Language Development Library, 2002.

[10] S. Sutton Jr., and L.J. Osterweil. The Design of a Next-Generation Process Language. in Froc. ofthe Joint 6th
European Software Engineering Conference and the 5 th A CM S IGSOFT Symposium 0 n the F oundation of
Software Engineering, (1997), Lecture Notes in Computer Science Volume 1301, Springer, 142-158.

[11] The VRML Consortium. VRML97 International Standard Specification (ISOIIEC 14772-1:1997)

[12] A. Wise. "Little IlL 1.0 Language Report - Technical Report 98-24", Dept. of Computer Science, Univ. of
Massachusetts at Amherst, April 1998.

[13] K.Z. Zamli and P.A. Lee. "Taxonomy of Process Modeling Languages". In Proc. ofthe ACS/IEEE Int!. Con!
on Computer Systems and Applications, Lebanon, 2001, IEEE CS Press, 435-437.

[14] K.Z. Zamli. "Process Modeling Languages: A Literature Review". Malaysian Journal of Computer Science 14,
(2), December 2001.

[15] K.Z. Zamli and P.A. Lee. "Exploiting a Virtual Environment in a Visual PML". In Proc. ofthe 4th Intl. Con!
on Product Focused Software "Process Improvements (PROFES02j, Lecture Notes in Computer Science
Volume 2559, Rovaniemi, Finland, 2002, Springer, 49-62.

[16] K.Z. Zamli and P.A. Lee. "Modeling and Enacting Software Processes Using VRPML". In Proc. of the 10th
IEEE Asia-Pacific Con! on Software Engineering, Chiang Mai, Thailand, December 2003, IEEE CS Press,
243-252.

[17] K.Z. Zamli. "Supporting Software Processes for Distributed Software Engineering Teams", School of
Computing Science, Univ. of Newcastle upon Tyne, PhD Thesis, October 2003.

[18] K.Z. Zamli and N.A. Mat Isa, "A Survey and Analysis of Process Modeling Languages". Malaysian Journal of
Computer Science, 17(2), December 2004,68-89.

[19] K.Z. Zilnlri; an<fN.A~ Mat Isa; "The·Computational Model fOf a Flow~basedVisual Languages". In Proc.'ofthe
AlDIS International Conference in Applied Computing 2005, Algarve, Portugal,217~224...

Kamal Zuhairi Zamli obtained his BSc in Electrical Engineering from Worcester Polytechnic Institute,'"Worcester, .
USA in 1992, MScin Rea1-TimeSQftware- Engineering from-CASE; .University Technology-Malaysia in- 200Q;-and
PhD in Software Engineering from the University of Newcastle upon Tyne, UK in 2003. He is currently attached to
the School of Electrical and Electronics Engineering, USM Engineering Campus in Transkrian. His research
interests include software engineering, software process, software testing, visual languages, and object-oriented
analysis and design.

Nor Ashidi Mat Isa obtained his BSc in Electrical Engineering from University Science Malaysia in 2000 and PhD
in Image Processing and Neural Networks from the same university in 2003. He is currently attached to the School
of Electrical and Electronics Engineering, USM Engineering Campus in Transkrian. He specializes in the area of
image processing, neural networks for medical applications, and software engineering.

Norazlina Khamis obtained her BSc in Information Technology from the University of Malaya in 1999 and her
MSc in Real Time Software Engineering from CASE, University of Technology Malaysia in 2001. She is currently
attached to the Department of Software Engineering, Faculty of Computer Science & Information Technology,
University of Malaya. Her academic activities include teaching various undergraduate computer science courses
ranging from software engineering, database, operating system, software quality and software requirements
engineering.

I ··.·.••'·'.',,·'·':·.<':~

~,':~

~;-,l

1

1
1
1
I
I
1
1

lKamal Zuhairi Zamli, 2Nor Ashidi Mat Isa and 3Norazlina Khamis

Implementing Executable Graph Based Visual Language in a Distributed
Environment

As far as a visual language associated with the
control-flow model is concerned, for simplicity, it
may be viewed as supporting executable flowcharts.
In the data-flow based model, a visual program
consists of nodes connected by arcs carrying data.
Arcs depict data dependencies amongst nodes. The
firing rule is based on the availability of data on the
node's input arcs, and may be data-driven or demand­
driven.

Conceptually, in the control-flow based model,
every program can be thought of as having an
instruction counter and a globally addressable
memory which holds programs and data objects
whose contents are updated by program instructions
during execution [I].

In the control-flow based model, a visual program
consists of nodes connected by arcs carrying control­
flow signals. Arcs depict the control-flow
dependencies amongst connected nodes. The firing
rule is based solely on the availability of the control­
flow signals on the node's input arcs - that is, data
availability does not play any part at all.

Typically, graphs consist of nodes, arcs and sub­
graphs. Nodes represent function or actions, arcs carry
data or control-flow signals, and sub-graphs provide
abstraction and modularization. Operations in graphs
follow a firing ntle which defines the conditions
under which execution of node occurs.

II. GRAPH BASED VISUAL LANGUAGE

3 Faculty of Computer Science and Information
Technology,

Universiti Malaya,
50603 Lembah Pantai, Kuala Lumpur, Malaysia

Tel: +603-76976402, Fax: +603-79676339
Email: azlina@um.edu.my

Section 4 identifies the possible runtime components
supporting execution (or enactment) of the VRPML
graph. Section 5 outlines our prototype
implementation. Finally, section 6 presents the
conclusions of the paper.

Graph based visual language has been around since
the early days of computers. Whether we realize or
not, flow chart can be seen as a form of graph based
visual languages.

With a data-driven firing rule, a narc is u sed a sa
supply route to transmit data from the source node to
the destination n ode. Ad estination node is executed
as soon as data is available on all input arcs. With a

1,2Software Engineering Research Group,
School of Electrical and Electronics,

Universiti Sains Malaysia Engineering Campus,
14300 Nibong Tebal, Pulau Pinang, Malaysia

Tel: +604-5937788 ext 6079, Fax: +604-5941023
Email: {eekamal.ashidi}@eng.usm.my

Abstract-One of the common difficulties in a graph
based visual language is to develop its executable
semantics and achieved its execution in a distributed
environment. In order to address s orne of these issues,
this paper outlines the general control flow semantics of
a graph based visual language. II) doing so, this paper
also discusses a sound technique implementing such
semantics permitting execution in a distributed
environment. An implementation is sketched for a
domain specific graph based visual language, called
VRPML.

I. INTRODUCTION

Visual programming languages have been around
for quite some time now. The basic idea behind a
visual programming language is that computer
graphics (e.g. graphs consisting 0 f icons, n odes, and
arcs) are used instead of a textual representation. In
fact, the central argument for a visual programming
language is based on an observation that picture is
better than text (i.e. a picture is worth a thousand
words [15]).

While a visual programming language may not be
able to provide a silver bullet to solve every problem
related to engineering a software sy stem, a carefully
chosen level of abstractions (e.g. by working at the
same level of abstraction as the problem domain)
coupled with easy to understand notations may help
alleviate the low-level complexities offered by the
textual counterpart.

There have been many visual languages developed
in the domains of computer science. In this paper, we
discuss a common subset of visual language, that is,
the graph based visual language. One of the common
difficulties in a graph based visual language is to
develop its executable semantics and achieved its
execution (i.e. enactment) in a distributed
environment. In order to address some of these issues,
this paper outlines the general control flow semantics
of a graph based visual language. In doing so, this
paper also discusses a sound technique implementing
such semantics permitting execution in a distributed
environment. An implementation is sketched for a
domain specific graph based visual language, called
VRPML [10].

This paper is organized as follows. Section 2 gives
an overview of graph based visual languages. Section
3 introduces the syntax and semantics of VRPML.

[

[

[

[

L
I
I
I
I
I
I
I
I

demand-driven firing rule, an arc is used as a demand
route to request data from the source node. A source
node is executed only if there is a demand for its
result. For either firing rule, arcs are conduits for data.
In turn, data on an arc is consumed by the executing
node to perform its computation (although some
variations of the data-flow based model also allow an
arc to retain data).

According to Agerwala and Arvind [2], the data­
flow based model can be distinguished from the
control-flow based model in that it has neither a
globally addressable memory nor a single instruction
counter. As the data-flow based model possesses no
global memory, the only data available to a node for
its operation is that from its inputs. In addition,
because of the lack of any shared data amongst nodes,
there can be no side effects (one node interfering with
other node's data, potentially causing unexpected
results).

As the data-flow firing rule depends solely on the
availability of data, nodes whose. data is available can
potentially be executed in parallel. The sequencing of
the execution of nodes, for example in terms of the
assignment of runtime processes to processors, is
determined solely at runtime by the runtime system.
Thus, a data-flow based model supports parallelism
naturally. .

Apart from the control-flow or the data-flow based
models, one less popular paradigm is the
computational model based on both models. Here,
there are two kinds of arcs with different semantics:
the data-flow and the control-flow arc. The firing rule
for this paradigm can be complex because it is based
on the combination of both the data-flow and the
control-flow signals. Furthermore, while the problem
of arcs crossing each other and resulting in a cluttered
view is inherent in a flow based visual language based
on directed graphs, the factthattwciarcs are used here
means that the crossover problem can be even greater.
Generally, if there are too many arc crossovers, the
overall program understanding may be compromised.

Although the data flow and a combined model can
be used to build the semantics, the focus of this paper
is on the control flow semantics of the graph based
visual language. We foresee that the control flow
semantics seems to be popular as it fits well into our
understanding of a general purpose programming
language [12].

III. INTRODUCING VRPML

VRPML is a domain specific executable graph
based visual language for supporting the modeling
and enacting of software processes [10- I3]. The main
novel features ofVRPML are:
• It considers virtual environments as a

fundamental constituent, manipulatable as part of
the construction of the process model (i.e. via
features in the language) as well as being part of
the runtime environment.

• It supports dynamic allocation of resources
through its enactment model.

• It supports dynamic allocation of resources
through its enactment model

In VRPML, software processes are generically
modeled. Resources (in terms 0 f software engineers,
artifacts a nd tools) can bed ynamically a ssigned and
customized for specific projects from a generic model.

Referring to Figure I, software processes are
specified in VRPML as graphs, by interconnecting
nodes from top to bottom using arcs that carry run­
time control-flow signals. Similar to JIL [8] and Little
JIL [9], a software process activity in VRPML are
described using process step abstractions, which
represent the most atomic representation of a software
process (i.e. the actual activity that software engineers
are expected to perform). These activities are
represented as nodes, called activity nodes (shown as
small ovals with stick figures).

Fig. I. The VRPML Graph

As depicted in Figure 1, VRPML supports many
different kinds of activity nodes. They include:
general-purpose activity nodes (shown as individual
small ovals with stick figures); multi-instance activity
nodes (shown as overlapping small ovals with stick
figures); and meeting activity node (shown as small
and shaded overlapping ovals with stick figures). Both
multi-instance activity nodes and meeting activity
nodes have associated depths, indicating the actual
number of engineers involved (and also the number of
identical activities in the case of multi-instance
activity).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IV. VRPML RUNTIME COMPONENTS

interprets

CommunicationTool

EmailTool

RequirementChange

@Jtt
OutcomeNotification

Server/Client Interpreter daemon
the compiled VRPML graph.

Fig. 4. Sample Workspace for Activity Node
Review Meeting from Figure 1

For every activity node, VRPML provides a
separate workspace, the concept borrowed from
ADELE-TEMPO [3], APEL [5] and MERLIN [7].
Figure 4 depicts the sample workspace for the activity
node called Review Meeting in Figure 1. A
workspace typically gives a work context of an
activity as it hosts resources needed for enacting the
activity: transitions, artifacts (shown as overlapping
two overlapping documents with arrows for depicting
access rights), communication tools (shown as a
microphone, and an envelope), and any task
descriptions (shown as a question mark).

ModifiedDesign DesignReviewFeedback

Fig. 3. Macro Expansion for Test Unit in Figure I

Having discussed the control flow semantics of
VRPML, this section outlines the possible
implementation components in their context. I t must
be noted that the execution of the VRPML graph
occurs in a distributed environment, that is, enabling
of an activity means assigning that activity to a
particular person playing certain role and may not be
co-located with other persons.

Briefly, the main implementation components are
as follows (see Figure 5 in the next page):

Graph Editor - allows the VRPML graphs to
be specified.

Compiler - compiles t he V RPML graphs into
an immediate format for enactment.

When Check Compilation fails, the assigned
software engineer can select the transition R (for re­
do). As a result, a control-flow signal will be
generated to re-enact its parent node (i.e. Modify
Code) through a re-enabled node (shown as two white
circles enclosing black circle). Otherwise, if the
compilation is successful, the assigned engineer can
select the transition D (for Done). In this case, the
control-flow signal will be generated and propagated
back to the main graph to enable the subsequent
connected node.

The firing of activity nodes is controlled by the
arrival of a control flow signal. In VRPML, an initial
control flow signal is always be generated from a start
node (a white circle enclosing a small black circle). A
stop node (a white circle enclosing another white
circle) does not generate any control flow signals.
Control flow signals may also be generated at the
completion of a node, often from special completion
events called transitions (shown as small white circles
with a capital Ietter, attached to an activity n ode) or
decomposable transitions (small black circles with a
capital letter). Decomposable transitions enable
automation scripts or sub-graphs to be specified (and
executed if selected) as post-conditions before
allowing transition to generate a control flow signal.
The sub-graph associated with the decomposable
transition representing Done (labeled D) for the
activity node called Modify Code is given in Figure 2.

•

Fig. 2. Sub-graph for Decomposable Transition
labeled D in Modify Code

In VRPML, activity nodes can also be enacted in
parallel using combinations of language elements
called merger and replicator nodes (shown as
trapezoidal boxes with arrows inside). To improve
readability, a set of VRPML nodes can be grouped
together and replaced by a macro node (shown as
dotted line ovals), with the macro expansion
appearing on a separate graph. For example, referring
to Figure I, Test Unit is a macro node. The macro
expansion of Test Unit is given in Figure 3.

­
fl
[I
fl
[I

[I

fl
II
11
[I
11
11
11
[I
II
II
11
II
II
II

[

[I

Fig. 5. VRPML Runtime Component

I
I

I
I

I

I

I

I
I

I

I
I

VRPML
Graph

Execution
roadmap

7

Server Machine

11

~3A ->
Activi~A '.

.£. OsgoEog')

o

, ActivilyC)\\

xf~

~,
(Q SWEogf)

~,--/
y~

'b
Fig. 6. Simple VRPML Graph

4

generates control
flow signals

Databases

Database Interface

Communication Layer

receives control
ftowsignals

Client Machines

••

1---
I

Interpreter I
Daemon I

1 J

Communication Layer - act as mailboxes to
coordinate the control flow signal for enabling
execution in a distributed environment

The most important components which warrant
further discussion are: the compiler; the client/server
interpreter daemon; a nd the communication Iayer. A
compiler performs syntax checking and translates a
VRPML graph into an intermediate format known to
the runtime interpreter. An important consideration
for compiling VRPML is the information stored in the
intermediate format Clearly, the topology of the
VRPML graph' in _terms of the ordering and
sequencing of activities together with their resource
assignments (if any) needs to be preserved.

A format for the roadmap and workspaces has been
identified and used to facilitate the compilation of the
VRPML graph, and hence permit execution. To
illustrate this technique, Figure 6 shows a n example
graph to be compiled.

[

[

[

[

[

L

I

l

L

I
I

The roadmap that is generated for the above
VRPML graph is as follows (where the number
shown on each arc is the internally generated control­
flow signal id which is allowed to flow through the
arc):

I, Master 2]) Master] 3])
2, Administrator] Activity A])
3, Administrator] Activity C])
4, Administrator] Activity A])
5, Administrator] Meeting B])
6, Administrator] Activity D])
7, 8, Master] 9])
9, Master] Terminate])

I
I
I
I

I I

I I

•

• parse, maintain, and interpret the runtime
information held in the roadmap

check for the arrival of control-flow signals in
the communication layer, and decide when
activities are able to fire

• detect the termination of enactment and shut
down gracefully

Finally, the communication layer acts as an
intermediate mailbox for keeping the assigned
activities as well as the control-flow signals. There are
three main components which interact with the
communication layer: the client interpreter daemon to
allow query of activity assignments; the server
interpreter daemon to allow assignment of activities
and their workspaces to be made as well as to allow
control-flow signals generated from transitions (as
transition signals) to be sent.

VLCONCLUSION

V.IMPLEMENTATIONPROTOTYPE

the earlier discussion. The full list of the client/server
interpreter daemon's functions is as follows:

A proof-of-concept prototype implementation in
Java has been built based on the components
identified on section 4 (see [13] for details). The
server interpreter daemon translates the VRPML
roadmap in order to correctly assign tasks to software
engineers (i.e. based on a given control flow). Given
the task assignment, the client interpreter daemon puts
the task in the engineer's to-do-list. When the
engineer chooses the task, the client interpreter
daemon acquires t he necessary resources i n 0 rder to
allow engineer to perform the task.

As far as the communication layer is concerned, the
distributed shared memory model based on the Linda
tuple space (6] is a suitable choice for the
communication repository layer. The main reason for
choosing the Linda tuple space stemmed from the fact
that Linda provides several pre-defined primitives
which facilitate pattern matching oftuples in the tuple
space and they can be used to simplify the
implementation. While there are many Linda
implementations available, Jada (4], the Linda
implementation based on Java, has been chosen for
this research work. Jada permits the user to setup a
client-server based Linda tuple space that uses Java
Remote Method Invocation. It is this tuple space that
facilitates enactment in a distributed environment.

This paper has discussed how execution in a
distributed environment can be achieved for a graph
based visual language based on the control flow
semantics. It is hopeful that lesson learned from this
implementation is beneficial to other domain specific
visual language, such as VORLON (14], particularly
in achieving its execution within a distributed
environment.

DesignDocum ant

A number of items in the roadmap need
clarification and several terms in the roadmap need to
be defined. "Master" refers to the server interpreter
daemon whilst "Administrator" refers to the role in
charge of performing activity assignments. The
characters"] and) merely serve as separators which
are used by the runtime interpreter to parse the
enabling control-flow signal id (shown as a unique
number for clarity), the defined activities and the
target activity assignment (e.g. master or
administrator).

Workspaces must be generated for each actIvIty
defined in the graph. To illustrate the contents of a
workspace, assume that the workspace definition for
activity A shown in Figure 6 is defined below:

The workspace for activity A is generated as
follows with keywords (shown in bold) used for
clarity and human readability.

ActivityName = Activity A, 2,
ActivityType = General Purpose,
Role = DsgnEngr
AssignedEngineer = Unspecified,
Artifact = Design Document, Path/Uri for Modified
Design, Read, Path/Uri for tool,
Artifact = Requirement Change, Path/Vrl for Req.
Change, Read, Path/Urlfor tool,
Artifact = Source Code, Path/Uri for Source Code,
Read/Write, Path/Uri for tool,
Tool = Email Program, Email, Path/Uri for tool,
Transition = D, Transition Done, Non­
Decomposable, 5,
Descriptions = Put the description ofthe activity
here.

EmailTool

SourceCode

Fig. 7. Example Workspace

Requirem ente hange

A workspace carries runtime information about the
workspace consisting of: activity name and type;
resource assignments including access rights for
artifacts; tool assignments; and the defined transitions
as well as the id of each control flow that will be
generated if a particular transition is selected. One
important aspect to observe in order to generate the
workspace is that the id of each control-flow signal to
be generated must be consistent with that defined in
the roadmap. For example, transition Done must
generate the control-signal id 5 in order to enable
activity B.

Having considered the compiler, the next
component is the client/server interpreter daemon.
Much of the functionality has already been implied in

[I
[I
[I

[I

II
[I
[I
{I
II
fl
II
[I

II
II
[I
il
[I
1.1

[I
II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ACKNOWLEDGMENT

The work undertaken in this research is partially
funded by the USM Short Term Grants - "The Design
and Implementation of the VRPML Runtime
Environment".

REFERENCES

[1] W.B. Ackerman, 1982. Data Flow Languages. In
IEEE Computer, pp 15-23.

[2] T. Agerwala and Arvind, 1982. Data Flow
Languages. In IEEE Computer, pp 10-13.

[3] N.· Belkhatir, J. Estublier, and W. Melo.
ADELE-TEMPO: An Environment to Support
Process Modelling and Enaction. in Nuseibeh, B.
ed. Software Process Modelling and Technology,
Research Studies Press, Taunton, England, 1994,
187-222.

(4] P. Ciancarini, and D. Rossi. Jada: A
Coordination Toolkit for Java - Technical Report
UBLCS-96-I5, Department of Computer
Science, University of Bologna, Italy, 1997.

(5] S. Dami, J. Estublier, and M. Amiour. "APEL: A
Graphical Yet Executable Formalism for Process
Modeling". A utomated Software Engineering, 5
(1), 1998, 61-96.

(6] D. Gelernter. "Generative Communication in
Linda". ACM Transactions on Programming
Languages and Systems, 7 (1), 1985, pp. 80-112.

[7] G. Junkermann, B. Peuschel, W. Schafer, and S.
Wolf. MERLIN: Supporting Cooperation in
Software Development Through a Knowledge­
Based Environment: in A. Finkelstein; J.­
Kramer, and B. Nuseibeh,eds.. Software
Process Modelling and Technology, Research
Studies Press, Taunton, England; 1994,103-129.

(8] S. Sutton Jr., and L.J. Osterweil, "The Design of
a Next-Generation Process Language". In Proc.
of the Joint 6th European Software Engineering
Conference and the 5th ACM SIGSOFT
Symposium on the Foundation of Software
Engineering, (1997), Lecture Notes in Computer
Science Volume 1301, Springer, 142-158.

[9] A. Wise. "Little JIL 1.0 Language Report ­
Technical Report 98-24", Dept. of Computer
Science, Univ. of Massachusetts at Amherst,
April 1998.

(10] K.Z. Zamli and P.A. Lee. "Exploiting a Virtual
Environment in a Visual PML". In Proc. of the
4th IntI. Conf. on Product Focused Software
Process Improvements (PROFES02), Lecture
Notes in Computer Science Volume 2559,
Rovaniemi, Finland, 2002, Springer, pp. 49-62.

[11] K.Z. Zamli and P.A. Lee. "Modeling and
Enacting Software Processes Using VRPML". In
Proc. of the 10th IEEE Asia-Pacific Conf. on
Software Engineering, December 2003, IEEE
CS Press, pp. 243-252.

[12] K.Z. Zamli and N.A. Mat [sa, "The
Computational Model for a Flow Based Visual

Language". In Proc. of AlDIS IntL..Conf. on
Applied Computing 2005, Algarve, Portugal, pp.
217-224.

[13] K.Z. Zamli, N.A. Mat Isa, and N. Khamis, "The
Design and Implementation of the VRPML
Support Environments". Malaysia Journal of
Computer Science 18 (1), pp. 57-69.

(14] J. Webber, and PA Lee, "Visual, Object
Oriented Development of Parallel Applications".
Journal of Visual Languages & Computing 12
(2), pp. 145-161.

(15] K.N. Whitley, 1997. "Visual Programming
Languages and the Empirical Evidence For and
Against". In Journal of Visual Language and
Computing, Vol. 8, No.1, pp. 109-142.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Kamal Zuhairi Zamli, Nor Ashidi Mat Isa

Modeling and Enacting Software Processes: The Why and How Questions

•

•

•

Software processes can be defined as sequences of
steps that must be carried out by humans (e.g. software
engineers), to pursue the goals of software engineering.
There are many ways that can be used to define a
particular software process. Perhaps the simplest way
to define the software process is to use a natural
language such as English. For example, one may
describe a software process for the unit testing stage of
software development as the following steps:

• Step 1: Check out the affected modules from the
configuration management system.

II. THE WHY QUESTIONS

activities of software engineers. In doing so, a number
of related works are presented in order to highlight the
current advancement in the area.

The organization of this paper is as follows. Section
2 gives an overview of software processes as well as
provides justification for supporting the software
processes. Section 3 presents a survey of the related
work. Finally, section 4 presents some conclusion.

Step 2: Obtain the test cases from the project
manager.

Step 3: Perform the testing for all the test cases.

Step 4: Produce the test report for the project
manager.

Using a natural language for defining a software
process is straightforward but exhibits a number of
difficulties. In general, the description of software
process using a natural language is often imprecise,
ambiguous, inconsistent and open to user
interpretation. Typically, such characteristics may lead
to discrepancies in the software process undertaken by
software engineers - for example, what is performed
may not be w hat is required in the description of the
software process. To eliminate such discrepancies,
there is a need for a more precise way of specifying a
software process.

In software engineering, such a need is translated
into the use of modeling languages to specify a
software process. In particular, software processes can
be specified using a process modeling language (PML)
and assisted by an environment called Process

19

Keyword: Software Process, Process Modeling
Languages, Software Engineering

Engineering as a discipline relates to the creative
application of mathematical and scientific principles to
devise and implement solutions to problems in our
everyday lives in an economic and timely fashion. To
provide a quality solution, it is not usually sufficient to
focus only on the final product. Often, it is also
necessary to consider the processes involve in
producing that product [15]. For example, consider an
assembly of a car. From the customer's perspective, it
is the final product that matters (i.e. a quality car).
From an engineering perspective, such quality could
not be achieved if some of the processes (e.g. assembly
lines) are faulty. Although additional rework can fix
the problems caused by the faulty assembly lines, this
tends to raise the overall costs because it deals only
with symptoms of the problem. In contrast, going to
the cause of the problem and improving the process
(e.g. the faulty assembly lines) avoids the introduction
of quality defects in the first place and leads to better
results with lower costs. As this example illustrates, it
is through the processes that engineers can observe and
improve quality, control productions costs and possibly
reduce the time to market their products.

1. INTRODUCTION

Abstract - This paper describes the why, and how
questions relating to the need to support the
modeling and enacting of software processes for
supporting the activities of software engineers. In
doing so, a number of related works are presented
in order to highlight the current advancement in
the area.

Similar analogies can be applied in the case of
software engineering. To produce quality software, it is
also necessary to place emphasis on the processes by
which the software is produced. In software
engineering, these processes are usually called
software processes.

This paper describes the why, and how questions
relating to the need to support the modeling and
enacting of software processes for supporting the

The authors are with the School of Electrical and Electronic Engineering,
Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal,
Pulau Pinang, Malaysia (eekamal@eng.usm.my)

,
(I
fl

[I

11
rl
{I

[I

{I

fl
fl
II
[I

!I
{I

rl
II
I

IIt,
[;1

[I

Centered Software Engineering Environment (PSEE).
Through the use of a PML, software processes can be
described in a precise way in terms of what a process
comprises and how it is structured and organized. This
can be instrumental in eliminating inconsistencies in
the process specification.

Figure 1. Excerpt from the VRPML Graph for
the ISPW-6 Problem

As its name suggests, a PML is used to construct a
form of model of the actual software development
process. Such a model is 0 ften called process model,
which is a representation of the actual software process
excluding details which do not influence its relevant
behavior. For example, Figure 1 depicts the process
model for the common software process problem
called the ISPW-6 problem [12] expressed using the
PML developed as part of our research (the Virtual
Reality Process Modeling Language - VRPML [19­
25]).

Referring to Figure 1, the ISPW-6 problem involves
a software requirement change request occurring either
towards the end of the development phase or during the
maintenance and enhancement phase of the software
lifecycle. When a software change request is received,

the project manager assigns and schedules specific
tasks to a number of participating software engineers.
These tasks includes: Modify Design; Review Design;
Modify Code; Modify Test Plans; Modify Unit Test
Package; and Test Unit. Some tasks may be executed
in parallel, while others have to be executed in a
sequential manner. Not all tasks start at the same time
(i.e. they require coordination). Although not
completely shown in Figure 1, in each task, there are
defmed roles, tools, source files, task ordering
constraints, and pre-conditions and post-conditions
which must be respected by the software engineers to
complete the task.

While the overall syntax and semantics of VRPML
used in Figure 1 has not been fully explained (and is
discussed in Section 3 of this paper as part of our
survey), the above model of the ISPW-6 problem
provides some insights into t he modeling 0 f software
processes and their degree of complexities.

In addition to being able to support the modeling of
software processes, PMLs may also allow execution of
the process models to support the activities of software
engineers. The execution of such processes is usually
termed process enactment. Enactment is very useful
feature of a PML for the following reasons [7]:

It provides guidance through the steps to be
taken. Such guidance is particularly useful for
junior software engineers.

• It can enforce strict procedures and policies.
Enforcement of strict procedUres is sometimes
important in. cases such as . developing critkal .
systems where human lives depend on ·a piece of .
software. An example of such a system would
be a car auto-cruise control system. In this case,
the software development team in charge of
developing such a system may require its
defined steps to be followed precisely. For
example, evolution of the software in such a
system must be strictly controlled. Ad hoc
changes must not be permitted because such
changes may introduce bugs which may not be
tested and accounted for. Such bugs could be
dangerous especially if they affect the
mechanism to control the speed of the car in
auto-cruise.

• It permits the automation of tasks. In software
engineering, there are many tasks which can
benefit from automation. For example, although
tasks such as compiling and linking source
codes look simple, they can be painstakingly
dull especially if the source codes are very large

20

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I

I
I

II
I

I
1

I
I

~

I
I
I
I

and involving multiple modules. Such mundane
tasks, if automated, can relieve software
engineers from tedious routine work (and reduce
potential human errors), and consequently,
improve software engineer's productivity.

III. THE HOW QUESTIONS

Based on the discussion given earlier, software
process can also be viewed as a partially ordered set of
activities that must undertaken by software engineers
to manage, develop, maintain and evolve software
systems. To allow better control of a particular
software process, a model of that process (i.e. a process
model) can be created using a PML making the process
explicit and open to examination. Also, a process
model can show deficiencies and inconsistencies in the
current software process that would otherwise be
obscured, hence making it easier to. analyze the process
and suggest improvements.

A PML is analogous to a programming language in
the sense of providing a model solution of a particular
problem. However, there is a subtle difference between
a PML and a programming language which lies in
terms of their computational models. Unlike the
familiar computational model in computer science
where sequences 0 f 0 perations specified by computer
programs are automatically executed by the central
processing unit or interpreting system, the
computational model demanded by PMLs is somewhat
different. This is because PMLs require some
operations to be executed by (error-prone) software
engineers using some defined software tools, while
other operations are suitable for automatic execution
(e.g. automation of routine operations). As such,
developing an ideal PML to support such a
computational model poses a challenge to researchers
in computer science. In response to -this challenge,
many PMLs have been developed and described in the
literature over the last fifteen years.

In an attempt to find an ideal PML for the modeling
and enacting of software processes, there has been
much research into different language paradigms.
Many of the language paradigms have been adapted
following experiences from existing approaches in
software engineering applied in the context of a
software process.

There have already been a number of attempts to
classify these different language paradigms. For
example, Liu and Conradi [13] identify five categories
of PML language paradigms:

21

-~-- ----------------

• Active Database PMLs - PMLs which relies on
database triggers employing Event-Condition­
Action rules as the basis for the language.

• Rule-based PMLs - PMLs which exploits rule­
based planning techniques or blackboard
architectures in the language.

• GraphlNet PMLs - PMLs which utilizes graphs
or Petri Nets.

• Process Programming PMLs - PMLs which
define a process model as a computer program
based on a general purpose programming
language.

• Hybrid PMLs - PMLs which fits into more than
one of the above categories.

Although with different headings, Lonchamp [14]
proposes a similar classification of PMLs, consisting of
the following categories:

• Graphical PMLs - PMLs which provide a
graphical syntax.

• Net-oriented PMLs - PMLs which utilises nets
such as Petri nets.

• Procedural PMLs - PMLs which adopts a
procedural programming language.

• Object-oriented PMLs - PMLs which utilises
some features from object-oriented languages
(e.g. objects and inheritance).

• Rule-based PMLs - PMLs which exploits rules­
based techniques mainly based on Prolog.

• Multi-paradigm PMLs - PMLs which utilizes
more than one of the above categories.

The slight difference between the classification
from Liu and Conradi with that from Lonchamp is that
the latter include object-orientation. This object­
oriented categorization was appropriate at the time
because many authors of PMLs were beginning to
incorporate features from object-oriented languages as
part of their PMLs.

Based on the classifications from Liu and Conradi
and Lonchamp, Huff [9] identifies four different
categories ofPML language paradigms:

• Non-executable PMLs - PMLs which provide
defined syntax but without executable
semantics.

• State-based PMLs PMLs which uses
hierarchical state machines, Petri nets, ~r formal
grammars as the basis of the language.

r

r

r

I

[

IJ

f

• Rule-based PMLs - PMLs which rely on a rule­
based approach (i.e. based on Prolog) or
database triggers (i.e. based on Event­
Condition-Action (ECA) rules).

• Imperative PMLs - PMLs which rely on a
model of computation whereby software
processes are modelled as step by step
sequences ofcommands.

The notable difference between the work of Liu and
Conradi, Lonchamp and Huff is that Huff includes the
non-executable category of PMLs. Essentially, the
outcome of Huffs non-executable categorization is
that graphical high-level notations such as Integration
Definition and Function Modeling (IDEFO) and Entry
condition, Tasks, Verification and Exit Criteria
(ETVX) can also be considered as PMLs because of
their syntactic abilities to express a software process
[14]. It should also be noted that Huffs non-executable
category of PMLs does not implicitly imply that PMLs
in other categories are enactable. This is because some
PMLs can belong to more than one category.

A more recent classification of PMLs is that of
Ambriola et al [1]. This classification breaks away
from the earlier classifications, as PMLs are classified
according the process lifecycle that they support rather
than being based on their language paradigm. The main
categories are:

• Process SpecifieationLanguages (PSLs) - used
in the specification phase of the software
process, and typically make -use of formal­
notations.

• Process Design. Languages (PDLs) --~used to
support the design phase of the software
process.

• Process Implementation Languages (PILs) ­
used to support the implementation phase of the
software process.

Regardless of which classification is used, some
PMLs can fit into more than one category. This is
because some PMLs combine different language
paradigms, and therefore cannot be classified under
one particular category. Additionally, such an overlap
may also occur because the scope of coverage of a
PML can be very large covering many aspects of the
modeling process from the requirement phase to
implementation. In fact, as will be seen later, some
approaches use more than one PML in order to support
the modeling and enacting ofsoftware processes.

In order to understand how the modeling and
enacting of software processes are supported in the

'0- literature, it is necessary to survey existing PMLs. Due

22

to space constraint, the survey in this paper presents
snapshots of the state of the arts on PMLs, that is, by
mainly focusing on the more recent PMLs. A more
comprehensive survey of PMLs can be found in the
author's previous work in [20,23].

A.SLANG

SLANG [2], a PML for the PSEE called SPADE, is
based on Petri nets. The semantics of SLANG are
defmed by high-level Petri nets called Entity Relations
(ER) nets. The main addition that ER nets add to
conventional Petri nets is the ability to incorporate
timing as the criteria to fire transitions.

In addition tot he usual P etri nets sy ntax, SLANG
provides an interface defined in terms of input and
output places (as entry and exit points), input and
output transitions (as entry and exit actions) as well as
shared places to allow sharing of data, all of which are
connected by a sets of input and output arcs. In fact,
an interface serves as a SLANG modularization
facility; an interface may be decomposed to show the
overall internal SLANG net structure.

Besides the normal places and. the shared places,
StANG also defines user places. Normal places and
shared places represent place holders for tokens
consisting of typed artifacts stored in an object oriented
database, while user places represent place holders for
tokens consisting 0 f internal messages generated a s a
consequence of external events occurring within the
PSEE.

In SLANG; transitions designate events. Transitions­
firing depends upon the availability of tokens and the
defmed guards (explained below). Additionally, timing
information, such as the time interval within which an
event mayor must occur, can also be specified by
associating time-stamps with tokens and time changes
with actions (described below). In addition, SLANG
also allows transitions to be textually augmented with
scripts consisting of three parts:

i. A header containing an event's name and typed
parameters which must match the types of the
transition's input and output places.

ii. A guard containing a boolean expression which
checks the firing rules. A guard may be thought as
the pre-condition for enabling a transition.

iii. A set 0 factions that performs some computation
on the input tokens to produces some output
tokens.

There are two types of transitions in SLANG: white
transitions and black transitions. White transitions are

I
I
I
I
I
I
I
I
I
I

__ 1-
I
I
I
I
I
I
I
I

I
I
I
I
I
I
II
II
[I
II
II
II
II
II
il

similar to procedures in a general purpose
programming language - they receive some input
parameters (though the defined guards that need to be
satisfied) and predefined statements are executed in
sequence to produce some output parameters. Black
transitions, unlike white transitions, allow invocation
of external tools. The combinations of black transitions
and user places allow SLANG to have some control
over the events generated by external tools. This
capability allows SLANG to support automation at
external tool levels, for example, by detecting events
such as the opening or the closing of external tools.

B.MERLIN

MERLIN [11] is a Prolog-like PML which has been
developed by the University 0 f Dortmund and STZ ­
Gesellschaft fur Software-Technologie mbH. In
MERLIN, the act of modeling a software process is
assisted by entity relationship diagrams (a type of
diagram which mainly depicts dependencies amongst
artifacts) and state charts (a special type of state
transition diagram which depicts the allowable
transitions of an activity or an artifact from its creation
to its completion along with the conditions under
which a transition may occur). Based on the created
entity relationship diagrams and state charts, a process
model is then mapped to Prolog rules and facts as a
knowledge base about that particular process. A special
kind of fact is used to describe roles (work_on and
responsibilities facts), artifacts and tools (document
facts) as well as activities (task rules). Similar to MSL
discussed in section 3.1, enactment of a process model
expressed by MERLIN is achieved by the PSEE
runtime engine using a forward chaining mechanism to
automate an activity that does not involve human
intervention, and a backward chaining mechanism to
select a particular activity for software engineers based
on the role they play.

With the information gathered by the backward
chaining mechanism, the MERLIN PSEE runtime
engine incrementally builds a work context for the
software engineers who perform the activity, in the
form of a simplified entity relationship diagram which
shows only the artifacts and tools necessary to
complete the activity. In MERLIN PSEE, a software
engineer may interact with this diagram in a hypertext
manner to perform their work.

C. APPL/A

APPLIA [16] is a PML based on the ADA
programming language. APPLIA inherits many
features from that language including its type system,

23

module definition style (package), and task
communication paradigm (rendezvous). To support a
software process, APPLIA extends the ADA
programming language with shared persistence
relations, concurrent triggers on relation operations,
enforceable predicates on relations, and transaction­
like statements.

Relations are syntactically similar to ADA package
definitions and package bodies. Within a relation,
persistent storage of data may be defined. Triggers are
similar to ADA tasks and hence are capable of
handling multiple threads of control. Unlike ADA
tasks, triggers automatically react toe vents related to
operations on the data defmed in a relation. Enforced
predicates are boolean expressions which act as post
conditions on the operation of a relation; no operations
may violate the enforced predicate. Transactions-like
statements control access to relations and may affect
the enforcement of predicates.

D. Dynamic Task Nets

Dynamic Task Nets [8] is the visual PML for the
PSEE called Dynamite. Dynamic Task Nets described
a software process as graphs consisting of nodes
representing tasks connected together with arcs (called
relations). There are three types of relations:

i. Control-flow relations impose an acyclic ordering
of the activities to be enacted.

ii. Data flow relations are used for data (mainly
artifacts) transmitted between connected tasks.

iii. Feedback flow relations are used to enable
feedback from a successor task back to its
predecessor.

There is also another relation supported by Dynamic
Task Nets called successor relations. Unlike the three
relations described above, successor relations refer to
nodes rather than arcs. When a task is augmented with
a successor relation, that task is said to have multiple
versions. What this means is that when such a task has
to be reactivated (e.g. as a result of feedback relations),
a new task version may be created depending on
whether the previous version of the task has completed
or not. If the task has already completed, a new version
of the task is created requiring a new assignment of a
software engineer. If the task has not yet been
completed, the runtime system automatically updated
the tasks with the new version of the artifacts.

In Dynamic Task Nets, tasks and their
corresponding relations can be defmed dynamically.
The behavior of each individual task (called a task net)

r 1'1....\-j

I

I

I

I
I
I
I

1-

I

1
I
I
I

I

i.' Object and declarations section consists of the
declaration of artifacts used in the step (consisting
ofADA-like types).

ii. Resource Requirements section specify the
resources needed by the step, including people,
software and hardware.

iii. Sub-steps set section provides a list of sub-steps
that contribute to the realisation of the step.

iv. Proactive control specification section defines the
order in which sub-steps may be enacted. This is
achieved through special TIL keywords such as
ORDERED, UNORDERED and PARALLEL.

v. Reactive control specification of the conditions or
events in response to which sub-steps are to be
executed. This is specified through special TIL
keyword such as REACT.

vi. Pre-conditions, constraints and post-conditions
section: A set of artifact consistency conditions
that must be satisfied prior to, during, and
subsequent to the execution of the step.

F. JIL

LATIN actually offers two types of transitions:
normal transitions and exported transitions. A normal
transition is automatically executed by the runtime
system as soon as an ENTRY evaluates true. An
exported transition is executed upon the request from
the user even if its ENTRY evaluates to false. In such a
case, a transition is said to fire illegally. The outcome
of such a firing is that enactment can now be allowed
to deviate from the specified process model, hence
introducing inconsistencies. In LATIN, enactment can
continue as long as the invariants of that task type still
hold. But if one of the invariants is violated, enactment
is suspended and a reconciliation activity is started to
allow reconciliation of the actual process and the
process model. In such a situation, the PSEE runtime
system automatically performs pollution analysis
which gives s orne analysis of the deviations from the
defmed process model and the identification of some
polluted data (mainly artifacts) caused by such
deviations.

(e.g. invoking a tool) and value assignments (e.g.
updating variables) through an EXIT clause.

TIL [17] is a PML derived from experiences in
developing APPLIA. The main construct in TIL is the'

i. A header defmes the name of the task type along step. A TIL step represents a step in a software process,
with its parameters lists. Instantiation of a task that is, a task which a software engineer or a tool is
type constitute assigning the initial state of the task ...--- expected-to perform: A nL--pr6cess-model cimbe'
instance. viewed as a composition of TIt-steps. The elements

ii. An import section defines all variables impocted that constitute a TIL step include:
from other task types.

iii. A declaration section declares the local types and
variables. The basic data types in LATIN can be
integer, real, string, boolean, enumerated, as well
as user defmed data types such as records and sets.

iv. An export section lists the names of all the
variables exported to other tasks.

v. An init section lists all initial values assigned in
terms of resource assigrunents during instantiation.

vi. A set of transitions which govern the actual
enactment of task type instances (described
below). Transitions can be associated with
invoking of external tools.

vii. A set of invariants which serves as special
conditions that must h old true in any state of the
activity described by the task type.

The behavior of a task type is described by
transitions. Transitions are further characterized by a
precondition, called an ENTRY, and a body. The
ENTRY defmes the conditions which fire the
corresponding transition whilst a body defines actions

A task type is composed of the following parts:

Language to tolerate Inconsistencies (LATIN) [5] is
a PML for the PSEE called SENTINEL. LATIN
describes a software process as a global part and a set
of task types. A global part contains global variables, a
global invariant (described below), the declaration of
the task types that will be mstantiated during
enactment, and the description of the main task. When
the process enactment starts, an interpreter for the main
task is created. A 11 other tasks are instantiated by the
main task or, in turn, by previously instantiated tasks
(i.e. their predecessors).

E. LATIN

can be customized in the sense that a task can execute
even when its predecessor tasks have not completed
(called simultaneous concurrent engineering) or when
certain input artifacts are available. However, the task
completion can only be allowed if predecessor tasks
have already been completed. In Dynamic Task Nets,
this customization is achieved by modifying the
enactment conditions defined in the PROGRESS
specification, which itself is an executable graph
rewriting system that Dynamic Task Nets map to for
achieving enactment.

24
I
I

II
II
II
II
rl
rl
[I
II
I

~I

rI
[I
I
I

vii. Exception handler section: A set of exception
handlers for local exceptions, including handlers
for artifact consistency violations (e.g. pre­
condition violations).

Apart from local exception handlers which allow a
process to react within its own scope, JIL also supports
global exception handlers. Global exception handlers
allow a process to react to an exception in another
process by treating such exceptions as events which
can be handled directly by the reactive control
specification.

G. Little JIL

Little TIL [18] is a PML based on JIL. Little JIL is a
visual P ML, a nd maintains the notion 0 fa step from
TIL. A process model in Little JIL can be viewed as a
tree of steps whose leaves represent the smallest
specified unit of w ork and w hose structure represents
the way in which this work will be coordinated. As an
illustration, Figure 2 displays the Little JIL step
notation.

Interface Badge

@

Step Name
PostrequisitePrerequisite -V A-Badge Badge

/ ~
Control Flow Reaction

Handler Badge
Badge Badge

Figure 2. The Little JIL Step Notation

Referring to Figure 2, the Little JIL step notation has a
number of components including:

i. Step name section: Every step must be given a
name.

ii. Interface badge section: Resources needed in the
step are carried through this badge. In Little JIL,
resources include the assignment of software
engineers, permissions to use the tools, as well as
artifacts. Resources are also typed and always
associated with some access rights.

iii. Pre-requisite and post-requisite badge section:
Here, pre-conditions and post-conditions for the
step are specified.

iv. Control-flow badge section: Little JIL allows four
types of control-flow to be specified in a step.
They are sequential, parallel, choice and try.
Sequential and parallel control-flows allow
sequential and parallel steps to be specified.

25

Choice control-flow allows some choices of
alternative steps to be specified in a step. Try
control-flow is associated with handler badges
(described below) to allow an exception to be
caught.

v. Handler badge section: Handler badges are used
to indicate and fix exceptional errors during
enactment. In Little JIL, exceptions are passed up
the process model tree until a matching handler is
found.

vi. Reaction badge section: Reaction badges are a
form of reactive control similar to JIL. A reaction
badge is always associated with a message which
is generated in response to some events. Because a
message is global in scope, any execution step can
receive the message and act accordingly if matches
are found.

In terms of its enactment, a step goes through
several states. Normally, a step is posted when
assigned to a software engineer, then it progresses to a
started state, and eventually it will be in a completed
state. If a step fails to be started as a result of resource
exceptions being thrown, a step may be retracted (and
potentially reposted) or terminated with exception.

H. CSPL

CSPL [3] is a PML that adopts an ADA95-like
syntax. Being based on ADA95, CSPL inherits many
features from that language including its type system,
module definition style (package), and task
communication mechanism. Additionally, CSPL adds a
number of predefined types and extensions to enable
the modeling of software processes which include:

i. Event type and inform statements: The event type
allows description of an event status of an activity
(e.g. approved, completed). The value of an event
derived from event type can be asynchronously
assigned by CSPL inform statements.

ii. Doc type: Doc Type, the base type of all object
types in CSPL, allows the description of artifacts
and their associated attributes, which can be
extended by inheritance.

iii. Work assignment statements are CSPL statements
which allow activities, tools and roles to be
assigned to one or more software engineers.

iv. Communication related statements allow
synchronization and ordering of tasks with other
tasks, similar to the ADA95 rendezvous.

v. Program Units allow assignment of a human to a
role (through a Role Unit), assignment of an actual
tool to a tool (through a Tool Unit), and

·?·~··'.I·····.. ':.

:\1
,j
,)

: ;.~

"1

I
I
I
I

I
I

I·

I

'iA

I
~i,~

I
I
I
1
I

I
I

The firing of activity nodes is controlled by the
arrival of a control flow signal. In VRPML, an initial
control flow signal is always be generated from a start
node (a white circle enclosing a small black circle). A
stop node (a white circle enclosing another white
circle) does not generate any control flow signals.
Control flow signals may also be generated at the
completion of a node, often from special completion
events called transitions (shown as small white circles
with a capital letter, attached to an activity node) or
decomposable transitions (small black circles with a
capital letter). Decomposable transitions enable
automation scripts or sub-graphs to be specified (and
executed if selected) as post-conditions before
allowing transition to generate a control flow signal.

Referring to Figure 1 given earlier, software
processes in VRPML are described using process step
abstractions, which represent the most atomic
representation of a software process (i.e. the actual
activity that software engineers are expected to
perform). These activities are represented as nodes,
called activity nodes (shown as small ovals with stick
figures).

Activity nodes can also be enacted in parallel using
combinations of language elements called merger and
replicator nodes (shown as trapezoidal boxes with

VRPML is a flow-based visual PML. The main
novel features of VRPML are that it considers the
virtual environment as a fundamental constituent,
manipulatable as part of the construction of the process
model (i.e. via features in the language) as well as
being part of the runtime environment, and supports
dynamic allocation of resources through its enactment
model [20-25].

In VRPML, software processes are generically
modeled. Resources (in terms of software engineers,
artifacts and tools) can be dynamically assigned and
customized for specific projects from a generic model.

As depicted in Figure I, VRPML supports many
different kinds of activity nodes. They include:
general-purpose activity nodes (shown as individual
small ovals with stick figures); multi-instance activity
nodes (shown as overlapping small ovals with stick
figures); and meeting activity node (shown as small

~~~:~~~~n~;er~~~~~~ 0r:a~~swi~;~~f:~~:~~ ..__ -.1"
nodes: have assodated depths; indicating the actual

'ilUmber ofengineers involved (and also the number of
identical actiYities in the case of multi-instance
activity).

The notable feature 0 f APEL is t hat a ctivities and
their sub-activities, as well as the flow of artifacts, are
shown to the user during enactment (through a desktop
paradigm) in order. to give the sense of awareness
(discussed below) about other activities. In addition,
the user may also interact with the desktop paradigm to
perform the activity. Finally, unlike other PMLs,
APEL also supports measurement of the process model
by employing the Goal Question Metric Model
essentially consisting of self-defined goals, questions
related to the process models achieving that goals, and
metrics to quantify such questions.

Visually, an activity provides an interface to define
input and output artifacts as well as the roles involved
a p articular a ctivity. Artifacts, a ctivities and roles are
typed and they are defined in a separate view using
state Object Management Techniques (OMT)
diagrams, essentially class diagrams with some defined
relationships (e.g. is-a or has-a). The various states
which artifacts and activities go through during
enactment can also be represented using state transition
diagrams.

I. APEL

In APEL, a process model is composed of a set of
activities connected together by control-flow and data
flow arcs as well as And and Or connectors which carry
the usual semantics. Activities can be' decomposed
until atomic activities are reached. To achieve process
enactment, APEL relies on the concepts ofevent and
event capture which can be defined on activities or
artifacts. An event arid eventcapfure are defmed by
pairs comprising an event defmition- and' a 10gicaI
expression. An event is captured by a n activity 0 ran
artifact when it matches the event definition and the
logical expression is true. All events in APEL are
broadcast and they are generated automatically.

To support enactment, the CSPL compiler translates
the process model expressed in CSPL into a UNIX
shell scripts.

APEL [6] is a visual PML. The central construct in
APEL is an activity ofwhich there are two types: an
activity representing a task for an individual; and a
multi-instance activity representing a task for a group
of people.

description of dependencies amongst artifacts
(through a Relation Unit).

J. VRPML
I
I

I
I
I

I
I
I

I
I
I
I

I
I

I
I

I
I

I
I

26 I
I



.­,
I
t

I'
t'
11
\1
11
11
,I,
,
I,
,
,
t,
,

arrows inside in Figure 1). To improve readability, a
set of VRPML nodes can be grouped together and
replaced by a macro node (shown as dotted line ovals),
with the macro expansion appearing on a separate
graph (e.g. Test Unit in Figure 1).

For every activity node, VRPML provides a
separate workspace. Figure 3 depicts the sample
workspace for the activity node called Review Meeting
in Figure 1. A workspace typically gives a work
context of an activity as it hosts resources needed for
enacting the activity: transitions, artifacts (shown as
overlapping two overlapping documents with arrows
for depicting access rights), communication tools
(shown as a microphone, and an envelope), and any
task· descriptions (shown as a question mark).
Effectively, when an activity is undertaken, the
workspace is mapped into a virtual room, transitions
into buttons, and artifacts, communication tools (i.e.
for synchronous and asynchronous forms of
communications) and task description into objects
which can be manipulated by software engineers to
complete the particular task at hand.

Figure 3. Sample Workspace for Activity Node
Review Meeting from Figure 1

As part of its enactment model, VRPML relies on
its resource exception handling mechanism. In
VRPML, resources include roles assignment, artifacts
and tools (including communication tools) in a
workspace as well as the depths of multi-instance
activity nodes and meeting activity nodes. Depending
on the needs of a particular software development
project, these resources can either be allocated during
graph instantiation or dynamically during graph
enactment.

IV. CONCLUSION

In conclusion, this paper answers the basic
questions relating to the need to support the modeling
and enacting of software processes as well as provides

a survey of PMLs which highlights the current
advancement in the area.

As has been shown, because of the potential
benefits in terms of being able to provide automation,
guidance and enforcement of software engineering
practices and policies through enactment, a PML could
form an important feature of future software
engineering environments. Nonetheless, despite the
above promise, the adoption of PMLs in industry has
stilI not been widespread [10]. Furthermore, no single
existing PML has emerged dominant as the de facto
standard for modeling and enacting software processes.
For these reasons, it follows that research into PMLs is
still necessary.

Acknowledgement

The work undertaken in this research is partially
funded by the USM Short Term Grants - "The Design
and Implementation of the VRPML Runtime
Environment".

REFERENCES

[IJ V. Ambriola, R. Comadi, and A. Fuggetta.
Assessing Process-Centered Software
Engineering Environments. ACM Transactions on
Software Engineering and Methodology, 6 (3).
283-328.

[2] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L.
Lavazza. "SPADE: An Environment for Software
Process Analysis, Design and Enactment". In A.
Finkelstein, J. Kramer and B. Nuseibeh (Eds.),
Software Process Modeling and Technology,
Research Studies Press, Taunton, England, 1994,
223-247.

[3] J.J. Chen. CSPL: An Ada95-Like, Unix-Based
Process Environment. IEEE Transactions on
Software Engineering, 23 (3). 171-184.

[4] R. Comadi, and M.L. Jaccheri. Process Modelling
Languages, in Demiame, J.e., Kaba, B.A. and
Wastell, D. eds. Software Process: Principles,
Methodology and Technology, Lecture Notes in
Computer Science Volume 1500, Springer,
Berlin-Heidelberg, 1999,27-52.

[5] G. Cugola, E.D. Nitto, C. Ghezzi, and M.
Mantione. How to Deal with Deviations during
Process Model Enactment. in Proc. of the 17th
Int!. Conf on Software Engineering, Seattle,
Washington, April 1995, IEEE Computer Society
Press, 265-273.

[6] S. Dami, J. Estublier, and M. Amiour. "APEL: A
Graphical Yet Executable Formalism for Process



I

I
I
I

I
I
I

I
I
I

I

Engineering and Methodology (TOSEM), 4 (3).
221-286.

[17] S. Sutton Jr., and L.J. Osterweil. The Design of a
Next-Generation Process Language. in Proc. of
the Joint 6th European Software Engineering
Conference and the 5th ACM SIGSOFT
Symposium on the Foundation of Software
Engineering, (1997), Lecture Notes in Computer
Science Volume 1301, Springer, 142-158.

[18] A. Wise. "Little TIL 1.0 Language Report _
Technical Report 98-24", Dept. of Computer
Science, Univ. of Massachusetts at Amherst,
April 1998.

[19] K.Z. Zamli and P.A. Lee. "Taxonomy of Process
Modeling Languages". In Proc. of the ACS/IEEE
IntI. Con! on Computer Systems and
Applications, 2001, IEEE CS Press, 435-437.

[20] K.Z. Zamli. "Process Modeling Languages: A
Literature Review". Malaysia Journal of
Computer Science 14,2 (December 2001)

[21] K.Z. Zamli and P.A. Lee. "Exploiting a Virtual
Environment in a Visual PML". In Proc. ofthe
4th Int!. Con! on Product Focused Software
Process Improvements (PROFES02), Lecture
Notes in Computer Science Volume 2559, 2002,
Springer, 49-62.

[22] K.Z. Zamli and P.A. Lee. "Modeling and
Enacting Software Processes Using VRPML". In·
Proc. of the 10th IEEE Asia-Pacific Con! on
Software Engineering, December 2003, IEEE CS
Press, 243-252 .--.

[23] K.Z. Zamli. "Supporting SoftWare Processes for
Distributed Software Engineering Teams",

. - School of Computing Science, Univ. of
Newcastle upon Tyne, PhD Thesis, 2003.

[24] K.Z·. Zamli and N.M. Mat Isa, "A Computational
Model for a flOW-based visual PML", submitted
for publication.

[25] K.Z. Zamli and N.M. Mat Isa, "The Applicability
of VRPML for Supporting Distributed Software
Engineering Teams", submitted for publication.

Modeling". Automated Software Engineering, 5
(I), 1998,61-96.

[7] 1.C. Derniame, B.A. Kaba, and B.C. Warboys,
The Software Process: Modelling and
Technology. in J.e. Derniame, B.A. Kaba, and D.
WasteII. eds. Software Process: Principles,
Methodology and Technology, Lecture Notes in
Computer Science Volume 1500, Springer,
Berlin-Heidelberg, 1999, 1-13.

[8] P. Heiman, G. Joeris, and C.A. Krapp.
"DYNAMITE: Dynamic Task Nets for Software
Process Management". In Proc. of the 18th Int!.
Con! on Software Engineering, Berlin, Germany,
1996, IEEE CS Press, 331-341.

[9] K.E. Huff. Software Process Modeling. in A.
Fuggetta, and A. Wolf, eds. Trends in Software
Process, John Wiley & Sons, 1996, 1-24.

[10] M.L. Jaccheri, R. Conradi, and B.H Drynes.
Software Process Technology and Software
Organisations. in Proc.s of 'the 7th European
Workshop on Software Process (EWSPT 2000),
Kaprun, Austria, February 2000, Lecture Notes in
Computer Science Volume 1780, Springer, 96­
108.

[11] G. Junkermann, B. Peuschel, W. Schafer, and S.
Wolf MERLIN: Supporting Cooperation in
Software Development Through a Knowledge­
Based Environment. in A. Firikelstein; J. Kramer,
and B. Nuseibeh, eds.. Software Process
Modelling and Technology, Research Studies
Press, Taunton, England, 1994,103-129.

[12] M.(· XelIner~- P:H. Feiler, A.Finkelstein, T.
Katayama, L.J. Osterweil, M.H. Penedo, and R.D.
Rombach. "Software Process Modeling Example
Problem". In Proc. of the 6th Int!. Software
Process Workshop, Hakodate, Hokkaido, Japan,
October 1990. IEEE CS Press.

[13] C. Liu, and R. Conradi. Process Modeling
Paradigms: An Evaluation. in Proc. of the 1st
European Workshop on Software Process
Modeling, Milano, Italy, May 1991, Italian
National Association for Computer Science, 39­
52.

[14] 1. Lonchamp. An Assessment Exercise. in A.
Finkelstein, 1. Kramer, and B. Nuseibeh, eds..
Software Process Modelling and Technology,
Research Studies Press Ltd., Taunton, Somerset,
U.K., 1994, 335-356.

[15] L.J. OsterweiI. Software Processes are software
too, revisited. In Proc. of the 19th IEEE IntI.
Con! on Software Engineering, Boston, USA,
1997, IEEE CS Press, 540-548.

[16] S. Sutton Jr., D. Heimbigner, and L.J. OsterweiI.
APPLIA: A Language for Software Process
Programming. ACM Transactions on Software

I

I
I

I
I

I
I
I

I

I

I

I
I

I
I
I

,'..

:'1

1

I 28 I
I I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

A SURVEY AND ANALYSIS OF PROCESS MODELING LANGUAGES

Kamal Zuhairi Zamli and Nor Ashidi Mat Isa
Software Engineering Research Group,

School ofElectrical and Electronics Engineering,
Universiti Sains Malaysia,

Engineering Campus,
14300 Nibong Tebal,

Pulau Pinang, Malaysia
Tel: 604-5937788 ext 6079, Fax: 604-5941023

Email: {eekamal.ashidi}@eng.usm.my

ABSTRACT

Process Modeling Languages (PMLs) are languages used to express software process models. Process Centered
Software Engineering Environments (PSEEs) are the environments used to define, modifY, a nalyze, and enact a
process model. While both PMLs and PSEEs are equally important, it is the characteristics ofPMLs that are the
focus ofthis article.

Over the past 15 years, there have been many PMLs (and PSEEs) developed. Despite many potential advances, the
use of PMLs in industry has not been widespread. As PMLs could form a vital feature for future software
engineering environments, it is useful to reflect on the current achievements and shortcomings, and to identifY
potential areas ofomission. It is also useful to explore issues emerging from related research areas, the adoption of
which could improve the applicability and acceptance ofPMLs. Given such potential benefits, this paper presents a
critical analysis of existing PMLs identifYing each language's strong points and weaknesses, thereby forming
guidelines for thefuture design ofPMLs..

Keywords: Process Modeling Languages, Software Process, Software Engineering

1.0 INTRODUCTION

A PML is analogous to a programming language in the sense of providing a model solution of a particular problem.
However, there is a subtle difference between a PML and a programming language which lies in terms of their
computational models. Unlike the familiar computational model in computer science where sequences of operations
specified by computer programs are automatically executed by the central processing unit, the computational model
demanded by PMLs is somewhat different. This is because PMLs require some operations to be executed by (error­
prone) software engineers using some defined software tools, while other operations are suitable for automatic
execution (e.g. automation of routine operations). As such, developing an ideal PML to support such a
computational model poses a challenge to researchers in computer science. In response to this challenge, many
PMLs have been developed and described in the literature over the last fifteen years.

Despite many potential advances, the use ofPMLs in industry has not been widespread [19]. As PMLs could form a
vital feature for future software engineering environments, it is useful to reflect on the current achievements and
shortcomings, and to identify potential areas of omission. It is also useful to explore issues emerging from related
research areas, the adoption of which could improve the applicability and acceptance of PMLs. Given such potential
benefits, this paper presents a critical analysis of existing PMLs identifying each language's strong points and
weaknesses, thereby forming guidelines for the future design ofPMLs.

2.0 OVERVIEW OF PML ISSUES

A number of researchers have classified these different language paradigms in the context of a PML based on their
experiences with programming languages. Liu and Conradi [21] identify five categories of PML language
paradigms:



Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

• Active Database PMLs - PMLs which relies on database triggers employing Event-Condition-Action rules as
the basis for the language.

• Rule-based PMLs - PMLs which exploits rule-based planning techniques or blackboard architectures in the
language.

• Graph/Net PMLs - PMLs which utilizes graphs or Petri Nets.

• Process Programming PMLs - PMLs which define a process model as a computer program based on a
general purpose programming language.

• Hybrid PMLs - PMLs which fits into more than one of the above categories.

Although with different headings, Lonchamp [22] proposes a similar classification of PMLs, consisting of the
following categories:

• Graphical PMLs - PMLs which provide a graphical syntax.

• Net-oriented PMLs - PMLs which utilise nets such as Petri nets.

• Procedural PMLs - PMLs which adopt a procedural programming language.

• Object-oriented PMLs - PMLs which utilise some features from object-oriented languages (e.g. objects and
inheritance).

• Rule-based PMLs - PMLs which exploit rules-based techniques mainly based on Prolog.

• Multi-paradigm PMLs - PMLs which utilise more than one of the above categories.

The slight difference between the classification from Liu and Conradi with that from Lonchamp is that the latter
includes object-orientation.

Building from the classifications from Liu and Conradi, and Lonchamp, Huff [18] identifies four different categories
ofPML language paradigms:

• Non-executable PMLs - PMLs which provide defmed syntax but without executable semantics.

• State-based PMLs - PMLs which uses hierarchical state machines, Petri nets, or formal grammars as the basis
of the language.

• Rule-based PMLs - PMLs which rely on a rule-based approach (i.e. based on Prolog) or database triggers
(i.e. based on Event-Condition-Action (ECA) rules).

• Imperative PMLs - PMLs which rely on a model" of computation whereby software processes are modelled as
step by step sequences of commands.

The notable difference between the work ofLiu and Conradi, Lonchamp, and Huff is that the latter includes the non­
executable category 0 fP MLs. Essentially, the 0 utcome 0 fHuffs non-executable categorization is that graphical
high-level notations such as Integration Definition and Function Modeling (IDEFO) and Entry condition, Tasks,
Verification and Exit Criteria (ETVX) can also be considered as PMLs because of their syntactic abilities to express
a software process [18]. It should also be noted that Huffs non-executable category of PMLs does not implicitly
imply that PMLs in other categories are enactable. This is because some PMLs can belong to more than one
category.

A more recent classification ofPMLs is that of Ambriola et al [1]. This classification breaks away from the earlier
classifications, as PMLs are classified according the process lifecycle that they support rather than being based on
their language paradigm. The main categories are:

• Process Specification Languages (PSLs) - used in the specification phase of the software process, and
typically make use of formal notations.

• Process Design Languages (PDLs) - used to support the design phase of the software process.

• Process Implementation Languages (PILs) - used to support the implementation phase of the software
process.

Regardless of which classification is used, some PMLs can fit into more than one category. This is because some
PMLs combine different language paradigms, and therefore cannot be classified under one particular category.



r
f
r

r

f

I

l

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

Additionally, such an overlap may also occur because the scope of coverage of a PML can be very large covering
many aspects of the modeling process from the requirement phase to implementation.

As far as assessing the existing PMLs, much research has already appeared. Lonchamp [22] reports some results of
evaluating PMLs using a set of questionnaires given to the authors of each PML. The questionnaires covered:

• The modeling approach - language constructs used to express activities and their pre-conditions and post-
conditions as well as ordering constraints and parallelism, input and output artifacts, and roles.

• The underlying language paradigm.

• The tools support (e.g. editors, compilers).

• The enactment capability, the meta-process and the evolution support.

• The resulting assessment, however, is targeted to the PMLs developed under the European research
consortium called Process Modeling Techniques Research (PROMOTER).

Complementing from the work of Lonchamp, Ambriola et al [1] defme an assessment grid for evaluating both
PSEEs and PMLs. As far as evaluating PMLs is concerned, the assessment grid covers:

• The PML scope of coverage - the part of the process lifecycle the PML supports.

• The underlying language paradigm.

• The modeling approach.

• The support for modularity, composition and reuse.

• The mechanism for process enactment and evolution.

• The tool support.

Like Ambriola e t al,Conradi and Ja ccheri [12] also define an assessment grid in the forms 0 frequirements for
PMLs and PSEEs, identifying the primary and secondary process elements (i.e. in terms of what constitute a
software process) that a PML and a PSEE need to support. In the context of this research work, only the primary
process elements are considered because they constitute the requirements 0 fP MLs whilst the secondary process
elements will be ignored as they constitute the requirements 'of PSEEs. According to Conradi and Jaccheri, the
primary process. eJements consist of:

• Activities, theirpre-conditionsandpost-conditions, ordering constraints, and parallelism.

• Input artifacts and output artifacts as products.

• Human and their roles representation.

• Tool support.

• Evolution support.

As has been shown, there have been a number of attempts to classify and characterize the requirements of PMLs.
However, one aspect perceived to be lacking in the previous classifications of PMLs is consideration of the human
dimension which relates to the issues surrounding the software engineers (or process engineers) who create the
process models and initiate enactment as well as the software engineers who are subjected to process enactment.

Paradoxically, human dimension issues have always been a major concern in research into software processes [2,
26]. However, current trends in the way software engineers work (e.g. cross organizational boundary, geographically
and temporally distributed locations) suggest that much more could be done to address these issues. These issues
include: providing support for process engineers in terms of utilizing visual syntax; enactment within a virtual
environment; supporting user and process awareness; process visualization; virtual meetings; as well as reflecting
that support in the features provided in a PML [32].

Capitalizing on these issues relating to the human dimension and building from the earlier characterizations and
requirements of PMLs, Table 1.0 presents an alternative characterization of PMLs which forms a taxonomy for
PMLs. This taxonomy for PMLs is based on our earlier work (described in [32]) and differs from other work mainly
by the inclusion ofthe human dimension issues.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



[I

cI
[I

rl
(I
fl
rI
,II
II
[I
1,'1

t'l
['I
(I
I

{I
[I
tl
tl
LI

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

Table 1.0; Taxonomy for PML

PML Characteristics
Sequential and parallel
activities as well as their
constraints

Modeling Input and output artifacts
Support Role representations

External tools
Abstraction and modularization
Enactment in a distributed

Enactment environment
Support Dynamic allocation of

resources
Evolution Reflection
Support

Evaluation Collection of enactment data
Support

Visual notations
Human User awareness

Dimension Process awareness
Support Process visualization

Virtual meetings

Each issue given in Table 1 will now be discussed in detail next.

MODELING

Derniame et al [15] have identified the following constituent parts of a process model which therefore have to be
represented in a PML:

• Activities - Activities are any actions performed by software engineers or by computers to achieve certain set
goals. Examples of an activity can include high-level design or compilation of a program. In term of
enactment, activities can be sequential or parallel and are always associated with artifacts (described below)
and sets of pre-conditions and post-conditions. Also, depending on its needs, an activity may be performed by
a single software engineer (e.g. modify a design) or collaboratively performed by a group of software
engineers (e.g. review a design).

• Roles - Roles identify the skills required for performing a particular activity. In many cases, software
engineers may assume many different roles based on their skills.

• Artifacts - Artifacts represent the inputs to and the outputs from an activity. Generally, artifacts are referred
to, produced or maintained when an activity is performed. Examples of artifacts include: design documents;
source code; and object code. Because artifacts are potentially manipulated by many software engineers when
performing their activities, artifacts often require some associated access rights. Access rights ensure that
artifacts are manipulated in accordance with the pre-conditions or post-conditions of an activity.

• Tools - Tools are external programs which are needed either to transform artifacts or to support inter-person
communication (e.g. email, video conferencing program) which is seen as an important aspect of
collaborative activities such as software processes [31].

The last three constituents of a process model from the bulleted list above are often referred to as resources.

In order to achieve reuse of process models, a PML also needs to support abstraction and modularization. Through
modularization a nd a bstraction, large process models for a particular project, for example, can b e broken into a
number of smaller process models (or modules). In tum, these smaller process models can be reused to form other
process models for different projects.



[~

fh
1m

I
;;
of

[ .

I•
I

Malaysian Journal a/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

In summary, the categories for PML modeling issues are:
i. Support for expressing both sequential and parallel activities and their constraints.

ii. Support for expressing input and output artifacts.
iii. Support for role representations.
iv. Support for expressing and invoking extemal tools.
v. Support for abstraction and modularization of process models.

ENACTMENT

In order to directly support the activities of software engineers, a process model needs to be enacted. Enactment of
process models requires a P ML that has executable semantics. Furthermore, as software processes 0 ften involve
software engineers who mayor may not be collocated, a PML also ought to support enactment of process models in
a distributed environment.

Enactment of a process model raises an issue relating to resource allocations. Because software processes are highly
dynamic, rarely can resources for a process model be completely specified ahead of time. For instance, the number
of people assigned (as a resource) for a particular activity, and hence how many instances of a particular activity are
created, must not be fixed since it will depend on the dynamic needs of a project. Therefore, it is desirable for a
PML to support the dynamic allocation of resources. Here, the dynamic allocation of resources means that resources
are allocated at the last moment, just 'as the activity is about to be started. Allowing dynamic allocation of resources
as a feature of PML gives the process engineers the flexibility to consider the current needs of a particular project
before deciding on the necessary resource allocation for a particular activity. As a consequence, because resources
are allocated dynamically, enactment of a process model c an commence even w hen resources have not yet been
completely specified.

In summary, the categories for PML enactment issues are:
i. Support for enactment in a distributed environment.

ii. Support fof dynamic allocation of resources.

EVOLUTION

To handle its evolution in a controlled and integrated manner, a process model also needs to capture issu~s

conceming the meta"process [1, 9, 10]. The meta-process is in charge of maintaining and evolving the process
model according to specific and desirable rules and procedures. Therefore, the datamanipulatedby~themeta-process

are part of the process model itself.

Because enactment of a process model is typically long-lived-and subjected to ·unpredietablechanges- (e.g. fo cater
for new needs arising from the current enactment), there is a need for the PML to provide a mechanism to allow the
meta-process to be able to access the process model even though it is running. It has been suggested that reflection, a
feature of a PML which allowed enactable code to be manipulated as data, provides such a suitable mechanism [1, 9,
10]. With reflection, the meta-process can be modeled and enacted as part of the process model itself. As a result,
evolution of the process model (and evolution of the meta-process itself) can be achieved dynamically, and be
supported by the meta-process. It follows that while an enactable PML without a reflective facility can be used to
support modeling and enacting of software processes, it may not be able to support an integrated process model
consisting of both the software process and the meta-process, and to support dynamic changes to both during
enactment.

In summary, the sole category for PML evolution issues is:
i. Support for reflection.

EVALUATION

If a PML, through enactment of the process model, is being used to guide or enforce software engineering practice,
it is vital that issues of importance are measured in some way so that evaluation of the process can take place. This is

I
I"

1
1
I
I
I

I~

I
I
I
I
1
I
I
1



[I
["I

rl
[I
IJ
I~I
[I
I
I
I

II
II
(I
II
I
I
I

LI

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

especially important to provide support for software process improvement. Thus, a PML ought to provide relevant
software metrics, although little work is reported in the literature [32].

In summary, the sole category for PML evaluation issue is:
i. Support for collection of"enactment" data.

HUMAN DIMENSION

Because software processes are carried out primarily by people, it is necessary that human dimension issues are
considered. The human dimension can cover issues for the process engineers (or project managers) who create the
process models and initiate enactment (e.g. facilitating the construction and comprehension of process models) as
well as issues for software engineers who are subjected to process enactment (e.g. supporting software engineers at
work).

In terms of the human dimension issues surrounding the process engineers who create the process model and initiate
enactment, it is obviously desirable to have a process model which is simple and easy to understand. This places a
requirement on a PML to be intuitive in its syntax and semantics. It is generally believed that this can be obtained to
a certain extent b y adopting a visual syntax and notation. The reason is that "pictures" are normally thought to
readily relate to the cognitive part of the human brain as compared to text. Employing visual notations in a PML
helps create an easy to use yet expressive language, thus making a PML more acceptable and accessible. There are a
number of visual PMLs discussed in the literature, as will be seen in the next section.

In terms of the issues surrounding the software engineers who are subjected to process enactment, it is desirable that
enactment of a process model provides some form of awareness in terms of providing information about other parts
of the model such as other users and other activities. In the literature, the importance of awareness has been
established in the field of Computer Supported Cooperative Work (CSCW), a field of study which places emphasis
on the nature of humans working together collaboratively to achieve a common goal as well as on the possibilities of
technology to support and improve individual and group efficacy. Clearly, there is a need to include support for
awareness as a feature of a PML since enactment of a process model also involves collaborative work similar to
CSCW. The support for awareness seems increasingly relevant in line with the growing trends in the way software
engineers work in geographically and temporally distributed locations (e.g. software designers in London, reviewers
in Washington and programmers in New Delhi) and across organizational boundaries. There are two types of
awareness a PML must support. They are:

• User awareness - User awareness is providing knowledge about other group members involved in the
cooperative system. In general, having user awareness can often encourage informal interaction. Such
informal interaction is normally useful if people are working on shared artifacts (as in a typical software
process).

• Process awareness - Process awareness is providing knowledge about the tasks in their working contexts, for
example in terms of what the previous task was, what the next task is and what needs to be done to move
along as well as what resources are required. Typically, having process awareness is valuable as it gives a
sense of where and how the pieces fit together into the whole picture. Additionally, process awareness should
also make people aware of tasks not only involving themselves but also others. Such awareness may help
improve the process - for instance, people can p Ian and anticipate their workloads a s needed to meet the
project deadline. One way to enhance process awareness is to provide support for visualisation of the process
model. This seems to be a useful feature to have in a PML as software processes can be very complex and full
of subtleties. Process visualisation can provide multiple views of the same process with different perspectives
which, in tum, enhances human intuition about the tasks they are involved in.

Apart from supporting awareness and visualization, there is also a need for a process model to be able to
accommodate meetings as they are an important characteristic of software engineering. In fact, in the context of
supporting software development over distributed locations, it is desirable to for a process model to accommodate
virtual meetings, that is, meetings that are held online. Accommodating virtual meetings could reduce costs if
meetings would otherwise have to be held face to face. Thus, a PML needs to be able to specify virtual meetings as
part of the process model.



i
(i

~

~

[I

[I
j rIi
I [II,
I

III '
1

L
[

[

l
{

L
l
[

l
f

I

Malaysian Journal ofComputer Science, Vol. 17 No, 2, December 2004, pp. 68-89

In sunnnary, the categories for PML human dimension issues are:
i. Support for visual notations.

ii. Support for user awareness.
iii. Support for process awareness.
iv. Support for process visualization.
v. Support for virtual meetings.

3JJ ANALYSIS OF PMLs

This section provides a detailed analysis of existing PMLs using the characteristics of PMLs identified in the
previous section. For each PML, this section presents: a brief description of the language; and an analysis of PML
issues related to the modeling, the enactment, the evolution, the evaluation, and the human dimension.

3.1 SLANG

SLANG [3], a PML for the PSEE called SPADE, is based on Petri nets. The semantics of SLANG are defined by
high-level Petri nets called Entity Relations (ER) nets. The main addition that ER nets add to conventional Petri nets
is the ability to incorporate timing as the criteria to fire transitions.

In addition to the usual Petri nets sYntax, SLANG provides an interface defined in tenns of input and output places
(as entry and exit points), input and output transitions (as entry and exit actions) as well as shared places to allow
sharing 0 f data, a II 0 f which are connected by a sets 0 f input and 0 utput a res. I n fact, ani nterface serves a s a
SLANG modularization facility; an interface may be decomposed to show the overall internal SLANG net structure.

Besides the normal places and the shared places, SLANG also defines user places. Normal places and shared places
represent place holders for tokens consisting of typed artifacts stored in an object oriented database, while user
places represent place holders for tokens consisting of internal messages generated as a consequence of external
events occurring within the PSEE.

In SLANG, transitions designate events. Transitions firing depends upon the availability of tokens and the defined
guards (explained below). Additionally~timingjn.formation, such as the time_inten'aLwithin_whichalLeYentma:~'-.or

must occur, can also be specified by associafing time-stamps with tokens and time changes with actions (described
below). In addition, SLANG also allows transitions tobe textually augmented with scripts consisting of three parts:

i. A header containing.an e1lent's :nameand typed parameters -'Yhich must match the types :of the ITq.nsition's input.-
and output places. . -

ii. A guard containing a boolean expression which checks the firing rules. A guard may be thought as the pre­
condition for enabling a transition.

iii. A set of actions that performs some computation on the input tokens to produces some output tokens.

There are two types of transitions in SLANG: white transitions and black transitions. White transitions are similar to
procedures in a general purpose programming language - they receive some input parameters (though the defined
guards that need to be satisfied) and predefined statements are executed in sequence to produce some output
parameters. Black transitions, unlike white transitions, allow invocation of external tools. The combinations of black
transitions and user places allow SLANG to have some control over the events generated by external tools. This
capability allows SLANG to support automation at external tool levels, for example, by detecting events such as the
opening or the closing of external tools.

ANALYSIS OF SLANG

In terms of the modeling support, SLANG seems to provide support for most of the characteristics identified in
Table 1 with the exception of the representation of roles. In SLANG, activities and their constraints are modeled as
sets of actions associated with transitions. Tokens represent typed input/output artifacts which are stored in an
object-oriented database. Being a Petri net based PML, SLANG naturally supports parallelism. Finally,
modularization and abstraction facilities- are also supported in SLANG through interfaces.

1
1
1
1
1
1
1
1
1

---- --1--

1
I
1
1
1
1
I
1



--
II
LI

­
II
II
II
II
II
II
II
II
II
II
II
II
II
II

•

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

In terms of enactment support, SLANG supports enactment in a distributed environment. However, SLANG does
not directly support dynamic allocation of resource but process models (and resource allocation) can be evolved
while enactment is taking place through SLANG's reflection facility. No support is provided for the collection of
enactment data. As far as the human dimension support, SLANG only supports visual notations based on Petri nets
(and augmented with textual scripts).

3.2 LIMBO AND PATE

LIMBO and PATE are the two PMLs for the PSEE called OIKOS [23]. Because both LIMBO and PATE exploit the
idea of coordination to support a software process as inspired by Linda [16], it is worth describing the basic idea
from Linda.

In Linda, coordination is based on tuples and tuple spaces. A tuple consists of a set of variables or values. A tuple
space can be viewed as a distributed shared memory into which tuples can be inserted or removed. Each tuple in a
tuple space is produced by some executing thread and it remains in the tuple space until some other thread consumes
it. When a thread requests specific tuples which do not exist, the thread may be suspended until those tuples are
made available.

Borrowing from Linda, LIMBO and PATE support a software process by exploiting a reactive system based on
threads (called agents) communicating using shared tuple spaces called blackboards.

LIMBO and PATE originated from Extended Shared Prolog, and adopt a rule-based approach to support the
modeling and enacting of software processes. Using Ambriola's classification discussed earlier, LIMBO is the
specification language whilst PATE is the implementation language. It is possible to obtain a PATE process model
by successive refinement of a LIMBO specification. In the context of this paper, because LIMBO serves as a
specification language for PATE, LIMBO will not be discussed further.

In P ATE, a process model is constructed in terms 0 f a hierarchy 0 f a gents. Each a gent is connected to its 0 wn
blackboard when the agent is activated. Agents react to the presence of tuples (mainly Prolog facts) on their
blackboards by removing tuples, and inserting tuples into their own blackboards or other blackboards that they know
of through a customizable service provided by the PSEE.

The behavior of an agent is defined by a theory consisting of a set of action and reaction patterns along with a
sequential Prolog program (called the Knowledge base). Each pattern defines a stimulus and response pair. The
stimulus consists of a Read guard and an In guard. The response consists of a Body and a Success set. Optionally, a
Failure set can also be specified.

A pattern can fire when the tuples (in terms of Prolog facts) in the agent's blackboard satisfy the read and the in
guards; these tuples will be consumed and removed from the agent's blackboard. Whenever several patterns can fire,
one is chosen non-deterministically and the specified actions are performed (i.e. the related pattern body and the
sequential Prolog program will be executed). The execution of the pattern body and the sequential Prolog program is
achieved in such a way that no side effects are allowed to the agent's blackboard whose pattern is fired (as this can
only be done by the success set or the failure set).

The most common use 0 f t he sequential Prolog program in terms 0 f su pporting a software process is to invoke
external tools to manipulate artifacts. Finally, depending on the outcome of the execution of both the pattern body
and the sequential Prolog program, some tuples (i.e. a success or a failure set) will be inserted back onto the
blackboard whose name is specified by that pattern. This sequence of pattern firing can then go on for other agents
until the enactment is completed.

Blackboards can be dynamically created or destroyed during the course of enactment. Creation of a new blackboard
can be achieved by an agent inserting an activation goal (i.e. Prolog facts) along with a termination condition (also
Prolog facts) and a list of connected agents in its own blackboard. Destruction of a blackboard occurs when the
success set or the failure set matches with the blackboard termination condition also expressed as Prolog facts, as a



~n

bl

I
I

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

result of firing a pattern. In this case, all the tuples in the blackboard will disappear and all connection to agents will
be aborted.

ANALYSIS OF LIMBO AND PATE

In terms of modeling support, the modeling of activities and their constraints are indirectly supported by specifying
the theory of each agent (i.e. the action and reaction patterns and the knowledge base). This can be achieved either
from the LIMBO specification (and later refined to PATE) or directly in PATE. How role representation is
supported in P ATE is not clear. Tools can b e invoked in pattern bodies or in the knowledge base. Artifacts are
accessed in terms of identifiers through s orne standard services provided by the PSEE. Parallel activities can be
readily supported because agents are effectively executing threads communicating using multiple tuple spaces.
However, modularization and abstraction of process models are not supported in PATE.

In terms of enactment support, a process model expressed in PATE can be enacted in a distributed environment.
However, PATE does not support dynamic allocation of resources. In terms of evolution support, PATE does not
support reflection. No support is provided for the collection of enactment data nor for the human dimension issues.

3.3 BM AND PWI PML

Base Model (BM) and Process Wise 'Integrator Process Management Language (PWI PML) are the two PMLs for
the PSEE called PADM [6]. BM adopts temporal logics semantics; PWI PML adopts object-oriented technology.
Using Ambriola's classification, BM can be seen as a process specification language whilst PWI PML can be seen
as a process implementation language.

Because BM and PWI PML are two compatible PMLs, it is possible to gradually refine the process model specified
by BM intoPWI PML. In doing so, a special tool called the BM stepper can be used to assist checking of the BM
specification against the problem description and the refinement of the process model in PWI PML. Because this
paper concentrates on enactable PMLs, discussion of BM will not be developed further as it mainly serves as a
specification language for PWI PML.

PWI PML is an object-oriented PML. The primary construct for supporting the modeling and enacting ofsoftware..
processes is -the role. The concept of a role inPWI PML carries a more subtle meaning than that defmed earlier.
PWI PML defines two types of roles: User Roles and System Roles. Auser role corresponds to the identification of
skills for performing:a particulara,ctivity' in a 'softwareprocesswhilst a· system role ,may .corr.espond. to some
abstractions of an activity or a user role.

A software process model in PWI PML is a set of executing role instances connected by interactions (described
below). A role is a subclass of the pre-defined PML Role class. Within the subclass the following properties must be
specified for modeling and enacting software processes:

i. Resources describe the data objects (e.g. artifacts and tool definitions) belonging to the role. These data objects
can be derived from some pre-defined classes in PWI PML.

ii. Assocs provides references to the communication channels linking one role object to another.
iii. Actions define the list of interactions and activities which are performed by the role. Actions may be thought of

as sub-activities of a role. Each of these actions has a name, and is guarded by when conditions which must be
satisfied before the action can be performed.

iv. Categories contain conditions to determine the start and stop conditions ofa role.

Enactment is achieved by instantiating roles, and a role may also instantiate other roles. Each role instance has a
separate tlrread of control with its own local data. Role instances communicate using message passing via typed one­
way asynchronous communication channels.

ANALYSIS OF BM AND PWI PML

In terms of modeling support, the modeling of activities and their constraints are supported using the specification
language BM and later refined into PWI PML. In particular, activities can be abstracted as a sub-class of the Role

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I



-,
-
II
11
[I
il
'il!i

[I
il
II ,{\,;.~:

, . '",
'0·;

I
I

!I
I

I
i I
,J
~

11
iI

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

class, with each sub-activity representing some actions properties in the role. Parallelism between activities is
supported as each role has its own separate thread. The representation roles described in the previous section are
represented as user roles and are considered as resources of the system roles. Similarly, artifacts and tools are also
considered as resources of the system roles. Finally, modularization and abstraction in PWI PML are supported by
the role definitions.

In terms of enactment support, PWI PML supports enactment in a distributed environment. However, PWI PML
does not seem to directly support dynamic allocation of resources although user roles can be bound to system roles
dynamically. In terms of evolution support, PWI PML provides support for reflection. No support is provided in
PWI PML for the collection of enactment data nor for the human dimension issues identified earlier.

3.4 MERLIN

MERLIN [20] is a Prolog-like PML. In MERLIN, the act of modeling a software process is assisted by entity
relationship diagrams (a type of diagram which mainly depicts dependencies amongst artifacts) and state charts (a
special type of state transition diagram which depicts the allowable transitions of an activity or an artifact from its
creation to its completion along with the conditions under which a transition may occur). Based on the created entity
relationship diagrams and state charts, a process model is then mapped to Prolog rules and facts as a knowledge base
a.bout that particular process. A special kind of fact is used to describe roles (work_on and responsibilities facts),
artifacts and tools (document facts) 'as well as activities (task rules). Similar to MSL discussed in section 3.1,
enactment 0 fa process model expressed by MERLIN is achieved by the PSEE runtime engine using a forward
chaining mechanism to automate an activity that does not involve human intervention, and a backward chaining
mechanism to select a particular activity for software engineers based on the role they play.

With the information gathered by the backward chaining mechanism, the MERLIN PSEE runtime engine
incrementally builds a work context for the software engineers who perform the activity, in the form of a simplified
.entity relationship diagram which shows only the artifacts and tools necessary to complete the activity. In MERLIN
PSEE, a software engineer may interact with this diagram in a hypertext manner to perform their work.

ANALYSIS OF MERLIN

In terms of modeling support, the modeling of activities and their constraints, roles, artifacts and tools are supported
by specialized PROLOG facts. Parallel activities are supported by the PSEE runtime engine. However, it is not clear
how the modularization and abstraction of process models are supported in MERLIN.

In terms of enactment support, the process model expressed by MERLIN can be enacted in a distributed
environment. However, MERLIN does not support dynamic allocation of resources. In terms of evolution support,
MERLIN does not support reflection. For evaluation support, no support is provided for the collection of enactment
data. Concerning human dimension support, although MERLIN is a textual language, state charts and entity
relationship diagrams can be used to help construct the MERLIN process model. MERLIN provides limited support
for awareness. Process awareness is supported but not user awareness. The support for process awareness is
achieved by the MERLIN PSEE runtime engine which automatically builds a work context from the specified
Prolog facts (utilizing the backward chaining mechanism) in terms of only giving a software engineer the necessary
artifacts and tools needed to complete the activity. Finally, MERLIN provides no support for process visualization.

3.5 SPELL

SPELL, the PML for the PSEE called EPOS [11], is an object-oriented PML derived from the Prolog programming
language. In SPELL, the main support for software processes is provided by two pre-defined classes: TaskEntity and
DataEntity. TaskEntity forms the root of the task type hierarchy whilst DataEntity forms the root of the data (or
artifact) type hierarchy.

Every SPELL task type must be a subclass of TaskEntity which defines a number of predefined attributes that can be
tailored to the needs of the process modeL Among the important type level attributes within a task type are:



r

[

I
I

I I

1

Malaysian Journal a/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

i. Pre- and post-conditions: The pre- and post-conditions attributes in a task type are divided into static and
dynamic pre- and post-conditions. They are specified in first order predicate logic (as in Prolog). Static pre­
conditions and post-conditions are constraints mainly used to build the network of tasks. This is accomplished
by the runtime planner using forward and backward chaining. Dynamic pre-conditions and post-conditions are
constraints asserted before and after task executions, and are used to dynamically trigger tasks.

ii. Code: The code attribute defines the steps that are performed when the task is executed. A task's code
(specified in Prolog) is responsible for satisfying the dynamic post-conditions. When the code attribute is empty
(i.e. not specified), the task type is assumed to be composite - that is, the task is not performed by a specific
piece of code, but rather by executing subtasks (explained below).

iii. Decomposition: The decomposition attribute relates to the code attribute described earlier as it allows subtasks
to be specified. In SPELL, the subtasks may also be a network of tasks. Like the parent task, the network of
subtasks is also created by the runtime planner using the static pre- and post conditions discussed earlier.

iv. Formal: The formal attribute permits the specification of the input and output artifacts required for the task.
v. Executor: The executor attribute allows the tools used in the task to be specified.

vi. Role: The role attribute represents the role for the task.

In addition to these attributes, the TaskEntity class also defines a number of meta-level attributes and methods,
essentially allowing further customization of the TaskEntity class in terms of its execution. These meta-level
attributes and methods will not be discussed here as they are mainly there to provide support for the reflection
facility in SPELL. Nevertheless, one important aspect that can be specified at this level is triggers, which are special
operations invoked before or after the occurrence of a method. Triggers specify the constraints defining when the
trigger "codes" should be executed with respect to the method call. With triggers, various internal states of the task
executions can be captured and modified if needed. SPELL also defines a family of types derived from the
DataEntity class for specifying artifacts. Typical types used for software processes are a text type and a binary type
which can be further specialized to other types (such as c-source and object-file).

For process enactment in SPELL, the runtime support system provided by the PSEE consists of two parts: the
runtime planner and the runtime execution manager. As discussed earlier, the runtime planner generates a network
of tasks from the static pre- and post-conditions by utilizing forward and backward chaining similar toMSL; the
top-level network of tasks must be generated by the runtime planner before enactment commences but the detailed
level network of subtasks can be generated incrementally. The runtime manager executes the given task network (by
executing the specified code attribute in the task type) and works closely with the runtime planner such that, when a
composite task is encountered, the runtime manager invokes the runtime planner to detail out that composite task
based on its static pre- and post-conditions. InthiswaY,SPELLallowsthe detailed network of tasks to be generated
only when it is needed.-

ANALYSIS O'F SPELL ----

In SPELL, support for modeling of activities is provided by inheriting the TaskEntity class and specifying the
various pre-defined attributes discussed earlier. Parallel activities are supported in SPELL and are handled
automatically by the runtime planner and the runtime manager. The activity constraints are defined by the static and
dynamic pre- and post-conditions. Role and tool abstractions are supported through the role and executor attributes
of the TaskEntity class. Artifacts are typed and stored in an object-oriented database called EPOS-DB.
Modularization and abstraction facilities are also supported through the code and decomposition attributes of the
TaskEntity class.

In terms of enactment support, the process model expressed by SPELL can be enacted in a distributed environment.
SPELL does not directly support dynamic allocation of resources but process models (and resource allocation) can
be evolved while enactment is taking place through SPELL's reflection facility. No support is provided for the
collection of enactment data nor for the human dimension issues identified earlier.

I
I
I
I
I
I
I
I
I
I
I

··Ie
I
I
I
I
I
I
I
I



II
il
,I

II
jl
\1
II
jl
II
';1
I

:1
I

Malaysian Journal o/Computer Science, Vo!' 17 No.2, December 2004, pp. 68-89

3.6 MASPIDL

Model for Assisted Software Process Description Language (MASPIDL) [7] is the PML for the PSEE called ALF.
In MASPIDL, a software process model is modeled as a number of "fragments" called the MASP descriptions. Each
MASP description models a software process as five components:

i. The Object Model describes the data model representing artifacts.
ii. The Operator Model represents an abstraction of the actual activities which a software engineer needs to

perform in a software process, in terms 0 f 0 perator types. 0 perator types a llow ani ndividual a ctivity to be
described in terms ofpre-conditions and post-conditions along with a definition of tools.

iii. The Characteristics specify a set of consistency constraints on the process state which are maintained by the
runtime engine during the course of enactment; if they are violated, an exception condition is raised.

iv. The Rule Model defines some trigger reactions for predefmed events that occur during process enactment. The
events include database operations (e.g. read, write) and other user defined events.

v. The Ordering Model specifies the flow of control of the operators. Operators may be executed in parallel,
alternatively or sequentially.

Because a MASP description is generic, it must be instantiated (and compiled to a special format called IMASP)
before enactment can be achieved. Instantiation of MASP description corresponds to the assignment of actual tools
and altifacts in the operator and 0 bj.ect models. It should b e noted that a particular software process model can
consists of a number of MASP descriptions (or fragments) with each description defines a number of related
activities. So, before enactment can be achieved, each MASP description must be instantiated (and compiled)
individually. In this manner, instantiation and enactment may interleave so that the part of the software process that
has already been enacted may be taken into account to instantiate a further part.

ANALYSIS OF MASPIDL

In terms of modeling su pport, the modeling of activities and their constraints in MASPIDL are supported in the
operator and rule models. Parallelism of activities is supported in the ordering model. The representation of roles is
not supported at the PML level as this is achieved at the PSEE level. Artifacts are described in the object model.
Tools are described in the rule model along with the defined triggers. Finally, modularization and abstraction are
supported by the MASP descriptions.

For enactment support, MASPIDL supports enactment in a distributed environment. However, MASPIDL does not
really support dynamic allocation of resources. This is because resources for each activity defined in a particular
MASPIDL description must be allocated before enactment of that MASPIDL description can commence, although
such allocations can be made based on the outcome of the instantiation and enactment of the earlier parts. In terms
of evolution support, MASP/DL does not support reflection. Also, no support is provided for the collection of
enactment data nor for the human dimension issues identified earlier.

3.7 ADELE AND TEMPO

ADELE and TEMPO [5] are two PMLs for the P SEE called ADELE-TEMPO, which is a commercial database
product. To understand how the modeling and enacting of software processes is supported by the first PML,
ADELE, it is necessary to understand the basic architecture of its PSEE. The PSEE consists of a centralized
database which provides long transaction support for artifacts involved in the software development project. Each
participating software engineer in the project is provided with their own Work Environment by the PSEE, where
artifacts (organised in terms 0 f files and directories) can be checked out. A software process is then modeled in
ADELE as a set of defined events and triggers on the artifacts in the Work Environment.

ADELE events and triggers are based on the event-action-condition (ECA) rules. Triggers may fire on any of four
events - PRE, POST, ERROR and AFTER - with respect to a particular activity. In each of the events, some actions
(e.g. in terms of some database transactions or invoking of external tools) can be specified. PRE triggers are
evaluated at the beginning of an execution of an activity. If successful, the specified action is executed. Similarly,
POST triggers are evaluated after the completion of an activity. ERROR triggers are considered when a transaction
fails and AFTER triggers are applied after a transaction succeeds.

.........



I I
Malaysian Journal a/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

I

r

1
1

According to Belkhatir [5], because ADELE is too low level and difficult to understand, the second PML called
TEMPO was developed. TEMPO defines a process model based on the concept of role and connection (described
below). Although a user role is supported, the concept of role in TEMPO carries a subtle meaning than the one
defined in earlier. A role allows redefinition of behavioral properties of an artifact based on the defmed work
context, that is, the operations that can be done on that artifact and the rules that control these operations. Roles, in
tum, are connected to other roles through a defined connection, essentially the synchronization protocol based on
temporal-event-condition-action (TECA) rules (i.e. extended ECA rules with timing dependencies).

ANALYSIS OF ADELE AND TEMPO

I
I
I

i
r

In terms of modeling support, the modeling of activities and their constraints is indirectly supported in TEMPO by
defining roles and their connections. In ADELE, modeling of activities and their constraints are also indirectly
supported although at a very low level in terms of the ECA rules. Tools can be invoked from the action part of the
TECA rules in TEMPO (and ECA rule in ADELE) as a result of a condition being fulfilled. In both ADELE and
TEMPO, artifacts are defined as objects in the ADELE database. In TEMPO, parallel activities are supported by
connections defined by TECA rules (and ECA rules in ADELE). Finally, modularization and abstraction are only
supported by TEMPO (through the abstraction of roles).

In terms of enactment support, process models expressed by TEMPO and ADELE can be readily enacted in a
distributed environment. However, neither TEMPO nor ADELE supports dynamic allocation of resources. In terms
of evolution support, TEMPO and ADELE do not support reflection. For evaluation support, no support is provided
for the collection of enactment data. As far as the support for the human dimension, TEMPO provides (limited)
support for process awareness. In TEMPO, process awareness is achieved by giving the work context of a task. No
support is provided for user awareness, process visualization, and virtual meetings identified earlier.

3.8 APPL/A

I
I
I
I
I

1-
I
IANALYSIS OF APPLIA

Relations are sy ntactically similar to ADA package definitions and package bodies. Within a relation, persistent
storage of data may be defined. Triggers are similar to ADA tasks and hence are capable of handling multiple
threads of control. Unlike ADA tasks, triggers automatically react to events related to operations on the data defmed
in a relation. Enforced predicates are boolean expressions which act as post conditions on the operation of a relation;
no operations may violate the enforced predicate. Transactions-like statements control access to relations and may
affect the enforcement ofpredicates.

APPLIA [27], the PML for the PSEE called Arcadia. Being based on ADA, APPLIA inherits many features from
that language including its type system, module definition style (package), and task communication paradigm I
(rendezvous). To support a software process, APPLIA extends the ADA programming language with shared_________
persistence relations, concurrent triggers or!. relation operations, enforceable predicates on relations, arid­
transaction-like statements.

In terms of the modeling support, APPLIA does not provide support for all of the PML characteristics identified in
Table 1. Modeling of activities and their constraints are supported in APPLIA via relations with enforceable
predicates. Parallel activities are supported by exploiting triggers. No direct support is provided for role
representations, artifacts, and tools; rather these can be represented using the ADA type mechanism. Abstraction and
modularization in APPLIA is mainly based on the ADA procedures and packages.

I
I

~.

For enactment support, it is not clear whether or not APPLIA supports enactment in a distributed environment.
Additionally, APPLIA does not support dynamic allocation of resources. In terms of evolution support, APPLIA
does not support reflection, only offline process evolution as recompilation is necessary. Finally, no support is
provided for the collection of enactment data nor for the human dimension issues identified earlier.

I
I
I
I



rJ
{J
rJ
[I

tl
[I
[I

tl
(I
il
II
II
LI
(I
(I
II
II
II
II..

II

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

3.9 DYNAMIC TASK NETS

Dynamic Task Nets [17], the visual PML for the PSEE called Dynamite. Dynamic Task Nets described a software
process as graphs consisting of nodes representing tasks connected together with arcs (called relations). There are
three types of relations:

i. Control-flow relations impose an acyclic ordering of the activities to be enacted.
ii. Dataflow relations are used for data (mainly artifacts) transmitted between connected tasks.

iii. Feedbackflow relations are used to enable feedback from a successor task back to its predecessor.

There is also another relation supported by Dynamic Task Nets called successor relations. Unlike the three relations
described above, successor relations refer to n odes rather than arcs. When a task is augmented with a su ccessor
relation, that task is said to have multiple versions. What this means is that when such a task has to be reactivated
(e.g. as a result of feedback relations), a new task version may be created depending on whether the previous version
of the task has completed or not. If the task has already completed, a new version of the task is created requiring a
new assignment of a software engineer. If the task has not yet been completed, the runtime system automatically
updated the tasks with the new version of the artifacts.

In Dynamic Task Nets, tasks and their corresponding relations can be defined dynamically. The behavior of each
individual task (called a task net) can be customized in the sense that a task can execute even when its predecessor
tasks have not completed (called simu'ltaneous concurrent engineering) or when certain input artifacts are available.
However, the task completion can only be allowed if predecessor tasks have already been completed. In Dynamic
Task Nets, this customization is achieved by modifying the enactment conditions defined in the PROGRESS
specification, which itself is an executable graph rewriting system that Dynamic Task Nets map to for achieving
enactment.

ANALYSIS OF DYNAMIC TASK NETS

In terms of modeling support, the modeling of activities and their constraints are supported by the task nets and their
relations, and can be customized at the PROGRESS specification level. The representation of roles is not directly

.supported at the PML level. Artifacts are considered as part of the input and output interface to a task. Tools
abstraction is not supported directly although can be defined at the PROGRESS specification level. Finally,
modularization and abstraction are supported by the nodes themselves in the sense that each task net can be
decomposed into other smaller task nets (although Dynamic Task Nets does not visually differentiate between
decomposable task nets and atomic ones).

In terms of enactment support, Dynamic Task Nets support enactment in a distributed environment. Because the
creation of task nets in Dynamic Task Nets is dynamic, it naturally supports dynamic allocation of resources. In
terms ofevolution support, Dynamic Task Nets does not support reflection. No support is provided for the collection
of enactment data. In terms of human dimension su pport, Dynamic Task Nets employs a visual P ML. No 0 ther
support is provided to address the other human dimension issues identified earlier.

3.10 LATIN

Language to tolerate Inconsistencies (LATIN) [13] is a PML for the PSEE called SENTINEL. LATIN describes a
software process as a global part and a set of task types. A global part contains global variables, a global invariant
(described below), the declaration of the task types that will be instantiated during enactment, and the description of
the main task. When the process enactment starts, an interpreter for the main task is created. All other tasks are
instantiated by the main task or, in turn, by previously instantiated tasks (i.e. their predecessors).

A task type is composed of the following parts:
i. A header defines the name of the task type along with its parameters lists. Instantiation of a task type constitute

assigning the initial state of the task instance.
ii. An import section defines all variables imported from other task types.

iii. A declaration section declares the local types and variables. The basic data types in LATIN can be integer, real,
string, boolean, enumerated, as well as user defined data types such as records and sets.



I,
r

f

I

[

t

Malaysian Journal ofGomputer Science, Vol. 17 No.2, December 2004, pp. 68-89

iv. An export section lists the names of all the variables exported to other tasks.
v. An init section lists all initial values assigned in terms of resource assignments during instantiation.

vi. A set oftransitions which govern the actual enactment of task type instances (described below). Transitions can
be associated with invoking of external tools.

vii. A set ofinvariants which serves as special conditions that must hold true in any state of the activity described by
the task type.

The behavior ofa task type is described by transitions. Transitions are further characterized by a precondition, called
an ENTRY, and a body. The ENTRY defines the conditions which fire the corresponding transition whilst a body
defines actions (e.g. invoking a tool) and value assignments (e.g. updating variables) through an EXIT clause.

LATIN actually offers two types of transitions: normal transitions and exported transitions. A normal transition is
automatically executed by the runtime system as soon as an ENTRY evaluates true. An exported transition is
executed upon the request from the user even if its ENTRY evaluates to false. In such a case, a transition is said to
fire illegally. The outcome of such a firing is that enactment can now be allowed to deviate from the specified
process model, hence introducing inconsistencies. In LATIN, enactment can continue as long as the invariants of
that task type still hold. But if one of the invariants is violated, enactment is suspended and a reconciliation activity
is started to allow reconciliation of the actual process and the process model.

ANALYSIS OF LATIN

In terms of modeling support, the modeling of activities is supported as a set of task types. The constraints for each
activity are specified by the transitions. Task types may execute in parallel. The representation of roles is not
directly supported at the PML level. Artifacts can be supported by the user defmed types. Tools can be specified
and invoked in the transition's action. Finally, modularization and abstraction are supported by each individual task
type.

In terms of enactment support, LATIN supports enactment ina distributed environment. Although task types can be
dynamically instantiated during enactment by the main task or the previously instantiated task, LATIN does not
support dynamic allocation of resources. This is because resources need to be assigned to the task types as part of
their init section before the overall enactment commences-as LATIN does notprovideanyfeature which allows
assignment ofT~source~ while enactment is taking place. As far as evolution support, LATIN does not support
reflection. For evaluation support, no support is provided in LATIN for the collection of enactment data. Finally, no
support is provided for: the human dimension issues identified earlier. --- -- ---- .

3.11 JIL

JIL [28] is a PML derived from the authors' experiences in developing APPLIA [27]. The main construct in JIL is
the step. A JIL step represents a step in a software process, that is, a task which a software engineer or a tool is
expected to perform. A JIL process model can be viewed as a composition of JIL steps. The elements that constitute
a JIL step include:

i. Object and declarations section consists of the declaration of artifacts used in the step (consisting of ADA-like
types).

ii. Resource Requirements section specify the resources needed by the step, including people, software and
hardware.

iii. Sub-steps set section provides a list of sub-steps that contribute to the realisation of the step.
iv. Proactive control specification section defines the order in which sub-steps may be enacted. This is achieved

through special JIL keywords such as ORDERED, UNORDERED and PARALLEL.
v. Reactive control specification of the conditions or events in response to which sub-steps are to be executed.

This is specified through special JIL keyword such as REACT.
vi. Pre-conditions, constraints and post-conditions section: A set of artifact consistency conditions that must be

satisfied prior to, during, and subsequent to the execution of the step.
vii. Exception handler section: A set of exception handlers for local exceptions, including handlers for artifact

consistency violations (e.g. pre-condition violations).

I
I
I
I
I
I
I
I
I
1-
I ..
I

I
I
I
I
I
I
I



Malaysian Journal a/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

Apart from local exception handlers which allow a process to react within its own scope, IlL also supports global
exception handlers. Global exception handlers allow a process to react to an exception in another process by
treating such exceptions as events which can be handled directly by the reactive control specification.

ANALYSIS OF JIL

In terms of modeling support, the modeling of activities is supported by a composition of IlL steps. The constraints
for each step can be specified as pre- and post-conditions. The step ordering constraints (e.g. parallel activities) can
be supported using specialized constructs (e.g. ORDERED, UNORDERED, PARALLEL). The representation of roles
is not directly supported at the PML level. Artifacts can be supported by the ADA-like types; IlL also allows artifact
consistency to be checked as a pre- or post-conditions of a step. Tools can be invoked directly through the reactive
control specification. Finally, modularization and abstraction are supported by the TIL step.

In terms of enactment support, it is not clear whether or not IlL supports enactment in a distributed environment.
Also, IlL does not support dynamic resource a llocation. As far as evolution support is concerned, nos upport is
provided for reflection. No support is provided in IlL for the collection of enactment data nor for the human
dimension issues identified earlier.

3.12 LITTLE JIL

Little IlL [29] is a PML based on IlL. Unlike IlL, Little IlL is a visual PML. Like IlL, Little IlL maintains the
notion of a step from IlL.

Interface Badge

Control Flow Reaction
Badge Badge Handler Badge

Figure 1. Little IlL Step Notation

A process model in Little IlL can be viewed as a tree of steps whose leaves represent the smallest specified.up.itof
work and whose structure represents the way in which this work will be coordinated. As shown in Figure 1, the
Little IlL step notation has a number of components including:

i. Step name section: Every step must be given a name.
ii. Interface badge section: Resources needed in the step are carried through this badge. In Little IlL, resources

include the assignment of software engineers, permissions to use the tools, as well as artifacts. Resources are
also typed and always associated with some access rights.

iii. Pre-requisite and post-requisite badge section: Here, pre-conditions and post-conditions for the step are
specified.

iv. Control-flow badge section: Little IlL allows four types of control-flow to be specified in a step. They are
sequential, parallel, choice and try. Sequential and parallel control-flows allow sequential and parallel steps to
be specified. Choice control-flow allows some choices of alternative steps to be specified in a step. Try control­
flow is associated with handler badges (described below) to allow an exception to be caught.

v. Handler badge section: Handler badges are used to indicate and fix exceptional errors during enactment. In
Little IlL, exceptions are passed up the process model tree until a matching handler is found.

vi. Reaction badge section: Reaction badges are a form of reactive control similar to IlL. A reaction badge is
always associated with a message which is generated in response to some events. Because a message is global
in scope, any execution step can receive the message and act accordingly if matches are found.

Postrequisite
BadgeA-

It
Step Name

-"fPrerequisite
Badge

II
I
\

f,1
\11
(

In terms of its enactment, a step goes through several states. Normally, a step is posted when assigned to a software
engineer, then it progresses to a started state, and eventually it will be in a completed state. If a step fails to be



Malaysian Journal ofComputer Science, Vol. J7 No.2, December 2004, pp. 68-89

started as a result of resource exceptions being thrown, a step may be retracted (and potentially reposted) or
terminated with exception.

ANALYSIS OF LITTLE JIL

In terms of modeling support, the modeling of activities is supported by the Little IlL steps. The constraints for each
step can be specified in the pre-requisite and post-requisite badges. Parallel activities can be defined by selecting the
proper control-flow badge. The representation of roles is not directly supported at the P ML level. In Little JIL,
artifacts are typed and have associated access rights. Like artifacts, tools abstraction is also associated with an
interface badge. Finally, Little IlL does not support modularization and abstraction of the process models.

In terms of enactment support, Little IlL supports enactment in a distributed environment. However, Little IlL does
not seem to support dynamic resource allocation, although the authors claim such support is provided (discussed
below). In terms of evolution support, Little IlL does not support reflection. No support is provided in Little IlL for
the collection of enactment data. In terms of human dimension support, Little IlL employs visual notation. No
support is provided for process awareness, user awareness and process visualization.

3.13 CSPL

CSPL [8] is a PML that adopts an ADA95-like syntax. Being based on ADA95, CSPL inherits many features from
that language including its type sy stem, module definition style (package), and task communication mechanism.
Additionally, CSPL adds a number of predefined types and extensions to enable the modeling of software processes
which include:

i. Event type and inform statements: The event type allows description of an event status of an activity (e.g.
approved, completed). The value of an event derived from event type can be asynchronously assigned by CSPL
inform statements.

ii. Doc type: Doc Type, the- base type of all object types in C SPL, allows the description of artifacts and their
associated attributes, which can be extended by inheritance.

iii. Work assignment statements are CSPL statements which allow activities, tools and roles to be assigned to one _
or more software engineers.

iv. Communication related statements allow synchronization and ordering oftasks with other tasks, similar to the
ADA95 rendezvous.

v. Program Units allow assignment of a human to a role (through a Role Unit), assignment of an actual tool to a
tool (through a1001pnit), and description of dependenci~samongst artifacts (through a Relation Unit). _

To support enactment, the CSPL compiler translates the process model expressed in CSPL into a UNIX shell scripts.

ANALYSIS OF CSPL

In terms of modeling support, the modeling of activities and their constraints are supported by the ADA95-like task
specification. Parallel activities are supported through the communication related statements essentially ordering the
tasks specified in CSPL. The representation of roles is supported by the role unit. Artifacts can be supported by the
ADA-like types. Tools can be defined through the tool unit. Finally, modularization and abstraction are supported by
utilizing package specification.

In terms of enactment support, CSPL supports enactment in a distributed environment. However, CSPL does not
support dynamic resource allocation. In terms of evolution support, CSPL does not provide support for reflection ­
only offline process evolution is supported. For evaluation support, no support is provided for the collection of
enactment data. In terms of the human dimension, no support is provided for the issues identified earlier.

3.14 APEL

APEL [14] is a visual PML. The central construct in APEL is an activity of which there are two types: an activity
representing a task for an individual; and a multi-instance activity representing a task for a group of people.
Visually, an activity provides an interface to define input and output artifacts as well as the roles involved a

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I



~

II
[I
rl
tl
fl

fl
. tl
II
II
t

II
I

II
I
I

Malaysian Journal a/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

particular activity. Artifacts, activities and roles are typed and they are defined in a separate view using Object
Modeling Techniques (OMT) diagrams, essentially class diagrams with some defined relationships (e.g. is-a or has­
a). The various states which artifacts and activities go through during enactment can also be represented using state
transition diagrams.

In APEL, a process model is composed of a set of activities connected together by controlflow and data flow arcs as
well as And and Or connectors which carry the usual semantics. Activities can be decomposed until atomic activities
are reached. To achieve process enactment, APEL relies on the concepts of event and event capture which can be
defmed on activities or artifacts. An event and event capture are defmed by pairs comprising an event definition and
a logical expression. An event is captured by an activity or an artifact when it matches the event definition and the
logical expression is true. All events in APEL are broadcast and they are generated automatically.

The notable feature of APEL is that activities and their sub-activities, as well as the flow of artifacts, are shown to
the user during enactment (through a desktop paradigm) in order to give the sense of awareness (discussed below)
about 0 ther a ctivities. I n addition, t he user maya Iso interact with the desktop paradigm top erform t he activity.
Finally, unlike other PMLs, APEL also supports measurement of the process model by employing the Goal Question
Metric Model [4], essentially consisting of self-defined goals, questions related to the process models achieving that
goals, and metrics to quantify such questions.

ANALYSIS OF APEL

In terms of modeling support, the modeling of activities and their constraints is supported in APEL by the activities
and their event and event captures. Parallel activities can be defined by And and Or connectors. Roles, artifacts and
tools are typed and also expressed as part of the process models using OMT diagrams. Finally, modularization and
abstraction are supported as activities can be further decomposed into sub-activities.

For enactment support, APEL supports enactment in a distributed environment. No support is provided for dynamic
resource allocation. In terms of evolution support, APEL does not support reflection. Process evolution can only be
achieved offline; this is assisted by a process state server which maintains the state of a process model's enactment.
In terms of evaluation support, APEL supports the collection of enactment data through adaptation of the Goal
Question Metric Model [4]. In terms of the human dimension, APEL provides (limited) support for awareness.
Process awareness is supported but not user awareness. Process awareness is achieved by giving the work context
of the overall activity and its sub-activities along with the flow of artifacts. Likewise, process visualization can also
be achieved in the same way. However, no support is provided for virtual meetings.

3.15 PROMENADE

Process-oriented Modeling and Enactment of Software Developments (PROMENADE) [24, 30] is a PML derived
from the Unified Modeling Language [25], a language for supporting the 0 bject-oriented analysis and design 0 f
software systems. In PROMENADE, software processes are modeled using predefined classes (called the
PROMENADE reference mode!) consisting of:

i. Document Class represents artifacts involved in the software development.
ii. Communication Class represents any document used for communication.

iii. Task Class represents an activity in a software process.
iv. Agent Class represents an entity playing an active part in a software process.
v. Tool Class represents any entity implemented through a software tool.

vi. Resource Class represents any supplementary help provided during enactment of a software process (e.g. an
online tutorial). It should be noted that the word resource in this case carries a different meaning to that is used
earlier.

vii. Role Class represents identification of the skills of software engineers.

In a process model, the connections between instances of these classes are expressed using UML association
relationships. In PROMENADE, the most important class is the task class. The task class may be customized to
include the definition of shell scripts, the definition of task parameters consisting of input and output artifacts and



Malaysian Journal ofComputer Science, Vol. J7 No.2, December 2004, pp. 68-89

the definition of task pre- and post-conditions. A task class may also be further broken down to sub-classes
consisting ofother task classes, either by aggregation or composition.

PROMENADE has not yet provided support for enactment as work is still on-going to provide additional language
extensions. Nevertheless, process enactment is planned in PROMENADE by utilizing its support for precedence
relationships, which are textually expressed in each task class in the process model using a variation of the UML
Object Constraint Language (OCL). Using the precedence relationships, the ordering of tasks can be defined to
allow enactment of some actions according to a plan, defined in terms of pre-conditions and post-conditions, and
connections to other task classes. Strong precedence dictates that the current task must successfully complete before
following task can be started. Weak precedence allows following tasks to start even if the current task has not yet
been completed. PROMENADE is also being extended to provide support for reactive control-flows that is,
enactment of some actions in response to events.

ANALYSIS OF PROMENADE

In terms of modeling support, the modeling of activities is supported by the class diagrams and their association
relationship. The constraints for each activity are specified in the class diagram as pre- and post-conditions
expressed by using a variation of the UML Object Constraint Language. Parallelism can be expressed in
PROMENADE by specifying the precedence relationship in each task class. The representation of roles and artifacts
are supported by the role and artifact classes respectively. The abstraction of tools is supported by a tool class and an
agent class. Tools also can be invoked directly through the shell script defined in the task class. Finally,
modularization and abstraction are supported by aggregations and composition.

In terms of enactment support, it is not clear whether PROMENADE will support enactment in a distributed
environment, and dynamic allocation of resources. Concerning evolution, the authors claim that PROMENADE will
adopt reflection. No support is provided in PROMENADE for the collection of enactment data. In terms of human
dimension support, apart from being a visual PML, no other support is provided.

4.0 DISCUSSION

Based on the analysis of.PMLsgivenin the previous section, this section summarizes-the description of existing
PMLs. Although only enactable PMLs are considered, some of the categorizations of PMLs(e.g. modeling support, ~ _
evaluation support) should also be applicable to non-enactable PMLs, although this is not investigated further here

Table 2 presents the digest of the analysis of PMLs discussed earlier. The table highlights those features that are
common to PMLs, and those that are not, and therefore identifies areas for research into PMLs that address new
combinations of features which can be explored further.

Referring to Table 2, it can be seen that existing PMLs are deficient in a number of the identified areas: human
dimension issues; dynamic allocation of resources; collection of enactment data; and support for reflection. These
deficiencies will be discussed next.

The first perceived deficiency in the surveyed PMLs is in terms of providing support for human dimension issues.
As identified in Table 2, issues in terms 0 f t he su pport for visual notations, user awareness, process awareness,
process visualization, and virtual meetings seems to be neglected by most of t he surveyed PMLs. Modeling and
enacting of software processes requires much human intervention during its lifecycle - for example, process
engineers (e.g. project managers) model the activities within a software process for enactment, and software
engineers perform the activities during enactment. Therefore, it seems appropriate to place emphasis on the
importance of human dimension issues.

The second perceived deficiency in the surveyed PMLs is in term of the support for dynamic allocation ofresources.
The motivation behind supporting dynamic allocation as a feature of a PML and its underlying semantics is to
ensure that resources are allocated based on the dynamic needs of a particular project, and as late as when the
activity is about to be started. In this way, the process engineer can be given flexibility to allocate resources based
on the current situation.

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I



--
-
-
-
-
-
-
-
-
-
--
I
I,
J

--
I

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

Table 2: Analysis ofPMLs

L B A L
I M D I P

LEGENDS M & M E A D T R
B M S A L P y T 0

0 S 0 P E P S E P N L L C A M
Implemented feature L & W R E P & L A A J E S P E

A P I L L / T / M T I P E N

Non supported feature ~ N A I L D E A I I L J L L A
G T P N L M T N I D

Not enough information D E M P E L E
L 0

Sequential and
parallel activities as ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ..J ..J
well as their

Modeling constraints
Support Input and output ~ ~ ~ ~ ..J ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

artifacts
Role representfltions X X ~ ..J ~ X ~ X X X ~ ~ ~ ~ ~
External tools ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Abstraction and ~ X ~ ..J ~ ~ ~ ~ ~ ~ X ~ ~ ..J
modularization
Enactment in a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Enactment distributed
Support environment

Dynamic allocation of X X X X X ~ X X X X X X
resources

Evolution Reflection ~ X ~ X ~ X X X X X X X X X X
Support

Evaluation Collection of X X X X X X X X X X X X X ~ X
Support enactment data

Visual notations ~ X X X X X X X ~ X X ~ X ~ ..J
Human User awareness X X X X X X X X X X X X X X X

Dimension Process awareness X X X ~ X X ~ X X X X X X ~ X
Support

Process visualization X X X X X X X X X X X X X ~ X

Virtual meetings X X X X X X X X X X X X X X X

The third perceived deficiency in the surveyed PMLs is in term of the support for the collection of enactment data.
Only APEL provides this support, that is, based on the Goal Question Metrics [4]. By supporting collection of
enactment data, systematic and objective evaluation of a particular process model can be made. In tum, this
evaluation could be used as "indicators" to support process improvement.

Finally, the fourth perceived deficiency in the existing PMLs is in terms of providing support for reflection. The
main reason that reflection is required as a feature of PML is to support evolution of a process model through a
meta-process [1, 9, 10]. In doing so, enactment of the existing activities must not be affected. With reflection, the
enacting process model can be accessed as data to be modified by the meta-process, hence allowing the evolution of
a process model to occur while enactment is taking place.

The above analysis has identified a novel combination of features which existing PMLs do not provide, thus
identifying an area for new PML research. This combination of features includes the support for:

• V isual notations
• User awareness
• Process awareness



r~l
leI

fl~
eT

IJ:
•• I

~]

l

Malaysian Journal o/Computer Science, Vol. 17 No.2, December 2004, pp. 68-89

• Process visualization
• V irtual meetings
• Dynamic allocation of resources
• Collection of enactment data
• Reflection

To address the support the features above, we are investigating a new visual PML called the Virtual Reality Process
Modeling Language (VRPML) [32-35]. The main features of the language are that it exploits visual notations,
integrates with a virtual environment in order to address user awareness, process awareness, and visualization issues
as well as supports dynamic allocation of resources by manipulating its enactment model. As far as implementation
is concerned, the first version of the language definition has been completed (described in [34D, and the prototype
implementation is still under development.

5.0 CONCLUSION

In conclusion, this paper has presented a critical analysis of existing PMLs by identifying each language's strong
points and weaknesses. Hopefully, this analysis forms a useful guideline for the future design ofPMLs.

Acknowledgement

The work undertaken in this research is partially funded by the USM Short Term Grants - "The Design and
Implementation of the VRPML Runtime Environment".

References

[1] V. Ambriola, R. Conradi, and A. Fuggetta, "Assessing Process-Centered Software Engineering Environments",
ACM Transactions on Software Engineering and Methodology, 6 (3), 1998, pp. 283-328.

[2] S. Arbaoui, J. Lonchamp, and e. Montangero, "The Human Dimension of the Software Process", in J.e.,
Derniame, B.A. Kaba, and D. Wastell (Eds.). Software Process: Principles, Methodology and Technology,
LNCS Vol. 1500, Springer, 1999, pp. 165-196.

[3] S. Bandinelli, A. Fuggetta, e. Ghezzi, and L. Lavazza. "SPADE: An Environment for Software Process
Analysis, Design and Enactment", In A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software Process
Modeling and Technology, pp. 223-247, Research Studies Press, Taunton, England, 1994.

[4] V.R. Basili, and H.D. Rombach. "The TAME Approach: Towards Improvement-Oriented Software
Environments", IEEETraffsaGtiiJiiion SoftWare Engineering, 14 (6). pp.?58-]73.--

[5] N: Belkhatir, J. Estublier, and W. Melo. "ADELE-TEMPO: An Environment to Support Process Modelling
and Enaction", In A. Finkelstein, I. Kramer. and B. Nuseibeh (Eds.), Software Process Modelling and
Technology, Research Studies Press, Taunton, England, 1994, pp.187-222.

[6] F. Bruynooghe, R.M. Greenwood, 1. Robertson, I. Sa, and B.e. Warboys, "PADM: Towards a Total Process
Modeling System", in A. Finkelstein, I. Kramer and B. Nuseibeh (Eds.), Software Process Modelling and
Technology, Research Studies Press, Taunton, England, 1994, pp. 293-334.

[7] G. Canals, N. Boudjlida, J.e. Derniame, e. Godart, and I. Lonchamp. "ALF: A Framework for Building
Process-Centred Software Engineering Environments", in A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.)
Software Process Modelling and Technology, Research Studies Press, Taunton, England, 1994, pp. 153-185.

[8] J.I. Chen. "CSPL: An Ada95-Like, Unix-Based Process Environment", IEEE Transactions on Software
Engineering, 23 (3),1997, pp.171-184.

[9] R. Conradi, e. Fernstrom, and A. Fuggetta. "A Conceptual Framework for Evolving Software Processes",
ACM SIGSOFT Software Engineering Notes, 18 (4). pp. 26-35.

[10] R. Conradi, e. Fernstrom, A. Fuggetta, and R. Snowdon. "Towards a Refence Framework for Process
Concepts", in Proc. of the 2nd European Workshop on Software Process Technology, Trondheim, Norway,
1992, LNCS Vol. 635, Springer, pp. 3-17.

[11] R. Conradi, M. Ragaseth, I. Larsen, M.N. Nguyen, B.P. Munch, P.R.Westby, W. Zhu, M.L. Jaccheri, and C.
Liu. "EPOS: Object-Oriented Cooperative Process Modelling", in A. Finkelstein, I. Kramer, and B. Nuseibeh
(Eds.), Software Process Modelling and Technology, Research Studies Press, Taunton, England, 1994, pp. 33­
69.

I
I
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
I
I



~
[I

I'
~

l~

rJ
~

~

LI

LI

II
[I
II
~I

[I
[I
II
II
II
LI

Malaysian Journal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

[12] R. Conradi, and M.L. Jaccheri. "Process Modelling Languages", in le. Demiame, B.A. Kaba, and D. Wastell
(Eds.), Software Process: Principles, Methodology and Technology, LNCS Vol. 1500, Springer, 1999, pp.27­
52.

[13] G. Cugola, E.D. Nitto, C. Ghezzi, and M. Mantione, "How to Deal with Deviations during Process Model
Enactment", inProc. of the 17th Inl. Con! on Software Engineering, Seattle, Washington, 1995, IEEE CS
Press, pp. 265-273.

[14] S. Dami, 1. Estublier, and M. Amiour. "APEL: A Graphical Yet Executable Formalism for Process Modeling".
Automated Software Engineering, 5 (1), 1998, pp. 61-96.

[15] J.e. Demiame, B.A. Kaba, and B.e. Warboys, "The Software Process: Modelling and Technology", in lC.
Demiame, B.A. Kaba, and D. Wastell (Eds.). Software Process: Principles, Methodology and Technology,
LNCS Vol. 1500, Springer, 1999, pp. 1-13.

[16] D. Gelemter. "Generative Communication in Linda". ACM Transactions on Programming Languages and
Systems, 7 (1), 1985, pp. 80-112.

[17] P. Heiman, G. Joeris, and e.A. Krapp. "DYNAMITE: Dynamic Task Nets for Software Process Management".
In Proc. ofthe 18th Int!. Con! on Software Engineering, Berlin, Germany, 1996. IEEE CS Press, pp. 331-341.

[18] K.E. Huff. "Software Process Modeling", inA. Fuggetta, andA. Wolf (Eds.), Trends in Software Process,
Jolm Wiley & Sons, 1996, pp. 1-24.

[19] M.L. Jaccheri, R. Conradi, and B.H Drynes. "Software Process Teclmology and Software Organisations", in
Proc. of the 7th European Workshop on Software Process, (Kaprun, Austria, February 2000), LNCS Vol.
1780, Springer, pp. 96-108. .

[20] G. Junkermann, B. Peuschel, W. Schafer, and S. Wolf. "MERLIN: Supporting Cooperation in Software
Development Through a Knowledge-Based Environment", in A. Finkelstein, J. Kramer, and B. Nuseibeh
(Eds.), Software Process Modelling and Technology, Research Studies Press, Taunton, England, 1994, pp. 103­
129.

[21] e. Liu, and R. Conradi. "Process Modeling Paradigms: An Evaluation", in Proc. ofthe 1st European Workshop
on Software Process Modeling, Milano, Italy, 1991, Italian National Association for Computer Science, pp. 39­
52.

[22] J. Lonchamp. "An Assessment Exercise", in A. Finkelstein, J. Kramer, and B. Nuseibeh (Eds.), Software
Process Modelling and Technology, Research Studies Press, Taunton, England, 1994, pp. 335-356.

[23] e. Montangero, and V. Ambriola. "OIKOS: Constructing Process-centred SDEs", in A. Finkelstein, J. Kramer,
and B. Nuseibeh (Eds.), Software Process Modelling and Technology, Research Studies Press, Taunton,
England, 1994.

[24] lM Ribo, and X. Franch. "PROMENADE: A PML Intended to Enhance Standarization, Expressiveness and
Modularity in Software Process Modeling - Research Report LSI-34-R", Llenguates I Sistemes Informatics,
Politeclmical of Catolonia, Spain, 2000. -

[25] l Rumbaugh, 1. Jacobson, and G. Booch. The UML Reference Manual. Addison Wesley, 1999.
[26] 1. Sommerville, and T. Rodden. "Human, Social and Organisational Influences on the Software Process. in A.

Fuggetta, and A. Wolf(Eds.), Trends in Software Process, Jolm Wiley & Sons, 1996, pp. 89-108.
[27] S. Sutton Jr., D. Heimbigner, and L.J. Osterweil. "APPLlA: A Language for Software Process Programming",

ACM Transactions on Software Engineering and Methodology, 4 (3), 1995, pp. 221-286.
[28] S. Sutton Jr., and L.J. Osterweil. "The Design of a Next-Generation Process Language", in Proc. of the Joint

6th European Software Engineering Con! and the 5th ACM SIGSOFT Symposium on the Foundation of
Software Engineering, 1997, LNCS Vol. 1301, Springer, pp. 142-158.

[29] A. Wise. "Little IlL 1.0 Language Report - Teclmical Report 98-24", Dept. of Computer Science, Univ. of
Massachusetts at Amherst, April 1998.

[30] X. Franch and J.M. Ribo. "A UML-Based Approach to Enhance Reuse within Process Teclmology". In Proc.
of the 9th European Workshop on Software Process Technology, LNCS Vol. 2786, Helsinki, Finland, 2003,
Springer, pp. 74-93.

[31] Y. Yang. "Coordination for Process Support is Not Enough", in Proc. of the 4th European Workshop on
Software Process Technology, 1995, LNCS Vol. 913, Springer, pp. 205-208.

[32] K.Z. Zamli and P.A. Lee. "Taxonomy of Process Modeling Languages". In Proc. of the ACS/IEEE Int!. Con!
on Computer Systems and Applications, Lebanon, 2001. IEEE CS Press, pp. 435-437.

[33] K.Z. Zamli and P.A. Lee. "Exploiting a Virtual Environment in a Visual PML". In Proc. of the 4th Int!. Con!
on Product Focused Software Process Improvements, LNCS Vol. 2559, Rovanierni, Finland, 2002, Springer,
pp.49-62.

".; ;~'"



I
BIOGRAPHY

K.Z. Zamli and P.A. Lee. "Modeling and Enacting Software Processes Using VRPML". In Proc. of the 10th
IEEE Asia-Pacific Con! on Software Engineering, Chiang Mai, Thailand, 2003. IEERCS Press, pp. 243-252.

[35] K.Z. Zamli. "Supporting Software Processes for Distributed Software Engineering Teams", School of
Computing Science, Univ. ofNewcastle upon Tyne, PhD Thesis, 2003.

.';!J,1clla)lsianJournal ofComputer Science, Vol. 17 No.2, December 2004, pp. 68-89

I
I
I
I

Kamal Zuhairi Zamli obtained his BSc in Electrical Engineering from Worcester Polytechnic Institute, Worcester,
USA in 1992, MSc in Real Time Software Engineering from CASE, Universiti Teknologi Malaysia in 2000, and
PhD in Software Engineering from the University of Newcastle upon Tyne, UK in 2003. He is currently lecturing at
the School of Electrical and Electronics Engineering, USM Engineering Campus in Translaian. His research
interests include software engineering, software process, software testing, visual languages, and object-oriented
analysis and design.

I
I

I
I

Nor Ashidi Mat Isa obtained his BSc in Electrical Engineering from Universiti Sains Malaysia in 2000 and PhD in
Image Processing and Neural Networks from the same university in 2003. He is currently lecturing at the School of
Electrical and Electronics Engineering, USM Engineering Campus in Translaian. He specializes in the area of image
processing, neural networks for medi~al applications, and software engineering.

I
I

I I

I I

I I

I I

I I
I I
I I
I I
I I
I I
I I
I I



I
I
I
I
I
I

Addressing Race Condition Problem in a Graph Based Visual Language

Kamal Z. Zamli and Nor Ashidi Mat Isa
Pusat Pengajian Kejuruteraan Elektrik dan Elektronik

Universiti Sains Malaysia Engineering Campus
14300 Nibong Tebal, Penang

Email: {eekamal.ashidi}@eng.usm.my

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Abstract

Graph based visual languages are typically based
on nodes, directed arcs and sub-graphs. Nodes
represent function or actions, arcs. carry data or
controlflow signals, and sub-graphs provide
abstraction and modularization. Operations in graphs
follow a firing rule which defines the conditions under
which execution of node occurs. In the control flow
based model, the firing rule is based solely on the
availability of the control-flow signals on the node's
input arcs. In the data flow based model, the firing rule
is based on the availability of the required data on the
node's input arcs. .

This paper discusses our partial evaluation of a
domain specific graph based visual language, called
VRPML utilizing the well-known ISPW-6 benchmark
problem as a case study. The focus ofthe evaluation is
on the firing rule. Due to its control flow based firing
rule, we observe that VRPML suffers from race
condition problem, that is, two or more control-flow
signals can inadvertently and erroneously compete to
enable a particular activity node. This paper outlines
our proposal to address the problem and enhance the
language syntax and semantics.

1. Introduction

Visual programming languages have been around
for quite some time now. The basic idea behind a
visual. programming language is that computer
graphIcs (e.g. graphs consisting of icons, nodes, and
arcs) are used instead of a textual representation. In
fact, the central argument for a visual programming
language is based on an observation that picture is
better than text (i.e. a picture is worth a thousand
words [5]).

While a visual programming language may not be
able to provide a silver bullet to solve every problem

related to engineering a software system, a carefully
chosen level of abstractions (e.g. by working at the
same level of abstraction as the problem domain)
coup~ed with easy to understand notations may help
allevIate the low-level complexities offered by the
textual counterpart. Motivated by the abovementioned
arguments, much research has been undertaken on
visual languages over the last 20 years. Of interest to
us is the graph based visual language [9][10][11] .

Graph based visual languages are typically based
on nodes, directed arcs and sub-graphs [1][2]. Nodes
represent function or actions, arcs carry data or control­
flow signals, and sub-graphs provide abstraction and
modularization. Operations in graphs follow a firing
rule which defines the conditions under which
execution of node occurs. In the control flow based
model, the firing rule is based solely on the availability
of the control-flow signals on the node's input arcs. In
the data flow based model, the firing rule is based on
the availability of the required data on the node's input
arcs.

This paper discusses our partial evaluation of a
domain specific graph based visual language, called
VRPML [7][10], utilizing the well-known ISPW-6
benchmark problem [4] as a case study. The focus of
the evaluation is on the VRPML's firing rule. Due to
its control flow based firing rule, we observe that
:-'RPML suffers from the race condition problem, that
IS, two or more control-flow signals can inadvertently
and erroneously compete to enable a particular activity
node. This paper outlines our proposal to address the
problem and enhance the language syntax and
semantics.

This paper is organized as follows. Section 2 gives
an overview on the VRPML syntax and semantics.
Section 3 discusses the ISPW 6 problem and provides
brief descriptions of the corresponding VRPML
solution. Section 4 discusses the lessons learned.
Finally, section 5 presents the conclusions of the paper.



2. Overview of VRPML

VRPML (7][10] is a domain specific graph based
visual language adopting the control-flow model firing
rule. VRPML is used to model and execute a software
process, that is, a sequence of steps that must be
followed by software engineers to pursue the goals of
software engineering.

Software processes are specified in VRPML as
graphs, by interconnecting nodes from top to bottom
using arcs that carry run-time control-flow signals. As
an illustration, Figure 1 presents the main VRPML
solution to a benchmark process, i.e. the ISPW-6
problem [4]. This solution will be discussed further in
the next section.

........_--- ---_......

b
Figure 1. Main VRPML Graph for the ISPW-6

Problem

Similar to Little IlL [6], software processes in
VRPML are described using process step abstractions,
which represent the most atomic representation of a
software process (i.e. the actual activity that software
engineers are expected to perform). These activities are
represented as nodes, called activity nodes (shown as
small ovals with stick figures).

As depicted in Figure 1, VRPML supports many
different kinds of activity nodes. They include:

general-purpose activity nodes (shown as individual
small ovals with stick figures); multi-instance activity
nodes (shown as overlapping small ovals with stick
figures); and meeting activity node (shown as small
and shaded overlapping ovals with stick figures). Both
multi-instance activity nodes and meeting activity
nodes have associated depths, indicating the actual
number of engineers involved (and also the number of
identical activities in the case of multi-instance
activity). Also, a set ofVRPML nodes can be grouped
together using a macro node (shown as dotted line
ovals) to improve the graph readability.

The firing of activity nodes is controlled by the
arrival of a necessary control-flow signal. Control-flow
signals may be generated from transitions (shown as
small white circles with a capital letter attached to an
activity node) or decomposable transitions (shown as
small black circles with a capital letter attached to an
activity node). However, the initial control-flow signal
must always be generated from a start node (shown as
a white circle enclosing a black circle). A stop node
(shown as a white circle enclosing another white
circle) does not generate any control-flow signal.

In VRPML, activity nodes can also be enacted in
parallel using combinations of language elements
called merger and replicator nodes (shown as
trapezoidal boxes with arrows inside).

For every activity node, VRPML provides a
separate workspace. Figure 2 depicts the sample
workspace for the activity node called Review Meeting
in Figure 1. A workspace typically gives a work
contey of an activity as it hosts resources needed for
enacting the activity: transitions, artifacts (shown as
overlapping. two overlapping documents· with arrows .
for depicting access rights), communication tools
(shown as a microphone, and an envelope), and any
task descriptions (shown as a question mark).
Effectively, when an activity is undertaken, the
workspace is mapped into a virtual room, transitions
into buttons, and artifacts, communication tools and
task description into objects which can be manipulated
by software engineers to complete the particular task at
hand. This mapping is based on Doppke's task­
centered mapping described in [3].

Figure 2. Sample Workspace for Activity Node
Review Meeting from Figure 1

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I



-------------------------------------------

I
I

Modify Test Plans

j
Modify Unit/,..".

Schedule and
Assign Task

~
Modify Design

II
Review Design

\
Modify Code

~
Monitor Progress

Figure 3. Flow of Tasks in the ISPW-6 Problem

Table 1: ISPW-6 Activities, Inputs and Outputs

The ISPW-6 problem [4] concerns with a software
change request occurring at the end ofthe"development
project. A number of activities are defined including:
Modify Design; Review Design; Modify Code; Modify
Test Plans; Modify Unit Test Package; and Test Unit.
Some activities may be executed in parallel, while
others have to be executed in a sequential manner. In
each activity, there are also defined roles, tools, source
files, and pre-conditions and post-conditions which
must be respected by the software engineers to
complete the task. Figure 3 and Table 1 summarizes
the flow of activities, responsibility assignments,
inputs and outputs involved in the ISPW-6 problem.

3. Solution to the ISPW-6 Problem

I

I

I
I
I

I
I
I
I
I
I
I
I
I
I
I

Responsibility: Project Manager

Inputs: Requirement Change, Authorisation, Project Plans

Schedule And Outputs: Updated Proiect Plans, Notification of Task Assignments and Schedule Dates~Requirement Change

Assig n Tasks Constraints:

- Begins as soon as authorisation is given

- Ends when Dutputshave been provided

Responsibility: Design Engineer

Inputs: Requirement Change, Current Design, Design Review Feedback

Modify
Outputs: Modified Design

Design Constraints:

- Can begin as soon as the task been assigned
- Subsequent iteration can begin if design is not approved by the Review Design
- Ends when outputs have been provided

Responsibility: Design Review Team

Inputs: Requirement Change, Modified Design
Review

Outputs: Design Review Feedback, Approved Modified Design, Outcome NotificationDesign
Constraints:
- Begins on schedule provided the modified design is available at the time
- Ends when outputs have been provided

Responsibility: Design Engineer

Inputs: Requirement Change, Modified Design, Current Source Code, Feedback Regarding Code

Modify Outputs: Modified Source Code, Object Gode

Code Constraints:
- Can begin as soon as the task has been assiQ.ned even if Modify DesiQ)l has not beQ..un (discretion)

- Ends when clean compilations are achieved, outputs have been provided and design is approved

- Subsequent iteration can begin if required when test unit has completed

Responsibility: QA Engineer

Inputs: Requirement Change, Current Test Plans

Modify Test Outputs: Modified Test Plans
Plans

Constraints:

- Can begin as soon as the task has been assigned
- Ends when outputs have been provided

Responsibility: QA Engineer

Inputs: Requirement Change, Modified Test Plans, Current Unit Test Package, Modified Design,
Source Code, Feedback Regarding Test Package

Modify Unit Outputs: Modified Unit Test Package
Test Package

Constraints:
- Can begin as soon as Modify Test Plans has completed
- SUbsequent iteration can begin if required as Test Unit has completed
- Ends when outputs have been provided

Responsibility: Design Engineer, QA Engineer

Inputs: Requirement Change, Object Code, Unit Test Package

Outputs: Test Results, Feedback Regarding Code, Feedback Regarding Test Package,
Test Unit Notification of Successful Testing

Constraints:
- Can begin as soon as both Object Code and Unit Test Package are available
- Ends when outputs have been provided

Responsibility: Project Manager

Inputs: Requirement Change, Notification of Completion (from all tasks), Current Project Plans,

Monitor Outcome Notification, Notification of Successful Testing, Decision Regarding Cancellation

Progress Outputs: Updated Project Plans, Notification of Revised Task, Cancel Recommendation

Constraints:
- Persists throughout the duration of the process
- Ends when Test Unit has been successfully completed or cancellation of the whole ISPW process

I
I



I
I

Check Compilation

I

I
I

I

I

I

I

I

I

I

I
I
I
I

I

I

Activity 8

~ SWEngr

o

Activity C

~ SWEngr

Activity A

~ SWEngr

o

©
Figure 6. The Problem of Race Conditions

Upon generating the ISPW-6 solution, we observe
some limitation in the VRPML's firing rule
particularly relating to race condition, whereby two or
more control-flow signals compete to enable a
particular activity node. Figure 6 below illustrates the
situation.

signal will be generated and propagated back to the
main graph to enable the subsequent connected node.

4. Lessons Learned About VRPML

Although syntactically correct, the VRPML graph
above represents an erroneous situation where activity
C can be. enabled when. either .the.done transition of
activity A or the done transition of activity B is
·selected. As a result, there is a possibility for activity C
to"be enabled twice.....

.. . .. To address this -issue; ·we propose to amend the
VRPML syntax and semantics. Instead of permitting
multiple incoming arcs, the syntax of an activity node
could be changed to allow only a single incoming arc
to connect to it. Therefore, referring to Figure 6, the
two arcs connections from the done transitions of
activity A and B to activity C would be syntactically
incorrect. In this way, the possibilities for race
conditions would be eliminated.

This proposed change of syntax to activity nodes
raises an issue relating to iteration. Disabling multiple
incoming arcs would not permit iterations, hence,
limiting the expressiveness of the VRPML notation.
For example, the VRPML graph in Figure 7 below
would give rise to a syntax error during compilation
due to more that one arc connection to activity P (i.e.
from the start node and the transition R of activity Q).

The second aspect also relates to modularization
and abstraction, that is, through the decomposable
transitions. In VRPML, decomposable transitions
permit the specification of the activity to check
whether or not the pre-conditions ofthe parent activity
are satisfied before allowing the control-flow signal to .
be generated...Referring.to Figure.1, an example of the
decomposable transition {labeled D) can . be . seen:
attached to Modify Code. Tile sub--graph representing
that transition is shown in Figure 5 below.-

•
o

(@) b
Figure 5. Sub-graph for Decomposable Transition

labeled D in Modify Code

When Check Compilation fails, the assigned
software engineer can select the transition R (for re­
do). As a result, a control-flow signal will be generated
to re-enact its parent node (i.e. Modify Code) through a
re-enabled node (shown as two white circles enclosing
black circle). Otherwise, if the compilation is
successful, the assigned engineer can select the
transition D (for Done). In this case, the control-flow

Figure 4. Macro Expansionfor Test Unit in Figure 1

The main VRPML graph for the ISPW-6 problem
has already been given earlier in Figure 1. There are
many aspects of the solution that can be elaborated
further to capture the details (e.g. workspace
descriptions), but space does not permit this. The
complete solution is described in [8].

Two aspects of the VRPML solution shown in
Figure 1 are worth highlighting. The first aspect relates
to macro nodes. Figure 4 below illustrates the macro
expansion for Test Unit. As seen in the figure, macro
nodes serve as the modularization and abstraction
facility for VRPML, apart from improving the graph's
readability.

I
I



D.J-_-

ModifyUnitTestPackage

QAEngr

ModifyCode

~ DsgnEngr.

Two decomposable cyclic nodes can be used:
(i) Modify Design and Review
(ii) Test Unit and Analysis

the assigned engineer can select the transition D (for
Done). In this case, the control-flow signal will be
generated and propagated back to the main graph to
enable the connected node.

Having considered the proposed changes to the
VRPML syntax, Figure 10 below highlights the new
partial VRPML solution to the ISPW-6 problem.

Figure 10. Using Decomposable Cyclic Node as part
of the VRPML Solution to the ISPW-6 Problem

Because the decomposition for Modify Design and
Review is relatively straightforward and similar to the
case discussed earlier in Figure 8, it will not be
developed further. Instead, only the decomposition for
Test Unit and Analysis will be shown in Figure 10.
Here, the decomposition of Test Unit and Analysis has
captured the feedback requirement as stipulated by the
ISPW-6 problem. Apart from addressing the possible
race condition problems, it can be observed that the
VRPML solution in Figure 10 and I 1 can be more
compact as compared to the ones given earlier. One
reason is that the VRPML notation now becomes
acyclic.

Activity P

~ SWEngr

D

Decomposable Cyclic Node Decomposition of
Activity P and Q Activity P and Q

Figure 9. Example Usage of the Proposed
Decomposable Cyclic Node

Semantically, a decomposable cyclic node permits
the specification of sub-graphs and allows the use of
re-enabled nodes to re-enable the parent of those sub­
graphs (i.e. the decomposable cyclic node itself). In
this way, general feedback loops can be specified.

An example usage of the decomposable cyclic node
called "Activity P and Q" alongside its decomposition
is demonstrated below to express the feedback loop for
the VRPML graph given earlier (see Figure 7).

•

As a solution to support iteration in a VRPML
graph, a new decomposable cyclic node could be
introduced. Figure 8 depicts the proposed notation for
the decomposable cyclic node.

•

o
Figure 7. VRPML Feedback Example

Figure 8. The Proposed Decomposable Cyclic Node
Notation

If the activity Q fails, the assigned software
engineer can select the transition R (for re-do). As a
result, a control-flow signal will be generated to enable
its parent node (i.e. Activity P and Q) through a re­
enabled node (shown as two white circles enclosing
black circle). Otherwise, if the activity Q is successful,

I
I

I

I

I
I

I
I
I
I
I

I
I

I

I

I

I
I
I



I

[3] I.e. Doppke, D. Heimbigner, and A.L. Wolf. I
"Software Process Modeling and Execution
within Virtual Environments". ACM Transactions
on Software Engineering and Methodology, 7 (1), I
January 1998. pp.I-40.

•

ModifyUnitTestPackage

;£:. QAEngr

D

If
@

Figure 11. Decomposition of Test Unit and Analysis

5. Conclusion

In conclusion, this paper has presented a partial
evaluation of a domain specific graph based visual
language, called VRPML, whose firing rule are based
on control flow model. This evaluation uncovers some
of the limitations of associated with the control flow
based firing rule and suggests some improvement in
the language syntax and semantics to address these
limitations. Such evaluation and its improvement
suggestion can hopefully provide valuable guidance for
the design of other graph based visual languages in the
near future.

Acknowledgement

The work undertaken in this research is partially
funded by the USM Short Term Grants - "The Design
and Implementation of the VRPML Runtime
Environment" .

References

[1] W.B. Ackerman, Data Flow Languages. In IEEE
Computer, pp 15-23, February 1982

[2] T. Agerwala, and Arvind, 1982. Data Flow
Languages. In IEEE Computer, pp. 10-13,
February 1982.

[4] M.l. Kellner, P.H. Feiler, A. Finkelstein, T.
Katayama, LJ. Osterweil, M.H. Penedo, and H.D.
Rombach. "Software Process Modeling Example
Problem". In Froc. of the 6th IntI. Software
Process Workshop, Hakodate, Hokkaido, Japan,
October 1990. IEEE CS Press.

[5] K.N. Whitley, "Visual Programming Languages
and the Empirical Evidence For and Against".
Journal of Visual Language and Computing 8 (1),
January 1997, pp. 109-142.

[6] A. Wise. "Little JIL 1.0 Language Report ­
Technical Report 98-24", Dept. of Computer
Science, Univ. of Massachusetts at Amherst,
April 1998.

[7] K.Z. Zamli and P.A. Lee. "Exploiting a Virtual
Environment in a Visual PML". In Proc. of the
4th Int!. Can! on Product Focused Software
Process Improvements, LNCS 2559, pp. 49-62,
Rovaniemi, Finland, 2002, Springer.

[8] K.Z. Zamli. "Supporting Software Processes for
Distributed Software Engineering Teams",
School of Computing Science, Univ. of
Newcastle upon Tyne, PhD Thesis (Oct 2003).

[9] K.Z. Zamli, and Nor Ashidi Mat Isa, "The
Computational Model for a Flow-based Visual
Language", in Proc. of the AlDIS IntI. Con! in
Applied Computing 2005, Algarve, Portugal,
pp.217-224 , Feb 22-25, 2005.

[10] K.Z. Zamli, Nor Ashidi Mat Isa, and Norazlina
Khamis, "The Design and Implementation of the
VRPML Support Environment", Malaysian
Journal of Computer Science 18 (1), June 2005,
pp. 57-69.

[11] K.Z. Zamli, Nor Ashidi Mat Isa, Nor Azlina
Khamis, " Implementing Executable Graph Based
Visual Language in a Distributed Environment",
in Froc. of the IEEE IntI. Conf. on Computing
and Informatics, Kuala Lumpur, June 2006.

I
I

I
I
I
I
I
1
1
I
I
1
I
I
I

·1
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Modeling and Enacting the ISPW-6 Problem

KAMAL ZUHAIRI ZAMLI AND NOR ASHIDI MAT ISA
SCHOOL OF ELECTRICAL AND ELECTRONICS,

USM ENGINEERING CAMPUS, 14300 NIBONG TEBAL
PENANG, MALAYSIA

ABSTRACT

Software processes relate to sequences of steps that must be carried out by software
engineers to pursue the goals ofsoftware engineering. For the last 20 years, modeling of
software processes using a process modeling languages (PMLs) and its enactment has
gained much interest, notably to provide guidance, automation and enforcement of
procedures and policies in software engineering. To assist comparison and contrast
among various approaches, the ISPW-6 software process was defined by the software
engineering community. In this paper, we present a step by step solution to the ISPW-6
problem using a PML called Virtual Reality Process Modeling Language (VRPML). In
doing so, we also discuss some ofthe novel features ofVRPML.

ABSTRAK

Proses perisian merangkumi turutan aktiviti yang perlu dilakukan oleh jurutera perisian
untuk mencapai matlamat kejuruteraan perisian. Sepanjang 20 tahun kebelakangan ini,
pemodelan prosess perisian menggunakan bahasa permodelan proses dan lariannya
menarik minat ramai sebagai panduan, automasi, dan pengekangan kepada prosedur
dan polisi kejuruteraan perisian. Untuk membantu dalam perbandingan antara bahasa
permodelan lain, masalah proses persian ISPW-6 telah dikenalpasti oleh komuniti
kejuruteraan perisian. Manuskrip ini membincangkan penyelesaian langkah demi
langkah kepada masalah ISPW-6 menggunakan Bahasa Permodelan Realiti Maya
(VRPML). Manuskrip inijuga membincangkan ciri-ciri novel VRPML.

INTRODUCTION

Engineering as a discipline relates to the creative application of mathematical and
scientific principle to devise and implement solutions to problems in our everyday lives
in an economic and timely fashion. Essentially, engineering aims to provide an
engineering solution for a given problem. To provide a quality solution, it is not usually
sufficient to focus only on the final product. Often, it is also necessary to consider the
processes involve in producing that product. For example, consider an assembly of a car.
From the customer's perspective, it is the final product that matters (i.e. a quality car).

1



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

From an engineering perspective, such quality could not be achieved if some of the
processes (e.g. assembly lines) are faulty. Although additional rework can fix the
problems caused by the faulty assembly lines, this tends to raise the overall costs because
it deals only with symptoms of the problem. In contrast, going to the cause of the
problem and improving the process (e.g. the faulty assembly lines) avoids the
introduction of quality defects in the first place and leads to better results with lower
costs. As this example illustrates, it is through the processes that engineers can observe
and improve quality, control productions costs and possibly reduce the time to market
their products.

Similar analogies can be applied in the case of software engineering. To produce
quality software, it is also necessary to place emphasis on the processes by which the
software is produced. In software engineering, these processes are usually called software
processes. Software processes are often specified using a process modeling language
(PML) and assisted by an environment called Process Centered Software Engineering
Environment (PSEE). As its name suggests, a PML is used to construct a form of model
of the actual software development process. Such a model is often called process model.
In addition to being able to support the modeling of software processes, PMLs may also
allow execution of the process models to support the activities of software engineers. The
execution of such processes is usually termed process enactment.

For the last 20 years, modeling of software processes using a process modeling
languages (PMLs) and its enactment has gained much interest, notably to provide
guidance, automation and enforcement of procedures and practices in software
engineering. Various approaches have been proposed ranging from the use of Petri Nets
(e.g. SLANG (Bandinelli et al. 1994), Funsoft Nets (Emmerich and Como 1991»,
database languages (e.g. ADELE-TEMPO (Belkhatir et al. 1994», textual process
modeling languages (e.g. JIL (Sutton Jr. and Osterweil 1997), ALF (Canals et al. 1994»
and visual process modeling languages (e.g. APEL (Dami et al. 1998), DYNAMITE
(Heiman et al. 1996), Little JIL (Wise 1998), PROMENADE (Franch and Ribo 2003». A
survey of PMLs is actually beyond the scope of this paper but can be found elsewhere in
(Huff 1996; Conradi and Jaccheri 1999; Zamli and Mat Isa 2004).

To assist comparison and contrast among various approaches, the ISPW-6
problem (Kellner et al. 1990) has been defined by the software engineering community.
In this paper, we present a step by step solution to the ISPW-6 problem using our own
PML called Virtual Reality Process Modeling Language (VRPML) (Zamli and Lee
2002; Zamli and Lee 2003; Zamli et al. 2005). In doing so, we also discuss some of the
novel features ofVRPML.

OVERVIEW OF VRPML

VRPML is our research vehicle of investigating the issues relating to need the support for
dynamic creation tasks and allocation of resources (in terms of software engineers,
artifacts and tools) (Zamli and Lee 2002), as well as the human dimensions in terms of
the support for process awareness, user awareness and process visualization (Zamli and
Lee 2001).

2



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Software processes are written in VRPML as graphs, by interconnecting nodes
from top to bottom using arcs carrying control flow signals. In terms of its structure,
VRPML graphs are cyclic. In terms of the language computational model, VRPML is a
control-flow based visual language which supports modeling and enacting of software
processes in a virtual environment. Software processes are generically modeled and
resources can be dynamically assigned and customized for specific projects.

As an illustration for VRPML syntax, Figure 1 depicts the main VRPML graph of
the ISPW-6 problem. The overall explanation of the ISPW-6 problem and the VRPML
solution of the problem will be fully discussed in the later part of this manuscript.,

ReviewDesign

~ DsgnEngr

FIGURE 1. VRPML Solution of the ISPW-6 Problem

Similar to JIL (Sutton Jr. and Osterweil 1997) and Little JIL (Wise 1998) software
processes in VRPML are described using process steps, which represent the most atomic
representation of a software process (i.e. the actual task that software engineers are
expected to perform). These process steps are represented as nodes, called activity nodes
(shown as small ovals with stick figures). VRPML supports a number of different kinds
of activity nodes as shown in Figure 1.

The activity nodes are: general purpose activity nodes (e.g. modify design, modify
test plan, modify code, modify unit test package); multi-instance activity nodes (e.g.
review design); and meeting nodes (e.g. review meeting). Activity nodes are

3



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

parameterized node accepting a role assignment as a parameter which may be used to
allocate a specific software engineer to the task. In a meeting activity node and a multi­
instance activity node, the depth of activity can also be specified (describe below) as a
resource in terms of how many software engineers will be involved.

The firing of activity nodes is controlled by the arrival of a control flow signal. In
VRPML, an initial control flow signal is always be generated from a start node (a white
circle enclosing a small black circle). A stop node (a white circle enclosing another white
circle) does not generate any control flow signals. Control flow signals may also be
generated at the completion of a node, often from special completion events called
transitions (shown as small white circles with a capital letter, attached to an activity
node) or decomposable transitions (small black circles with a capital letter).
Decomposable transitions enable automation scripts or sub-graphs to be specified (and
executed if selected) before allowing transition to generate a control flow signal. This is
to ensure that certain required post-conditions have been satisfied before allowing the
completion or cancellation of an activity. For example, the sub-graph associated with the
decomposable transition representing Done (labeled D) for the activity node called
modify code is given in Figure 2.

Check Compilation

SWEngr

o

FIGURE 2. Sub-graph for the decomposable transition labeled D in Modify Code

If the transition representing Redo (labeled R) in the activity node check compilation in
Figure 2 is selected by the assigned software engineer (i.e. code do not compile), a
control flow signal will be generated and will automatically re-enable its parent activity
node the modify code through a re-enabled node (shown as two overlapping circles
enclosing a black circle) .

VRPML allows activity nodes to be enacted in parallel using multi-instance nodes
(overlapping ovals) or combinations of language elements called merger and replicator
nodes (trapezoidal boxes with arrows inside). To improve readability, a set of VRPML
nodes can be grouped together and replaced by a macro node (shown as dotted line
ovals), with the macro expansion appearing on a separate graph. For example, referring to
Figure 1, Test Unit is a macro node. The macro expansion of Test Unit is given in Figure
3.

4



ModifiedDesign FeedbackRegardingCode

CommunicationTool

RequiremenlChange

SourceCode ObjectCode

eedbackForTestPackag

J OsgnEngr

5

Test

~ JOSgnEngr

FIGURE 4. Sample workspace for an activity node

FIGURE 3. Macro Expansion for Test Unit

As far as enactment is concerned, the enactment model for VRPML can be seen
in Figure 5 expressed in terms of a state transition diagram.

For every activity node, VRPML provides a separate workspace. Figure 4 depicts
a sample workspace for the activity node called Modify Code in Figure 1. A workspace,
the concepts borrowed from ADELE-TEMPO (Belkhatir et al. 1994), typically gives a
work context of an activity as it hosts resources needed for enacting the activity:
transitions, artifacts (shown as overlapping two overlapping documents with arrows for
depicting access rights), communication tools (shown as a microphone) and any task
descriptions (shown as a question mark). Effectively, when an activity node is enacted,
the workspace is mapped into a virtual room, transitions into buttons, and artifacts,
communication tools and task description into objects which may be manipulated by the
assigned software engineer to complete the particular task at hand.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



l---.,(j)
'--~_/ A new control flow

signal is generated

Engineer selects any of the
possible transitions

Resource exception
raised

Process step
is terminated

Process step is
terminated

Resources needed for the process
step are successfully acquired

FIGURE 5. VRPML Enactment Model

Process step is
terminated

Resource exception
rectified ------.......

Engineer undertakes the
process step

The behavior of the runtime systems supporting such an enactment model can be
thought of as consisting of a single producer (VRPML interpreter) and multiple
consumers (engineer's runtime support system) communicating using a shared tuple
space as in Linda (Gelernter 1985). Upon the arrival of a control flow signal, an activity
node will be in an enabled state. This is the case where the VRPML interpreter attempts
to acquire resources (in terms of role assignments, artifacts, tools as well as depths of
activity nodes) that the activity node needs. If resources are successfully acquired, the
VRPML interpreter then "produces" the process step corresponding to that activity node
in the tuple space. The engineer's runtime support system then "consumes" the process
step putting it into a ready state. Ideally, in this state, the process step is made available
in the to-do-list of the assigned software engineer. If for any reason, VRPML interpreter
fails to acquire resources it needs, a resource exception (i.e. resource unknown or
resource unavailable) will be thrown putting the enactment of that particular process step
in the VRPML graph into a suspended state. In this state, VRPML interpreter
automatically produces a process step in the tuple space for the administrator (in this
case, it may be the project manager) to rectify the resource exception or completely
terminate the process step (putting it in an aborted state). If a process step is terminated,
the administrator may optionally terminate the overall enactment of the particular
VRPML graph in question or manually re-enact connecting and enclosing nodes (e.g. in a
decomposable transition) by providing the necessary control flow signals that they need
to fire. If the resource exception is rectified, enactment of the particular VRPML graph
can continue allowing VRPML interpreter again to "produce" the process step in the
tuple space. This process step can then be put into a ready state once the engineer's
runtime support system has consumed it. If an engineer selects that particular process step
(in the progressing state), a workspace for that process step will appear as a virtual room
with artifacts, transitions and communication tools as objects which software engineer
can manipulate to complete the task. The process step is in the completed state when the

6

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



Monitor Progress

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

software engineer selects anyone of the possible transitions regardless of its outcome
(e.g. passed, failed, done, or aborted).

Having discussed the syntax and semantics of VRPML, the ISPW-6 problem will
be revisited. A detailed discussion of the ISPW-6 problem will be offered along with the
step by step solution expressed in VRPML.

THE ISPW-6 PROBLEM

The ISPW-6 problem (Kellner et al. 1990) is a benchmark problem in research into
PMLs. It concerns with the software requirement change request for an existing software
component occurring either towards the end of the development phase or during
maintenance phase of the software lifecycle.

The ISPW-6 problem starts in response to the software requirement change
request with the project manager scheduling and assigning various engineering activity in
the process. These activities include: Schedule and Assign Task; Modify Design; Review
Design; Modify Code; Modify Test Plans; Modify Unit Test Package; and Test Unit.
During the enactment of these activities, the project manager is also required to monitor
their progress. In each of these activities, the ISPW-6 problem also defines restrictions in
terms of the input and output artifacts, the role responsible for each activity as well as
conditions for each activity initiation and termination.

Apart from defining restrictions in terms of the input and output artifacts, the role
responsible for each activity as well as conditions for each activity initiation and
termination, the ISPW-6 problem also defines specific ordering of the related activities
which is shown in Figure 6.

Schedule and
Assign Task

~~

R~~22:::: MOdIIT" Plans

~ Modify Unit

Modify~ jackag

,

Tesrnit

FIGURE 6. Flow of activities in the ISPW-6 Problem

7



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Summing up, Table 1 summarizes the role responsibility, inputs and outputs as
well as constraints defined for each of the activity defined in the ISPW-6 problem.

TABLE 1. Summary of the ISPW-6 Problem

Responsibility: Project Manager

Inputs: Requirement Change, Authorisation, Project Plans

Schedule And Outputs: Updated Project Plans, Notification of Task Assignments and Schedule Dates, Requirement Change
Assign Tasks Constraints:

- Begins as soon as authorisation is given
- Ends when outputs have been provided

Responsibility: Design Engineer

Inputs: Requirement Change, Current Design, Design Review Feedback

Modify
Outputs: Modified Design
Constraints:Design
- Can begin as soon as the task been assigned
- Subsequent iteration can begin if design is not approved by the Review Design
- Ends when outputs have been provided

Responsibility: Design Review Team

Inputs: Requirement Change, Modified Design
Review

Outputs: Design Review Feedback, Approved Modified Design, Outcome Notification
Design

Constraints:
- Begins on schedule provided the modified design is available at the time
- Ends when outouts have been orovided

Responsibility: Design Engineer

Inputs: Requirement Change, Modified Design, Current Source Code, Feedback Regarding Code

Modify Outputs: Modified Source Code, Object Code

Code Con stra in ts:
- Can begin as soon as the task has been assigned even if Modify Design has not begun (discretion)
- Ends when clean com pilations are achieved, outputs have been provided and design is approved
- Subsequent iteration can begin if required when test unit has completed

Responsibility: QA Engineer

Inputs: Requirement Change, Current Test Plans

Modify Test Outputs: Modified Test Plans
Plans Constraints:

- Can begin as soon as the task has been assigned
- Ends when outputs have been provided

Responsibility: QA Engineer

Inputs: Requirement Change, Modified Test Plans, Current Unit Test Package, Modified Design,
Source Code, Feedback Reaarding Test Package

Modify Unit Outputs: Modified Unit Test Package
Test Package Constraints:

- Can begin as soon as Modify Test Plans has completed
- Subsequent iteration can begin if required as Test Unit has completed
- Ends when outputs have been provided

Responsibility: Design Engineer, QA Engineer

Inputs: Requirement Change, Object Code, Unit Test Package
Outputs: Test Results, Feedback Regarding Code, Feedback Regarding Test Package,

TestUnit Notification of Successful Testing
Constraints:
- Can begin as soon as both Object Code and Unit Test Package are available
- Ends when outputs have been provided

Responsibility: Project Manager

Inputs: Requirement Change, Notification of Completion (from all tasks), Current Project Plans,

Monitor Outcome Notification, Notification of Successful Testina, Decision Reaardina Cancellation

Progress Outputs: Updated Project Plans, Notification of Revised Task, Cancel Recommendation

Constraints:
- Persists throughout the duration of the process
- Ends when Test Unit has been successfully comoleted or cancellation of the whole ISPW process

8



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Having described and summarized the ISPW-6 problem in details, it is now appropriate
that the solution expressed in VRPML is presented.

VRPML SOLUTION TO THE ISPW-6 PROBLEM

As depicted in Figure l, the ISPW-6 solution expressed in VRPML consists of one start
node, one stop node, two replicator nodes, one merger node, six general purpose activity
nodes, one meeting activity node, one multi-instance activity node as well as one macro
node.

Two activities described in the ISPW-6 problem do not form as parts of the
VRPML solution. The two activities are: Schedule and Assigned Task; and Monitor
Progress. In VRPML solution of the ISPW-6 problem, these two activities are
intentionally left out to demonstrate that VRPML solution is generic, and the enactment
of the ISPW-6 problem (and VRPML graph in general) is dynamic in that scheduling of
tasks and their assignment of resources can be incrementally achieved according to the
dynamic need of a particular project.

For the same reason, VRPML solution also intentionally ignores the fact that
Modify Code can be started upon discretion of a project manager even when Modify
Design and Review Design have not even begun (see flow of activities in Figure 6). This
also relates to the dynamic nature of software processes that is, how can the project
manager know in advance which source code to modify when the modify design and the
review design have not even started. Even if the source code to be modified may be
known in advance, allowing the coding activity to precede the design and review
activities can often lead to poor and badly structured design. On the other hand, perhaps
as a way to do prototyping, the coding activity may precede the design and the review
activities but it should be modeled and enacted separately.

Apart from dynamic issues raised by Schedule and Assigned Tasks, Monitor
Progress and Modify Code activities, most tasks describe in the ISPW-6 problem appear
directly as activity nodes in the VRPML graph in Figure 1 with the exception of Review
Design, and Test Unit. Review Design is actually broken down into two activities in the
VRPML graph: Review Design; and Review Meeting. This is because Review Design
actually involves two activities relating to the review of the design and the collective
decision making process.

Test Unit, on the other hand, is broken down into five activities grouped into a
macro node called Test Unit (describe below) involving: Test, Test Analysis; Feedback
for Modify Code; Feedback for Test Package; and Feedback for Both. Similar to Review
Design, the main rationale for breaking down Test Unit into five activities is that apart
from testing, Test Unit also involves collective decision making process on the test
outcome as well as giving the appropriate feedback on the test results.

In terms of its enactment, when the VRPML graph in Figure 1 is first enacted, a
control flow signal is initially generated by the start node. This control flow signal is
then replicated by the replicator node to enable the Modify Design and Modify Test
Plans. Upon the arrival of the control flow signals for both activity nodes, VRPML

9



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

interpreter attempts to acquire the resources (in terms of the artifacts, roles and engineer's
assignment) for both activities. If not successful, either resource has not yet been
assigned or resource has been assigned but it is not available, resource exception will be
thrown. In this case, the enactment of the activity whose resource exception is thrown
will be suspended. In turn, VRPML interpreter automatically creates a task for the project
manager to fix the resource exception or terminate the overall enactment. In this way,
resource allocation can be done dynamically in VRPML. This is an important feature for
a PML as resources in software processes are dynamic and rarely can they be completely
specified ahead of time.

Assuming that no resource exceptions are thrown for both activity nodes, Modify
Design and Modify Test Plans can now appear in the to-do-list of the assigned software
engineer. Once the assigned software engineer chooses to undertake the activity, the
workspace of the activity will be opened in a virtual environment. To allow completion
or cancellation of an activity, the software engineer may select from anyone ofthe given
transitions which appear as objects in a virtual environment. In turn, the selected
transition will automatically generate the appropriate control flow signal to support
further enactment. As the enactment of the VRPML graph in Figure 1 is relatively
straightforward, it will not be traced further.

Nevertheless, there are a number of issues worth mentioning regarding to the
enactment of VRPML graph in Figure 1. The first issue relate to the enactment of the
multi-instance activity node called Review Design and the meeting node called Review
Meeting. These two tasks are actually representing Review Design activity in Table 1. As
discussed earlier, the depths the multi-instance activity node and the meeting activity
node, which correspond to how many software engineers involved, can also be
dynamically specified as a resource that is, they are also subjected to resource exception.
Thus, apart from the resource relating to the assignment of software engineers, tools, and
artifacts, how many software engineers that will be assigned for the review design and
the review meeting can also optionally be specified either before or dynamically during
enactment. This feature enables VRPML to support dynamic creation of tasks according
to the need of a particular project.

The second issue relates to the enactment of a macro node called Test Unit. This
macro node actually represents Test Unit activity in Table 1 which consists of a number
of tasks. These tasks are: Test; Feedback for both; Feedback for Test Package; Feedback
for Modify Code; and Testing Analysis. During enactment, when a control flow signal
encounters a Test Unit macro, the enacted graph is rewritten to include the tasks defined
in that macro.

As far as work context is concerned, each activity node (shown in Figure 1,
Figure 2, and Figure 3 earlier) must always be accompanied by its respective workspace
along with the appropriate definition of resource and transitions. The definition of
workspaces, resource, and transitions will be discussed next.

The workspace for an activity node called Modify Design in Figure 1 is defined in
Figure 7. It consists of a transition called done and three artifacts consisting of Current
Design, Requirement Change, and Design Review Feedback along with their appropriate
access rights.

10



ModifiedDesign

11

ModifyDesign

~DsgnEngr

o

@I.t
CurrentDesign

@It

DesignReviewFeedback

RequirementChange

FIGURE 8. Workspace for a multi-instance activity node called Review Design

The workspace for a meeting activity node called Review Meeting in Figure 1 is
defined in Figure 9. It consists of two transitions (called (P)assed and (F)ailed), both
asynchronous and synchronous communication tool and four artifacts consisting of
Requirement Change, Design Review Feedback, Outcome Notification and Modified
Design along with their appropriate access rights. It must be stressed that the workspace
for different types of activity nodes are unique. The reason for having a unique
workspace is to support a sense of process awareness during process enactment. For
instance, software engineers are able to distinguish whether the process steps that they are
undertaking also concurrently involve other software engineers - the case for multi­
instance and meeting activities. Such awareness should encourage inter-person
communications, which is seen as one of the important aspect of supporting collaborative
work (Yang 1995).

f)
CommunicationTool

§Jt

FIGURE 9. Workspace for a meeting activity node called Review Meeting

FIGURE 7. Workspace for an activity node called Modify Design

RequirementChange

The workspace for a multi-instance activity node called Review Design in Figure
1 is defined in Figure 8. It consists of a transition called (D)one, a synchronous
communication tool and two artifacts consisting of Requirement Change, and Modified
Design along with their appropriate access rights.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



RequirementChange

CommunicationTool

ModifiedDesign

RequirementChange

@It
SourceCode

@It
ModifiedTestPlans

@It
RequirementChange @It

@li-t FeedbackRegardingTestPackage
CurrentUnitTestPackage

SourceCode ObjectCode

FIGURE 11. Workspace for an activity node called Modify Test Plans

The workspace for an activity node called Modify Unit Test Package in Figure 1
is defined in Figure 12. It consists of a transition called (D)one, and six artifacts
consisting of Requirement Change, Source Code, Modified Test Plans, Current Unit Test
Package, Feedback Regarding Test Package and Modified Design along with their
appropriate access rights.

12

FIGURE 12. Workspace for an activity node called Modify Unit Test Package

ModifiedDesign FeedbackRegardingCode

CurrentTestPlans

FIGURE 10. Workspace for an activity node called Modify Code

The workspace for an activity node called Modify Test Plan in Figure 1 is defined
in Figure 11. It consists of two transitions called (D)one and (R)edo and two artifacts
consisting of Requirement Change, and Current Test Plans along with their appropriate
access rights.

The workspace for an activity node called Modify Code in Figure 1 is defined in
Figure 10. It consists of a decomposable transition called (D)one, a synchronous
communication tool and five artifacts consisting of Requirement Change, Source Code,
Object Code, Feedback Regarding Code and Modified Design along with their
appropriate access rights.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



TestResult

ObjectCode

FIGURE 15. Workspace for a meeting activity node called Test Analysis

The workspace for a meeting activity node called Test Analysis (from Test Unit
macro) in Figure 3 is defined in Figure 15. It consists of four transitions (called (P)ass,
(T)est, (B)oth, and (C)ode), both synchronous and synchronous tools as well as three
artifacts consisting of Requirement Change, Test Result, and Notification of Successful
Testing along with their appropriate access rights.

13

@Jt
RequirementChange

@J.t

FIGURE 14. Workspace for an activity node called Test

CurrentUnitTestPackage

FIGURE 13. Workspace for an activity node called Check Compilation

ObjectCode

SourceCode

The workspace for an activity node called Check Compilation (a sub-graph of the
decomposable transition D for activity node called Modify Code) in Figure 2 is defined in
Figure 13. It consists of two transitions called (D)one and (R)edo, and two artifacts
consisting of Source Code, and Object Code along with their appropriate access rights.

The workspace for an activity node called Test in Figure 3 is defined in Figure 14.
It consists of a transition called (D)one, and four artifacts consisting of Current Unit Test
Package, Requirement Change, Test Result, and Object Code along with their appropriate
access rights.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



~t
RequirementChange

FeedbackRegardingCode

The workspace for an activity node called Feedback for Both (from Test Unit
macro) in Figure 3 is defined in Figure 18. It consists of a transition called (D)one, and
three artifacts consisting of Requirement Change, Feedback Regarding Test Package and
Feedback Regarding Code along with their appropriate access rights.

FIGURE 17. Workspace for an activity node called Feedback for Modify Code

FeedbackRegardingCode

14

FeedbackRegardingTeslPackage

RequirementChange

FIGURE 18. Workspace for an activity node called Feedback for Both

FIGURE 16. Workspace for an activity node called Feedback for Test Package

FeedbackRegardingTestPackage

RequiremenlChange

The workspace for an activity node called Feedback for Modify Code (from Test
Unit macro) in Figure 3 is defined in Figure 17. It consists of a transition called (D)one,
and two artifacts consisting of Requirement Change, and Feedback Regarding Code
along with their appropriate access rights.

The workspace for an activity node called Feedback for Test Package (from Test
Unit macro) in Figure 3 is defined in Figure 16. It consists of a transition called (D)one,
and two artifacts consisting of Requirement Change, and Feedback Regarding Test
Package along with their appropriate access rights.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DISCUSSION AND LESSONS LEARNED

Throughout the previous section, we have presented a step by step solution to the ISPW-6
problem expressed in VRPML. A number of lessons learned in terms of effectiveness of
representation, language expressiveness, and modularity as well as scalability of
VRPML. The lessons are summarised below:

• Effectiveness of representations: Because VRPML notations are purely
graphical, it seems straightforward to make sense out of the VRPML
representations. In fact, to some extent, the general structure of VRPML graph
resembles that of a flowchart.

• Language expressiveness: It is difficult to measure expressiveness of VRPML
simply by modelling and enacting one specific problem as the ISPW-6. However,
because the ISPW-6 problem is designed by experts in the field, and the fact that
VRPML can straightforwardly model the solution is a positive indication about is
expressiveness. Nonetheless, because VRPML is a control-flow based language, it
suffers from the problem of race condition, that is, two or more control flows can
compete to enable a particular node. The problem is currently being address in the
next version of the language (Zamli and Mat Isa 2005).

• Modularity and Scalability: VRPML graph is highly modular in the sense that
activities are modelled as a step in a software process. VRPML also provides a
macro node which can group one or more nodes together. One obvious limitation
is that VRPML suffers from the problem of scale, that is, it takes much space.
Even a small problem like the ISPW-6, VRPML solution consists of fourteen
different types of activity nodes (including macro expansion) as well as fourteen
corresponding workspaces. One point to note is that this limitation is inherent in
any graph based visual language.

Summing up, VRPML solution is characterized by a number ofnovel features:

• Software processes, expressed as process steps by activity nodes, are also
described in terms of workspaces which host artifacts and tools, and can be
represented in a virtual environment. The concept of workspaces in which
software engineers can perform their tasks is not new as it can also be seen in
ADELE-TEMPO (Belkhatir et al. 1994), but the way that workspace is integrated
with a virtual environment in VRPML is. This opens up a possibility for
supporting process awareness, user awareness and process visualization utilising a
virtual environment. As an illustration, Figure 19 depicts a snapshot from the
enactment of the ISPW-6 for an activity node called Modify Design.

15



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIGURE 18. Workspace snapshot for Modify Design seen during enactment

• Resources in terms of software engineers, artifacts, and tools needed for the
software processes can be dynamically assigned. This is especially important in
the case of activity nodes involving multiple software engineers (e.g. multi­
instance activity nodes and meeting activity nodes). How many engineers are
assigned for such activity nodes (i.e. their depths) depends on the dynamic needs
of a particular project. The support for dynamic creation of tasks and allocation of
resources is also provided in Dynamite (Heiman et al. 1996) via on the fly process
evolution based on graph rewriting, and in Alf (Canals et al. 1994) by treating the
process models into small and independent process models which are enacted
separately. While both approaches have successfully addressed the support for
generic construction of process model as well as dynamic allocation of resources,
they suffer from a number of limitations. Firstly, if on-the-fly process evolution is
exploited, extra overhead may be introduced involving steps in to ensure that no
ad hoc changes and no side effects are done to the process models which can be
difficult and expensive to achieve. Secondly, if the process models are broken
into a collection of smaller and independent process models, process models for
large scale software project can be difficult to manage as there may be literally
consists of hundreds of smaller and independent process models, each of which
needs to be enacted separately.

• In line with the current trends of software engineers working across
geographically and temporally distributed software engineering teams, VRPML
also provide support for specifying virtual meetings. Supporting virtual meetings
seem advantageous since meetings are an important characteristic of software
engineering. Furthermore, virtual meetings could help reduce costs if a meeting
would otherwise be held face to face. However, supporting a virtual meeting (for
geographically and temporally distributed software engineering teams) raises an
issue of time differences. While this issue is beyond the scope of VRPML, one
solution might be that software engineers are given access to communication tools
in a meeting activity node workspace to allow communication and scheduling of
the virtual meeting at a time convenient to all parties.

16



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CONCLUSION

In conclusion, this paper describes a step by step solution of the ISPW-6 problem
expressed in VRPML, a visual PML for modelling and enacting of software processes.
Novel features introduce in VRPML include the support for dynamic creation of tasks
and allocation of resources, and integration with a virtual environment at the PML
enactment level. Currently, additional experimentations are planned to provide further
evaluations of VRPML especially in the field of Workflow Management System
(WFMS) (Zamli et al. 2005; Zamli and Mat Isa 2005b).

ACKNOWLEDGEMENT

This project has been undertaken under the partial funding from the USM Short Term
Grants - "The Design and Implementation of the VRPML Support Environment".

REFERENCES

Bandinelli, S., Fuggetta, A., Ghezzi, C. and Lavazza, L. (1994). SPADE: An
Environment for Software Process Analysis, Design and Enactment. Software
Process Modelling and Technology. A. Finkelstein, J. Kramer and B. Nuseibeh.
Taunton, England, Research Studies Press: 223-247.

Belkhatir, N., Estublier, J. and Melo, W. (1994). ADELE-TEMPO: An Environment to
Support Process Modelling and Enaction. Software Process Modelling and
Technology. A. Finkelstein, J. Kramer and B. Nuseibeh. Taunton, England,
Research Studies Press: 187-222.

Canals, G., Boudjlida, N., Demiame, J.C., Godart, C. and Lonchamp, J. (1994). ALF: A
Framework for Building Process-Centred Software Engineering Environments.
Software Process Modelling and Technology. A. Finkelstein, J. Kramer and B.
Nuseibeh. Taunton, England, Research Studies Press: 153-185.

Conradi, R. and M. L. Jaccheri (1999). Process Modelling Languages. Software Process:
Principles, Methodology and Technology. J. C. Demiame, B. A. Kaba and D.
Wastell. Berlin-Heidelberg, Lecture Notes in Computer Science Volume 1500,
Springer: 27-52.

Dami, S., Estublier, J. and Amiour, M. (1998). APEL: A Graphical Yet Executable
Formalism for Process Modelling. Automated Software Engineering 5(1): 61-96.

Emmerich, W. and V. G. Como (1991). FUNSOFT Nets: A Petri-Net based Software
Process Modeling Language. Proceedings ofthe 6th International Workshop on
Software Specification and Design, Italy, IEEE Computer Society Press.

17



---------------------------------_ .._._----

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Gelernter, D. (1985). Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems 7(1): 80-112.

Heiman, P., Joeris, G. and Krapp, C.A. (1996). DYNAMITE: Dynamic Task Nets for
Software Process Management. Proceedings ofthe 18th International Conference
on Software Engineering, Berlin, Germany, IEEE Computer Press: 331-341.

Huff, K. E. (1996). Software Process Modeling. Trends in Software Process. A. Fuggetta
and A. Wolf, John Wiley & Sons: 1-24.

Kellner, M.l., Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, L.J., Penedo, M.H.
and Rombach, H.D. (1990). Software Process Modeling Example Problem.
Proceedings ofthe 6th International Software Process Workshop, Hakodate,
Hokkaido, Japan, IEEE Computer Society Press.

Franch, X. and Ribo, J.M. (2003). A UML-Based Approach to Enhance Reuse within
Process Technology. Proceedings ofthe 9th European Workshop on Software
Process Technology, LNCS Vol. 2786, Helsinki, Finland, 2003, Springer :74-93.

Sutton Jr., S. and L. J. Osterweil (1997). The Design of a Next-Generation Process
Language. Proceedings ofthe Joint 6th European Software Engineering
Conference and the 5th ACMSIGSOFT Symposium on the Foundation of
Software Engineering, Lecture Notes in Computer Science Volume 1301,
Springer.

Wise, A. (1998). Little JIL 1.0 Language Report - Technical Report 98-24, Department of
Computer Science, University ofMassachusetts at Amherst.

Yang, Y. (1995). Coordination for Process Support is Not Enough. Proceedings ofthe
4th European Workshop on Software Process Technology, Lecture Notes in
Computer Science Volume 913, Springer.

Zamli, K. Z. and Lee, P.A. (2001). Taxonomy of Process Modeling Languages.
Proceedings ofthe ACS/IEEE International Conference on Computer Systems
and Applications, IEEE Computer Society Press.

Zamli, K. Z. and Lee, P.A. (2002). Exploiting a Virtual Environment in a Visual PML.
Proceedings ofthe 4th International Conference on Product Focused Software
Process Improvements, Rovaniemi, Finland, Lecture Notes in Computer Science
Volume 2559, Springer.

Zamli, K.Z. and Lee.P.A. (2003). Modeling and Enacting Software Processes Using
VRPML. Proceedings ofthe 10th IEEE Asia-Pacific Conference on Software
Engineering, IEEE CS Press: 243-252.

18



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Zamli, K.Z. and Mat Isa, N.A. (2004). A Survey and Analysis ofProcess Modeling
Languages. Malaysian Journal ofComputing Science Vol. 17, No 2: 68-89.

Zamli, K.Z., Mat Isa, N.A., and Khamis, N. (2005). The Design and Implementation of
the VRPML Support Environment. Malaysian Journal ofComputer Science Vol.
18, No 1: 57-69.

Zamli, K.Z., Mat Isa, N.A. and Ali, A.N. (2005). Coordinating Business Processes Using
a PML. Proceedings ofthe International Conference on Information Integration
and Web-based Applications and Services (IIWAS 2005), Kuala Lumpur :445­
455.

Zamli, K.Z., and Mat Isa, N.A. (2005). The Computational Model for a Flow-based
Visual Language. Proceedings ofthe AlDIS International Conference in Applied
Computing 2005, Algarve, Portugal: 271-224.

Zamli, K.Z. and Mat Isa, N.A (2005b). Enacting the waterfall software development
model. Jurnal Teknologi UTM (Siri D), in print for December 2005 issue.

19







-,..
rl
(l;) "
"-
rl
(l;)

w
(!l
<J:a..

- --
DR KAMALZUHArRf B ZAMU

304.PELECT.6035127

___ "AT~DA.---

UNIT KUMPULAN WANG AMANAH ".
UNfVERSm SAl !is MAlAYSIA j

KAMPUS KEJURUTERAAN
SERr AMflAtmAN

PENYATA KUMPULAN WANG
TEMPOH BERAKHIR 3f i1Dl 2006

THE OESrGN & lMPLEMENTION OF THE VRPML SUPPORT ENVIROME'NT

- - - - - -
Tempoh PlOJek;01/11/2004· 3tI101211C6JUMLAH GERAN :.

",ro PROJEK :­

PANEL:­
PENAJA:-

~

J/PENDEK

PeNlltukan

(a)

P&rbelanjaan s-ehlngga Tang:gungan
31/1212005 semasa 2DD6

(b) (c)

Belanla
S~aaa2006

(d)

Jum.
BeJanje 2DOS

(cot-d)

Jumlal1 Bolanja
Terkumpuf

(b+c+d)

SakI P8l'antakan
Sltmua 20D8

(a-(bfoc+dl

I-J
~

j;':~:?.9I~: GAJr KAKITANGAN AWAlt!. 8,321.00 3,754.78 0.00 0.00 0.00~
I

:::E ~~{~!~!l!R~: PERBELANJAAN PERJALANAN DAN SARA 2,791.00 0.00 0.00 212.75 212.75Ul
~

I :~'h~AAP; PERHUBUNGAN DAN unLiTI 650.00 70.00 0.00 0.00 0.00~

0:::
~';;:;2~~; BEKALAN DAN AlAT PAKAr HASIS 5,700.00 5,684.00 1,970.00 2,448.00 4,418.00<J:

I
<J:

;n~~gp-; PERKHIDMATAN lKTlSAS & HOSPITALlTr 2,500.00 3,035.85 0.00 1,300.00 1,300.00Clz
w

;;~~~'!1:!~, HARTA-HARTA MODAL LAIN 0.00 1,400.00 0.00 0.00 0.00co
I

I-J - .
13,945.63 1,970.00 --

3,900.75 5,930.75• 19,962.00

Jumlah Besar 19,982,00 13:G46.63 1,1l70.00 3,960.76 5.930.75

('t)
(l;)
(l;)
.-l

""IJ1
lD

""(S)

lD
(l;)

IJ1
(l;)

3,754.78

212.75

70.00

10,102.00

4.336.85

1,400.00

19.876.38

19,816.38'

4,566.22

2,578.25

580.00

(4,402.00)

(1.836.85)

(1,400.00)

- 85.62

85.62

LD
(l;)
(l;)

C'l
'­
.-l
.-l,
lD
.-l

Page 1



..

0" .

';!A;v..LI

.................... , '" ., .
· .

....... . ... ..... ....~ .

... . .. .." .

.................................................................

· , .

· .
............•••••..............•.•......•.......•...............

...•.•.•••.•••..•••........•.....•............ , ...•....••...••..

...•.......•...•••..•..................................•....................

rrH £ \) t >', Cr tJ .p.. t-J PI"" PL E"'" £ I-J ., ". T \ t') N ~F 'j H\:i.......••••..•...... , ............••.•••....................••.•.. , , .

Nama Penyelidik:

USMJIP-06

USM J/P-Q6 - 1

Nama Penyelidik-Penyelidik
Lain (Jika berkaiUin)

Laporan Akhir PrQjek Penyelidikan Jan&ka Pendek

..•.......•....•...••...................••...........•....•..•.......................................•.

Tajuk Projek:

BAHAGIAN PENYELIDIKAN & PEMBANGUNAN

CANSELORI

UNIVERSITI SAINS MALAYSIA

.................•....................................•...•..................................•.•••.•...•

v'~ P;-"" L A.. P/7"J1.T '€tvv'f fL,..,"'~£NI..........................................•........•.•.•............................••••.•.••.....••..••.

..........•...•.•..•....•..•..••.• ~ ...........•.................~ •.•......-..........................•...••

.•..•....•....•..•••.•••..•..•..••.•.•••..•.•••••••..•••.•....•.•...•.....•..•.••....•.•..•......••••••.••

1)

3)

I
''''''\

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



• to ..

• ~ <II .

.. .......

................

.......................................................

........................................................A

.. II ..

• 0. (l .

.......... II II .

.. II II .. II .. II II II .. II ,. .. ,. ,. ..

USM J/P-Q6 - 2

................................................... fI ..

• II II " ..

.. .. .. .. .. .. .. .. .. .. .. ..

•••••• 0 ,. •••••••••• II. ..

..................................................

........................................................

......... .. .. .. .. ..

.... ... .. .. .. .. ,. . ,. ,. ,. ..

• 0 .

.............. t! .

· ..

.. .. .. . .. .. .. .. .... .. .. .. .. .. .. .. ... .. ......... .. ... .. .. .. .. .. .. .. .. .. ... .. . .. .. .. .. ..

•••••••••• II ••••

.. .. . .. ....., ..

.. .. . .. .. .. .. .. ... .. ....

.. .. .. .. .. .. .. .. .. .. . .. .. ..

.......................................................................................................

· ..

.. .. .. .. .. . .. .. .. .. .. .. . .. ..

· ..

· .

· .

..........................................................................................................

.............................................................................................

Penemuan Projek/Abstrak
(Perlu disediakan makluman di antara 100 - 200 perkataan di dalam Bahasa
Malaysia dan Bahasa Inggeris Ini kemudiannya akan dimuatkan ke dalam
Laporan Tahunan Bahagian Penyelidikan &: Pembangunan sebagoi satu cara untuk

.menyampaikan dapatan projek tuan/puan kepada pihak Universiti).

I
I
I 4) (a)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



I
I

Senaraikan Kata Kunci yang digunakan di dalam abstrak:
I
I
I
I

(b)

Bahasa Malaysia

· .

·........ . .
kt:~r<""t/2-,"""'fJ }{,PIS/AN.." ' " ..

Bahasa Inl:l:eris

1- f1tz.pc--fr:'f iVI"'PEL.LfN~ L~N~A4e::. . . ....... . .
:2.. - ~ 'F-Tw ,.. ~ t:..............................

I ........................

I
I
I

...........................................

.. .. ... .. .. .. .. .. .. .. .. .. .. .. . .. .. . .. .... .. .. .. .. ..

.. .. . . .. .. .. .. .. . .. .. .. .. .. .. . .. .. . .. ... ... . .. ..

. .. .. . .. ...... .. . .. .. . .. .. .. . .. .. .. ... .. .

.. .. .. .. .. " . . .

... .. .... .. .. .. .. ~ ..

......... to .

I 5) Output Dan Faedah Projek

I
I
I

(a) Penerbitan (tennasuk laporan/kenas seminar)
(Sila nyatakan jenis, tajuk, pengarang, tahun terbitan dan di mana telah
diterbitldibentangkan) .

.. .. .. .. ..................... ......... . .. .. .. .. ....... .............
- LI -kJ\ T L" #VIr I F!- AN !l lA '" '1"'" K ,(1 f '" '" P- I'< Pt'N~ ft g I T ,IS; l'J......... .............. ........ .......... ..............

LI h A"I L/' "" ~ I It J\ N (: Lf IV/,-! K Af!.·-' iL.-(E' L ;j,aN f ,C'f PAIJt- POJtl.,A I........ ... ~ ......... ......... .......... ..............
· .

..................................................................

.. • • • • • • .. • • • • .. .. .. .. • • .. .. 11 .......... • '." " ..

...............................

.. .

.........................

..................................................

..............................
........................................

I
I

I
I
I USM J/P..Q6 - 3

I



I
I
I

(b) Fa'edah-Faedah Lain Seperti Perkembangan
Prospek Komersialisasi Dan Pendaftaran Paten.
(Jika ada dan jika petlu,sila gunakan kertas berasingan)

Produk,

· .

· -. .

· .
· .

......................................
. .

.............................................

................................................

. .
· .
· .

· .

I

I

I

I

I · . ........................................

Latihan Gunatenaga Manusia

........................ ,. ..
I
I

(c)

i) Pelajar Siswazah
LII-\p...T ... , .. ,. . .D ..................................................

.. .. ... . .. ... .. .. .. .. .. .. .. .. . ..

...............................................................................................................

.........................................................................................................

.. .. ... .. .. .. .. .. .. . .. .. .. ...... .. .. .. .. . .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. .. ..

......... " .-
.. . .. .. . .. . .. .. .. .... .. ... ,. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. .. . .. .. .. .. .. .. .. ..

Pelajar Prasiswazah:ii)

I

I
I
1

...................................... III ..

,I

I
iii) Lain-Lain ................................................................ "" ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. • • .. • .. • • .. .. .. .. .. .. .. .. .. • .. .. .. .. .. .. .. .. .. • • .. .. .. .. .. .. .. .. .. .. .. .. .. .. II

I . .. .. .. . .. . .. . .. . .. .. ...............................................................................

I
I

~USM J/P-{}6 - 4

I



I
I

I
I

.... . .. ... . .
I
I

6. PeraIatan

" .

Yang TcIah DibeIi:

f 40 r..!'
, , , . , . , .

........... ... .. ... ......... . . . . ..... . .

I
I
I

.............................
L I H />rT .............................

•••••••••• I • ••.•••••••••••••••••••••••••••

... .... ........... ..... ... ......................................
...........................................................

I
I

...............................................................

.. ......... .. ........... .. .. ..... .. .. ... . .. ..... .. . ..... .. . .. .
· "" .

I
I

· ..
· .

I i

.................................................................... ' .

... .. ... .. . .. .... .. .. .. .. .. .. .. .. .. . .. ... .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. ..... .. .. .. .. .. .• .. .. .. .. . .. .. .. . .. .

UNTUK KEGUNAAN JAWATANKUASA PENYELIDIKAN UNIVERSITI

...........................r '~'.~;;;:'
.~ .

I
I
I

PROF. MADYA OR. sc,~tt ~; ::.;
Pemangku Tin'~Il!liln!).:!:;!;'

(Per.j)aiiar. ~'i~w.~uli l1l~I~?~:'i'd ,.'.
Pusal Pengajian i'\eju:l:l~(liijij [It>!", .: A

\Jnjv-al~iil Zmf:§ }!f2fEi"j~~a

I".,:,mi'!l~ V<,I}jliftl(e{!!i!ii

I
I
I
I

.............................

T/TANGAN I'ENQERUSI
]IK P£NYIUDlI<Al'l--­
PUSAT PENGA]IAN

.'," ..

... .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. ...

·1 USM J/P-06 - 5

I



I
I
I
I
I
I
I
I
I
'1
I
I
I
I
I
I
I
I
I
I

PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK
SCHOOL OF ELECTRICAL AND ENGINEERING

UNIVERSITI SAINS MALAYSIA

16 November 2006

Pn Latifah Abdul Latif
Assistant Registrar,
RCMO Office,
Bangunan Canselori
USM,
11800 Pulau Pinang

Short Term Grants Final Report

Attached is the final report and latest account statement for the short term grants
entitled: 'The Design and Implementation of the VRPML Support Environment"
for your evaluation.

Thanks in advance.

Yours truly,

;{M ,
Dr~ ~hairi Zamli
Ext: 6079
Email: eekamal@eng.usm.my

KAMPUS KEJURUTERAAN ~ENGINEERINGCAMPUS
Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
Tel: (6)04-5995999 Faks: (6)04-5941023; Website: www.eng.usm.my


